CN209242940U - double silver glass - Google Patents
double silver glass Download PDFInfo
- Publication number
- CN209242940U CN209242940U CN201821819437.8U CN201821819437U CN209242940U CN 209242940 U CN209242940 U CN 209242940U CN 201821819437 U CN201821819437 U CN 201821819437U CN 209242940 U CN209242940 U CN 209242940U
- Authority
- CN
- China
- Prior art keywords
- layer
- dielectric layer
- sub
- glass
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 76
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 38
- 239000004332 silver Substances 0.000 title claims abstract description 38
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title abstract description 14
- 239000010410 layer Substances 0.000 claims abstract description 273
- 239000011241 protective layer Substances 0.000 claims abstract description 29
- 239000002346 layers by function Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 7
- -1 zinc-aluminium oxygen Chemical compound 0.000 claims 2
- 229910018487 Ni—Cr Inorganic materials 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910001120 nichrome Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 24
- 230000003287 optical effect Effects 0.000 abstract description 10
- 238000005496 tempering Methods 0.000 abstract description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 52
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 50
- 239000007789 gas Substances 0.000 description 36
- 238000000034 method Methods 0.000 description 29
- 238000001755 magnetron sputter deposition Methods 0.000 description 27
- 229910052786 argon Inorganic materials 0.000 description 26
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910007717 ZnSnO Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000005344 low-emissivity glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910001362 Ta alloys Inorganic materials 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- OLFCLHDBKGQITG-UHFFFAOYSA-N chromium(3+) nickel(2+) oxygen(2-) Chemical compound [Ni+2].[O-2].[Cr+3] OLFCLHDBKGQITG-UHFFFAOYSA-N 0.000 description 2
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
Abstract
本实用新型实施例公开了一种双银玻璃,包括玻璃基底和依次位于玻璃基底上的第一复合介质层、第一种子层、第一功能层、第一保护层、第二复合介质层、第二种子层、第二功能层、第二保护层、第三介质层,其中,第一复合介质层包括的第一下子介质层、第一中间层、第一上子介质层,第一下子介质层与玻璃基底相邻,第一上子介质层与第一种子层相邻,第一中间层位于第一下子介质层与第一上子介质层之间,第二复合介质层包括的第二下子介质层、第二中间层、第二上子介质层,第二下子介质层与第一保护层相邻,第二上子介质层与第二种子层相邻,第二中间层位于第二下子介质层与第二上子介质层之间,并且第一中间层和第二中间层包含金属层。该双银玻璃可提升其钢化后的光学性能。
The embodiment of the utility model discloses a double-silver glass, which comprises a glass substrate and a first composite dielectric layer, a first seed layer, a first functional layer, a first protective layer, a second composite dielectric layer, The second seed layer, the second functional layer, the second protective layer, and the third dielectric layer, wherein the first composite dielectric layer includes the first lower dielectric layer, the first middle layer, the first upper dielectric layer, the first The lower sub-dielectric layer is adjacent to the glass substrate, the first upper sub-dielectric layer is adjacent to the first seed layer, the first middle layer is located between the first lower sub-dielectric layer and the first upper sub-dielectric layer, and the second composite dielectric layer It includes a second lower sub-dielectric layer, a second middle layer, and a second upper sub-dielectric layer, the second lower sub-dielectric layer is adjacent to the first protective layer, the second upper sub-dielectric layer is adjacent to the second seed layer, and the second middle The layer is located between the second lower sub-dielectric layer and the second upper sub-dielectric layer, and the first middle layer and the second middle layer include a metal layer. The double silver glass can improve its optical performance after tempering.
Description
技术领域technical field
本实用新型涉及一种节能玻璃,尤其是一种双银玻璃。The utility model relates to an energy-saving glass, in particular to a double-silver glass.
背景技术Background technique
随着国家节能减排政策的执行力度加大以及人们对低碳环保意识的加强,以低辐射玻璃为代表的节能玻璃在门窗、玻璃幕墙中的应用越来越广泛。低辐射玻璃家族中,节能性能优异的双银低辐射玻璃得到大量应用。然而,现有的双银低辐射玻璃的光学性能还存在一定的不足,因此还需进一步提升其光学性能以适应更高的要求。With the implementation of national energy conservation and emission reduction policies and people's awareness of low-carbon environmental protection, energy-saving glass represented by low-emissivity glass is more and more widely used in doors, windows and glass curtain walls. In the low-e glass family, double-silver low-e glass with excellent energy-saving performance has been widely used. However, the optical performance of the existing double-silver low-emissivity glass still has certain deficiencies, so its optical performance needs to be further improved to meet higher requirements.
实用新型内容Utility model content
针对上述现在,本实用新型实施例提供一种双银玻璃,可提升其钢化后的光学性能。In view of the above problems, the embodiment of the present invention provides a double-silver glass, which can improve the optical performance of the tempered glass.
