CN210106129U - Micro Piezo Pump - Google Patents
Micro Piezo Pump Download PDFInfo
- Publication number
- CN210106129U CN210106129U CN201920665310.3U CN201920665310U CN210106129U CN 210106129 U CN210106129 U CN 210106129U CN 201920665310 U CN201920665310 U CN 201920665310U CN 210106129 U CN210106129 U CN 210106129U
- Authority
- CN
- China
- Prior art keywords
- plate
- tube
- inflow
- sheet
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims abstract description 44
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 239000000725 suspension Substances 0.000 claims description 37
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
Description
技术领域technical field
本案关于一种微型泵,尤指一种微型、静音及快速传输高流量流体的微型压电泵。This case is about a micro-pump, especially a micro-piezoelectric pump that can transmit high-flow fluid in a small, silent and fast manner.
背景技术Background technique
目前于各领域中无论是医药、电脑科技、打印、能源等工业,产品均朝精致化及微小化方向发展,其中微帮浦、喷雾器、喷墨头、工业打印装置等产品所包含的流体致动器为其关键技术。At present, in various fields, whether it is medicine, computer technology, printing, energy and other industries, products are developing in the direction of refinement and miniaturization. Among them, the fluids contained in products such as micropumps, sprayers, inkjet heads, and industrial printing devices are Actuator is its key technology.
随着科技的日新月异,流体输送结构的应用上亦愈来愈多元化,举凡工业应用、生医应用、医疗保健、电子散热等等,甚至近来热门的穿戴式装置皆可见它的踨影,可见传统的流体致动器已渐渐有朝向装置微小化、流量极大化的趋势。With the rapid development of science and technology, the application of fluid conveying structures has become more and more diversified, such as industrial applications, biomedical applications, medical care, electronic cooling, etc., and even the recent popular wearable devices can be seen. Traditional fluid actuators have gradually tended to miniaturize devices and maximize flow.
因此,如何借由创新的封装结构,使流体致动器得以增加其应用广泛性,为当前重要的发展课题。Therefore, how to increase the application scope of the fluid actuator by means of an innovative packaging structure is an important development topic at present.
实用新型内容Utility model content
本案的主要目的是提供一种微型压电泵,具有一外壳结构,使得一泵核心模块设置于外壳结构内时,不仅可以达到保护泵核心模块的功效,亦可于外壳结构内产生负气压以及正气压的效果,借以传输流体。The main purpose of this case is to provide a miniature piezoelectric pump with a shell structure, so that when a pump core module is arranged in the shell structure, it can not only achieve the effect of protecting the pump core module, but also generate negative air pressure in the shell structure and The effect of positive air pressure, whereby the fluid is transported.
本案的一广义实施态样为一种微型压电泵,包含一管板、一盖板以及一泵核心模块。管板具有一入流管、一出流管、一入流通道、一出流通道、一正压腔室、一负压腔室以及一容置腔室。入流通道设置于入流管内并贯穿入流管。出流通道设置于出流管内并贯穿出流管。入流通道与负压腔室相连通,并且出流通道与正压腔室相连通。容置腔室设置于正压腔室以及负压腔室之间。盖板封盖于该管板上,并具有一凹部以及一围绕凹部之外周部。泵核心模块容置于管板的容置腔室中,并被盖板封闭在管板中,借此,正压腔室形成于泵核心模块与管板之间。泵核心模块汲取负压腔室内的流体进入泵核心模块后,流入正压腔室,接着再从出流通道流出管板外,同时,外部流体亦会自入流通道流入负压腔室内,以完成流体的传输。A broad implementation aspect of the present case is a micro piezoelectric pump, which includes a tube plate, a cover plate, and a pump core module. The tube sheet has an inflow pipe, an outflow pipe, an inflow channel, an outflow channel, a positive pressure chamber, a negative pressure chamber and an accommodating chamber. The inflow channel is arranged in the inflow pipe and penetrates through the inflow pipe. The outflow channel is arranged in the outflow pipe and runs through the outflow pipe. The inflow channel communicates with the negative pressure chamber, and the outflow channel communicates with the positive pressure chamber. The accommodating chamber is arranged between the positive pressure chamber and the negative pressure chamber. The cover plate covers the tube plate and has a concave portion and an outer peripheral portion surrounding the concave portion. The pump core module is accommodated in the accommodating chamber of the tube sheet, and is enclosed in the tube sheet by the cover plate, whereby a positive pressure chamber is formed between the pump core module and the tube sheet. After the pump core module draws the fluid in the negative pressure chamber into the pump core module, it flows into the positive pressure chamber, and then flows out of the tube sheet from the outflow channel. At the same time, the external fluid will also flow into the negative pressure chamber from the inflow channel to complete the fluid transfer.
附图说明Description of drawings
图1为本案微型压电泵的第一实施例的立体示意图。FIG. 1 is a schematic perspective view of the first embodiment of the micro piezoelectric pump of the present invention.
图2为本案微型压电泵的第一实施例的立体分解示意图。FIG. 2 is a schematic exploded perspective view of the first embodiment of the micro piezoelectric pump of the present invention.
图3A及图3B分别为本案第一实施例的管板的正面及背面示意图。3A and 3B are schematic views of the front and the back of the tube sheet according to the first embodiment of the present invention, respectively.
图3C为本案第一实施例的管板的立体部分透视图。3C is a perspective partial perspective view of the tube sheet of the first embodiment of the present invention.
图4A及图4B分别为本案第一实施例的盖板的正面及背面示意图。4A and 4B are schematic views of the front and the back of the cover plate according to the first embodiment of the present invention, respectively.
图5A为本案第一实施例的泵核心模块的立体分解示意图。FIG. 5A is a schematic exploded perspective view of the pump core module according to the first embodiment of the present invention.
图5B为本案第一实施例的泵核心模块的另一立体分解示意图。FIG. 5B is another perspective exploded schematic view of the pump core module of the first embodiment of the present invention.
图6A为本案泵核心模块的剖面示意图。FIG. 6A is a schematic cross-sectional view of the pump core module of the present invention.
图6B为本案泵核心模块另一实施态样的剖面示意图。6B is a schematic cross-sectional view of another embodiment of the pump core module of the present invention.
图6C至图6E为本案泵核心模块的作动示意图。6C to 6E are schematic diagrams of the operation of the pump core module of the present invention.
图7A为自图3A中A-A剖面线所得的剖面示意图。FIG. 7A is a schematic cross-sectional view taken from the section line A-A in FIG. 3A .
图7B为自图3A中B-B剖面线所得的剖面示意图。FIG. 7B is a schematic cross-sectional view taken from the section line B-B in FIG. 3A .
图7C为本案第一实施例的进流作动示意图。FIG. 7C is a schematic diagram of the inflow action of the first embodiment of the present invention.
图7D为本案第一实施例的泄流作动示意图。FIG. 7D is a schematic diagram of the leakage action of the first embodiment of the present invention.
图8为本案微型压电泵的第二实施例的管板的立体示意图。FIG. 8 is a three-dimensional schematic diagram of the tube plate of the second embodiment of the micro piezoelectric pump of the present invention.
图9为本案第二实施例的管板的正面示意图。FIG. 9 is a schematic front view of the tube sheet according to the second embodiment of the present invention.
图10A为自图9中C-C剖面线所得的剖面示意图。FIG. 10A is a schematic cross-sectional view taken from the C-C section line in FIG. 9 .
图10B为自图9中D-D剖面线所得的剖面示意图。FIG. 10B is a schematic cross-sectional view taken from the D-D section line in FIG. 9 .
图10C为本案第二实施例的进流作动示意图。FIG. 10C is a schematic diagram of the inflow action of the second embodiment of the present invention.
图10D为本案第二实施例的泄流作动示意图。FIG. 10D is a schematic diagram of the leakage action of the second embodiment of the present invention.
附图标记说明Description of reference numerals
10、10':微型压电泵10, 10': Micro Piezo Pump
1、1':管板1, 1': tube sheet
11:入流管11: Inflow tube
11a:入流通道11a: Inflow channel
12:出流管12: Outflow pipe
12a:出流通道12a: Outflow channel
13:接脚开口13: pin opening
14:脊部14: Ridge
2:盖板2: Cover
21:外周部21: Peripheral part
22:凹部22: Recess
3:泵核心模块3: Pump core module
31:进流板31: Inlet plate
31a:进流孔31a: inlet hole
31b:汇流排槽31b: Busbar groove
31c:汇流腔室31c: Convergence Chamber
32:共振片32: Resonance sheet
32a:中空孔32a: Hollow hole
32b:可动部32b: Movable part
32c:固定部32c: Fixed part
33:压电致动器33: Piezoelectric Actuators
33a:悬浮板33a: Hoverboard
33b:外框33b: Outer frame
33c:支架33c: Bracket
33d:间隙33d: Gap
33e:第一导电接脚33e: first conductive pin
34:压电元件34: Piezoelectric elements
35:第一绝缘片35: First insulating sheet
36:导电片36: Conductive sheet
36a:电极36a: Electrodes
36b:第二导电接脚36b: second conductive pin
37:第二绝缘片37: Second insulating sheet
38:共振腔室38: Resonance Chamber
C1:正压腔室C1: Positive pressure chamber
C2:容置腔室C2: accommodating chamber
C3:负压腔室C3: Negative pressure chamber
h1:入流开口h1: Inflow opening
h2:出流开口h2: Outflow opening
A-A、B-B、C-C、D-D:剖面线A-A, B-B, C-C, D-D: hatching
具体实施方式Detailed ways
体现本案特征与优点的实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本案。Embodiments embodying the features and advantages of the present case will be described in detail in the description of the latter paragraph. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and diagrams therein are essentially used for illustration rather than limiting this case.
请参阅图1至图3,本案提供一种微型压电泵10,包含一管板1、一盖板2以及一泵核心模块3。泵核心模块3被盖板2封盖于管板1内以形成微型压电泵10。Referring to FIGS. 1 to 3 , the present application provides a micro
请参阅图3A至图3C、图7A以及图7B,于本案第一实施例中,管板1具有一入流管11、一出流管12、多个接脚开口13、一脊部14、一正压腔室C1、一容置腔室C2、一负压腔室C3、一入流开口h1以及一出流开口h2。入流管11具有一入流通道11a,设置于入流管11内并贯穿入流管11。出流管12具有一出流通道12a,设置于出流管12内并贯穿出流管12。入流通道11a与负压腔室C3相连通。出流通道12a与正压腔室C1相连通。容置腔室C2设置于正压腔室C1以及负压腔室C3之间。脊部14凸设于管板1内,并且容置腔室C2形成于脊部14中。于本案第一实施例中,脊部14为一环状形态,但不以此为限,脊部14的形态于其他实施例中可依设计需求而变更。于本案第一实施例中,入流通道11a为一弯折通道,但不以此为限,入流通道11a的形态于其他实施例中可依设计需求而变更。入流开口h1连通于入流通道11a以及负压腔室C3之间,并且由于入流通道11a的弯折设计,入流开口h1设置于脊部14上。而出流开口h2连通于出流通道12a以及正压腔室C1之间。Referring to FIGS. 3A to 3C , 7A and 7B, in the first embodiment of the present case, the
值得注意的是,于本案第一实施例中,入流管11以及出流管12设置于管板1的同一侧,但不以此为限,入流管11以及出流管12的设置于其他实施例中可依设计需求而变更。It is worth noting that, in the first embodiment of the present case, the
请参阅图3A、图4A、图4B、图7A以及图7B,于本案第一实施例中,盖板2封盖于管板1上,并具有一外周部21以及一凹部22。外周部21围绕凹部22以及管板1的脊部14,借此管板1的脊部14凸伸入盖板2的凹部22内。此外,于本案第一实施例中,盖板2的凹部22的一深度大于管板1的脊部14的一高度,如此,负压腔室C3得以形成于盖板2与管板1之间。Referring to FIGS. 3A , 4A, 4B, 7A and 7B, in the first embodiment of the present application, the
请参阅图2、图5A、图5B、图6A及图7A,于本案第一实施例中,泵核心模块3容置于管板1的容置腔室C2中,并被盖板2封闭在管板1中。借此,正压腔室C1形成于泵核心模块3与管板1之间,负压腔室C3形成于盖板2与泵核心模块3之间。于本案第一实施例中,泵核心模块3由一进流板31、一共振片32、一压电致动器33、一第一绝缘片35、一导电片36及一第二绝缘片37依序堆叠组成。进流板31具有至少一进流孔31a、至少一汇流排槽31b及一汇流腔室31c。进流孔31a供导入流体,并贯通汇流排槽31b。汇流排槽31b与汇流腔室31c相连通,借此,进流孔31a所导入的流体得以通过汇流排槽31b后汇流至汇流腔室31c中。于本案第一实施例中,进流孔31a与汇流排槽31b的数量相同,分别为4个,但不以此为限,进流孔31a与汇流排槽31b的数量可依设计需求而变更。如此,四个进流孔31a分别贯通四个汇流排槽31b,且四个汇流排槽31b与汇流腔室31c相连通。Please refer to FIG. 2 , FIG. 5A , FIG. 5B , FIG. 6A and FIG. 7A , in the first embodiment of the present case, the
于本案第一实施例中,共振片32接合于进流板31上,且具有一中空孔32a、一可动部32b及一固定部32c。中空孔32a位于共振片32的中心处,并与进流板31的汇流腔室31c的位置对应。可动部32b设置于中空孔32a的周围,而固定部32c设置于共振片32的外周缘部分并固定接合于进流板31上。In the first embodiment of the present application, the
于本案第一实施例中,压电致动器33接合于共振片32上,并包含一悬浮板33a、一外框33b、至少一支架33c、一压电元件34、至少一间隙33d及一第一导电接脚33e。悬浮板33a为一正方型形态,可弯曲振动。悬浮板33a之所以采用正方形,乃相较于圆形形态的设计,正方形形态悬浮板33a的结构具有明显省电的优势。因在共振频率下操作的电容性负载,其消耗功率会随频率的上升而增加,又因正方形形态悬浮板33a的共振频率明显较圆形形态悬浮板低,故其相对的消耗功率亦明显较低,亦即本案所采用正方形形态设计的悬浮板33a,具有省电优势的效益。外框33b环绕设置于悬浮板33a之外侧。至少一支架33c连接于悬浮板33a与外框33b之间,用以提供悬浮板33a弹性支撑的支撑力。压电元件34具有一边长,该边长小于或等于悬浮板33a的一边长,且压电元件34贴附于悬浮板33a的一表面上,用以被施加电压以驱动悬浮板33a弯曲振动。悬浮板33a、外框33b与支架33c之间构成至少一间隙33d,用以供流体通过。第一导电接脚33e从外框33b之外缘凸伸。In the first embodiment of the present case, the
于本案第一实施例中,导电片36从内缘凸伸一电极36a,呈弯曲状,以及从外缘凸伸一第二导电接脚36b。电极36a电性连接压电致动器33的压电元件34。压电致动器33的第一导电接脚33e以及导电片36的第二导电接脚36b向外接通外部电流,借以驱动压电致动器33的压电元件34。第一导电接脚33e以及第二导电接脚36b分别自管板1的接脚开口13凸伸至管板1外。此外,第一绝缘片35以及第二绝缘片37的设置,可避免短路的发生。In the first embodiment of the present application, an
请参阅图6A,于本案第一实施例中,悬浮板33a与共振片32之间形成一共振腔室38。共振腔室38可借由在共振片32及压电致动器33之外框33b之间的间隙填充一材质而形成,例如:导电胶,但不以此为限,以使共振片32与悬浮板33a之间可维持一定深度,进而可导引流体更迅速地流动。并且,因悬浮板33a与共振片32之间保持适当距离使彼此接触干涉减少,促使噪音的产生降低。于其他实施例中,亦可借由加高压电致动器33之外框33b的高度来减少共振片32与压电致动器33之外框33b之间的间隙填充材质的厚度。如此,泵核心模块3于整体组装时,填充材质不会因热压温度及冷却温度产生变化而被间接影响,可避免填充材质因热胀冷缩因素影响到成型后共振腔室38的实际间距,但不以此为限。此外,共振腔室38的大小会影响泵核心模块3的传输效果,故维持一固定大小的共振腔室38对于泵核心模块3提供稳定的传输效率是十分重要的。因此,如图6B所示,于另一实施例中,悬浮板33a可采以冲压成型制程使其向上延伸一距离,其向上延伸距离可由成型于悬浮板33a与外框33b之间的至少一支架33c调整,使悬浮板33a的表面与外框33b的表面两者为非共平面。利用在外框33b的组配表面上涂布少量填充材质,例如:导电胶,以热压方式使压电致动器33贴合于共振片32的固定部32c,进而使得压电致动器33得以与共振片32组配接合。如此直接透过将上述压电致动器33的悬浮板33a采以冲压成型制程构成共振腔室38的结构改良,所需的共振腔室38得以透过调整压电致动器33的悬浮板33a冲压成型距离来完成,有效地简化了调整共振腔室38的结构设计,同时也简化了制程、缩短制程时间。此外,第一绝缘片35、导电片36及第二绝缘片37皆为框形的薄形片体,依序堆叠于压电致动器33上以构成泵核心模块3整体结构。Referring to FIG. 6A , in the first embodiment of the present application, a
为了了解泵核心模块3的作动方式,请继续参阅图6C至图6E,于本案第一实施例中,如图6C所示,压电致动器33的压电元件34被施加驱动电压后产生形变,带动悬浮板33a朝远离进流板31的方向位移,此时共振腔室38的容积提升,于共振腔室38内形成了负压,便汲取汇流腔室31c内的流体流经共振片32的中空孔32a进入共振腔室38内,同时共振片32受到共振原理的影响同步向远离进流板31的方向位移,连带增加了汇流腔室31c的容积,且因汇流腔室31c内的流体进入共振腔室38的关系,造成汇流腔室31c内同样为负压状态,进而通过进流孔31a及汇流排槽31b来吸取流体进入汇流腔室31c内。接着如图6D所示,压电元件34带动悬浮板33a向靠近进流板31的方向位移,压缩共振腔室38,同样的,共振片32因共振被悬浮板33a带动而向靠近进流板31的方向位移,推挤共振腔室38内的流体通过间隙33d流出泵核心模块3,以达到流体传输的效果。最后如图6E所示,当悬浮板33a朝远离进流板31的方向位移回到初始位置时,共振片32也同时被带动而朝远离进流板31的方向位移,此时的共振片32压缩共振腔室38,使共振腔室38内的流体向间隙33d移动,并且提升汇流腔室31c内的容积,让流体能够持续地通过进流孔31a、汇流排槽31b来汇聚于汇流腔室31c内。透过不断地重复上述图6C至图6E所示的泵核心模块3的作动步骤,使泵核心模块3能够连续将流体自进流孔31a导引进入进流板31及共振片32所构成流道,产生压力梯度,再由间隙33d排出,使流体高速流动,达到泵核心模块3传输流体的操作。In order to understand the operation mode of the
请参阅图7C以及图7D,当泵核心模块3作动时,泵核心模块3汲取负压腔室C3内的流体进入泵核心模块3后,流入正压腔室C1,接着再通过出流开口h2从出流管12的出流通道12a流出微型压电泵10外,同时,外部流体自入流管11的入流通道11a被吸入,通过入流开口h1后进入负压腔室C3中,以完成流体的传输。Please refer to FIG. 7C and FIG. 7D , when the
请参阅图8至图10D,于本案第二实施例中,仅管板1'的结构与第一实施例中管板1的结构不同,而其不同的处在于入流管11以及出流管12的配置方式。于本案第二实施例中,入流管11以及出流管12设置于管板1的相对两侧,但不以此为限。值得注意的是,入流管11以及出流管12于其他实施例中可仅设置于管板1的不同侧,例如:相邻的两侧。本案第二实施例的作动方式与第一实施例的作动方式相同,故不加以赘述。因第二实施例中的出流管12设置于入流管11的相对侧,故图10D中流体的流出方向与第一实施例中流体的流出方向不同,即第一实施例的流体于同侧流入与流出;而第二实施例的流体于不同侧流入与流出,但不影响流体的传输。Referring to FIGS. 8 to 10D , in the second embodiment of the present application, only the structure of the
值得注意的是,于本案第一实施例中,透过将微型压电泵10的入流管11以及出流管12皆设置于管板1的侧边的设计,可使得流体得以从微型压电泵1的侧边传输,达到薄型化的目的。此外,管板1的整体结构呈现一多方向阶梯式的腔室设计,得以利用负压以及正压的作用配合,完成流体的传输。再者,于本案第一实施例以及第二实施例中,微型压电泵10的整体总厚度为2至5微米,但不以此为限。It is worth noting that, in the first embodiment of the present application, by arranging the
综上所述,本案所提供的微型压电泵,不仅可以达到薄型化以及保护泵核心模块的功效,亦可借由多方向阶梯式腔室的设计,于管板内产生负气以及正压的效果,借以传输流体。To sum up, the miniature piezoelectric pump provided in this case can not only achieve the effect of thinning and protecting the core module of the pump, but also generate negative and positive pressure in the tube sheet through the design of multi-directional stepped chambers. effect, whereby the fluid is transported.
本案得由熟知此技术的人士任施匠思而为诸般修饰,然皆不脱如附申请专利范围所欲保护者。This case can be modified by Shi Jiangsi, a person who is familiar with this technology, but all of them do not deviate from the protection of the scope of the patent application attached.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920665310.3U CN210106129U (en) | 2019-05-10 | 2019-05-10 | Micro Piezo Pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920665310.3U CN210106129U (en) | 2019-05-10 | 2019-05-10 | Micro Piezo Pump |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210106129U true CN210106129U (en) | 2020-02-21 |
Family
ID=69540293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920665310.3U Active CN210106129U (en) | 2019-05-10 | 2019-05-10 | Micro Piezo Pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210106129U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111911392A (en) * | 2019-05-10 | 2020-11-10 | 研能科技股份有限公司 | Micro Piezo Pump |
-
2019
- 2019-05-10 CN CN201920665310.3U patent/CN210106129U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111911392A (en) * | 2019-05-10 | 2020-11-10 | 研能科技股份有限公司 | Micro Piezo Pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM582533U (en) | Micro piezoelectric pump | |
TWI683959B (en) | Actuator structure and micro-fluid control device using the same | |
TWI696758B (en) | Micro pump | |
CN206035774U (en) | microfluidic control device | |
TWI698583B (en) | Micro pump | |
CN112240280B (en) | Micro pump | |
CN107795465B (en) | Micro fluid control device | |
TWM565241U (en) | Micro gas driving apparatus | |
CN210660518U (en) | Micro pump | |
CN210106129U (en) | Micro Piezo Pump | |
CN210599353U (en) | Micro pump | |
TWI661127B (en) | Micro-fluid control device | |
CN206860416U (en) | Micro fluid control device | |
TWI721419B (en) | Micro piezoelectric pump | |
CN111911392B (en) | micro piezoelectric pump | |
CN207135005U (en) | Piezo Actuators and Piezo Actuation Plates | |
CN210087587U (en) | Gas delivery device | |
TWM590631U (en) | Micro pump | |
CN112392698B (en) | Micro pump | |
CN108278195A (en) | Micro fluid control device | |
CN110863977A (en) | Miniature fluid conveying device | |
CN108278196B (en) | fluid control device | |
CN211500945U (en) | Fluid control device | |
TWI755307B (en) | Thin gas transportation device | |
TWI778431B (en) | Thin gas transportation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |