CN206019648U - Circulation observation system more than a kind of coastal waters bottom Lagrange - Google Patents
Circulation observation system more than a kind of coastal waters bottom Lagrange Download PDFInfo
- Publication number
- CN206019648U CN206019648U CN201621051755.5U CN201621051755U CN206019648U CN 206019648 U CN206019648 U CN 206019648U CN 201621051755 U CN201621051755 U CN 201621051755U CN 206019648 U CN206019648 U CN 206019648U
- Authority
- CN
- China
- Prior art keywords
- watertight
- antenna
- data
- gps
- sail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003653 coastal water Substances 0.000 title claims 3
- 238000012544 monitoring process Methods 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 19
- 238000010295 mobile communication Methods 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 5
- 239000004677 Nylon Substances 0.000 claims description 5
- 229920001778 nylon Polymers 0.000 claims description 5
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000000630 rising effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 2
- 241000242583 Scyphozoa Species 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种近海底层拉格朗日余环流观测系统,包括数据传输系统、数据监控处理系统、随流移动监测终端,随流移动监测终端包括十字帆、水密控制仓、水密天线盒,水密天线盒内部有GPRS移动通信天线、GPS/北斗定位天线及海事卫星通讯天线,水密控制仓内有数据线缆、微控制器、GPS/北斗定位模块、GPRS移动通信模块、海事卫星通讯模块、计时器、液压泵及大容量铅酸蓄电池,水密控制仓外部设有气囊及保护气囊的支架,气囊通过导管与液压泵相连。本实用新型技术灵活、可靠、价格低廉,结构简单,易运输,可用于大面积投放观测。通过计时模块可以控制仪器的升降时刻,从而使观测数据更加符合拉格朗日余流的定义,使计算结果更加可靠。
An observation system for Lagrangian residual circulation at the bottom of the sea, including a data transmission system, a data monitoring and processing system, and a mobile monitoring terminal with the current. The mobile monitoring terminal with the current includes a cross sail, a watertight control cabin, a watertight antenna box, and the inside of the watertight antenna box There are GPRS mobile communication antenna, GPS/Beidou positioning antenna and maritime satellite communication antenna. In the watertight control cabin, there are data cables, microcontrollers, GPS/Beidou positioning module, GPRS mobile communication module, maritime satellite communication module, timer, hydraulic pressure Pumps and large-capacity lead-acid batteries, airbags and brackets to protect the airbags are installed outside the watertight control cabin, and the airbags are connected to the hydraulic pump through conduits. The utility model has the advantages of flexible technology, reliability, low price, simple structure, easy transportation, and can be used for large-scale observation. The timing module can control the rising and falling time of the instrument, so that the observation data is more in line with the definition of Lagrangian residual current, and the calculation results are more reliable.
Description
技术领域technical field
本实用新型涉及近海余环流观测领域,具体为一种近海底层拉格朗日余环流观测系统。The utility model relates to the field of offshore residual circulation observation, in particular to an offshore bottom Lagrangian residual circulation observation system.
背景技术Background technique
在近海环境研究中,海流是基本的动力条件,而过滤掉潮流的拉格朗日余环流可以表征海水中物质例如泥沙、污染物以及营养盐等的净输运,因此是至关重要的。目前拉格朗日余环流的现场观测并不多见,且现有的观测方法主要是利用海面漂流浮标得到标识水微团的轨迹,从而得到表层拉格朗日余环流,而针对近海底层拉格朗日余环流的观测方法则更不成熟。在深海,水下声学定位的追踪方法可以实时定出水下漂流浮标的轨迹,但其成本很高,且由于近海海底的反射会造成声场复杂,使得这一方法在近岸不具可行性。人工水母的方法虽然可以观测底层的拉格朗日余环流,但因其回收时间不可控且回收率较低,不适用于定量观测。针对这种情况,亟需提出一种更可行且成本较低的观测底层拉格朗日环流的方法。In the study of offshore environment, ocean current is the basic dynamic condition, and the Lagrangian aftercirculation that filters out the current can represent the net transport of substances in seawater such as sediment, pollutants, and nutrients, so it is very important . At present, there are few on-site observations of Lagrangian residual circulation, and the existing observation methods are mainly to use sea surface drifting buoys to obtain the trajectory of marked water particles, so as to obtain the surface Lagrangian residual circulation. The observation method of the Grangian residual circulation is even less mature. In the deep sea, the tracking method of underwater acoustic positioning can determine the trajectory of underwater drifting buoys in real time, but the cost is very high, and the sound field is complicated due to the reflection of the offshore seabed, making this method unfeasible near the shore. Although the artificial jellyfish method can observe the bottom Lagrangian residual circulation, it is not suitable for quantitative observation because of the uncontrollable recovery time and low recovery rate. In view of this situation, it is urgent to propose a more feasible and low-cost method for observing the bottom Lagrangian circulation.
发明内容Contents of the invention
本实用新型目的在于提供一种可以大量布放且能够更准确方便低成本地观测近海底层拉格朗日环流的方法,以解决上述背景技术中存在的问题。The purpose of the utility model is to provide a method that can be deployed in large quantities and can observe the Lagrangian circulation at the bottom of the sea more accurately, conveniently and at low cost, so as to solve the problems in the above-mentioned background technology.
一种近海底层拉格朗日余环流观测系统,包括数据传输系统和数据监控处理系统,其特征在于还包括随流移动监测终端,An offshore bottom Lagrangian residual circulation observation system, including a data transmission system and a data monitoring and processing system, is characterized in that it also includes a mobile monitoring terminal with the current,
所述的随流移动监测终端包括十字帆,该十字帆中部为圆柱状的水密控制仓,水密控制仓顶部为水密天线盒,所述的十字帆为尼龙十字帆以增加随水性,同时也可以在帆体上增减配重,以保证移动终端密度为近中性;The mobile monitoring terminal with the flow includes a cross sail, the middle part of the cross sail is a cylindrical watertight control chamber, and the top of the watertight control chamber is a watertight antenna box. The cross sail is a nylon cross sail to increase water resistance, and it can also Increase or decrease the counterweight on the sail body to ensure that the density of the mobile terminal is near-neutral;
所述水密天线盒内部有GPRS移动通信天线、GPS/北斗定位天线及海事卫星通讯天线,水密天线盒2底部中央留有线缆通道,通过水密接头和控制仓的通讯线缆相连;水密天线盒的主要作用是进行各类数据的接收和发送;There are GPRS mobile communication antennas, GPS/Beidou positioning antennas and maritime satellite communication antennas inside the watertight antenna box, and a cable channel is left in the center of the bottom of the watertight antenna box 2, which is connected with the communication cable of the control cabin through the watertight joint; the watertight antenna box The main function is to receive and send various types of data;
所述的水密控制仓内有数据线缆、微控制器、GPS/北斗定位模块、GPRS移动通信模块、海事卫星通讯模块、计时器、液压泵及大容量铅酸蓄电池,There are data cable, microcontroller, GPS/Beidou positioning module, GPRS mobile communication module, maritime satellite communication module, timer, hydraulic pump and large-capacity lead-acid battery in the described watertight control cabin,
同时水密控制仓外部设有气囊及保护气囊的支架,所述气囊通过导管与液压泵相连,其主要作用是定时通过液压泵改变气囊的体积,从而改变移动终端整体的浮力,以实现终端在水里的升降。通过计时器定时控制终端的升降,每当终端上升到海面,即可通过GPS/北斗模块进行定位,并通过GPRS或海事卫星将位置信息传输至数据监控处理系统。水密控制仓与天线盒通过数据线缆进行连接。At the same time, the watertight control cabin is equipped with an airbag and a bracket to protect the airbag. The airbag is connected to the hydraulic pump through a catheter. lift in. The up and down of the terminal is controlled regularly by the timer. Whenever the terminal rises to the sea surface, it can be positioned through the GPS/Beidou module, and the position information is transmitted to the data monitoring and processing system through GPRS or maritime satellite. The watertight control cabin is connected with the antenna box through a data cable.
所述的数据传输系统包括GPRS移动通讯和海事卫星通讯网络。The data transmission system includes GPRS mobile communication and maritime satellite communication network.
所述的数据监控处理系统包括监控终端、主控服务器、后台运算模块和前台可视化显示模块。The data monitoring and processing system includes a monitoring terminal, a main control server, a background computing module and a front visual display module.
系统运行时,如图3,微控制器命令漂浮在水面的移动终端进行GPS或北斗定位,并通过GPRS模块拨号与主控服务器建立连接,经由数据线缆及天线装置传送定位数据,若利用移动通信网络无法建立连接,则切换至海事卫星通讯模块进行拨号建立连接,将数据发回主控服务器。数据传输完成后主控服务器对微控制器应答,微控制器即开始控制液压泵减小移动终端体积从而使仪器以指定下沉速度到达水底,之后再次控制液压泵使仪器总体密度近中性从而使移动终端随水运动。计时模块到达指定时刻后微控制器控制液压泵增大仪器体积从而上浮至水面,再次进行GPS定位并向主控服务器发送位置信息。主控服务器支持多线程访问,便于同时接收、解包多个数据,并将定位信息分类存放于数据库中。后台运算模块负责处理数据,得到拉格朗日环流数据。用户可由监控终端登录主控服务器以可视化形式查看移动终端返回的位置数据。主控服务器通过GPRS网络或卫星通讯网络将控制指令送往随流移动监测终端,进行控制仪器升降等工作。When the system is running, as shown in Figure 3, the microcontroller commands the mobile terminal floating on the water to perform GPS or Beidou positioning, and establishes a connection with the main control server through GPRS module dial-up, and transmits positioning data through data cables and antenna devices. If the communication network cannot establish a connection, switch to the maritime satellite communication module to dial up to establish a connection, and send the data back to the main control server. After the data transmission is completed, the main control server responds to the microcontroller, and the microcontroller starts to control the hydraulic pump to reduce the volume of the mobile terminal so that the instrument reaches the bottom at a specified sinking speed, and then controls the hydraulic pump again to make the overall density of the instrument nearly neutral. Make the mobile terminal move with the water. After the timing module reaches the specified time, the microcontroller controls the hydraulic pump to increase the volume of the instrument to float to the water surface, and then performs GPS positioning again and sends the position information to the main control server. The main control server supports multi-threaded access, which is convenient for receiving and unpacking multiple data at the same time, and stores the positioning information in the database by category. The background calculation module is responsible for processing data and obtaining Lagrangian circulation data. The user can log in to the main control server from the monitoring terminal to view the location data returned by the mobile terminal in a visualized form. The main control server sends control instructions to the mobile monitoring terminal through the GPRS network or satellite communication network to control the lifting of the instrument.
在本实用新型中,所述的GPS/北斗模块、GPRS模块和海事卫星传输模块均采用市场上通用的OEM模块。In the utility model, the GPS/Beidou module, the GPRS module and the maritime satellite transmission module all adopt OEM modules commonly used in the market.
有益效果Beneficial effect
本实用新型的近海底层拉格朗日余环流观测系统结合成熟而先进的GPS全球定位系统(Global Positioning System)或北斗卫星定位系统、GPRS移动通讯网络、海事卫星通讯网络进行定位监测及数据传输,技术灵活、可靠、价格低廉,适合大面积推广。The utility model combines the mature and advanced GPS global positioning system (Global Positioning System) or Beidou satellite positioning system, GPRS mobile communication network, and maritime satellite communication network to perform positioning monitoring and data transmission. The technology is flexible, reliable, and cheap, and is suitable for large-scale promotion.
本实用新型通过控制仪器体积能够计算得出升降速度,结合水深数据可以控制仪器的垂向升降时间,并通过控制仪器体积改变仪器密度,从而具有良好的随水性。The utility model can calculate the lifting speed by controlling the volume of the instrument, and can control the vertical lifting time of the instrument in combination with the water depth data, and change the density of the instrument by controlling the volume of the instrument, so that it has good water followability.
本实用新型通过计时模块可以控制仪器的升降时刻,从而使观测数据更加符合拉格朗日余流的定义,使计算结果更加可靠。The utility model can control the lifting time of the instrument through the timing module, thereby making the observation data more conform to the definition of the Lagrangian residual flow and making the calculation result more reliable.
本实用新型结构简单,易运输,价格低廉,可用于大面积投放观测。The utility model has the advantages of simple structure, easy transportation and low price, and can be used for large-area observation.
附图说明Description of drawings
图1是本实用新型的随流移动监测终端结构图。Fig. 1 is a structural diagram of the mobile monitoring terminal of the utility model.
图2是本发明的天线盒与水密控制仓的结构示意图。Fig. 2 is a structural schematic diagram of the antenna box and the watertight control cabin of the present invention.
图3是本实用新型的系统架构图。Fig. 3 is a system architecture diagram of the utility model.
其中,1.十字帆,2.天线盒,3.水密控制仓,4.GPRS移动通讯天线,5.GPS/北斗定位天线,6.海事卫星通讯天线,7.数据线缆,8.海事卫星模块,9.GPS/北斗定位模块,10.计时器,11.GPRS移动通讯模块,12.控制器,13.电池组,14.液压泵,15.导管,16.气囊,17.支架。Among them, 1. Cross sail, 2. Antenna box, 3. Watertight control cabin, 4. GPRS mobile communication antenna, 5. GPS/Beidou positioning antenna, 6. Maritime satellite communication antenna, 7. Data cable, 8. Maritime satellite Module, 9. GPS/Beidou positioning module, 10. Timer, 11. GPRS mobile communication module, 12. Controller, 13. Battery pack, 14. Hydraulic pump, 15. Catheter, 16. Air bag, 17. Bracket.
具体实施方式detailed description
参见图1、2,本实施例为一个观测底层拉格朗日余流的实施例方案,包括数据传输系统和数据监控处理系统,其特征在于还包括随流移动监测终端,Referring to Figures 1 and 2, this embodiment is an embodiment scheme for observing the Lagrangian residual current at the bottom layer, including a data transmission system and a data monitoring and processing system, and is characterized in that it also includes a mobile monitoring terminal with the flow,
所述的随流移动监测终端包括十字帆1,该十字帆1中部为圆柱状的水密控制仓3,水密控制仓3顶部为水密天线盒2,所述的十字帆1为尼龙十字帆以增加随水性,同时也可以在帆体上增减配重,以保证移动终端密度为近中性;The mobile monitoring terminal with the flow includes a crosssail 1, the middle part of the crosssail 1 is a cylindrical watertight control cabin 3, the top of the watertight control cabin 3 is a watertight antenna box 2, and the crosssail 1 is a nylon crosssail to increase With the water, you can also increase or decrease the counterweight on the sail body to ensure that the density of the mobile terminal is near-neutral;
所述水密天线盒2内部有GPRS移动通信天线4、GPS/北斗定位天线5及海事卫星通讯天线6,水密天线盒2底部中央留有线缆通道,通过水密接头和控制仓3的通讯线缆7相连;水密天线盒的主要作用是进行各类数据的接收和发送;The inside of the watertight antenna box 2 has a GPRS mobile communication antenna 4, a GPS/Beidou positioning antenna 5 and a maritime satellite communication antenna 6. There is a cable channel in the center of the bottom of the watertight antenna box 2, through which the watertight connector and the communication cable of the control cabin 3 7 connected; the main function of the watertight antenna box is to receive and send various data;
所述的水密控制仓3内有数据线缆7、微控制器12、GPS/北斗定位模块9、GPRS移动通信模块11、海事卫星通讯模块8、计时器10、液压泵14及大容量铅酸蓄电池13,The watertight control cabin 3 has a data cable 7, a microcontroller 12, a GPS/Beidou positioning module 9, a GPRS mobile communication module 11, a maritime satellite communication module 8, a timer 10, a hydraulic pump 14 and a large-capacity lead-acid accumulator 13,
同时水密控制仓3外部设有气囊16及保护气囊16的支架17,所述气囊16通过导管15与液压泵14相连,其主要作用是定时通过液压泵14改变气囊16的体积,从而改变移动终端整体的浮力,以实现终端在水里的升降。通过计时器10定时控制终端的升降,每当终端上升到海面,即可通过GPS/北斗模块9进行定位,并通过GPRS或海事卫星将位置信息传输至数据监控处理系统。水密控制仓3与天线盒2通过数据线缆7进行连接。At the same time, the outside of the watertight control chamber 3 is provided with an airbag 16 and a support 17 for protecting the airbag 16. The airbag 16 is connected to the hydraulic pump 14 through a conduit 15. The overall buoyancy is used to realize the lifting of the terminal in the water. The rise and fall of the terminal is controlled regularly by the timer 10. Whenever the terminal rises to the sea surface, it can be positioned by the GPS/Beidou module 9, and the position information is transmitted to the data monitoring and processing system through GPRS or maritime satellite. The watertight control cabin 3 is connected with the antenna box 2 through a data cable 7 .
尼龙帆1以木质骨架将三张边长80cm方形尼龙面交叉组成中心对称的十字帆1,所用材质具有良好的随水移动性,可通过配重调整浮力;水密控制仓3为圆柱状,十字帆1的四个帆叶呈对称的十字形分布在水密控制仓3的四面,并与水密控制仓3连接;天线盒2采用ABS塑料材质,防水性好,上面为玻璃天窗,内有支架及配重,确保壳中通讯天线保持直立姿态;数据线缆7护套采用防水、抗拉性能好的聚氨酯材质,内含GPS天线馈线、GPRS天线馈线、卫星天线馈线,每对馈线用镀锡线编织,防止馈线间高频电磁干扰;微控制器11采用ARM32位的CortexTM-M3CPU单片机STM32f103;电池仓12采用大容量6V铅酸蓄电池;气囊16可设置在水密控制仓3的侧面和底部,本实施例的图中设置在底部;液压泵13采用微型不锈钢齿轮泵。Nylon sail 1 uses a wooden skeleton to cross three 80cm square nylon surfaces to form a centrally symmetrical cross sail 1. The material used has good mobility with water, and the buoyancy can be adjusted by counterweight; The four sail blades of the sail 1 are distributed in a symmetrical cross shape on the four sides of the watertight control cabin 3, and are connected with the watertight control cabin 3; the antenna box 2 is made of ABS plastic material, and has good waterproof performance. Counterweight to ensure that the communication antenna in the shell maintains an upright posture; the sheath of the data cable 7 is made of waterproof and high-strength polyurethane material, including GPS antenna feeder, GPRS antenna feeder, and satellite antenna feeder. Each pair of feeder wires uses tinned wires Weaving to prevent high-frequency electromagnetic interference between feeders; microcontroller 11 adopts ARM32-bit Cortex TM -M3CPU single-chip microcomputer STM32f103; battery compartment 12 adopts large-capacity 6V lead-acid battery; airbag 16 can be set on the side and bottom of watertight control compartment 3, The figure of the present embodiment is arranged at the bottom; the hydraulic pump 13 adopts a miniature stainless steel gear pump.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621051755.5U CN206019648U (en) | 2016-09-12 | 2016-09-12 | Circulation observation system more than a kind of coastal waters bottom Lagrange |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621051755.5U CN206019648U (en) | 2016-09-12 | 2016-09-12 | Circulation observation system more than a kind of coastal waters bottom Lagrange |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206019648U true CN206019648U (en) | 2017-03-15 |
Family
ID=58258398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621051755.5U Expired - Fee Related CN206019648U (en) | 2016-09-12 | 2016-09-12 | Circulation observation system more than a kind of coastal waters bottom Lagrange |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206019648U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107517267A (en) * | 2017-09-05 | 2017-12-26 | 中交信息技术国家工程实验室有限公司 | A ship data acquisition and transmission control terminal system |
CN109283559A (en) * | 2018-10-16 | 2019-01-29 | 山东省科学院海洋仪器仪表研究所 | An inflatable ocean flotsam track tracking beacon |
CN109470883A (en) * | 2018-10-15 | 2019-03-15 | 同济大学 | A GPS Drift Flow Velocity Meter |
CN110065604A (en) * | 2019-04-09 | 2019-07-30 | 中国海洋大学 | With the control method for flowing fixed high underwater navigation equipment |
CN110065600A (en) * | 2019-04-09 | 2019-07-30 | 中国海洋大学 | One kind is with the fixed high underwater navigation equipment of stream |
-
2016
- 2016-09-12 CN CN201621051755.5U patent/CN206019648U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107517267A (en) * | 2017-09-05 | 2017-12-26 | 中交信息技术国家工程实验室有限公司 | A ship data acquisition and transmission control terminal system |
