CN202428438U - Six-freedom-degree parallel connection micro robot - Google Patents
Six-freedom-degree parallel connection micro robot Download PDFInfo
- Publication number
- CN202428438U CN202428438U CN201220012057XU CN201220012057U CN202428438U CN 202428438 U CN202428438 U CN 202428438U CN 201220012057X U CN201220012057X U CN 201220012057XU CN 201220012057 U CN201220012057 U CN 201220012057U CN 202428438 U CN202428438 U CN 202428438U
- Authority
- CN
- China
- Prior art keywords
- flexible
- micro
- motion
- freedom
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
一种六自由度并联微动机器人,包括基座、运动平台和连接二者的六条结构相同的运动支链。所述六条运动支链分为三组,每组两条,分别沿空间三个相互垂直的方向布置,且三组支路的对称中面相互垂直。所述运动支链由平行板柔性移动副、压电陶瓷微位移驱动器、两端分别带有柔性转动铰链的连杆、一端带有柔性转动铰链的推杆及两端分别带有柔性球铰的支柱组成。本实用新型具有结构紧凑,微位移解耦,算法简单和工作空间大的优点,能实现无摩擦、无间隙、无滞后和高分辨率的六个自由度的微运动,可广泛应用于机械工程、电子封装、精细化工、光纤对接、生物和遗传工程等精细操作与加工领域。
A six-degree-of-freedom parallel micro-motion robot includes a base, a motion platform, and six motion branch chains with the same structure connecting the two. The six motion branch chains are divided into three groups, two in each group, respectively arranged along three mutually perpendicular directions in space, and the symmetrical middle planes of the three groups of branches are perpendicular to each other. The motion branch chain consists of a parallel plate flexible moving pair, a piezoelectric ceramic micro-displacement driver, a connecting rod with a flexible rotary hinge at both ends, a push rod with a flexible rotary hinge at one end, and a flexible ball hinge at both ends. pillar composition. The utility model has the advantages of compact structure, micro-displacement decoupling, simple algorithm and large working space, and can realize micro-motion with six degrees of freedom without friction, gap, hysteresis and high resolution, and can be widely used in mechanical engineering , electronic packaging, fine chemicals, optical fiber docking, biological and genetic engineering and other fine operations and processing fields.
Description
技术领域 technical field
本实用新型涉及微动机器人领域,特别是涉及一种六自由度并联微动机器人。 The utility model relates to the field of micro-motion robots, in particular to a parallel micro-motion robot with six degrees of freedom.
背景技术 Background technique
并联微动机器人运动精细、分辨率高,具有亚微米至纳米级的定位精度,在精密加工、电子封装、精细化工、光纤对接、生物和遗传工程、材料科学、毫微平面印刷和航空航天等领域具有广阔的应用前景。哈尔滨工业大学研制了一台基于Stewart平台变异结构的六自由度并联微动机器人,北京航空航天大学研制了一台基于DELTA机构的并联微动机器人,澳门大学提出了一种正交结构的三自由度并联微动机器人,燕山大学研制了并联六自由度机器人误差补偿器,河北工业大学研制了正交解耦结构六自由度并联微动机器人,这些研究成果存在的主要问题是有的位移解耦性差,有的结构复杂、加工困难,有的标定困难,有的工作空间太小。 Parallel micro-motion robots have fine movement, high resolution, and positioning accuracy from submicron to nanometer level. The field has broad application prospects. Harbin Institute of Technology developed a six-degree-of-freedom parallel micro-robot based on the variation structure of the Stewart platform, Beihang University developed a parallel micro-robot based on the DELTA mechanism, and the University of Macau proposed a three-freedom robot with an orthogonal structure degree of parallel micro-movement robot, Yanshan University developed a parallel six-degree-of-freedom robot error compensator, and Hebei University of Technology developed a six-degree-of-freedom parallel micro-robot with an orthogonal decoupling structure. The main problem in these research results is that some displacement decoupling Poor performance, some complex structures, difficult processing, some difficult calibration, and some work space is too small.
发明内容 Contents of the invention
本实用新型目的在于提供一种六自由度微动机器人,这种微动机器人具有结构紧凑,微位移解耦,算法简单和工作空间大的优点,能实现无摩擦、无间隙、无滞后和高分辨率的六个自由度的微运动。 The purpose of the utility model is to provide a six-degree-of-freedom micro-robot. This micro-robot has the advantages of compact structure, micro-displacement decoupling, simple algorithm and large working space, and can realize no friction, no gap, no hysteresis and high resolution of six degrees of freedom for micro-motion.
本实用新型是所采用的技术方案是:这种各向同性的六自由度并联微动机器人由基座、运动平台和连接二者的六条结构相同的运动支链组成。所述运动支链由平行板柔性移动副、压电陶瓷微位移驱动器、两端分别带有柔性转动铰链的连杆、一端带有柔性转动铰链的推杆及两端分别带有柔性球铰的支柱组成。其中,平行板柔性移动副为框架结构,压电陶瓷微位移驱动器安放在平行板柔性移动副框架结构的中部,连杆的一端通过柔性转动铰链与平行板柔性移动副连接,连杆的另一端通过另一柔性转动铰链与推杆的侧面连接,推杆的一端通过柔性转动铰链与基座连接,另一端通过柔性球铰与支柱连接,支柱的另一端通过柔性球铰与运动平台连接,推杆起到杠杆的作用,放大了压电陶瓷微位移驱动器的输出位移。所述六条运动支链分为三组,每组两条,分别沿空间三个相互垂直的方向布置,且三组支路的对称中面相互垂直。通过六个压电陶瓷微位移驱动器驱动对应的平行板柔性移动副,可实现微动机器人运动平台无摩擦、无间隙、无滞后和高分辨率的六个自由度的微运动。微动机器人本体是由一块钢坯一次加工成型的非组装件。 The technical scheme adopted by the utility model is: the isotropic six-degree-of-freedom parallel micro-motion robot is composed of a base, a motion platform and six motion branch chains connecting the two with the same structure. The motion branch chain consists of a parallel plate flexible moving pair, a piezoelectric ceramic micro-displacement driver, a connecting rod with a flexible rotary hinge at both ends, a push rod with a flexible rotary hinge at one end, and a flexible ball hinge at both ends. pillar composition. Among them, the flexible moving pair of the parallel plate is a frame structure, the piezoelectric ceramic micro-displacement driver is placed in the middle of the frame structure of the flexible moving pair of the parallel plate, one end of the connecting rod is connected with the flexible moving pair of the parallel plate through a flexible rotating hinge, and the other end of the connecting rod It is connected to the side of the push rod through another flexible rotating hinge, one end of the push rod is connected to the base through a flexible rotating hinge, the other end is connected to the pillar through a flexible ball hinge, and the other end of the pillar is connected to the motion platform through a flexible ball hinge. The rod acts as a lever, amplifying the output displacement of the piezo micro-displacement actuator. The six moving branch chains are divided into three groups, two in each group, respectively arranged along three mutually perpendicular directions in space, and the symmetrical middle planes of the three groups of branches are perpendicular to each other. Six piezoelectric ceramic micro-displacement drivers drive the corresponding flexible moving pairs of parallel plates, which can realize the micro-motion of six degrees of freedom with no friction, no gap, no hysteresis and high resolution of the micro-movement robot motion platform. The body of the micro-motion robot is a non-assembled part that is processed and formed from a billet at one time.
附图说明 Description of drawings
图1 是六自由度并联微动机器人结构图; Figure 1 is a structure diagram of a six-degree-of-freedom parallel micro-motion robot;
图2 是运动支链结构图。 Figure 2 is the structure diagram of the kinematic branch chain.
在图1 、图2中,1.基座,2.运动平台,3.运动支链,4. 平行板柔性移动副,5.压电陶瓷微位移驱动器,6、7、9. 柔性转动铰链,8.连杆,10.推杆,11、12.柔性球铰,13.支柱。 In Figure 1 and Figure 2, 1. base, 2. motion platform, 3. motion branch chain, 4. parallel plate flexible moving pair, 5. piezoelectric ceramic micro-displacement driver, 6, 7, 9. flexible rotating hinge , 8. connecting rod, 10. push rod, 11, 12. flexible spherical hinge, 13. pillar.
具体实施方式 Detailed ways
图1和图2是本实用新型公开的一个实施例,这种六自由度并联微动机器人由基座1、运动平台2和连接二者的六条结构相同的运动支链3组成。所述运动支链3由平行板柔性移动副4、压电陶瓷微位移驱动器5、两端分别带有柔性转动铰链(6、7)的连杆8、一端带有柔性转动铰链9的推杆10及两端分别带有柔性球铰(11、12)的支柱13组成。其中,平行板柔性移动副4为框架结构,压电陶瓷微位移驱动器5安放在平行板柔性移动副框架结构的中部,连杆8的一端通过柔性转动铰链6与平行板柔性移动副4连接,另一端通过柔性转动铰链7与推杆10的侧面连接,推杆10的一端通过柔性转动铰链9与基座1连接,另一端通过柔性球铰11与支柱连接,支柱的另一端通过柔性球铰12与运动平台2连接。推杆10起到杠杆的作用,放大了压电陶瓷微位移驱动器5的输出位移。所述六条运动支链3分为三组,每组两条,分别沿空间三个相互垂直的方向布置,且三组支路的对称中面相互垂直。通过六个压电陶瓷微位移驱动器驱动对应的平行板柔性移动副,可实现微动机器人运动平台六个自由度的微动。
Fig. 1 and Fig. 2 are an embodiment disclosed by the utility model. This six-degree-of-freedom parallel micro-robot consists of a
这种微动机器人的本体是由一块钢坯一次加工成型的非组装件,具有结构紧凑,微位移解耦,算法简单和工作空间大的优点,能实现无摩擦、无间隙、无滞后和高分辨率的六个自由度的微运动,可广泛应用于精密加工、电子封装、精细化工、光纤对接、生物和遗传工程、材料科学、毫微平面印刷和航空航天等精细操作与加工领域。 The body of this kind of micro-robot is a non-assembled part processed from a billet at one time. It has the advantages of compact structure, micro-displacement decoupling, simple algorithm and large working space. It can achieve no friction, no gap, no hysteresis and high resolution. It can be widely used in fine operation and processing fields such as precision machining, electronic packaging, fine chemical industry, optical fiber docking, biological and genetic engineering, material science, nano-planar printing, and aerospace.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201220012057XU CN202428438U (en) | 2012-01-12 | 2012-01-12 | Six-freedom-degree parallel connection micro robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201220012057XU CN202428438U (en) | 2012-01-12 | 2012-01-12 | Six-freedom-degree parallel connection micro robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202428438U true CN202428438U (en) | 2012-09-12 |
Family
ID=46777910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201220012057XU Expired - Fee Related CN202428438U (en) | 2012-01-12 | 2012-01-12 | Six-freedom-degree parallel connection micro robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202428438U (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103486413A (en) * | 2013-10-11 | 2014-01-01 | 天津理工大学 | Three-freedom-degree decoupling large-stroke micro-positioning platform |
CN103878766A (en) * | 2014-04-04 | 2014-06-25 | 苏州大学 | Three-PRS type micro-motion parallel robot |
CN104536126A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Six-degree-of-freedom secondary mirror adjusting mechanism based on piezoelectric stack block |
CN107833594A (en) * | 2017-09-13 | 2018-03-23 | 南京航空航天大学 | A kind of two-dimentional Three Degree Of Freedom micromotion platform structure for being used for high accuracy positioning and measurement |
CN107984443A (en) * | 2017-12-28 | 2018-05-04 | 大连交通大学 | One kind intersects curved beam six-freedom parallel compliant mechanism |
CN108000459A (en) * | 2018-01-15 | 2018-05-08 | 大连交通大学 | A kind of six degree of freedom series-parallel connection curved beam space compliant mechanism |
US10100663B2 (en) | 2015-06-04 | 2018-10-16 | Rolls-Royce Plc | Actuation arrangement |
CN109079552A (en) * | 2018-08-15 | 2018-12-25 | 广东工业大学 | A kind of three axis cutter servo devices based on compliant parallel mechanism |
CN109531519A (en) * | 2018-12-25 | 2019-03-29 | 西交利物浦大学 | A kind of space six-freedom micro displacement platform |
CN109949856A (en) * | 2019-03-15 | 2019-06-28 | 天津理工大学 | A Modular 6-DOF Precision Micro-Motion Mechanism Based on Flexible Hinges |
CN110883761A (en) * | 2019-11-18 | 2020-03-17 | 东北大学 | Six-degree-of-freedom motion decoupling compliant mechanism |
CN110883760A (en) * | 2019-10-31 | 2020-03-17 | 东北大学 | A motion decoupling compliant mechanism with three degrees of freedom in plane |
CN114473543A (en) * | 2022-04-18 | 2022-05-13 | 北京航空航天大学杭州创新研究院 | Six-degree-of-freedom precision motion platform based on flexible mechanism |
CN115148637A (en) * | 2022-07-05 | 2022-10-04 | 北京派和科技股份有限公司 | Orthogonal-driving rigid-flexible coupling high-speed crystal-pricking mechanism |
-
2012
- 2012-01-12 CN CN201220012057XU patent/CN202428438U/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103486413B (en) * | 2013-10-11 | 2016-02-10 | 天津理工大学 | Three freedom decoupling Long Distances mini positioning platform |
CN103486413A (en) * | 2013-10-11 | 2014-01-01 | 天津理工大学 | Three-freedom-degree decoupling large-stroke micro-positioning platform |
CN103878766A (en) * | 2014-04-04 | 2014-06-25 | 苏州大学 | Three-PRS type micro-motion parallel robot |
CN104536126A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Six-degree-of-freedom secondary mirror adjusting mechanism based on piezoelectric stack block |
CN104536126B (en) * | 2014-12-20 | 2017-06-27 | 中国科学院西安光学精密机械研究所 | Six-degree-of-freedom secondary mirror adjusting mechanism based on piezoelectric stack block |
US10100663B2 (en) | 2015-06-04 | 2018-10-16 | Rolls-Royce Plc | Actuation arrangement |
CN107833594A (en) * | 2017-09-13 | 2018-03-23 | 南京航空航天大学 | A kind of two-dimentional Three Degree Of Freedom micromotion platform structure for being used for high accuracy positioning and measurement |
CN107833594B (en) * | 2017-09-13 | 2020-02-21 | 南京航空航天大学 | A two-dimensional three-degree-of-freedom micro-movement platform structure for high-precision positioning and measurement |
CN107984443A (en) * | 2017-12-28 | 2018-05-04 | 大连交通大学 | One kind intersects curved beam six-freedom parallel compliant mechanism |
CN107984443B (en) * | 2017-12-28 | 2024-01-30 | 大连交通大学 | Six-degree-of-freedom parallel compliant mechanism with crossed curved beams |
CN108000459A (en) * | 2018-01-15 | 2018-05-08 | 大连交通大学 | A kind of six degree of freedom series-parallel connection curved beam space compliant mechanism |
CN108000459B (en) * | 2018-01-15 | 2023-08-18 | 大连交通大学 | Six-degree-of-freedom hybrid curved beam space compliant mechanism |
CN109079552A (en) * | 2018-08-15 | 2018-12-25 | 广东工业大学 | A kind of three axis cutter servo devices based on compliant parallel mechanism |
CN109531519A (en) * | 2018-12-25 | 2019-03-29 | 西交利物浦大学 | A kind of space six-freedom micro displacement platform |
CN109531519B (en) * | 2018-12-25 | 2024-04-02 | 西交利物浦大学 | Spatial six-degree-of-freedom micro-motion platform |
CN109949856B (en) * | 2019-03-15 | 2021-01-29 | 天津理工大学 | Modularized six-degree-of-freedom precise micro-motion mechanism based on flexible hinge |
CN109949856A (en) * | 2019-03-15 | 2019-06-28 | 天津理工大学 | A Modular 6-DOF Precision Micro-Motion Mechanism Based on Flexible Hinges |
CN110883760A (en) * | 2019-10-31 | 2020-03-17 | 东北大学 | A motion decoupling compliant mechanism with three degrees of freedom in plane |
CN110883761B (en) * | 2019-11-18 | 2022-11-25 | 东北大学 | Six-degree-of-freedom motion decoupling compliant mechanism |
CN110883761A (en) * | 2019-11-18 | 2020-03-17 | 东北大学 | Six-degree-of-freedom motion decoupling compliant mechanism |
CN114473543A (en) * | 2022-04-18 | 2022-05-13 | 北京航空航天大学杭州创新研究院 | Six-degree-of-freedom precision motion platform based on flexible mechanism |
CN115148637A (en) * | 2022-07-05 | 2022-10-04 | 北京派和科技股份有限公司 | Orthogonal-driving rigid-flexible coupling high-speed crystal-pricking mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202428438U (en) | Six-freedom-degree parallel connection micro robot | |
CN103021472B (en) | Plane parallel type three-freedom-degree precise positioning work table | |
CN103104793B (en) | Integrated type six degrees of freedom precision positioning platform | |
CN1962209B (en) | A three-branch six-degree-of-freedom parallel flexible hinge micro-motion mechanism | |
CN103552061B (en) | Parallel micro-motion platform with one translational degree of freedom and two rotational degrees of freedom | |
CN101417424B (en) | A three-dimensional translational micro-manipulator | |
CN201736223U (en) | Two-rotation one-movement three-freedom micromotion parallel mechanism | |
CN102794664B (en) | Bridge-type flexible hinge based high-frequency ultra-precision machining lathe saddle driving platform | |
CN101862966A (en) | Two-degree-of-freedom parallel decoupling micro-motion platform | |
CN102009358B (en) | Annular elastic pair-containing three-degrees-of-freedom micro operating table | |
CN101157216A (en) | Three-degree-of-freedom micro-manipulation robot | |
CN103568005B (en) | Dual-translation orthogonal decoupling parallel micro-positioning platform | |
CN101531002A (en) | Micro-nano working platform of four-dimensional mobile orthogonal structure | |
CN101286369A (en) | X-Y-Z three-degree-of-freedom serial nano-scale micro-positioning workbench | |
CN100999080A (en) | Three-translation orthogonal decoupling parallel micromotion platform | |
CN103486413A (en) | Three-freedom-degree decoupling large-stroke micro-positioning platform | |
CN101176995A (en) | A two-translational micro-motion platform with redundant branch chains | |
CN108615548A (en) | Novel three freedom meek parallel precise locating platform | |
CN101530999A (en) | Micro-nano working platform of five-dimensional mobile orthogonal structure | |
CN101786269B (en) | Micro-nano transmission platform | |
CN105196280B (en) | Redundant-driven three-translation micro-manipulation robot | |
CN103586863B (en) | Planar three-degree-of-freedom parallel micro-positioning platform of symmetric structure | |
CN102059693B (en) | Dual-translation microoperating platform comprising quadrate elastic pair | |
CN101531001A (en) | Micro-nano working platform of three-dimensional mobile orthogonal structure | |
CN201109120Y (en) | A two-translation parallel structure micro-positioning platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120912 Termination date: 20130112 |