[go: up one dir, main page]

CN207263300U - A kind of spectrometer based on super surface texture - Google Patents

A kind of spectrometer based on super surface texture Download PDF

Info

Publication number
CN207263300U
CN207263300U CN201721373060.3U CN201721373060U CN207263300U CN 207263300 U CN207263300 U CN 207263300U CN 201721373060 U CN201721373060 U CN 201721373060U CN 207263300 U CN207263300 U CN 207263300U
Authority
CN
China
Prior art keywords
super surface
mrow
msub
light
surface texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201721373060.3U
Other languages
Chinese (zh)
Inventor
詹刚垚
郎婷婷
吴梦茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201721373060.3U priority Critical patent/CN207263300U/en
Application granted granted Critical
Publication of CN207263300U publication Critical patent/CN207263300U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

本实用新型公开了一种基于超表面结构的光谱仪,所述光谱仪包括入射狭缝、超表面结构、光电探测器阵列,以及光谱信号输出器。其工作过程为:光由所述入射狭缝进入所述超表面结构,所述入射狭缝用于减少外界杂散光的干扰;所述超表面结构利用周期性排列的不同尺寸椭圆纳米柱形成所需相位分布,实现分光,使得不同波长的入射光聚焦在光电探测器阵列的不同位置,利用不同位置上的输出强度信号,在光谱信号输出器上获得光谱图。本实用新型大大简化了传统光谱仪的结构,同时具有小型化、便携化高分辨率的特点。

The utility model discloses a spectrometer based on a metasurface structure. The spectrometer includes an incident slit, a metasurface structure, a photoelectric detector array, and a spectrum signal output device. Its working process is: light enters the metasurface structure from the incident slit, and the incident slit is used to reduce the interference of stray light from the outside; the metasurface structure uses periodically arranged elliptical nanopillars of different sizes to form a Phase distribution is required to achieve light splitting, so that incident light of different wavelengths is focused on different positions of the photodetector array, and the spectral map is obtained on the spectral signal output device by using the output intensity signals at different positions. The utility model greatly simplifies the structure of the traditional spectrometer, and meanwhile has the characteristics of miniaturization, portability and high resolution.

Description

一种基于超表面结构的光谱仪A spectrometer based on metasurface structure

技术领域technical field

本实用新型涉及光谱检测领域,尤其涉及到一种基于超表面结构的光谱仪。The utility model relates to the field of spectrum detection, in particular to a spectrometer based on a metasurface structure.

背景技术Background technique

光谱仪究其实质是一个“分光”仪器,现在主流的实现分光功能方式是用光栅作为色散部件,将不同波长的光在空间上分开,用阵列探测器接收并输出光谱。光谱仪器是光谱分析的基本测试设备,它在工业、农业、生物、医药、环境、卫生、能源、国防、天文、地外生命探测等各领域中有着重要的应用。同时,光谱仪器的性能水平直接影响我国的基础研究,对于新材料、新能源、以及未知世界的探索发现具有重要意义。随着全球科技与经济的快速发展,以及环境与资源所面临的巨大压力,对于小型高分辨率、高灵敏度、宽波段的智能光谱仪器的需求越来越迫切。The essence of a spectrometer is a "spectroscopy" instrument. Now the mainstream way to realize the spectroscopic function is to use a grating as a dispersion component to separate the light of different wavelengths in space, and use an array detector to receive and output the spectrum. Spectroscopic instruments are the basic testing equipment for spectral analysis. They have important applications in various fields such as industry, agriculture, biology, medicine, environment, health, energy, national defense, astronomy, and extraterrestrial life detection. At the same time, the performance level of spectroscopic instruments directly affects our country's basic research, and is of great significance to the exploration and discovery of new materials, new energy, and the unknown world. With the rapid development of global technology and economy, as well as the huge pressure on the environment and resources, the demand for small-scale high-resolution, high-sensitivity, wide-band intelligent spectroscopic instruments is becoming more and more urgent.

经检索,公开号为CN101493357A的发明专利,公开了一种宽频带光谱仪,它包括光、光源准直系统、起偏振器、光学活性物质构成的偏振旋转片、检偏振器、检测器和数据采集系统,光源准直系统由两棱镜组成,在光源至探测器的光路上依次排列装有光源、光源准直系统、起偏振器、光学活性物质构成的偏振旋转片、检偏振器及检测器。公开号为CN106441572A的发明专利,公开了一种紧凑型高通量光谱仪,它包括入射狭缝、反射光栅、一组具有准直功能和成像功能的透镜组、以及探测器;入射光进入狭缝,经透镜组准直后,由反射光栅衍射分光,再通过透镜组汇聚成像于探测器上。After retrieval, the invention patent with the publication number CN101493357A discloses a wide-band spectrometer, which includes light, a light source collimation system, a polarizer, a polarization rotator composed of optically active substances, an analyzer, a detector and data acquisition System, the light source collimation system is composed of two prisms, and the light source, light source collimation system, polarizer, polarization rotator composed of optically active material, analyzer and detector are arranged in sequence on the light path from the light source to the detector. The invention patent with the publication number CN106441572A discloses a compact high-throughput spectrometer, which includes an incident slit, a reflective grating, a set of lens groups with collimating and imaging functions, and a detector; the incident light enters the slit , after being collimated by the lens group, the light is diffracted and split by the reflection grating, and then converged and imaged on the detector by the lens group.

但是上述专利采用的结构都较复杂,体积大,不便于便携化。But the structure that above-mentioned patent adopts is all more complicated, and volume is big, is not convenient for portability.

发明内容Contents of the invention

针对现有技术的缺陷,本实用新型中的目的是提供一种基于超表面结构的光谱仪,采用周期小于波长的超表面结构同时实现分光光栅和汇聚镜的作用,极大减小了结构体积,便于仪器便携化。In view of the defects of the prior art, the purpose of this utility model is to provide a spectrometer based on a metasurface structure, which uses a metasurface structure with a period smaller than the wavelength to simultaneously realize the functions of a spectroscopic grating and a converging mirror, greatly reducing the structural volume, It is convenient for instrument portability.

为实现以上目的本实用新型提供了一种基于超表面结构的光谱仪,所述光谱仪包括入射狭缝,超表面结构,光电探测器阵列以及光谱信号输出器。To achieve the above objectives, the utility model provides a spectrometer based on a metasurface structure, which includes an incident slit, a metasurface structure, a photodetector array and a spectral signal output device.

一种基于超表面结构的光谱仪,其特征在于,由入射狭缝,超表面结构,光电探测器阵列以及光谱信号输出器组成;其工作过程为:光束由所述入射狭缝进入所述超表面结构,由超表面透镜产生的相位分布可以将不同波长的光聚焦在所述光电探测器阵列不同位置处,利用不同位置上的输出强度信号,在光谱信号输出器上获得被测光的光谱图。A spectrometer based on a metasurface structure is characterized in that it is composed of an incident slit, a metasurface structure, a photodetector array and a spectral signal output device; its working process is: a light beam enters the metasurface from the incident slit structure, the phase distribution generated by the metasurface lens can focus light of different wavelengths at different positions of the photodetector array, and use the output intensity signals at different positions to obtain the spectrogram of the measured light on the spectral signal output device .

所述超表面结构由周期小于入射光波长的超表面单元结构和基底组成,其中超表面单元结构为长轴半径b和短轴半径a的椭圆柱沿x、y方向以周期Λ排列组成,入射光的传播方向为z方向;基底是二氧化硅材料,椭圆柱是硅材料。The metasurface structure is composed of a metasurface unit structure and a substrate whose period is smaller than the wavelength of the incident light, wherein the metasurface unit structure is composed of elliptical cylinders with a major axis radius b and a minor axis radius a arranged in a period Λ along the x and y directions, and the incident light The propagation direction of light is the z direction; the substrate is silicon dioxide material, and the elliptical column is silicon material.

所述超表面结构每个周期内的椭圆柱的长轴半径和短轴半径的数值根据以下相位公式确定:,其中λd为入射光波长,f为所述超表面透镜的焦距,xf为该焦距在x方向上的分量,yf为该焦距在y方向上的分量, zf为该焦距在z方向上的分量。The values of the major axis radius and the minor axis radius of the elliptical cylinder in each period of the metasurface structure are determined according to the following phase formula: , where λ d is the wavelength of the incident light, f is the focal length of the metasurface lens, x f is the component of the focal length in the x direction, y f is the component of the focal length in the y direction, z f is the focal length in z components in the direction.