CN109470883A (en) * | 2018-10-15 | 2019-03-15 | 同济大学 | A GPS Drift Flow Velocity Meter |
CN109470883B (en) * | 2018-10-15 | 2021-03-26 | 同济大学 | GPS drift type flow velocity measuring instrument |
CN109283559A (en) * | 2018-10-16 | 2019-01-29 | 山东省科学院海洋仪器仪表研究所 | An inflatable ocean flotsam track tracking beacon |
CN109283559B (en) * | 2018-10-16 | 2024-06-14 | 山东省科学院海洋仪器仪表研究所 | Inflatable ocean drift track tracking beacon machine |
CN110065604A (en) * | 2019-04-09 | 2019-07-30 | 中国海洋大学 | With the control method for flowing fixed high underwater navigation equipment |
CN110065600A (en) * | 2019-04-09 | 2019-07-30 | 中国海洋大学 | One kind is with the fixed high underwater navigation equipment of stream |
CN110065604B (en) * | 2019-04-09 | 2021-10-22 | 中国海洋大学 | Control Method of Underwater Navigation Equipment for Constant Height with Current |
CN110065600B (en) * | 2019-04-09 | 2021-12-28 | 中国海洋大学 | Under-water navigation equipment with water flow determination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206019648U (en) | Circulation observation system more than a kind of coastal waters bottom Lagrange | |
CN201362339Y (en) | Shallow sea self-restraining type drifting circulation detecting buoy | |
CN109835438B (en) | An elevating submersible device | |
CN106828783B (en) | An intelligent self-elevating communication submersible system based on buoyancy drive | |
CN104267643B (en) | Underwater robot target positioning identification system | |
CN104215988A (en) | Underwater target positioning method | |
CN105242023A (en) | Unmanned ship achieving multi-function monitoring of water area | |
CN109367705A (en) | A quasi-real-time communication submersible in polar seasonal ice area | |
JP2015523258A (en) | Satellite and acoustic tracking device | |
CN202163601U (en) | Novel automatic lifting device for underground long-term monitoring equipment | |
CN103024941A (en) | System and method for real-time hydrologic monitoring and transmission based on wireless sensor network | |
CN109866895A (en) | Preventing seabed base | |
CN108008145B (en) | Wireless real-time system for deep sea submerged buoy | |
CN209274837U (en) | A Quasi-real-time Submersible Buoy for Polar Seasonal Ice Region Communication | |
CN109374922B (en) | Towing type vertical stable flow velocity profile measuring buoy for wave glider | |
CN207758961U (en) | A kind of unmanned boat | |
CN111422308A (en) | Wave energy and solar energy combined power supply buoy and power supply method | |
CN108082399B (en) | An unmanned ship | |
CN215415917U (en) | Deep sea bottom-setting recoverable acoustic responder device | |
CN205962420U (en) | Fishing feelings detecting device who independently navigates by water | |
CN211374717U (en) | Water quality on-line monitoring device | |
CN209014598U (en) | A buoy for towed vertical steady flow profile measurement buoy for wave glider | |
CN104567828A (en) | Marine environment profile observation system | |
CN203975153U (en) | Dynamic positioning formula oceanographic buoy | |
CN207717190U (en) | Reservoir level monitoring device based on big-dipper satellite positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170315 Termination date: 20170912 |
|
CF01 | Termination of patent right due to non-payment of annual fee |