CN1925180A - Epitaxial wafer for a semiconductor light emitting device, method for fabricating the same and semiconductor light emitting device - Google Patents
Epitaxial wafer for a semiconductor light emitting device, method for fabricating the same and semiconductor light emitting device Download PDFInfo
- Publication number
- CN1925180A CN1925180A CNA2006101159699A CN200610115969A CN1925180A CN 1925180 A CN1925180 A CN 1925180A CN A2006101159699 A CNA2006101159699 A CN A2006101159699A CN 200610115969 A CN200610115969 A CN 200610115969A CN 1925180 A CN1925180 A CN 1925180A
- Authority
- CN
- China
- Prior art keywords
- type
- layer
- cladding layer
- doped
- semiconductor light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
本发明提供了抑制p型掺杂剂向p型包覆层和活性层扩散的半导体发光元件用外延晶片及其制造方法,以及使用该外延晶片、可以进行稳定的大功率输出运作和高温运作并且具有高可靠性的半导体发光元件。该半导体发光元件用外延晶片的结构是,在由GaAs构成的n型衬底1上依次层叠下述各层:由GaAs构成的n型缓冲层2、由GaInP构成的n型缓冲层3、由AlGaInP构成的n型包覆层4、由AlGaAs构成的非掺杂导向层5、由AlGaAs/GaAs的多重量子井(MQW)构成的活性层6、由AlGaInP构成的p型第1包覆层7、由GaInP构成的p型蚀刻停止层8、由AlGaInP构成的p型第2包覆层9、成为本发明特征部分的掺杂了碳的碳掺杂AlGaAs层10(锌扩散抑制层)、由GaInP构成的p型中间层11以及由GaAs构成的p型覆盖层12。
The present invention provides an epitaxial wafer for a semiconductor light-emitting element that suppresses the diffusion of p-type dopants into a p-type cladding layer and an active layer and a manufacturing method thereof, and using the epitaxial wafer, stable high-power output operation and high-temperature operation can be performed and Semiconductor light emitting elements with high reliability. The structure of this epitaxial wafer for a semiconductor light-emitting element is that the following layers are sequentially stacked on an n-type substrate 1 made of GaAs: an n-type buffer layer 2 made of GaAs, an n-type buffer layer 3 made of GaInP, and an n-type buffer layer made of GaInP. n-type cladding layer 4 made of AlGaInP, non-doped guide layer 5 made of AlGaAs, active layer 6 made of AlGaAs/GaAs multiple quantum wells (MQW), p-type first cladding layer 7 made of AlGaInP , a p-type etching stopper layer 8 made of GaInP, a p-type second cladding layer 9 made of AlGaInP, a carbon-doped AlGaAs layer 10 (zinc diffusion suppressing layer) doped with carbon which is a characteristic part of the present invention, and A p-type intermediate layer 11 made of GaInP and a p-type cladding layer 12 made of GaAs.
Description
技术领域technical field
本发明涉及半导体发光元件用外延晶片及其制造方法和半导体发光元件,特别是涉及包含采用锌(Zn)或者镁(Mg)作为p型掺杂剂的铝镓铟磷(AlGaInP)系材料的半导体发光元件(发光二极管、半导体激光器)用外延晶片及其制造方法,以及使用该外延晶片制作的半导体发光元件。The present invention relates to an epitaxial wafer for a semiconductor light-emitting element, a manufacturing method thereof, and a semiconductor light-emitting element, in particular to a semiconductor comprising an aluminum gallium indium phosphide (AlGaInP)-based material using zinc (Zn) or magnesium (Mg) as a p-type dopant An epitaxial wafer for light-emitting elements (light-emitting diodes, semiconductor lasers), a manufacturing method thereof, and a semiconductor light-emitting element manufactured using the epitaxial wafer.
背景技术Background technique
近年来,对于采用半导体激光器中的AlGaInP系可见光半导体激光器作为光源的高密度光盘装置的开发十分活跃。被用于该光源的法布里-珀罗型激光二极管(LD)具有如下所述的层状结构,即,在n型GaAs衬底上,至少依次层叠如下所述的各层:n型AlGaInP包覆层,根据需要,在二者之间可以有n型GaAs缓冲层,必要时还可以有n型GaInP缓冲层;活性层;p型AlGaInP包覆层;p型GaAs覆盖(キヤツプ)层,根据需要可以有p型GaInP中间层介于之间。另外,根据需要,在工艺中为了蚀刻控制和折射率设计,大多使用在p型AlGaInP包覆层的一部分插入GaInP层的结构的外延晶片,采用有机金属气相生长法(MOVPE法)来制作。In recent years, the development of a high-density optical disk device using an AlGaInP-based visible light semiconductor laser among semiconductor lasers as a light source has been active. The Fabry-Perot laser diode (LD) used for this light source has a layered structure as follows, that is, on an n-type GaAs substrate, at least the following layers are sequentially stacked: n-type AlGaInP The cladding layer, as required, can have an n-type GaAs buffer layer between the two, and an n-type GaInP buffer layer if necessary; an active layer; a p-type AlGaInP cladding layer; a p-type GaAs covering (イツップ) layer, There may be a p-type GaInP intermediate layer interposed as required. In addition, if necessary, for etching control and refractive index design in the process, an epitaxial wafer having a structure in which a GaInP layer is inserted into a part of the p-type AlGaInP cladding layer is often used, and it is produced by metal organic vapor phase epitaxy (MOVPE method).
作为高密度光盘装置中的读取·写入用光源,要求稳定的大功率输出和高温工作性能,因此需要使p型包覆层的载流子浓度高浓度化。作为满足该要求的p型掺杂剂考虑了Zn或者Mg。在专利文献1中记载了将Zn用于p型包覆层的p型掺杂剂的例子。As a light source for reading and writing in high-density optical disc devices, stable high power output and high-temperature operation performance are required, so it is necessary to increase the carrier concentration of the p-type cladding layer. Zn or Mg is considered as a p-type dopant satisfying this requirement.
但是,其存在的问题是,掺杂剂会从p型包覆层向活性层扩散,其量较多时,会造成对于半导体激光元件的功能来说致命的缺陷。Zn比较容易扩散,Mg不容易扩散。因此,最近倾向于使用扩散常数比Zn小的Mg来形成p型包覆层。这是因为Mg比Zn更难扩散,因此可以高浓度地添加p型包覆层的载流子浓度。However, there is a problem in that the dopant diffuses from the p-type cladding layer to the active layer, and when the amount is large, it causes defects fatal to the function of the semiconductor laser device. Zn is relatively easy to diffuse, and Mg is not easy to diffuse. Therefore, recently, Mg, which has a diffusion constant smaller than that of Zn, tends to be used to form the p-type cladding layer. This is because Mg is more difficult to diffuse than Zn, and thus can increase the carrier concentration of the p-type cladding layer at a high concentration.
另一方面,从尽可能降低电极的接触电阻的必要性考虑,p型覆盖层(触点层)的载流子浓度也需要形成相当高的载流子浓度。该p型覆盖层通常由砷化镓(GaAs)形成,另外,从需要比包覆层高一位数或以上的载流子浓度考虑,采用可以高浓度添加的Zn作为掺杂剂(例如参照专利文献1)。On the other hand, in view of the need to reduce the contact resistance of the electrodes as much as possible, the carrier concentration of the p-type cladding layer (contact layer) also needs to be relatively high. The p-type cladding layer is usually formed of gallium arsenide (GaAs). In addition, in view of the need for a carrier concentration higher than that of the cladding layer by one digit or more, Zn, which can be added at a high concentration, is used as a dopant (for example, refer to Patent Document 1).
另外,还有人提出了一种方案,即,使p型包覆层和活性层之间存在以GaAs系化合物半导体为主成分并含有浓度为5×1018/cm3~1×1020/cm3的碳(C)的扩散抑制层(例如参照专利文献2)。扩散抑制层中的C成为阻挡层,有效地抑制被掺杂在p型包覆层和活性层中的Zn、Mg等的扩散。In addition, there is also a proposal to make GaAs-based compound semiconductors mainly composed of GaAs-based compound semiconductors with a concentration of 5×10 18 /cm 3 to 1×10 20 /cm between the p-type cladding layer and the active layer. 3. Diffusion suppression layer of carbon (C) (for example, refer to Patent Document 2). C in the diffusion suppressing layer acts as a barrier layer, effectively suppressing the diffusion of Zn, Mg, etc. doped in the p-type cladding layer and active layer.
[专利文献1]特开平11-186665号公报[Patent Document 1] JP-A-11-186665
[专利文献2]特开2002-261321号公报[Patent Document 2] JP-A-2002-261321
发明内容Contents of the invention
如同专利文献1和2中所记载,以往,需要注意防止p型包覆层中的Zn进入活性层中的不良情况。例如,专利文献2中记载了,在p型包覆层和活性层之间夹有含碳(C)的扩散抑制层,该扩散抑制层是用于吸收从p型包覆层扩散的Zn,减少扩散到活性层中的Zn量的层。As described in
但是,如下面所述,还应当防止p型覆盖层中的Zn进入p型包覆层和活性层中。However, as described below, Zn in the p-type cladding layer should also be prevented from entering into the p-type cladding layer and the active layer.
具体来说,如果在p型覆盖层中添加高浓度的Zn,在其外延生长中Zn会不断地向下面的层扩散。下面的p型包覆层为掺杂Zn的场合,会挤出p型包覆层的Zn而向活性层扩散(挤出扩散)。另一方面,p型包覆层为掺杂Mg的场合,由于相互扩散,p型覆盖层的Zn一直扩散至活性层中。无论哪一种情况,都会存在活性层的光致发光光谱的半幅值(以下称为PL半幅值)增大或者发光强度降低等不良情况。即,由于Zn的扩散损害活性层的结晶品质成为导致阈值电流或工作电流增大以及可靠性降低的原因。Specifically, if a high concentration of Zn is added to the p-type cladding layer, Zn will continue to diffuse to the underlying layer during its epitaxial growth. When the underlying p-type cladding layer is doped with Zn, Zn in the p-type cladding layer is extruded and diffused into the active layer (extrusion diffusion). On the other hand, when the p-type cladding layer is doped with Mg, Zn in the p-type cladding layer diffuses into the active layer due to interdiffusion. In either case, there are disadvantages such as an increase in the half-value of the photoluminescence spectrum of the active layer (hereinafter referred to as a PL half-value) or a decrease in luminous intensity. That is, damage to the crystalline quality of the active layer due to diffusion of Zn causes an increase in threshold current or operating current and a decrease in reliability.
从而,本发明的目的是,解决上述课题,提供抑制p型掺杂剂向p型包覆层和活性层扩散的半导体发光元件用外延晶片及其制造方法,以及使用该外延晶片、可以进行稳定的大功率输出运作和高温运作并且具有高可靠性的半导体发光元件。Therefore, the object of the present invention is to solve the above-mentioned problems, to provide an epitaxial wafer for a semiconductor light-emitting element that suppresses the diffusion of a p-type dopant to a p-type cladding layer and an active layer, and a method for manufacturing the same, and to use the epitaxial wafer to achieve stable It is a semiconductor light-emitting element with high power output operation and high temperature operation and high reliability.
为了实现上述目的,本发明的构成如下面所述。In order to achieve the above objects, the present invention is constituted as follows.
即,本发明的半导体发光元件用外延晶片,其特征在于,在n型衬底上,至少依次层叠n型包覆层、活性层、p型包覆层及p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述的p型包覆层和p型覆盖层之间插入掺杂了碳的p型AlGaAs层。That is, the epitaxial wafer for semiconductor light-emitting elements of the present invention is characterized in that, on an n-type substrate, at least an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type cladding layer are sequentially stacked, and the p-type cladding layer The p-type dopant is Zn, and a p-type AlGaAs layer doped with carbon is inserted between the p-type cladding layer and the p-type cladding layer.
另外,本发明的半导体发光元件用外延晶片,其特征在于,在由GaAs构成的n型衬底上,依次叠层至少一层由AlGaInP构成的n型包覆层、活性层、至少一层由AlGaInP构成的p型包覆层以及由GaAs构成的p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述p型包覆层和p型覆盖层之间插入掺杂了碳的p型AlGaAs层,并且,该p型AlGaAs层的带隙波长比p型包覆层的带隙波长要长。In addition, the epitaxial wafer for a semiconductor light-emitting element of the present invention is characterized in that on an n-type substrate made of GaAs, at least one n-type cladding layer made of AlGaInP, an active layer, at least one layer made of The p-type cladding layer composed of AlGaInP and the p-type cladding layer composed of GaAs, the p-type dopant of the p-type cladding layer is Zn, and the p-type cladding layer and the p-type cladding layer are inserted and doped A p-type AlGaAs layer of carbon, and the bandgap wavelength of the p-type AlGaAs layer is longer than the bandgap wavelength of the p-type cladding layer.
另外,本发明的半导体发光元件用外延晶片,其特征在于,在n型衬底上,至少依次层叠n型包覆层、活性层、p型包覆层、p型中间层及p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述p型包覆层和p型中间层之间插入掺杂了碳的p型AlGaAs层。In addition, the epitaxial wafer for a semiconductor light-emitting element of the present invention is characterized in that, on an n-type substrate, at least an n-type cladding layer, an active layer, a p-type cladding layer, a p-type intermediate layer, and a p-type cladding layer are sequentially stacked. , the p-type dopant of the p-type cladding layer is Zn, and a p-type AlGaAs layer doped with carbon is inserted between the p-type cladding layer and the p-type intermediate layer.
另外,本发明的半导体发光元件用外延晶片,其特征在于,在由GaAs构成的n型衬底上,依次层叠至少一层由AlGaInP构成的n型包覆层、活性层、至少一层由AlGaInP构成的p型包覆层、至少一层由GaInP或AlGaInP构成的p型中间层以及由GaAs构成的p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述p型包覆层和p型中间层之间插入掺杂了碳的p型AlGaAs层,并且,该p型AlGaAs层的带隙波长比p型包覆层的带隙波长要长,比p型中间层的要短。In addition, the epitaxial wafer for semiconductor light-emitting element of the present invention is characterized in that, on an n-type substrate made of GaAs, at least one n-type cladding layer made of AlGaInP, an active layer, at least one layer made of AlGaInP A p-type cladding layer composed of at least one p-type intermediate layer made of GaInP or AlGaInP and a p-type cladding layer made of GaAs, the p-type dopant of the p-type cladding layer is Zn, and in the p-type cladding layer A p-type AlGaAs layer doped with carbon is inserted between the cladding layer and the p-type intermediate layer, and the bandgap wavelength of the p-type AlGaAs layer is longer than that of the p-type cladding layer, which is longer than that of the p-type intermediate layer. to be short.
上述p型包覆层的p型掺杂剂可以是Zn或Mg。The p-type dopant of the above-mentioned p-type cladding layer may be Zn or Mg.
另外,本发明的半导体发光元件用外延晶片,其特征在于,在n型衬底上,至少依次层叠n型包覆层、活性层、p型第1包覆层、p型蚀刻停止层、p型第2包覆层、p型中间层以及p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述p型第2包覆层和p型中间层之间插入掺杂了碳的p型AlGaAs层。In addition, the epitaxial wafer for a semiconductor light-emitting element of the present invention is characterized in that on an n-type substrate, at least an n-type cladding layer, an active layer, a p-type first cladding layer, a p-type etching stop layer,
另外,本发明的半导体发光元件用外延晶片,其特征在于,在由GaAs构成的n型衬底上,至少依次层叠由AlGaInP构成的n型包覆层、活性层、由AlGaInP构成的p型第1包覆层、p型蚀刻停止层、由AlGaInP构成的p型第2包覆层、由GaInP构成的p型中间层以及由GaAs构成的p型覆盖层,p型覆盖层的p型掺杂剂为Zn,在所述p型第2包覆层和p型中间层之间插入掺杂了碳的p型AlGaAs层。In addition, the epitaxial wafer for a semiconductor light emitting element of the present invention is characterized in that on an n-type substrate made of GaAs, at least an n-type cladding layer made of AlGaInP, an active layer, and a p-type third layer made of AlGaInP are sequentially stacked. 1 cladding layer, p-type etch stop layer, p-type second cladding layer made of AlGaInP, p-type intermediate layer made of GaInP, and p-type cladding layer made of GaAs, p-type doping of p-type cladding layer The agent is Zn, and a p-type AlGaAs layer doped with carbon is inserted between the p-type second cladding layer and the p-type intermediate layer.
上述p型蚀刻停止层可以是至少一层由GaInP或AlGaInP构成的层。The p-type etching stop layer may be at least one layer made of GaInP or AlGaInP.
上述p型第2包覆层的p型掺杂剂可以是Zn或Mg。The p-type dopant of the above-mentioned p-type second cladding layer may be Zn or Mg.
另外,本发明的半导体发光元件用外延晶片的制造方法,其特征在于,所述掺杂了碳的p型AlGaAs层的碳掺杂,是通过调整III族原料与V族原料的V/III之比由有机金属原料的自掺杂来进行。In addition, the method for manufacturing an epitaxial wafer for a semiconductor light-emitting element according to the present invention is characterized in that the carbon doping of the p-type AlGaAs layer doped with carbon is achieved by adjusting the V/III ratio between the III-group raw material and the V-group raw material. The ratio is performed by self-doping of organometallic starting materials.
另外,本发明的半导体发光元件用外延晶片的制造方法,其特征在于,所述掺杂了碳的p型AlGaAs层的碳掺杂,是通过调整生长温度由有机金属原料的自掺杂来进行。In addition, the method for manufacturing an epitaxial wafer for a semiconductor light-emitting element according to the present invention is characterized in that the carbon doping of the p-type AlGaAs layer doped with carbon is performed by self-doping of an organic metal raw material by adjusting the growth temperature. .
进而,也可以使用上述半导体发光元件用外延晶片来制作半导体发光元件。Furthermore, a semiconductor light emitting element can also be produced using the above-mentioned epitaxial wafer for a semiconductor light emitting element.
本发明人发现:(1)在p型覆盖层和p型包覆层之间插入了AlGaAs层时,p型覆盖层中的Zn完全没有扩散到p型包覆层中;(2)p型包覆层的p型掺杂剂无论是Zn还是Mg,该AlGaAs层的防止Zn扩散的作用都可以有效地发挥。The inventors have found that: (1) when an AlGaAs layer is inserted between the p-type cladding layer and the p-type cladding layer, Zn in the p-type cladding layer does not diffuse into the p-type cladding layer at all; Regardless of whether the p-type dopant of the cladding layer is Zn or Mg, the function of preventing Zn diffusion of the AlGaAs layer can be effectively exerted.
本发明是基于本发明人的上述认识而完成的,本发明的半导体发光元件用外延晶片的结构是,在n型衬底上,至少依次层叠n型包覆层、活性层、p型包覆层、p型覆盖层(接触层),最上层的p型覆盖层的p型掺杂剂是Zn,并且,在p型包覆层和p型覆盖层之间插入了AlGaAs层。The present invention is completed based on the inventor's above knowledge. The structure of the epitaxial wafer for semiconductor light-emitting element of the present invention is that on an n-type substrate, at least an n-type cladding layer, an active layer, and a p-type cladding layer are sequentially stacked. layer, p-type cladding layer (contact layer), the p-type dopant of the uppermost p-type cladding layer is Zn, and an AlGaAs layer is inserted between the p-type cladding layer and the p-type cladding layer.
另外,本发明的半导体发光元件用外延晶片的结构是,在n型衬底上,至少依次层叠n型包覆层、活性层、p型包覆层、p型中间层以及p型覆盖层(接触层),最上层的p型覆盖层的p型掺杂剂是Zn,并且,在p型包覆层和p型中间层之间插入了AlGaAs层。In addition, the structure of the epitaxial wafer for semiconductor light-emitting element of the present invention is that on an n-type substrate, at least an n-type cladding layer, an active layer, a p-type cladding layer, a p-type intermediate layer, and a p-type cladding layer ( contact layer), the p-type dopant of the uppermost p-type cladding layer is Zn, and an AlGaAs layer is inserted between the p-type cladding layer and the p-type intermediate layer.
当形成这样的结构时,由于该AlGaAs层抑制了掺杂在p型覆盖层中的Zn扩散,起到的锌扩散抑制层的作用,因此,Zn基本上不会从该AlGaAs层向p型包覆层一侧及活性层一侧扩散。结果,可以解决活性层的发光特性和元件寿命劣化等以往存在的问题。When such a structure is formed, since the AlGaAs layer suppresses the diffusion of Zn doped in the p-type cladding layer and plays the role of a zinc diffusion inhibiting layer, Zn will not substantially flow from the AlGaAs layer to the p-type cladding layer. Diffusion on the cladding side and the active layer side. As a result, conventional problems such as deterioration of light emission characteristics of the active layer and device lifetime can be solved.
上述防止扩散的作用是由于插入的层是AlGaAs层而产生的,如果仅仅是为了产生了这一作用,没有必要一定是碳掺杂的p型。但是,实际上在制作发光元件用外延晶片时,为了使该AlGaAs层不成为元件的电阻成分,需要充分地形成低阻抗层。为此,在本发明中要求是掺杂了扩散系数小的碳的p型AlGaAs层。The above-mentioned function of preventing diffusion is caused by the fact that the inserted layer is an AlGaAs layer. If only for this function, it is not necessary to be carbon-doped p-type. However, in actual production of an epitaxial wafer for a light-emitting element, it is necessary to form a low-resistance layer sufficiently so that the AlGaAs layer does not become a resistance component of the element. Therefore, the present invention requires a p-type AlGaAs layer doped with carbon having a small diffusion coefficient.
另外,由于通过该结构可以防止在p型覆盖层中掺杂的Zn扩散,因此可以高浓度地维持p型覆盖层中的Zn,实现覆盖层与电极的接触电阻的低电阻化,结果,可以降低元件的正向工作电压。In addition, since this structure can prevent Zn doped in the p-type cladding layer from diffusing, it is possible to maintain Zn in the p-type cladding layer at a high concentration and realize a low resistance of the contact resistance between the cladding layer and the electrode. As a result, it is possible to Reduce the forward operating voltage of the component.
这样,为了防止在覆盖层中掺杂的Zn扩散,在p型包覆层和p型中间层之间(或界面),或者在p型包覆层和p型覆盖层之间(或界面)插入AlGaAs层,并且,为了该AlGaAs层不起电阻层的作用,形成掺杂了碳的p型层来消除半导体发光元件的正向工作电压的增加,这样的想法是以往所没有的。In this way, in order to prevent Zn doped in the cover layer from diffusing, between the p-type clad layer and the p-type intermediate layer (or interface), or between the p-type clad layer and the p-type cover layer (or interface) Inserting an AlGaAs layer and forming a carbon-doped p-type layer so that the AlGaAs layer does not function as a resistance layer has not been thought of before to eliminate an increase in the forward operating voltage of a semiconductor light emitting element.
无论p型包覆层的p型掺杂剂是Zn和Mg中的哪一个,上述的AlGaAs层的防止Zn扩散作用都可以有效发挥。因而,本发明的适用范围很广,即使在由GaAs构成的衬底上通过外延生长AlGaInP系材料的化合物半导体来制作并且主要使用Zn或Mg作为p型掺杂剂的半导体发光元件用外延晶片中,只要采用在该p型包覆层和p型中间层之间(或界面)插入了碳掺杂的p型AlGaAs层的形式,就可以得到本发明期望的抑制Zn扩散的效果。Regardless of which of Zn and Mg the p-type dopant of the p-type cladding layer is, the above-mentioned function of preventing Zn diffusion of the AlGaAs layer can be effectively exerted. Therefore, the scope of application of the present invention is very wide, even in the epitaxial wafer for semiconductor light-emitting element that is made by epitaxially growing a compound semiconductor of AlGaInP-based material on a substrate made of GaAs and mainly using Zn or Mg as a p-type dopant , as long as a carbon-doped p-type AlGaAs layer is inserted between the p-type cladding layer and the p-type intermediate layer (or interface), the effect of inhibiting Zn diffusion expected by the present invention can be obtained.
根据本发明,形成了在p型包覆层和p型覆盖层或p型中间层之间(或界面)插入掺杂了碳的p型AlGaAs层的结构,该AlGaAs层发挥抑制覆盖层中的Zn扩散的锌扩散抑制层的作用,因此,作为p型覆盖层的p型掺杂剂的Zn基本上不会从该AlGaAs层向p型包覆层一侧或活性层一侧扩散。也就是说,可以极其有效地抑制高浓度掺杂的p型覆盖层的Zn向p型包覆层、特别是活性层中扩散,因此活性层的发光特性和元件寿命不会劣化。结果,可以提供在覆盖层中能够掺杂至接触电阻足够低的载流子浓度、适于制作大功率输出和高温特性优异且可靠性高的红色半导体激光器等发光元件的半导体发光元件用外延晶片。According to the present invention, a structure is formed in which a p-type AlGaAs layer doped with carbon is inserted between (or interface) between the p-type cladding layer and the p-type cladding layer or p-type intermediate layer, and the AlGaAs layer functions to suppress the Since Zn diffuses as a zinc diffusion suppressing layer, Zn, which is a p-type dopant in the p-type cladding layer, hardly diffuses from the AlGaAs layer to the p-type cladding layer side or the active layer side. That is, the diffusion of Zn in the p-type cladding layer doped at a high concentration into the p-type cladding layer, especially the active layer can be extremely effectively suppressed, so that the light-emitting characteristics of the active layer and the device life are not deteriorated. As a result, it is possible to provide epitaxial wafers for semiconductor light-emitting elements that can be doped to a carrier concentration that is sufficiently low in contact resistance in the cladding layer, and that are suitable for producing light-emitting elements such as red semiconductor lasers that are excellent in high-power output and high-temperature characteristics and have high reliability. .
顺便说一下,将掺杂剂从p型包覆层向活性层中的扩散与Zn从p型覆盖层向活性层中的扩散进行比较时,由于p型覆盖层的Zn浓度高,实际上对元件特性产生的影响大的是来自p型覆盖层的Zn扩散。因此,本发明除了可以抑制掺杂剂从p型包覆层向活性层中扩散外,还可以有效地制作大功率输出和高温特性优异且可靠性高的红色半导体激光器等发光元件。Incidentally, when comparing the diffusion of dopants from the p-type cladding layer into the active layer with the diffusion of Zn from the p-type cladding layer into the active layer, since the p-type cladding layer has a high concentration of Zn, it is actually Zn diffusion from the p-type cladding layer has a large influence on device characteristics. Therefore, in addition to suppressing the diffusion of dopants from the p-type cladding layer into the active layer, the present invention can also effectively produce light-emitting elements such as red semiconductor lasers with excellent high-power output and high-temperature characteristics and high reliability.
附图说明Description of drawings
图1是表示第1实施方式涉及的半导体发光元件用外延晶片的截面示意图。FIG. 1 is a schematic cross-sectional view showing an epitaxial wafer for a semiconductor light emitting element according to a first embodiment.
图2是表示第2实施方式涉及的半导体发光元件用外延晶片的截面示意图。2 is a schematic cross-sectional view showing an epitaxial wafer for a semiconductor light emitting element according to a second embodiment.
图3是将具有锌扩散防止层的实施例1涉及的半导体发光元件用外延晶片与以往的半导体发光元件用外延晶片的SIMS分析结果进行比较而表示的图。FIG. 3 is a diagram showing a comparison of SIMS analysis results of an epitaxial wafer for a semiconductor light emitting element according to Example 1 having a zinc diffusion preventing layer and a conventional epitaxial wafer for a semiconductor light emitting element.
图4是表示具有锌扩散防止层的实施例2涉及的半导体发光元件用外延晶片的SIMS分析结果的图。4 is a graph showing the results of SIMS analysis of an epitaxial wafer for a semiconductor light emitting element according to Example 2 having a zinc diffusion preventing layer.
符号说明Symbol Description
1 n型衬底1 n-type substrate
2 n型缓冲层(Si掺杂)2 n-type buffer layer (Si doped)
3 n型缓冲层(Si掺杂)3 n-type buffer layer (Si doped)
4 n型包覆层(Si掺杂)4 n-type cladding layer (Si doped)
5 非掺杂导向层5 non-doped guide layer
6 活性层6 active layer
7 p型第1包覆层(Zn掺杂)7 p-type first cladding layer (Zn doped)
8 p型蚀刻停止层(Zn掺杂)8 p-type etch stop layer (Zn doped)
9 p型第2包覆层(Zn掺杂)9 p-type second cladding layer (Zn doped)
10 碳掺杂AlGaAs层(锌扩散抑制层)10 carbon-doped AlGaAs layer (zinc diffusion suppression layer)
11 p型中间层(Zn掺杂)11 p-type intermediate layer (Zn doped)
12 p型覆盖层(Zn掺杂)12 p-type cladding layer (Zn doped)
13 n型衬底13 n-type substrate
14 n型缓冲层(Si掺杂)14 n-type buffer layer (Si doped)
15 n型缓冲层(Si掺杂)15 n-type buffer layer (Si doped)
16 n型包覆层(Si掺杂)16 n-type cladding layer (Si doped)
17 非掺杂导向层17 Non-doped guide layer
18 活性层18 active layers
19 p型第1包覆层(Mg掺杂)19 p-type first cladding layer (Mg doped)
20 p型蚀刻停止层(Mg掺杂)20 p-type etch stop layer (Mg doped)
21 p型第2包覆层(Mg掺杂)21 p-type second cladding layer (Mg doped)
22 碳掺杂AlGaAs层(锌扩散抑制层)22 carbon-doped AlGaAs layer (zinc diffusion suppression layer)
23 p型中间层(Mg掺杂)23 p-type interlayer (Mg doped)
24 p型覆盖层(Zn掺杂)24 p-type cladding layer (Zn doped)
具体实施方式Detailed ways
以下基于图示的实施方式说明本发明。Hereinafter, the present invention will be described based on the illustrated embodiments.
第1实施方式first embodiment
图1中所示的半导体发光元件(LD)用外延晶片,形成了在由GaAs构成的n型衬底1上依次层叠下述各层的结构:由GaAs构成的n型缓冲层2、由GaInP构成的n型缓冲层3、由AlGaInP构成的n型包覆层4、由AlGaAs构成的非掺杂导向层5、由AlGaAs/GaAs的多重量子井(MQW)构成的活性层6、由AlGaInP构成的p型第1包覆层7、由GaInP构成的p型蚀刻停止层8、由AlGaInP构成的p型第2包覆层9、成为本发明特征部分的掺杂了碳的碳掺杂AlGaAs层10(锌扩散抑制层)、由GaInP构成的p型中间层11以及由GaAs构成的p型覆盖层12。在p型第1包覆层7、p型第2包覆层9、p型蚀刻停止层8和p型中间层11中掺杂的p型掺杂剂是Zn。The epitaxial wafer for semiconductor light-emitting elements (LD) shown in FIG. 1 has a structure in which the following layers are sequentially stacked on an n-
如上所述,设置Zn掺杂p型中间层11是用于减少在Zn掺杂p型第2包覆层9和Zn掺杂p型GaAs覆盖层12之间由于带隙不连续而产生的界面的电阻成分。As mentioned above, setting the Zn-doped p-type intermediate layer 11 is used to reduce the interface between the Zn-doped p-type
掺杂了碳的p型的碳掺杂AlGaAs层10(锌扩散防止层)的铝组成,其带隙波长比p型第2包覆层9的带隙波长要长,比p型中间层11的带隙波长要短。这也是为了减少在p型第2包覆层9、碳掺杂AlGaAs层10、p型中间层11之间由于带隙不连续而产生的界面的电阻成分。The aluminum composition of the p-type carbon-doped AlGaAs layer 10 (zinc diffusion preventing layer) doped with carbon has a bandgap wavelength longer than that of the p-type
形成如上述图1所示的结构时,碳掺杂AlGaAs层10起到抑制掺杂在p型覆盖层12中的Zn扩散的锌扩散抑制层的作用,因此,Zn基本上不会从该AlGaAs层向活性层一侧扩散。无论p型包覆层的p型掺杂剂是Zn和Mg中的哪一个,该碳掺杂AlGaAs层都可以有效地发挥Zn扩散抑制作用。另外,由于掺杂了碳,不会产生使半导体发光元件的正向工作电压增加的电阻。When the structure shown in FIG. 1 above is formed, the carbon-doped AlGaAs layer 10 acts as a zinc diffusion suppressing layer that suppresses the diffusion of Zn doped in the p-type cladding layer 12, and therefore, Zn will not substantially escape from the AlGaAs. layer diffused towards the active layer side. Regardless of which of Zn and Mg is the p-type dopant of the p-type cladding layer, the carbon-doped AlGaAs layer can effectively exert the function of inhibiting Zn diffusion. In addition, due to the doping of carbon, there is no resistance to increase the forward operating voltage of the semiconductor light emitting element.
向上述插入到p型包覆层和p型之间层之间的AlGaAs层中掺杂碳,并不是采用故意添加杂质的方法,而是采用通过调节III族原料与V族原料的V/III之比进行自掺杂。即,相对于碳掺杂AlGaAs层10的碳掺杂量,可以通过调节III族原料与V族原料的V/III之比来控制设定。Doping carbon into the above-mentioned AlGaAs layer inserted between the p-type cladding layer and the p-type intermediate layer is not a method of intentionally adding impurities, but a method of adjusting the V/III ratio of the III-group raw material and the V-group raw material. ratio for self-doping. That is, the amount of carbon doping with respect to the carbon-doped AlGaAs layer 10 can be controlled and set by adjusting the V/III ratio of the group III material to the group V material.
第2实施方式2nd embodiment
另一方面,图2中所示的半导体发光元件(LD)用外延晶片,形成了在由GaAs构成的n型衬底13上依次层叠下述各层的结构:由GaAs构成的n型缓冲层14、由GaInP构成的n型缓冲层15、由AlGaInP构成的n型包覆层16、由AlGaInP构成的非掺杂导向层17、由多重量子井(MQW)构成的活性层18、由AlGaInP构成的p型第1包覆层19、由GaInP构成的p型蚀刻停止层20、由AlGaInP构成的p型第2包覆层21、成为本发明特征部分的碳掺杂AlGaAs层22、层叠了铝组成不同的多个p型AlGaInP薄膜和p型GaInP薄膜的结构的p型中间层23以及由GaAs构成的p型覆盖层24。在p型第1包覆层19、p型第2包覆层21、p型蚀刻停止层20和p型中间层23中掺杂的p型掺杂剂是Mg。On the other hand, the epitaxial wafer for a semiconductor light emitting element (LD) shown in FIG. 2 has a structure in which the following layers are sequentially stacked on an n-type substrate 13 made of GaAs: n-type buffer layer made of GaAs 14. An n-type buffer layer 15 made of GaInP, an n-type cladding layer 16 made of AlGaInP, an undoped guiding layer 17 made of AlGaInP, an active layer 18 made of multiple quantum wells (MQW), and an active layer 18 made of AlGaInP p-type first cladding layer 19, a p-type etch stop layer 20 made of GaInP, a p-type
如上所述,设置Mg掺杂p型中间层23是用于减少在Mg掺杂p型第2包覆层21和Zn掺杂p型GaAs覆盖层24之间由于带隙不连续而产生的界面的电阻成分。As mentioned above, setting the Mg-doped p-type
掺杂了碳的p型碳掺杂AlGaAs层22(锌扩散防止层)的铝组成,其带隙波长比p型第2包覆层21的带隙波长要长,比p型中间层23中带隙波长最短的层的带隙波长要短。这也是为了减少在p型第2包覆层21、碳掺杂AlGaAs层22、p型中间层23之间由于带隙不连续而产生的界面的电阻成分。The aluminum composition of the p-type carbon-doped AlGaAs layer 22 (zinc diffusion prevention layer) doped with carbon has a bandgap wavelength longer than that of the p-type
形成如上述图2所示的结构时,碳掺杂AlGaAs层22起到防止掺杂到p型覆盖层24中的Zn扩散的锌扩散防止层的作用,因此,Zn基本上不会从该AlGaAs层向p型包覆层一侧扩散。无论p型包覆层的p型掺杂剂是Zn和Mg中的哪一个,该碳掺杂AlGaAs层的防止Zn扩散作用都可以有效地发挥。另外,由于掺杂了碳,也不会产生使半导体发光元件的正向工作电压增加的电阻。When the structure shown in FIG. 2 above is formed, the carbon-doped
向上述插入p型包覆层和p型中间层之间的AlGaAs层中掺杂碳,并不是采用有意地添加杂质的方法,而是通过调节III族原料与V族原料的V/III之比而进行自掺杂。也就是说,相对于碳掺杂AlGaAs层22的碳掺杂量,可以通过调节III族原料与V族原料的V/III之比来控制设定。Doping carbon into the above-mentioned AlGaAs layer inserted between the p-type cladding layer and the p-type intermediate layer is not a method of intentionally adding impurities, but by adjusting the V/III ratio of the III-group raw material to the V-group raw material for self-doping. That is to say, the carbon doping amount relative to the carbon-doped
实施例1Example 1
作为实施例1,制备图1所示的半导体发光元件用外延晶片。As Example 1, an epitaxial wafer for a semiconductor light emitting element shown in FIG. 1 was prepared.
如图1所示,在n型GaAs衬底1上,依次外延生长由GaAs构成的Si掺杂n型缓冲层2、与其晶格匹配的由Ga0.5In0.5P构成的Si掺杂n型缓冲层3、由(Al0.7Ga0.3)0.5In0.5P构成的Si掺杂n型包覆层4,在其上面依次生长由Al0.34Ga0.66As构成的非掺杂导向层5、包括由Al0.34Ga0.66As构成的非掺杂阻挡层和由Al0.11Ga0.89As构成的非掺杂井层的多重量子井(MQW)活性层6、还有由(Al0.7Ga0.3)0.5In0.5P构成的Zn掺杂p型第1包覆层7、由Ga0.5In0.5P构成的Zn掺杂p型蚀刻停止层8、由(Al0.7Ga0.3)0.5In0.5P构成的Zn掺杂p型第2包覆层9。As shown in Fig. 1, on an n-
随后,在其上面依次生长成为本发明特征部分的作为锌扩散抑制层的碳掺杂Al0.85Ga0.15As层10、由Ga0.5In0.5P构成的Zn掺杂p型中间层11以及由GaAs构成的Zn掺杂p型覆盖层12。其中,碳掺杂Al0.85Ga0.15As层10的铝组成是0.85,厚度是40nm,通过调节V/III之比所形成的碳(C)的自掺杂的载流子浓度为8×1017/cm3。另外,由Ga0.5In0.5P构成的Zn掺杂p型中间层11的厚度是50nm,载流子浓度为2×1018/cm3;Zn掺杂p型覆盖层12的厚度是450nm,载流子浓度为1×1019/cm3。Subsequently, a carbon-doped Al 0.85 Ga 0.15 As layer 10 as a zinc diffusion suppressing layer, a Zn-doped p-type intermediate layer 11 composed of Ga 0.5 In 0.5 P, and a Zn-doped p-type intermediate layer 11 composed of GaAs, which are characteristic parts of the present invention, are sequentially grown thereon. The Zn-doped p-type cladding layer 12. Among them, the aluminum composition of the carbon-doped Al 0.85 Ga 0.15 As layer 10 is 0.85, the thickness is 40nm, and the self-doping carrier concentration of carbon (C) formed by adjusting the V/III ratio is 8×10 17 /cm 3 . In addition, the thickness of the Zn-doped p-type intermediate layer 11 composed of Ga 0.5 In 0.5 P is 50 nm, and the carrier concentration is 2×10 18 /cm 3 ; the thickness of the Zn-doped p-type cladding layer 12 is 450 nm, carrying The carrier concentration was 1×10 19 /cm 3 .
对于具有本实施例(本发明)的层状结构的半导体发光元件用外延晶片,通过SIMS分析调查其Zn的分布情况,结果示于图3中。图中,曲线25是图1所示结构(实施例1)的Zn的分布曲线,曲线26是为了进行比较而制作的、除了没有插入成为锌扩散抑制层的碳掺杂Al0.85Ga0.15As层10外完全相同的结构的情况的Zn的分布曲线。另外,在图3中,为了显著地表示实施例1与比较例的差异,从蚀刻停止层开始对活性层一侧放大表示。The distribution of Zn in the epitaxial wafer for semiconductor light-emitting element having the layered structure of this example (the present invention) was investigated by SIMS analysis, and the results are shown in FIG. 3 . In the figure, the curve 25 is the distribution curve of Zn in the structure shown in FIG. 1 (Example 1), and the curve 26 is made for comparison, except that the carbon-doped Al 0.85 Ga 0.15 As layer that becomes the zinc diffusion suppression layer is not inserted. 10 Distribution curves of Zn for cases with exactly the same structure. In addition, in FIG. 3 , in order to clearly show the difference between Example 1 and the comparative example, the active layer side is shown enlarged from the etching stopper layer.
在比较例(曲线26)的场合,包覆层中的Zn的水平上升,除此以外还可以明显地看出,Zn进入到活性层中。另一方面,在实施例1(曲线25)的场合,判明Zn向活性层的扩散只有不产生任何问题的水平。In the case of the comparative example (curve 26), the level of Zn in the cladding layer increased, and it was also clearly seen that Zn entered the active layer. On the other hand, in the case of Example 1 (curve 25), it was found that the diffusion of Zn into the active layer was at a level that did not cause any problems.
另外,使用本实施例1的半导体发光元件用外延晶片制作的红外大功率输出半导体激光器(单片式双波长激光器的红外侧)的元件特性也非常良好。In addition, the device characteristics of the infrared high-power output semiconductor laser (infrared side of the monolithic dual-wavelength laser) fabricated using the epitaxial wafer for semiconductor light-emitting element of the first embodiment are also very good.
实施例2Example 2
作为实施例2,制备图2所示的半导体发光元件用外延晶片。As Example 2, an epitaxial wafer for a semiconductor light emitting element shown in FIG. 2 was prepared.
如图2所示,在由GaAs构成的n型衬底13上,依次外延生长由GaAs构成的Si掺杂n型缓冲层14、与其晶格匹配的由GaInP构成的Si掺杂n型缓冲层15、由(Al0.7Ga0.3)0.5In0.5P构成的Si掺杂n型包覆层16,在其上面依次生长由(Al0.5Ga0.5)0.5In0.5P构成的非掺杂导向层17、包括非掺杂(Al0.5Ga0.5)0.5In0.5P阻挡层和应变GaInP井层的多重量子井(MQW)活性层18、还有由(Al0.7Ga0.3)0.5In0.5P构成的Mg掺杂p型第1包覆层19、由Ga0.5In0.5P构成的Mg掺杂p型蚀刻停止层20、由(Al0.7Ga0.3)0.5In0.5P构成的Mg掺杂p型第2包覆层21。As shown in FIG. 2 , on an n-type substrate 13 made of GaAs, a Si-doped n-type buffer layer 14 made of GaAs and a Si-doped n-buffer layer made of GaInP that match its lattice are epitaxially grown in sequence. 15. A Si-doped n-type cladding layer 16 composed of (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P, on which a non-doped guide layer 17 composed of (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P is sequentially grown, A multiple quantum well (MQW) active layer 18 comprising an undoped (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P barrier layer and a strained GaInP well layer, and a Mg-doped (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P p-type first cladding layer 19, Mg-doped p-type etch stop layer 20 made of Ga 0.5 In 0.5 P, Mg-doped p-type second cladding layer made of (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P twenty one.
随后,在其上面依次生长成为本发明特征部分的作为锌扩散防止层的碳掺杂Al0.85Ga0.15As层22、Mg掺杂Ga0.5In0.5P中间层23以及由GaAs构成的Zn掺杂p型覆盖层24。其中,碳掺杂Al0.85Ga0.15As层22的铝组成是0.85,厚度为35nm,通过调节V/III之比所形成的碳的自掺杂的载流子浓度为1.1×1018/cm3;Mg掺杂Ga0.5In0.5P中间层23的厚度为35nm,载流子浓度为2.5×1018/cm3;由GaAs构成的Zn掺杂p型覆盖层24的厚度为200nm,载流子浓度为2.5×1019/cm3。Subsequently, a carbon-doped Al 0.85 Ga 0.15 As
对于具有本实施例(本发明)的层状结构的半导体发光元件用外延晶片,通过SIMS分析调查其Zn和Mg的分布情况,结果示于图4中。The distribution of Zn and Mg of the epitaxial wafer for semiconductor light-emitting element having the layered structure of this example (the present invention) was investigated by SIMS analysis, and the results are shown in FIG. 4 .
由该结果可知,Zn基本上没有从Mg掺杂p型第2包覆层21扩散到活性层一侧。From this result, it can be seen that Zn hardly diffused from the Mg-doped p-type
另外,使用本实施例2的半导体发光元件用外延晶片制作的红外大功率输出半导体激光器的元件特性也非常良好。In addition, the device characteristics of the infrared high-power output semiconductor laser manufactured using the epitaxial wafer for semiconductor light emitting device of the second embodiment are also very good.
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005248904 | 2005-08-30 | ||
JP2005248904 | 2005-08-30 | ||
JP2006183643 | 2006-07-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1925180A true CN1925180A (en) | 2007-03-07 |
CN100502067C CN100502067C (en) | 2009-06-17 |
Family
ID=37817726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101159699A Expired - Fee Related CN100502067C (en) | 2005-08-30 | 2006-08-22 | Epitaxial wafer for semiconductor light emitting element, manufacturing method thereof, and semiconductor light emitting element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100502067C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102468387A (en) * | 2010-11-18 | 2012-05-23 | 昭和电工株式会社 | Light emitting diode |
CN103500781A (en) * | 2013-09-30 | 2014-01-08 | 山西飞虹微纳米光电科技有限公司 | Efficient AlGaInP light emitting diode epitaxial wafer and preparation method thereof |
CN103762501A (en) * | 2014-01-26 | 2014-04-30 | 南通明芯微电子有限公司 | Manufacturing method for N-shaped GaAs substrate laser diode |
CN106025021A (en) * | 2015-03-25 | 2016-10-12 | Lg伊诺特有限公司 | Red light emitting device and lighting system |
CN107819059A (en) * | 2013-01-25 | 2018-03-20 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN109346566A (en) * | 2018-08-31 | 2019-02-15 | 华灿光电(浙江)有限公司 | A kind of gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof |
CN109997233A (en) * | 2016-12-01 | 2019-07-09 | 奥斯兰姆奥普托半导体有限责任公司 | Emit the semiconductor body of radiation and the method for manufacturing layer sequence |
CN111316515A (en) * | 2018-03-13 | 2020-06-19 | 株式会社藤仓 | Semiconductor optical element, structure for forming semiconductor optical element, and manufacturing method of semiconductor optical element using the same |
CN111337134A (en) * | 2020-03-02 | 2020-06-26 | 清华大学 | Column type robot for automatically measuring human body temperature and measuring method |
CN112542770A (en) * | 2020-12-04 | 2021-03-23 | 苏州长光华芯光电技术股份有限公司 | Semiconductor device and preparation method thereof |
-
2006
- 2006-08-22 CN CNB2006101159699A patent/CN100502067C/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102468387A (en) * | 2010-11-18 | 2012-05-23 | 昭和电工株式会社 | Light emitting diode |
CN107819059A (en) * | 2013-01-25 | 2018-03-20 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103500781A (en) * | 2013-09-30 | 2014-01-08 | 山西飞虹微纳米光电科技有限公司 | Efficient AlGaInP light emitting diode epitaxial wafer and preparation method thereof |
CN103500781B (en) * | 2013-09-30 | 2016-08-10 | 山西飞虹微纳米光电科技有限公司 | A high-efficiency AlGaInP light-emitting diode epitaxial wafer and its preparation method |
CN103762501A (en) * | 2014-01-26 | 2014-04-30 | 南通明芯微电子有限公司 | Manufacturing method for N-shaped GaAs substrate laser diode |
CN106025021A (en) * | 2015-03-25 | 2016-10-12 | Lg伊诺特有限公司 | Red light emitting device and lighting system |
US10381510B2 (en) | 2015-03-25 | 2019-08-13 | Lg Innotek Co., Ltd. | Red light emitting device and lighting system |
US10971653B2 (en) | 2016-12-01 | 2021-04-06 | Osram Oled Gmbh | Radiation-emitting semiconductor body and method of producing a semiconductor layer sequence |
CN109997233A (en) * | 2016-12-01 | 2019-07-09 | 奥斯兰姆奥普托半导体有限责任公司 | Emit the semiconductor body of radiation and the method for manufacturing layer sequence |
CN111316515A (en) * | 2018-03-13 | 2020-06-19 | 株式会社藤仓 | Semiconductor optical element, structure for forming semiconductor optical element, and manufacturing method of semiconductor optical element using the same |
US11799270B2 (en) | 2018-03-13 | 2023-10-24 | Fujikura Ltd. | Semiconductor optical element, semiconductor optical element forming structure, and method of manufacturing semiconductor optical element using the same |
CN109346566A (en) * | 2018-08-31 | 2019-02-15 | 华灿光电(浙江)有限公司 | A kind of gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof |
CN111337134A (en) * | 2020-03-02 | 2020-06-26 | 清华大学 | Column type robot for automatically measuring human body temperature and measuring method |
CN112542770A (en) * | 2020-12-04 | 2021-03-23 | 苏州长光华芯光电技术股份有限公司 | Semiconductor device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100502067C (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1925180A (en) | Epitaxial wafer for a semiconductor light emitting device, method for fabricating the same and semiconductor light emitting device | |
CN1094659C (en) | Compound semicoductor light-emitting device of gallium nitride series | |
CN100350641C (en) | Nitride semiconductor device | |
US7622745B2 (en) | Epitaxial wafer for a semiconductor light emitting device, method for fabricating the same and semiconductor light emitting device | |
EP2325902B1 (en) | Light emitting diode having a modulation doping layer | |
JP5648475B2 (en) | Light emitting element | |
CN1976074A (en) | Semiconductor light-emitting device with transparent conductive film | |
JP2890390B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
CN1967954A (en) | Group III nitride semiconductor light emitting device | |
CN1245789C (en) | GaN series surface emitting laser diode with isolation layer and manufacturing method thereof | |
CN1347160A (en) | Illuminant semiconductor element and method for mfg. same | |
CN1925181A (en) | Semiconductor device | |
JP2010028072A (en) | Nitride semiconductor light emitting element | |
CN1502154A (en) | Gallium Nitride Series Compound Semiconductor Components | |
CN1257313A (en) | Led | |
CN1290056A (en) | Semiconductor elements and manufacture thereof | |
CN1534804A (en) | led | |
CN1320279A (en) | Light-emitting thyristor and self-scanning light-emitting device | |
CN1257585C (en) | Semiconductor laser device and its manufacturing method and optical disk regenerating and recording equipment | |
CN1204666C (en) | Semiconductor laser element | |
JP4483615B2 (en) | Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device | |
CN1855565A (en) | Semiconductor light-emitting device, and a method of manufacture of a semiconductor device | |
CN100342557C (en) | Semiconductor light emitting device | |
CN1251334C (en) | AlGalnP series luminous diode and epitaxial wafer used for making said diode | |
CN1758457A (en) | Semiconductor light emitting device having narrow radiation spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090617 Termination date: 20130822 |