本实用新型利用超表面结构对不同波长的光产生不同的相位分布,从而使不同波长聚焦在光电探测器阵列表面的不同位置实现分光和成像功能,以一个小巧的具有特定相位分布的超表面结构代替传统光谱仪光学结构中的分光光栅和汇聚镜,使得结构简单紧凑,减小了体积,便于仪器便携化。The utility model uses the metasurface structure to produce different phase distributions for light of different wavelengths, so that different wavelengths can be focused on different positions on the surface of the photodetector array to realize the functions of light splitting and imaging, and a small metasurface structure with a specific phase distribution It replaces the spectroscopic grating and converging mirror in the optical structure of the traditional spectrometer, which makes the structure simple and compact, reduces the volume, and facilitates the portability of the instrument.

附图说明Description of drawings

图1为本实用新型的整体结构示意图。Figure 1 is a schematic diagram of the overall structure of the utility model.

图2为本实用新型的单个周期内椭圆柱及基底结构示意图。Fig. 2 is a schematic diagram of an elliptical cylinder and a base structure within a single period of the present invention.

图3为本实用新型的一个实施例设计的超表面结构的俯视图。Fig. 3 is a top view of a metasurface structure designed by an embodiment of the present invention.

图4为本实用新型计算得到不同波长沿z方向入射此光谱仪产生的侧向位移。Fig. 4 is the calculated lateral displacement of different wavelengths incident on the spectrometer along the z direction according to the utility model.

具体实施方式Detailed ways

如图1所示,一种基于超表面结构的光谱仪,其特征在于,由入射狭缝(1),超表面结构(2),光电探测器阵列(3)以及光谱信号输出器(4)组成;其工作过程为:光束由所述入射狭缝(1)进入所述超表面结构(2),由超表面透镜产生的相位分布可以将不同波长的光聚焦在所述光电探测器阵列(3)不同位置处,利用不同位置上的输出强度信号,在光谱信号输出器(4)上获得被测光的光谱图。其中:入射光的传播方向为z方向。As shown in Figure 1, a spectrometer based on a metasurface structure is characterized in that it consists of an incident slit (1), a metasurface structure (2), a photodetector array (3) and a spectral signal output device (4) ; Its working process is: the light beam enters the metasurface structure (2) from the incident slit (1), and the phase distribution generated by the metasurface lens can focus light of different wavelengths on the photodetector array (3 ) at different positions, using the output intensity signals at different positions, to obtain a spectrogram of the measured light on the spectral signal output device (4). Where: the propagation direction of the incident light is the z direction.

所述入射狭缝(1),用于将待检测的光导入所述光谱仪,同时减少外界杂散光的进入。The incident slit (1) is used to guide the light to be detected into the spectrometer while reducing the entry of stray light from the outside.

所述超表面结构(2)包括基底及基底上的沿x和y方向周期排列的椭圆柱,光束传输通过不同尺寸的椭圆柱后产生的相位不同。周期性排列的不同尺寸的纳米硅片,且构成完整2π相位时,可实现对该光束的汇聚成像。同时不同波长的光束在同一位置(即同一坐标(x,y)),经同一大小的椭圆柱后会产生不同的相位变化,因此会在后续光路中的不同位置聚焦,产生不同的位移,达到分光效果。所需相位满足在坐标(x, y)处相位为Ψ (x, y), ,λd为入射光的波长,f为所述超表面离轴透镜的焦距,xf为该焦距在x方向上的分量,yf为该焦距在y方向上的分量, zf为该焦距在z方向上的分量。上述公式为三维球面透镜的聚焦公式,光束聚焦在一个点上,也称点聚焦。三维柱面透镜的光束聚焦在一条线上,也称线聚焦,聚焦公式为,聚焦线分别沿着y方向或x方向。相比于球面聚焦透镜,柱面聚焦透镜的结构为超表面结构沿着垂直聚焦线方向根据聚焦相位公式排列,平行聚焦线方向周期分布排列。根据以上相位分布要求,结合FDTD Solutions软件仿真,可以获得不同结构尺寸下椭圆柱产生的相位,从而可以确定每个周期内椭圆柱的尺寸。The metasurface structure (2) includes a substrate and elliptical cylinders arranged periodically along the x and y directions on the substrate, and the phases generated after the light beam is transmitted through the elliptical cylinders of different sizes are different. When nano-silicon chips of different sizes are arranged periodically and form a complete 2π phase, the focused imaging of the beam can be realized. At the same time, beams of different wavelengths at the same position (that is, the same coordinates (x, y)) will produce different phase changes after passing through an elliptical cylinder of the same size, so they will be focused at different positions in the subsequent optical path and produce different displacements. spectroscopic effect. The desired phase satisfies that the phase at coordinates (x, y) is Ψ (x, y), , λ d is the wavelength of the incident light, f is the focal length of the metasurface off-axis lens, x f is the component of the focal length in the x direction, y f is the component of the focal length in the y direction, z f is the focal length component in the z direction. The above formula is the focusing formula of the three-dimensional spherical lens. The beam is focused on a point, also known as point focusing. The beam of the three-dimensional cylindrical lens is focused on a line, also known as line focusing, and the focusing formula is or , the focal line is along the y-direction or the x-direction, respectively. Compared with the spherical focusing lens, the structure of the cylindrical focusing lens is that the metasurface structure is arranged according to the focusing phase formula along the direction perpendicular to the focal line, and arranged periodically in the direction parallel to the focusing line. According to the above phase distribution requirements, combined with FDTD Solutions software simulation, the phases generated by the elliptical cylinder under different structural sizes can be obtained, so that the size of the elliptical cylinder in each period can be determined.

所述光电探测器阵列(3),用于接收不同位置的光信号。The photodetector array (3) is used to receive light signals from different positions.

所述光谱信号输出器(4),用来读取光电信号探测器阵列传来的信息并且处理输出。The spectral signal output device (4) is used to read the information transmitted from the photoelectric signal detector array and process the output.

如图2所示,单个周期内的超表面单元结构为椭圆柱(5),长轴半径为b,短轴半径为a;基底(6)是二氧化硅材料,椭圆柱(5)是硅材料,x和y方向的周期是Λ。As shown in Figure 2, the metasurface unit structure in a single period is an elliptical cylinder (5), the major axis radius is b, and the minor axis radius is a; the substrate (6) is silica material, and the elliptical cylinder (5) is silicon material, the period in the x and y directions is Λ.

为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。In order to make the above purpose, features and advantages of the utility model more obvious and easy to understand, the specific implementation of the utility model will be described in detail below in conjunction with the accompanying drawings.

实施例1:Example 1:

本实施例设计的一种基于超表面结构的光谱仪中的超表面结构(2)是一个三维柱面透镜,线聚焦公式为 ,聚焦线沿着y方向。工作波长λd=1550 nm,聚焦长度f =8910 nm,xf =6300 nm,zf=6300 nm,周期Λ =900nm。表1给出了计算得到的在上述参数情况下相位Ψ与位置x以及椭圆柱尺寸a和b的对应关系,根据表1中的数据按图3位置所示排列每一个超表面单元结构,其中x方向按照图中单元序号排列,y方向按照周期排列,图中只画出了4个周期,产生分光的效果。图4为不同波长入射此光谱仪产生的侧向位移 计算结果,可以看出不同波长将会在不同的位置实现聚焦,从而完成分光功能。侧向位移 的定义为垂直于聚焦轴线(结构中心与焦点的连线)方向的位移。The metasurface structure (2) in the spectrometer based on the metasurface structure designed in this embodiment is a three-dimensional cylindrical lens, and the line focusing formula is , the focal line is along the y direction. Working wavelength λ d =1550 nm, focal length f =8910 nm, x f =6300 nm, z f =6300 nm, period Λ =900nm. Table 1 shows the calculated correspondence between the phase Ψ and the position x and the dimensions a and b of the elliptical cylinder in the case of the above parameters. According to the data in Table 1, each metasurface unit structure is arranged as shown in Figure 3, where The x direction is arranged according to the unit number in the figure, and the y direction is arranged according to the period. Only 4 periods are drawn in the figure to produce the effect of light splitting. Figure 4 shows the calculation results of the lateral displacement generated by the spectrometer when different wavelengths are incident. It can be seen that different wavelengths will be focused at different positions to complete the spectroscopic function. lateral displacement is defined as the displacement perpendicular to the focal axis (the line connecting the center of the structure and the focal point).

表1Table 1

本实施例大大简化了结构,有利于仪器的小型化和便携化,同时具有高精度的特点。This embodiment greatly simplifies the structure, is conducive to the miniaturization and portability of the instrument, and has the characteristics of high precision.

上面所述讨论的实施例仅仅是对本实用新型的优选实施方式进行描述,并非对本实用新型的构思和范围进行限定,在不脱离本实用新型设计构思的前提下,本领域普通人员对本实用新型的技术方案做出的各种变型和改进,均应落入到本实用新型的保护范围,本实用新型要求保护的技术内容,已经全部记载在权利要求书中。The embodiment discussed above is only a description of the preferred implementation of the present utility model, and is not intended to limit the concept and scope of the present utility model. Various modifications and improvements made in the technical solution should fall into the scope of protection of the utility model, and the technical content required by the utility model has been fully recorded in the claims.

Claims (3)

1. a kind of spectrometer based on super surface texture, it is characterised in that by entrance slit(1), super surface texture(2), photoelectricity Detector array(3)And spectral signal follower(4)Composition;Its course of work is:Light beam to be measured is by entrance slit(1)Into The super surface texture(2), the light of different wave length can be focused on by the photoelectricity by the phase distribution of super surface lens generation Detector array(3)At diverse location, using the output intensity signal on diverse location, in spectral signal follower(4)On obtain Obtain the spectrogram of light to be measured.
A kind of 2. spectrometer based on super surface texture according to claim 1, it is characterised in that the super surface texture by Cycle be less than lambda1-wavelength super surface cell structure and substrate form, wherein super surface cell structure for major axis radius b with The cylindroid of minor axis radius a is rearranged along x, y direction with periods lambda, and the direction of propagation of incident light is z directions;Substrate is dioxy Silicon nitride material, cylindroid are silicon materials.
3. a kind of spectrometer based on super surface texture according to claim 1, it is characterised in that the super surface texture is every The numerical value of cylindroid major axis radius and minor axis radius in a cycle is determined according to following phase formula:<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mi>&amp;phiv;</mi> <mtext>(</mtext> <mi>x</mi> <mtext>)</mtext> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mtext>π</mtext> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>d</mi> </msub> </mfrac> <mo stretchy='false'>(</mo> <mi>f</mi> <mo>&amp;minus;</mo> <msqrt> <mrow> <msup> <mrow> <mo stretchy='false'>(</mo> <mi>x</mi> <mo>&amp;minus;</mo> <msub> <mi>x</mi> <mi>f</mi> </msub> <mo stretchy='false'>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo stretchy='false'>(</mo> <mi>y</mi> <mo>&amp;minus;</mo> <msub> <mi>y</mi> <mi>f</mi> </msub> <mo stretchy='false'>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>z</mi> <mi>f</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> </mtr> </mtable> </math>, wherein λdFor lambda1-wavelength, f is the super surface lens Focal length, xfFor the component of the focal length in the x direction, yfFor the component of the focal length in y-direction, zfFor the focal length in a z-direction Component.
CN201721373060.3U 2017-10-24 2017-10-24 A kind of spectrometer based on super surface texture Expired - Fee Related CN207263300U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721373060.3U CN207263300U (en) 2017-10-24 2017-10-24 A kind of spectrometer based on super surface texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721373060.3U CN207263300U (en) 2017-10-24 2017-10-24 A kind of spectrometer based on super surface texture

Publications (1)

Publication Number Publication Date
CN207263300U true CN207263300U (en) 2018-04-20

Family

ID=61915813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721373060.3U Expired - Fee Related CN207263300U (en) 2017-10-24 2017-10-24 A kind of spectrometer based on super surface texture

Country Status (1)

Country Link
CN (1) CN207263300U (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954966A (en) * 2019-12-06 2020-04-03 中国科学院长春光学精密机械与物理研究所 Planar photoelectric detection system based on superlens array
CN111045219A (en) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 Planar photodetection system based on dichroic focusing diffractive optical element
CN111090148A (en) * 2019-12-06 2020-05-01 武汉大学 Multi-core optical fiber multiplexing and demultiplexing device and method based on super-surface lens
CN111380612A (en) * 2020-03-02 2020-07-07 华中科技大学 A hyperspectral imaging system
CN111426381A (en) * 2020-01-16 2020-07-17 南京大学 Ultra-compact spectrum light field camera system based on super-structure lens array
CN111596390A (en) * 2020-06-28 2020-08-28 华南师范大学 Plane grating with light splitting and focusing capabilities
CN111830009A (en) * 2020-07-27 2020-10-27 中国工程物理研究院激光聚变研究中心 Full-medium super-surface integrated Raman spectrum detection system
CN112505009A (en) * 2020-11-12 2021-03-16 中国科学院长春光学精密机械与物理研究所 Super surface lens and fluorescence signal collection system formed by same
CN112798234A (en) * 2021-02-10 2021-05-14 武汉精测电子集团股份有限公司 Micro LED color uniformity detection system
CN113257986A (en) * 2021-05-11 2021-08-13 中国科学院上海微系统与信息技术研究所 Superconducting nanowire single photon detector based on super-surface structure and preparation method thereof
CN113345925A (en) * 2021-05-31 2021-09-03 北京京东方技术开发有限公司 Pixel unit, image sensor and spectrometer
CN113447123A (en) * 2020-03-26 2021-09-28 中国工程物理研究院激光聚变研究中心 Continuous distribution integrated super-surface micro spectrum sensing system
CN113654661A (en) * 2021-09-01 2021-11-16 杭州纳境科技有限公司 Spectrometer based on super surface lens
CN113758565A (en) * 2020-06-03 2021-12-07 中国工程物理研究院激光聚变研究中心 Connecting component for spectrum sensing system and spectrometer
CN113899451A (en) * 2021-09-30 2022-01-07 深圳迈塔兰斯科技有限公司 Spectrometer and super-surface light splitting device
CN115112238A (en) * 2022-07-07 2022-09-27 天津山河光电科技有限公司 A metasurface space spectrometer
CN115265401A (en) * 2021-04-29 2022-11-01 华为技术有限公司 Camera module and electronic equipment

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111090148B (en) * 2019-12-06 2020-09-08 武汉大学 A multi-core optical fiber multiplexing and demultiplexing device and method based on metasurface lens
CN111090148A (en) * 2019-12-06 2020-05-01 武汉大学 Multi-core optical fiber multiplexing and demultiplexing device and method based on super-surface lens
CN110954966A (en) * 2019-12-06 2020-04-03 中国科学院长春光学精密机械与物理研究所 Planar photoelectric detection system based on superlens array
CN110954966B (en) * 2019-12-06 2021-06-15 中国科学院长春光学精密机械与物理研究所 Planar Photoelectric Detection System Based on Metalens Array
CN111045219A (en) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 Planar photodetection system based on dichroic focusing diffractive optical element
CN111426381A (en) * 2020-01-16 2020-07-17 南京大学 Ultra-compact spectrum light field camera system based on super-structure lens array
CN111426381B (en) * 2020-01-16 2021-11-19 南京大学 Ultra-compact spectrum light field camera system based on super-structure lens array
CN111380612A (en) * 2020-03-02 2020-07-07 华中科技大学 A hyperspectral imaging system
CN113447123A (en) * 2020-03-26 2021-09-28 中国工程物理研究院激光聚变研究中心 Continuous distribution integrated super-surface micro spectrum sensing system
CN113447123B (en) * 2020-03-26 2023-12-22 中国工程物理研究院激光聚变研究中心 Continuously-distributed integrated ultra-surface micro spectrum sensing system
CN113758565A (en) * 2020-06-03 2021-12-07 中国工程物理研究院激光聚变研究中心 Connecting component for spectrum sensing system and spectrometer
CN113758565B (en) * 2020-06-03 2023-07-25 中国工程物理研究院激光聚变研究中心 Connecting component used in spectrum sensing system and spectrometer
CN111596390A (en) * 2020-06-28 2020-08-28 华南师范大学 Plane grating with light splitting and focusing capabilities
CN111830009A (en) * 2020-07-27 2020-10-27 中国工程物理研究院激光聚变研究中心 Full-medium super-surface integrated Raman spectrum detection system
CN112505009A (en) * 2020-11-12 2021-03-16 中国科学院长春光学精密机械与物理研究所 Super surface lens and fluorescence signal collection system formed by same
CN112798234A (en) * 2021-02-10 2021-05-14 武汉精测电子集团股份有限公司 Micro LED color uniformity detection system
CN115265401A (en) * 2021-04-29 2022-11-01 华为技术有限公司 Camera module and electronic equipment
CN113257986A (en) * 2021-05-11 2021-08-13 中国科学院上海微系统与信息技术研究所 Superconducting nanowire single photon detector based on super-surface structure and preparation method thereof
CN113345925A (en) * 2021-05-31 2021-09-03 北京京东方技术开发有限公司 Pixel unit, image sensor and spectrometer
CN113345925B (en) * 2021-05-31 2024-04-12 北京京东方技术开发有限公司 Pixel unit, image sensor and spectrometer
CN113654661A (en) * 2021-09-01 2021-11-16 杭州纳境科技有限公司 Spectrometer based on super surface lens
CN113654661B (en) * 2021-09-01 2024-04-09 杭州纳境科技有限公司 Spectrometer based on super-surface lens
WO2023050881A1 (en) * 2021-09-30 2023-04-06 深圳迈塔兰斯科技有限公司 Spectroscope and metasurface splitter
CN113899451A (en) * 2021-09-30 2022-01-07 深圳迈塔兰斯科技有限公司 Spectrometer and super-surface light splitting device
CN113899451B (en) * 2021-09-30 2024-01-30 深圳迈塔兰斯科技有限公司 Spectrometer and super-surface light-splitting device
CN115112238A (en) * 2022-07-07 2022-09-27 天津山河光电科技有限公司 A metasurface space spectrometer

Similar Documents

Publication Publication Date Title
CN207263300U (en) A kind of spectrometer based on super surface texture
CN103091299B (en) Laser differential confocal map microimaging imaging method and device
CN104568765B (en) Miniature spectroscopic ellipsometer device and measuring method
CN113654661B (en) Spectrometer based on super-surface lens
CN103245416A (en) Hadamard-transform near-infrared spectrograph added with light harvesting structure
CN101458209A (en) Optical spectrum imaging device based on fresnel diffraction microlens array
CN106896095B (en) Composite Surface Plasmon Resonance and Surface Enhanced Raman Microscopic Imaging Technology
CN102426058B (en) A static interference imaging polarimeter and a method for obtaining polarization information of a target
CN102183466A (en) Time resolution elliptical polarization spectrum measuring system
CN103926233A (en) Laser differential confocal Brillouin-Raman spectroscopy measuring method and device thereof
CN104215332B (en) A kind of greenhouse gases remote detecting method and device thereof
CN102679907A (en) High-precision differential interference measuring system and method based on LED light source
CN105511066A (en) Microscopic polarization imaging device based on microwave sheet array and implement method thereof
CN103983367A (en) Fractional vortex beam topological charge value measuring method based on light intensity analysis
CN104568826A (en) Miniature solidified near-infrared spectroscopy based on linear variable filter
CN104819767A (en) Low noise micro-cantilever beam thermal vibration signal measuring device
CN107167456A (en) Transmission-type differential confocal CARS micro-spectrometer method and devices
CN104777077A (en) Liquid viscous coefficient measuring device and measuring method based on optical trap effect
CN106370642A (en) Portable Raman spectrometer specially for detecting foods and drugs
CN201212852Y (en) Quarter-wave plate fast axis orientation real-time measuring device
CN110686853A (en) Focused laser differential interferometer and method for non-intrusive measurement of flow field density pulsation in wind tunnels
CN105352915A (en) Refractive index two-dimensional distribution dynamic measurement method
CN107101723A (en) High-resolution echelle spectrometer two dimension deviation spectrum analysis and bearing calibration
US12104948B2 (en) Optical measurement device with universal metasurface and optical measuring method using the same
CN202281596U (en) Laser speckle measurement device for simultaneously measuring in-plane displacement and off-plane displacement

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180420

Termination date: 20181024