本实用新型实施例提供一种双银玻璃,包括玻璃基底,所述双银玻璃还包括依次位于所述玻璃基底上的第一复合介质层、第一种子层、第一功能层、第一保护层、第二复合介质层、第二种子层、第二功能层、第二保护层、第三介质层,其中,所述第一复合介质层包括的第一下子介质层、第一中间层、第一上子介质层,所述第一下子介质层与所述玻璃基底相邻,所述第一上子介质层与所述第一种子层相邻,所述第一中间层位于所述第一下子介质层与所述第一上子介质层之间,所述第二复合介质层包括的第二下子介质层、第二中间层、第二上子介质层,所述第二下子介质层与所述第一保护层相邻,所述第二上子介质层与所述第二种子层相邻,所述第二中间层位于所述第二下子介质层与所述第二上子介质层之间,并且所述第一中间层和所述第二中间层包含金属层。The embodiment of the utility model provides a double-silver glass, which includes a glass substrate. The double-silver glass also includes a first composite dielectric layer, a first seed layer, a first functional layer, and a first protection layer sequentially located on the glass substrate. layer, the second composite dielectric layer, the second seed layer, the second functional layer, the second protective layer, and the third dielectric layer, wherein, the first composite dielectric layer includes the first lower dielectric layer, the first intermediate layer , a first upper sub-dielectric layer, the first lower sub-dielectric layer is adjacent to the glass substrate, the first upper sub-dielectric layer is adjacent to the first seed layer, and the first intermediate layer is located at the Between the first lower sub-dielectric layer and the first upper sub-dielectric layer, the second composite dielectric layer includes a second lower sub-dielectric layer, a second middle layer, a second upper sub-dielectric layer, and the second The lower sub-dielectric layer is adjacent to the first protective layer, the second upper sub-dielectric layer is adjacent to the second seed layer, and the second intermediate layer is located between the second lower sub-dielectric layer and the second between the upper sub-dielectric layers, and the first intermediate layer and the second intermediate layer include a metal layer.
在本实用新型的一个实施例中,所述金属层包含铌、铁、钽、镍、铬或锆的单质或合金。In one embodiment of the present utility model, the metal layer contains a single substance or an alloy of niobium, iron, tantalum, nickel, chromium or zirconium.
在本实用新型的一个实施例中,所述第一下子介质层、所述第一上子介质层、所述第二下子介质层以及所述第二上子介质层分别包含金属或非金属的氧化物或氮化物。In one embodiment of the present invention, the first lower dielectric layer, the first upper dielectric layer, the second lower dielectric layer and the second upper dielectric layer respectively contain metal or non-metal oxides or nitrides.
在本实用新型的一个实施例中,所述第一下子介质层、所述第一上子介质层、所述第二下子介质层以及所述第二上子介质层分别包含氮化硅、锌锡氧化物、锌铝氧化物、氧化硅、氧化钛或氧化铌。In one embodiment of the present invention, the first lower sub-dielectric layer, the first upper sub-dielectric layer, the second lower sub-dielectric layer and the second upper sub-dielectric layer respectively comprise silicon nitride, Zinc tin oxide, zinc aluminum oxide, silicon oxide, titanium oxide or niobium oxide.
在本实用新型的一个实施例中,所述第一保护层和所述第二保护层分别包含镍铬合金或镍铬氧化物,所述第一种子层和所述第二种子层分别包含氧化锌、锌铝氧化物或锌锡氧化物。In one embodiment of the present invention, the first protective layer and the second protective layer respectively contain nickel-chromium alloy or nickel-chromium oxide, and the first seed layer and the second seed layer respectively contain oxide Zinc, zinc aluminum oxide or zinc tin oxide.
在本实用新型的一个实施例中,所述双银玻璃还包括位于所述第一保护层与所述第二复合介质层之间的第一热稳介质层和/或位于所述第二保护层与所述第三介质层之间的第二热稳介质层。In one embodiment of the present invention, the double-silver glass further includes a first heat-stable dielectric layer located between the first protective layer and the second composite dielectric layer and/or located between the second protective layer layer and the second thermally stable dielectric layer between the third dielectric layer.
在本实用新型的一个实施例中,所述第一下子介质层和/或所述第一上子介质层的厚度为0~80nm,所述第二下子介质层和/或所述第二上子介质层的厚度为0~100nm。In one embodiment of the present invention, the thickness of the first lower sub-dielectric layer and/or the first upper sub-dielectric layer is 0-80 nm, and the second lower sub-dielectric layer and/or the second The thickness of the upper sub-dielectric layer is 0-100nm.
在本实用新型的一个实施例中,所述第一种子层、所述第一保护层、所述第二种子层或所述第二保护层的厚度为0~20nm。In one embodiment of the present invention, the thickness of the first seed layer, the first protective layer, the second seed layer or the second protective layer is 0-20 nm.
在本实用新型的一个实施例中,所述第一功能层和所述第二功能层分别包含银或铜银合金,所述第一功能层和所述第二功能层的厚度分别为0~40nm。In one embodiment of the present utility model, the first functional layer and the second functional layer respectively contain silver or copper-silver alloy, and the thicknesses of the first functional layer and the second functional layer are respectively 0 to 40nm.
上述技术方案可以具有如下优点:本实用新型实施例提供的双银玻璃采用独特的双复合介质层的膜层结构,可调节各层对应不同的光谱波段的吸收强度,提升双银玻璃钢化后的光学性能。The above-mentioned technical solution can have the following advantages: the double-silver glass provided by the embodiment of the utility model adopts a unique double-composite dielectric layer film structure, which can adjust the absorption intensity of each layer corresponding to different spectral bands, and improve the tempered double-silver glass. optical properties.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention , for those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative work.
图1为本实用新型实施例提供的一种双银玻璃的结构示意图;Fig. 1 is the structural representation of a kind of double silver glass that the utility model embodiment provides;
图2是图1中的双银玻璃的进一步结构示意图。Fig. 2 is a further structural schematic diagram of the double silver glass in Fig. 1 .
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. example. Based on the embodiments of the present utility model, all other embodiments obtained by persons of ordinary skill in the art without creative efforts belong to the protection scope of the present utility model.
如图1所示,本实用新型一实施例提供一种双银玻璃200,包括玻璃基底10与依次形成于玻璃基底10上的第一复合介质层11、第一种子层12、第一功能层13、第一保护层14、第二复合介质层15、第二种子层16、第二功能层17、第二保护层18以及第三介质层19。第一复合介质层11、第一种子层12、第一功能层13、第一保护层14、第二复合介质层15、第二种子层16、第二功能层17、第二保护层18以及第三介质层19均可由固体材料构成。As shown in FIG. 1 , an embodiment of the present invention provides a double-silver glass 200, which includes a glass substrate 10 and a first composite dielectric layer 11, a first seed layer 12, and a first functional layer sequentially formed on the glass substrate 10. 13. The first protective layer 14 , the second composite dielectric layer 15 , the second seed layer 16 , the second functional layer 17 , the second protective layer 18 and the third dielectric layer 19 . The first composite dielectric layer 11, the first seed layer 12, the first functional layer 13, the first protective layer 14, the second composite dielectric layer 15, the second seed layer 16, the second functional layer 17, the second protective layer 18 and The third medium layer 19 can be made of solid material.
其中,玻璃基底10可为普通玻璃、有色玻璃或超白玻璃,其厚度可为3~10毫米(mm),优选为6mm。Wherein, the glass substrate 10 can be ordinary glass, colored glass or ultra clear glass, and its thickness can be 3-10 millimeters (mm), preferably 6 mm.
第一复合介质层11例如包括第一下子介质层111、第一中间层112以及第一上子介质层113。第一下子介质层111与玻璃基底10相邻,第一上子介质层113与第一种子层12相邻,第一中间层112位于第一下子介质层111与第一上子介质层113之间。第二复合介质层15例如包括第二下子介质层151、第二中间层152以及第二上子介质层153。第二下子介质层151与第一保护层14相邻,第二上子介质层153与第二种子层16相邻,第二中间层152位于第二下子介质层151与第二上子介质层153之间。The first composite dielectric layer 11 includes, for example, a first lower sub-dielectric layer 111 , a first middle layer 112 and a first upper sub-dielectric layer 113 . The first lower sub-dielectric layer 111 is adjacent to the glass substrate 10, the first upper sub-dielectric layer 113 is adjacent to the first seed layer 12, and the first intermediate layer 112 is located between the first lower sub-dielectric layer 111 and the first upper sub-dielectric layer. Between 113. The second composite dielectric layer 15 includes, for example, a second lower sub-dielectric layer 151 , a second middle layer 152 and a second upper sub-dielectric layer 153 . The second lower sub-dielectric layer 151 is adjacent to the first protective layer 14, the second upper sub-dielectric layer 153 is adjacent to the second seed layer 16, and the second intermediate layer 152 is located between the second lower sub-dielectric layer 151 and the second upper sub-dielectric layer. Between 153.
第一下子介质层111、第一上子介质层113、第二下子介质层151和第二上子介质层153例如分别包含金属或非金属的氧化物和氮化物,例如氮化硅(Si3N4)、锌锡氧化物(ZnSnOx)、锌铝氧化物(AZO)、氧化硅(SiO2)、氧化钛(TiO2)或氧化铌(Nb2O5)等。第一下子介质层111和第一上子介质层113的厚度分别为0~80nm,第二下子介质层151和第二上子介质层153的厚度分别为0~100nm。第一中间层112和第二中间层152分别为金属层。具体地,第一中间层112和第二中间层152例如分别包含铌、铁、钽、镍、铬或锆的单质或合金例如镍铬合金(NiCr)等。第一中间层112和第二中间层152的厚度分别为0~30nm。如此一来,双复合介质层膜层结构的可钢化双银Low-E产品能够自由调节各层的吸收强度,以提升双银玻璃的光学性能。The first lower sub-dielectric layer 111, the first upper sub-dielectric layer 113, the second lower sub-dielectric layer 151 and the second upper sub-dielectric layer 153, for example, respectively contain metal or non-metallic oxides and nitrides, such as silicon nitride (Si 3 N 4 ), zinc tin oxide (ZnSnO x ), zinc aluminum oxide (AZO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) or niobium oxide (Nb 2 O 5 ), etc. The thicknesses of the first lower sub-dielectric layer 111 and the first upper sub-dielectric layer 113 are 0-80 nm respectively, and the thicknesses of the second lower sub-dielectric layer 151 and the second upper sub-dielectric layer 153 are 0-100 nm respectively. The first intermediate layer 112 and the second intermediate layer 152 are respectively metal layers. Specifically, the first intermediate layer 112 and the second intermediate layer 152 respectively contain, for example, a single substance or an alloy of niobium, iron, tantalum, nickel, chromium or zirconium such as nickel-chromium alloy (NiCr). The thicknesses of the first intermediate layer 112 and the second intermediate layer 152 are respectively 0-30 nm. In this way, the toughened double-silver Low-E product with double-composite dielectric layer film structure can freely adjust the absorption intensity of each layer to improve the optical performance of double-silver glass.
此外,第一种子层12、第一保护层14、第二种子层16和第二保护层18例如分别包含金属、金属合金或金属合金氧化物,如镍铬合金(NiCr)或镍铬氧化物(NiCrOx)等。进一步地,第一种子层12和第二种子层16例如分别包含氧化锌(ZnO或ZnAlOx)、锌铝氧化物(AZO)或锌锡氧化物(ZnSnOx)等。第一种子层12、第一保护层14、第二种子层16以及第二保护层18的厚度分别为0~20nm。In addition, the first seed layer 12, the first protective layer 14, the second seed layer 16 and the second protective layer 18 contain, for example, metals, metal alloys or metal alloy oxides, such as nickel-chromium alloys (NiCr) or nickel-chromium oxides, respectively. (NiCrO x ) and so on. Further, the first seed layer 12 and the second seed layer 16 respectively include zinc oxide (ZnO or ZnAlO x ), zinc aluminum oxide (AZO) or zinc tin oxide (ZnSnO x ), for example. The thicknesses of the first seed layer 12 , the first protection layer 14 , the second seed layer 16 and the second protection layer 18 are 0-20 nm, respectively.
第一功能层13和第二功能层17例如包含银(Ag)或铜银(AgCu)合金。第一功能层13和第二功能层17的厚度分别为0~40nm。The first functional layer 13 and the second functional layer 17 contain, for example, silver (Ag) or a copper-silver (AgCu) alloy. The thicknesses of the first functional layer 13 and the second functional layer 17 are respectively 0-40 nm.
第三介质层19例如包含金属或非金属的氧化物或氮化物,例如氮化硅(Si3N4)、锌锡氧化物(ZnSnOx)、锌铝氧化物(AZO)、氧化硅(SiO2)、氧化钛(TiO2)或氧化铌(Nb2O5)等。第三介质层19的厚度为0~100nm。The third dielectric layer 19 includes, for example, metal or non-metal oxides or nitrides, such as silicon nitride (Si 3 N 4 ), zinc tin oxide (ZnSnO x ), zinc aluminum oxide (AZO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) or niobium oxide (Nb 2 O 5 ), etc. The thickness of the third dielectric layer 19 is 0-100 nm.
另外,如图2所示,双银玻璃200还例如包括位于第一保护层14与第二复合介质层15的第二下子介质层151之间的第一热稳介质层21和/或位于第二保护层18与第三介质层19之间的第二热稳介质层22。第一热稳介质层21和第二热稳介质层22可提高双银玻璃200的热稳定性。具体地,第一热稳介质层21和/或第二热稳介质层22由金属氧化物陶瓷靶溅射获得,例如锌铝氧化物(AZO、ZnAlOx)、锌锡氧化物(ZnSnOx)、氧化钛(TiOx)。在钢化加工过程中,热稳介质层有利于提升Low-E膜层及产品的热稳定性,使得产品膜层能更好的耐受钢化的考验而不被破坏。另外,热稳介质层的使用,除了可以提高产品热稳定性以外,还可以提升产品的光学性能。再者,由于氧气是影响产品热稳定性的重要因素,因此在膜层制备过程中,热稳介质层采用金属氧化物陶瓷靶溅射时不加氧或少加氧,可以减少氧气向相邻靶位的扩散以提升产品的热稳定性。通常,第一热稳介质层21和第二热稳介质层22的厚度分别为0-50nm。In addition, as shown in FIG. 2 , the double-silver glass 200 also includes, for example, a first thermally stable dielectric layer 21 located between the first protective layer 14 and the second lower sub-dielectric layer 151 of the second composite dielectric layer 15 and/or located at the second The second thermally stable dielectric layer 22 between the second protection layer 18 and the third dielectric layer 19 . The first thermally stable dielectric layer 21 and the second thermally stable dielectric layer 22 can improve the thermal stability of the double silver glass 200 . Specifically, the first thermally stable dielectric layer 21 and/or the second thermally stable dielectric layer 22 are obtained by sputtering a metal oxide ceramic target, such as zinc aluminum oxide (AZO, ZnAlOx), zinc tin oxide (ZnSnOx), oxide Titanium (TiOx). During the tempering process, the thermally stable medium layer is beneficial to improve the thermal stability of the Low-E film layer and the product, so that the product film layer can better withstand the test of tempering without being damaged. In addition, the use of thermally stable dielectric layer can not only improve the thermal stability of the product, but also improve the optical performance of the product. Furthermore, since oxygen is an important factor affecting the thermal stability of the product, during the film preparation process, the thermally stable dielectric layer is sputtered with a metal oxide ceramic target without adding oxygen or adding less oxygen, which can reduce the flow of oxygen to the adjacent Diffusion of the target site to improve the thermal stability of the product. Usually, the thicknesses of the first thermally stable dielectric layer 21 and the second thermally stable dielectric layer 22 are respectively 0-50 nm.
综上所述,本实用新型实施例提供的双银玻璃200的所有膜层均可由固体材料构成,并且采用独特的双复合介质层的膜层结构,提升了双银玻璃的光学性能。与传统单一介质层膜层结构的可钢化双银Low-E(Low-Emissivity,低辐射玻璃)相比,采用双复合介质层膜层结构的可钢化双银Low-E产品能够自由调节各层的吸收强度,而这些不同区域的吸收对应不同的光谱波段。根据Low-E所要求的外观颜色的不同,可灵活调整得到所期望的光谱形态,在保证玻璃的外观颜色为市场主流外观颜色的情况下,可获得更好的可见光透过颜色。具体地,传统单一介质层的可钢双银结构、且膜厚依次为:玻璃基底(6mm)/Si3N4(33.4nm)/ZnO(10.8nm)/Ag(3.3nm)/NiCr(1nm)/Si3N4(74.2nm)/NiCr(2.2nm)/Ag(21.5nm)/NiCr(0.8nm)/Si3N4(49.7nm)的双银玻璃,钢化处理后光学测试结果为:可见光透过率48.2%,透过色a*:-5.2,b*:0.6,玻面反射率23.1%,反射色a*:-1.9,b*:-14.9,室外观察呈现深蓝色,室内为黄绿色。而本实用新型实施例提供的一种双复合介质层的可钢双银的结构、且膜厚依次为:玻璃基底(6mm)/Si3N4(13.2nm)/NiCr(1.8nm)/Si3N4(27.2nm)/NiCr(0.7nm)/Ag(15.9nm)/NiCr(0.7nm)/Si3N4(31.3nm)/NiCr(1.5nm)/Si3N4(49.8nm)/NiCr(0.8nm)/Ag(14.4nm)/NiCr(0.7nm)/Si3N4(35.1nm)的双银玻璃,钢化处理后光学测试结果为:可见光透过率48.7%,透过色a*:-2.02,b*:-1.17,玻面反射率12%,反射色a*:-1.7,b*:-4.8,室外观察呈现浅蓝灰色,室内观察呈现浅蓝绿色。可见,无论室外观察还是室内观察颜色,本实用新型实施例提供的双复合介质层膜层结构的可钢化双银Low-E都更加中性、自然、舒适,性能更优。另外,第一功能层13及第二功能层17均为银层,能额外反射红外线热,阻止热量通过。再者,因为双银玻璃200生产时可只采用磁控反应溅射沉积法就能形成各层,因此可避免生产过程中多次进出镀膜设备,简化了生产工艺,从而还可降低生产成本,提高生产效率。In summary, all the film layers of the double silver glass 200 provided by the embodiment of the present invention can be made of solid materials, and a unique film structure of double composite dielectric layers is adopted to improve the optical performance of the double silver glass. Compared with the traditional toughened double-silver Low-E (Low-Emissivity, low-emissivity glass) with a single dielectric layer film structure, the toughened double-silver Low-E product with a double-composite dielectric layer film structure can freely adjust each layer The absorption intensity of these different regions corresponds to different spectral bands. According to the different appearance colors required by Low-E, it can be flexibly adjusted to obtain the desired spectral shape. When the appearance color of the glass is guaranteed to be the mainstream appearance color in the market, better visible light transmission color can be obtained. Specifically, the traditional single dielectric layer can be steel double silver structure, and the film thickness is as follows: glass substrate (6mm)/Si 3 N 4 (33.4nm)/ZnO(10.8nm)/Ag(3.3nm)/NiCr(1nm )/Si 3 N 4 (74.2nm)/NiCr(2.2nm)/Ag(21.5nm)/NiCr(0.8nm)/Si 3 N 4 (49.7nm) double silver glass, the optical test results after tempering are: Visible light transmittance is 48.2%, transmittance color a*: -5.2, b*: 0.6, glass surface reflectance 23.1%, reflection color a*: -1.9, b*: -14.9, outdoor observation is dark blue, indoor is yellow-green. However, the embodiment of the utility model provides a double-composite dielectric layer with a steel-double-silver structure, and the film thickness is as follows: glass substrate (6mm)/Si 3 N 4 (13.2nm)/NiCr (1.8nm)/Si 3 N 4 (27.2nm)/NiCr(0.7nm)/Ag(15.9nm)/NiCr(0.7nm)/Si 3 N 4 (31.3nm)/NiCr(1.5nm)/Si 3 N 4 (49.8nm)/ NiCr(0.8nm)/Ag(14.4nm)/NiCr(0.7nm)/Si 3 N 4 (35.1nm) double-silver glass, the optical test results after tempering treatment are: the visible light transmittance is 48.7%, and the transmission color is a *: -2.02, b*: -1.17, reflectance of glass surface is 12%, reflection color a*: -1.7, b*: -4.8, light blue-gray in outdoor observation, and light blue-green in indoor observation. It can be seen that no matter the color is observed outdoors or indoors, the temperable double-silver Low-E with double-composite dielectric layer film structure provided by the embodiment of the utility model is more neutral, natural, comfortable and has better performance. In addition, both the first functional layer 13 and the second functional layer 17 are silver layers, which can additionally reflect infrared heat and prevent heat from passing through. Furthermore, because the double-silver glass 200 can be produced by only using the magnetron reactive sputtering deposition method to form each layer, it can avoid multiple entry and exit of the coating equipment during the production process, simplify the production process, and thereby reduce production costs. Increase productivity.
此外,本实用新型另一实施例还提供一种双银玻璃的制备方法以制备上述双银玻璃200。首先提供玻璃基底10。通常玻璃基底10需要清洗干净、干燥,然后传送至真空腔室镀膜区域。接着,通过磁控溅射镀膜的方式依次在玻璃基底10上沉积第一复合介质层11、第一种子层12、第一功能层13、第一保护层14、第二复合介质层15、第二种子层16、第二功能层17、第二保护层18以及第三介质层19。各层均是在室温下进行磁控溅射镀膜沉积形成的,但在沉积完各层后需对形成有各层的玻璃基底10进行后处理。后处理的方式可包括对形成有各层的玻璃基底10进行钢化处理,其中钢化处理的温度为650~700℃,时间约1~10分钟;或者包括对形成有各层的玻璃基底10进行退火处理,其中,退火的温度为400~650℃,退火时间为20分钟至2小时。下面通过两个具体实施例详细说明双银玻璃200的制备过程。In addition, another embodiment of the present invention also provides a method for preparing double-silver glass to prepare the above-mentioned double-silver glass 200 . First, a glass substrate 10 is provided. Generally, the glass substrate 10 needs to be cleaned, dried, and then transferred to the coating area of the vacuum chamber. Next, the first composite dielectric layer 11, the first seed layer 12, the first functional layer 13, the first protective layer 14, the second composite dielectric layer 15, the Two sublayers 16 , a second functional layer 17 , a second protective layer 18 and a third dielectric layer 19 . Each layer is formed by magnetron sputtering coating deposition at room temperature, but after the deposition of each layer, the glass substrate 10 on which each layer is formed needs to be post-treated. The post-treatment method may include tempering the glass substrate 10 formed with various layers, wherein the temperature of the tempering treatment is 650-700° C. for about 1-10 minutes; or it may include annealing the glass substrate 10 formed with various layers. treatment, wherein the annealing temperature is 400-650° C., and the annealing time is 20 minutes to 2 hours. The preparation process of the double-silver glass 200 will be described in detail below through two specific examples.
具体实施例1Specific embodiment 1
一种双银玻璃,其膜层结构由玻璃基底向外依次是:Si3N4(16nm)/NiCr(1.5nm)/Si3N4(16nm)/AZO(15nm)/AgCu(12nm)/NiCr(10nm)/Si3N4(16nm)/NiCr(1.5nm)/Si3N4(16nm)/AZO(15nm)/AgCu(15nm)/NiCr(10nm)/Si3N4(20nm)。A kind of double silver glass, its film layer structure from the glass substrate to the outside is: Si 3 N 4 (16nm)/NiCr(1.5nm)/Si 3 N 4 (16nm)/AZO(15nm)/AgCu(12nm)/ NiCr(10nm)/Si3N4 ( 16nm )/NiCr( 1.5nm )/Si3N4 ( 16nm)/AZO(15nm)/AgCu(15nm)/NiCr(10nm)/ Si3N4 ( 20nm).
制备这种双银玻璃的方法依次是:The method for preparing this double-silver glass is as follows:
(1)玻璃基底清洗干净并吹干,置于真空溅射区;(1) The glass substrate is cleaned and dried, and placed in a vacuum sputtering area;
(2)在玻璃基底上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(2) Deposit the Si 3 N 4 layer on the glass substrate by means of magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(3)在Si3N4层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(3) The NiCr layer is deposited on the Si 3 N 4 layer by magnetron sputtering. The target material used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition at room temperature;
(4)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(4) The Si 3 N 4 layer is deposited on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(5)在Si3N4层上面采用磁控溅射的方式沉积AZO层,所用靶材为陶瓷AZO旋转靶,电源为中频电源,功率为10~100KW,工艺气体为纯氩气或者氩气和氧气的混合气体,在室温下沉积;(5) Deposit the AZO layer on the Si 3 N 4 layer by means of magnetron sputtering, the target used is a ceramic AZO rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is pure argon or argon Mixed gas with oxygen, deposited at room temperature;
(6)在AZO层上面采用磁控溅射的方式沉积AgCu层,所用靶材为AgCu平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(6) Deposit the AgCu layer on the AZO layer by means of magnetron sputtering, the target used is an AgCu planar target, the power supply is a DC plus pulse power supply, the power is 1-10KW, the process gas is pure argon, and it is deposited at room temperature ;
(7)在AgCu层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(7) The NiCr layer is deposited on the AgCu layer by magnetron sputtering. The target used is a metal NiCr planar target. deposition;
(8)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(8) The Si 3 N 4 layer is deposited on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(9)在Si3N4层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(9) The NiCr layer is deposited on the Si 3 N 4 layer by magnetron sputtering, the target used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition at room temperature;
(10)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(10) Deposit the Si 3 N 4 layer on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(11)在Si3N4层上面采用磁控溅射的方式沉积AZO层,所用靶材为陶瓷AZO旋转靶,电源为中频电源,功率为10~100KW,工艺气体为纯氩气或者氩气和氧气的混合气体,在室温下沉积;(11) Deposit the AZO layer on the Si 3 N 4 layer by means of magnetron sputtering, the target used is a ceramic AZO rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is pure argon or argon Mixed gas with oxygen, deposited at room temperature;
(12)在AZO层上面采用磁控溅射的方式沉积AgCu层,所用靶材为AgCu平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(12) Deposit the AgCu layer on the AZO layer by means of magnetron sputtering, the target used is an AgCu planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, the process gas is pure argon, and it is deposited at room temperature ;
(13)在AgCu层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(13) The NiCr layer is deposited on the AgCu layer by magnetron sputtering. The target used is a metal NiCr planar target. deposition;
(14)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积。(14) Deposit the Si 3 N 4 layer on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature.
具体实施例2Specific embodiment 2
一种双银玻璃,其膜层结构由玻璃基底向外依次是:Si3N4(30nm)/NiCr(1.5nm)/Si3N4(30nm)/AZO(14nm)/Ag(10nm)/NiCr(1nm)/Si3N4(46nm)/NiCr(1.5nm)/Si3N4(46nm)/NiCr(1nm)/Ag(14nm)/NiCr(1nm)/Si3N4(46nm)。A kind of double silver glass, its film layer structure from the glass substrate to the outside is: Si 3 N 4 (30nm)/NiCr(1.5nm)/Si 3 N 4 (30nm)/AZO(14nm)/Ag(10nm)/ NiCr(1nm)/Si3N4 ( 46nm )/NiCr(1.5nm)/Si3N4 ( 46nm)/NiCr(1nm)/ Ag (14nm)/NiCr(1nm)/Si3N4 ( 46nm ).
制备这种双银玻璃的方法依次是:The method for preparing this double-silver glass is as follows:
(1)玻璃基底清洗干净并吹干,置于真空溅射区;(1) The glass substrate is cleaned and dried, and placed in a vacuum sputtering area;
(2)在玻璃基底上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(2) Deposit the Si 3 N 4 layer on the glass substrate by means of magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(3)在Si3N4层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(3) The NiCr layer is deposited on the Si 3 N 4 layer by magnetron sputtering. The target material used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition at room temperature;
(4)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(4) The Si 3 N 4 layer is deposited on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(5)在Si3N4层上面采用磁控溅射的方式沉积AZO层,所用靶材为陶瓷AZO旋转靶,电源为中频电源,功率为10~100KW,工艺气体为纯氩气或者氩气和氧气的混合气体,在室温下沉积。(5) Deposit the AZO layer on the Si 3 N 4 layer by means of magnetron sputtering, the target used is a ceramic AZO rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is pure argon or argon Mixed gas with oxygen, deposited at room temperature.
(6)在AZO层上面采用磁控溅射的方式沉积Ag层,所用靶材为Ag平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积。(6) Deposit the Ag layer on the AZO layer by means of magnetron sputtering, the target used is an Ag planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, the process gas is pure argon, and it is deposited at room temperature .
(7)在Ag层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(7) The NiCr layer is deposited on the Ag layer by magnetron sputtering. The target used is a metal NiCr planar target. deposition;
(8)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(8) The Si 3 N 4 layer is deposited on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(9)在Si3N4层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(9) The NiCr layer is deposited on the Si 3 N 4 layer by magnetron sputtering, the target used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition at room temperature;
(10)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积;(10) Deposit the Si 3 N 4 layer on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature;
(11)在Si3N4层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(11) The NiCr layer is deposited on the Si 3 N 4 layer by magnetron sputtering, the target used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition at room temperature;
(12)在NiCr层上面采用磁控溅射的方式沉积Ag层,所用靶材为Ag平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积。(12) The Ag layer is deposited on the NiCr layer by magnetron sputtering, the target used is an Ag planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, the process gas is pure argon, and it is deposited at room temperature .
(13)在Ag层上面采用磁控溅射的方式沉积NiCr层,所用靶材为金属NiCr平面靶,电源为直流加脉冲电源,功率为1~10KW,工艺气体为纯氩气,在室温下沉积;(13) The NiCr layer is deposited on the Ag layer by magnetron sputtering, the target used is a metal NiCr planar target, the power supply is DC plus pulse power supply, the power is 1-10KW, and the process gas is pure argon. deposition;
(14)在NiCr层上采用磁控溅射的方式沉积Si3N4层,所用靶材为SiAl旋转靶,电源为中频电源,功率为10~100KW,工艺气体为氩气和氮气的混合气体,在室温下沉积。(14) Deposit the Si 3 N 4 layer on the NiCr layer by magnetron sputtering, the target used is a SiAl rotating target, the power supply is an intermediate frequency power supply, the power is 10-100KW, and the process gas is a mixed gas of argon and nitrogen , deposited at room temperature.
(15)将制成的玻璃进行钢化处理。(15) Tempering the finished glass.
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present utility model, and are not intended to limit it; although the utility model has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions recorded in the foregoing embodiments, or perform equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit of the technical solutions of the various embodiments of the present invention. and range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821819437.8U CN209242940U (en) | 2018-11-06 | 2018-11-06 | double silver glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821819437.8U CN209242940U (en) | 2018-11-06 | 2018-11-06 | double silver glass |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209242940U true CN209242940U (en) | 2019-08-13 |
Family
ID=67527247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201821819437.8U Active CN209242940U (en) | 2018-11-06 | 2018-11-06 | double silver glass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209242940U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111138086A (en) * | 2018-11-06 | 2020-05-12 | 中国南玻集团股份有限公司 | Double silver glass |
CN112777945A (en) * | 2019-11-07 | 2021-05-11 | 中国南玻集团股份有限公司 | Three-silver glass |
-
2018
- 2018-11-06 CN CN201821819437.8U patent/CN209242940U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111138086A (en) * | 2018-11-06 | 2020-05-12 | 中国南玻集团股份有限公司 | Double silver glass |
CN112777945A (en) * | 2019-11-07 | 2021-05-11 | 中国南玻集团股份有限公司 | Three-silver glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209242943U (en) | double silver glass | |
CN108975726B (en) | ultra-LOW reflection toughened LOW-E glass | |
CN101497501A (en) | Three-silver low radiation film glass | |
CN111606578B (en) | Temperable low-reflection double-silver low-emissivity coated glass and preparation method thereof | |
CN209242941U (en) | double silver glass | |
CN110028251B (en) | Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed and preparation method thereof | |
CN107663029B (en) | European gray low-emissivity coated glass | |
CN215102876U (en) | Light grey three-silver low-emissivity coated glass | |
CN109052990A (en) | Through color it is neutral can temperable di-silver low-emissivity coated glass and preparation method thereof | |
CN209242940U (en) | double silver glass | |
CN111253079A (en) | Temperable double-silver coated glass | |
CN209242942U (en) | double silver glass | |
CN107117832B (en) | Low-reflection and low-transmission temperable single-silver low-emissivity coated glass and its manufacturing method and application | |
CN113354299B (en) | Double-silver Low-E glass with neutral color, high transmittance and non-discoloring side surface | |
CN212559995U (en) | A kind of medium transmittance and low reflection temperable double silver LOW-E glass | |
CN205838842U (en) | Off-line Europe ash low radiation coated glass | |
CN112694264A (en) | Blue-gray three-silver low-emissivity coated glass and preparation method thereof | |
CN205258316U (en) | Low radiation coated glass of two silver of ocean blue | |
CN104264119B (en) | Asymmetric-film-series double-silver LOW-E glass and preparation method thereof | |
CN204160834U (en) | A kind of golden two silver low-radiation coated glass | |
CN109081610B (en) | Medium-transmittance gray temperable double-silver low-emissivity coated glass and preparation method thereof | |
CN208869509U (en) | Ultra-low reflection temperable LOW-E glass | |
CN212559994U (en) | A kind of temperable low-reflection double silver low-emissivity coated glass | |
CN114804655B (en) | A kind of LOW-E glass and preparation method | |
CN210765014U (en) | Single-silver low-emissivity glass and passive room |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |