CN1392615A - Luminous device and its producing method - Google Patents
Luminous device and its producing method Download PDFInfo
- Publication number
- CN1392615A CN1392615A CN02122668A CN02122668A CN1392615A CN 1392615 A CN1392615 A CN 1392615A CN 02122668 A CN02122668 A CN 02122668A CN 02122668 A CN02122668 A CN 02122668A CN 1392615 A CN1392615 A CN 1392615A
- Authority
- CN
- China
- Prior art keywords
- insulating film
- layer
- substrate
- emitting device
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 107
- 239000000758 substrate Substances 0.000 claims abstract description 398
- 229920003023 plastic Polymers 0.000 claims abstract description 39
- 239000004033 plastic Substances 0.000 claims abstract description 39
- 239000010408 film Substances 0.000 claims description 741
- 239000012790 adhesive layer Substances 0.000 claims description 262
- 239000010410 layer Substances 0.000 claims description 240
- 238000004519 manufacturing process Methods 0.000 claims description 96
- 239000010409 thin film Substances 0.000 claims description 92
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 78
- 229910052710 silicon Inorganic materials 0.000 claims description 78
- 239000010703 silicon Substances 0.000 claims description 78
- 229920001721 polyimide Polymers 0.000 claims description 57
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 52
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 51
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 51
- 239000004642 Polyimide Substances 0.000 claims description 49
- 229920005989 resin Polymers 0.000 claims description 49
- 239000011347 resin Substances 0.000 claims description 49
- -1 polyethylene terephthalate Polymers 0.000 claims description 38
- 229910052782 aluminium Inorganic materials 0.000 claims description 32
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 31
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 239000004952 Polyamide Substances 0.000 claims description 23
- 239000004695 Polyether sulfone Substances 0.000 claims description 21
- 239000004417 polycarbonate Substances 0.000 claims description 21
- 229920006393 polyether sulfone Polymers 0.000 claims description 21
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 21
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 21
- 239000003822 epoxy resin Substances 0.000 claims description 20
- 229920002647 polyamide Polymers 0.000 claims description 20
- 229920000647 polyepoxide Polymers 0.000 claims description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 19
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 17
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 17
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 16
- 229920000515 polycarbonate Polymers 0.000 claims description 16
- 229910052736 halogen Inorganic materials 0.000 claims description 15
- 238000005507 spraying Methods 0.000 claims description 14
- 230000010355 oscillation Effects 0.000 claims description 9
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 18
- 239000002202 Polyethylene glycol Substances 0.000 claims 11
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims 11
- 229920001223 polyethylene glycol Polymers 0.000 claims 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 6
- HXKVHAFTWFNBQJ-UHFFFAOYSA-N cyclobutene prop-1-ene Chemical compound C1=CCC1.C=CC HXKVHAFTWFNBQJ-UHFFFAOYSA-N 0.000 claims 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 5
- 229910021529 ammonia Inorganic materials 0.000 claims 5
- SZUOHNOXDOVVTI-UHFFFAOYSA-N C1=CCC1.C(=C)C1=CC=CC=C1 Chemical compound C1=CCC1.C(=C)C1=CC=CC=C1 SZUOHNOXDOVVTI-UHFFFAOYSA-N 0.000 claims 4
- 125000004122 cyclic group Chemical group 0.000 claims 2
- 229910009372 YVO4 Inorganic materials 0.000 claims 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims 1
- 238000007789 sealing Methods 0.000 abstract description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 25
- 239000001301 oxygen Substances 0.000 abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 abstract description 25
- 230000004888 barrier function Effects 0.000 abstract description 9
- 230000035515 penetration Effects 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 230000000149 penetrating effect Effects 0.000 abstract 2
- 230000002040 relaxant effect Effects 0.000 abstract 2
- 238000002955 isolation Methods 0.000 description 112
- 239000000463 material Substances 0.000 description 91
- 230000035882 stress Effects 0.000 description 80
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 54
- 238000004544 sputter deposition Methods 0.000 description 54
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 42
- 239000004065 semiconductor Substances 0.000 description 39
- 239000012535 impurity Substances 0.000 description 33
- 239000007789 gas Substances 0.000 description 30
- 229910052786 argon Inorganic materials 0.000 description 27
- 229910052814 silicon oxide Inorganic materials 0.000 description 25
- 239000001257 hydrogen Substances 0.000 description 23
- 229910052739 hydrogen Inorganic materials 0.000 description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 21
- 238000005530 etching Methods 0.000 description 20
- 239000011521 glass Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 18
- 230000001681 protective effect Effects 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 229910052721 tungsten Inorganic materials 0.000 description 14
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 13
- 239000010453 quartz Substances 0.000 description 13
- 239000002356 single layer Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000011229 interlayer Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- 239000010937 tungsten Substances 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 6
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 4
- 239000002313 adhesive film Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920002457 flexible plastic Polymers 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002504 iridium compounds Chemical class 0.000 description 2
- 238000005499 laser crystallization Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910021426 porous silicon Inorganic materials 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- VZORBIIKPJNHTD-UHFFFAOYSA-N 1,4-bis(ethenyl)naphthalene Chemical compound C1=CC=C2C(C=C)=CC=C(C=C)C2=C1 VZORBIIKPJNHTD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- ALCSAPVGYMKAFU-UHFFFAOYSA-N OC=1C(=C2C=C3C(C=CC=4N=C5C=CC=CC5=CC34)=NC2=CC1)O Chemical compound OC=1C(=C2C=C3C(C=CC=4N=C5C=CC=CC5=CC34)=NC2=CC1)O ALCSAPVGYMKAFU-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229910004529 TaF 5 Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052916 barium silicate Inorganic materials 0.000 description 1
- HMOQPOVBDRFNIU-UHFFFAOYSA-N barium(2+);dioxido(oxo)silane Chemical compound [Ba+2].[O-][Si]([O-])=O HMOQPOVBDRFNIU-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- QEHKBHWEUPXBCW-UHFFFAOYSA-N nitrogen trichloride Chemical compound ClN(Cl)Cl QEHKBHWEUPXBCW-UHFFFAOYSA-N 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 229920000366 poly(2,7-fluorenes) Polymers 0.000 description 1
- 229920000738 poly(p-divinylbenzene) polymer Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/87—Arrangements for heating or cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8794—Arrangements for heating and cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/80—Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68368—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
1.发明领域1. Field of invention
本发明涉及制造半导体装置的一种方法,具体而言,涉及一种发光装置,包括发光元件,例如,在塑料基底上形成的有机发光二极管(OLED)。本发明还涉及一种OLED模块,其中有一个控制器之类的IC安装在一个OLED板上。在本说明中,OLED板和OLED模块一般都叫做发光装置。本发明还涉及这种采用这种发光装置的电器。The present invention relates to a method of manufacturing a semiconductor device, and in particular, to a light emitting device including a light emitting element such as an organic light emitting diode (OLED) formed on a plastic substrate. The present invention also relates to an OLED module in which an IC such as a controller is mounted on an OLED board. In this description, OLED panels and OLED modules are generally referred to as light emitting devices. The present invention also relates to such an electric appliance using such a light emitting device.
2.相关技术2. Related technologies
近来,在基底上形成TFT(薄膜晶体管)的技术取得了显著的进展,人们正在继续研究将它应用于有源阵列显示器。特别是采用多晶硅薄膜的TFT能够以很高的速度工作,因为这样的TFT比采用传统非晶硅薄膜的TFT具有更高的场效应迁移率。因此,以前用基底外驱动电路进行的像素控制,现在可以用形成像素的同一块基底上的驱动电路来进行。Recently, the technology of forming TFTs (Thin Film Transistors) on a substrate has been remarkably advanced, and research on its application to active matrix displays is continuing. In particular, a TFT using a polysilicon thin film can operate at a high speed because such a TFT has higher field-effect mobility than a TFT using a conventional amorphous silicon thin film. Thus, pixel control previously performed with off-substrate driver circuits can now be performed with driver circuits on the same substrate on which the pixels are formed.
这样一种有源阵列显示器包括同一基底上形成的各种电路或者元件。由于采用了这样一种结构,这种有源阵列显示器具有多个优点,比如生产成本低,显示器体积小,产量高,吞吐率高。Such an active matrix display includes various circuits or elements formed on the same substrate. Due to such a structure, this active matrix display has several advantages, such as low production cost, small size of the display, high yield, and high throughput.
此外,人们还对包括OLED作为自发光元件的有源阵列发光装置(以后简称为发光装置)进行了积极研究。这种发光装置也叫做有机EL显示(OELD)或者有机发光二极管。In addition, active matrix light-emitting devices (hereinafter simply referred to as light-emitting devices) including OLEDs as self-luminous elements have been actively studied. Such light-emitting devices are also called organic EL displays (OELDs) or organic light-emitting diodes.
这种OLED特别适合于减小发光装置的厚度,因为它能够自发光因而具有很高的可见度,不需要液晶显示器(LCD)必不可少的背光。此外,OLED对于视角没有限制。由于具有这些优点,采用OLED的发光装置作为替换CRT或者LCD的显示装置引起了人们注意。Such OLEDs are particularly suitable for reducing the thickness of light-emitting devices because they are self-illuminating and therefore highly visible, eliminating the need for a backlight that is essential for liquid crystal displays (LCDs). In addition, OLED has no limitation on viewing angle. Due to these advantages, light emitting devices employing OLEDs have attracted attention as display devices replacing CRTs or LCDs.
OLED包括有机化合物(有机发光材料;以后将这样的层叫做有机发光层)层、阳极层和阴极层。有机发光层通过在阳极和阴极之间施加一个电场发出冷光(电致发光)。有机化合物产生的电致发光包括:从单重激励态返回基态引起的发光(荧光);以及从三重激励态返回基态引起的发光(磷光)。本发明的发光装置可以利用上述发光类型中的任意一种类型,也可以同时采用上述两种发光类型。The OLED includes an organic compound (organic light-emitting material; such a layer will be referred to as an organic light-emitting layer hereinafter) layer, an anode layer, and a cathode layer. The organic light-emitting layer emits luminescence (electroluminescence) by applying an electric field between the anode and the cathode. The electroluminescence produced by organic compounds includes: luminescence (fluorescence) caused by returning from a singlet excited state to a ground state; and luminescence (phosphorescence) caused by returning from a triplet excited state to a ground state. The light-emitting device of the present invention can use any one of the above-mentioned light-emitting types, and can also use the above-mentioned two light-emitting types at the same time.
在这一说明中,OLED阴极和阳极之间的所有层一般都被定义为有机发光层。具体而言,发光层、空穴注入层、电子注入层、空穴传递层、电子传递层之类全部包括在有机发光层这一大类中。OLED的结构按顺序基本上是阳极、发光层和阴极。除了这一结构以外,一些OLED的结构按顺序包括阳极、空穴注入层、发光层和阴极,其它OLED的结构中按顺序包括阳极、空穴注入层、发光层、电子传递层、阴极之类。In this description, all layers between the OLED cathode and anode are generally defined as organic light-emitting layers. Specifically, light emitting layers, hole injection layers, electron injection layers, hole transport layers, electron transport layers and the like are all included in the broad category of organic light emitting layers. The structure of an OLED is basically an anode, a light-emitting layer, and a cathode in sequence. In addition to this structure, the structure of some OLEDs includes an anode, a hole injection layer, a light-emitting layer, and a cathode in order, and other OLED structures include an anode, a hole injection layer, a light-emitting layer, an electron transport layer, and a cathode in order. .
人们预期这种发光装置适合于各种应用。特别是因为它的厚度很小,需要将这种发光装置用于便携式设备,这样能够减轻重量。为了这一目的,已经有人尝试在柔性塑料薄膜上形成OLED。Such light emitting devices are expected to be suitable for various applications. Especially because of its small thickness, it is required to use this light-emitting device for portable equipment, which can reduce the weight. For this purpose, attempts have been made to form OLEDs on flexible plastic films.
在塑料薄膜这种柔性基底上形成OLED发光装置的优点不仅仅在于它厚度小、重量轻,还在于它能够用作弯曲表面、橱窗之类上进行显示。因此,它的应用范围特别广,并不限于便携式设备。The advantage of forming an OLED light-emitting device on a flexible substrate such as a plastic film is not only that it is small in thickness and light in weight, but also that it can be used for display on curved surfaces, shop windows, and the like. Therefore, it has a particularly wide application range and is not limited to portable devices.
但是一般而言,湿气或者氧气能够通过塑料制成的基底。由于湿气和氧气会加速有机发光层的老化,湿气和氧气的穿透会缩短发光装置的寿命。作为这个问题的传统解决办法,在塑料基底和OLED之间采用氮化硅薄膜或者氮氧化硅薄膜这样的绝缘膜,防止湿气和氧气进入有机发光层。In general, however, moisture or oxygen can pass through substrates made of plastic. Since moisture and oxygen will accelerate the aging of the organic light-emitting layer, the penetration of moisture and oxygen will shorten the life of the light-emitting device. As a conventional solution to this problem, an insulating film such as a silicon nitride film or a silicon oxynitride film is used between the plastic substrate and the OLED to prevent moisture and oxygen from entering the organic light-emitting layer.
但是总的来说,塑料薄膜这样的基底很容易受热影响。在形成氮化硅薄膜或者氮氧化硅薄膜这种绝缘膜的时候,特别高的薄膜形成温度会导致基底变形。相反,特别低的薄膜形成温度会影响薄膜质量,使它很难充分地防止湿气和氧气渗透。But in general, substrates like plastic films are easily affected by heat. When an insulating film such as a silicon nitride film or a silicon oxynitride film is formed, a particularly high film formation temperature causes deformation of the substrate. Conversely, an extremely low film-forming temperature affects film quality, making it difficult to adequately prevent moisture and oxygen permeation.
此外,如果增加氮化硅薄膜或者氮氧化硅薄膜这种绝缘膜的厚度来防止湿气和氧气穿透,会相应地增大应力,从而很容易导致薄膜开裂。另外,随着厚度增加,基底弯曲的时候绝缘膜很容易开裂。In addition, if the thickness of an insulating film such as a silicon nitride film or a silicon oxynitride film is increased to prevent the penetration of moisture and oxygen, the stress will be increased accordingly, which will easily lead to cracking of the film. In addition, as the thickness increases, the insulating film is easily cracked when the substrate is bent.
发明简述Brief description of the invention
考虑到以上问题,本发明的一个目的是提供一种发光装置,它包括在塑料基底上形成的OLED,能够减缓湿气或者氧气透过引起的老化。In view of the above problems, an object of the present invention is to provide a light emitting device including an OLED formed on a plastic substrate capable of slowing down aging caused by moisture or oxygen permeation.
本发明在塑料基底上形成多层薄膜,防止氧气和湿气进入OLED的有机发光层(以后将它叫做隔离膜),还形成应力比隔离膜小的一层(以后将它叫做应力松弛膜),夹在隔离膜之间。在本说明中,隔离膜和应力松弛膜层压形成的薄膜叫做密封膜。The present invention forms a multilayer thin film on a plastic substrate to prevent oxygen and moisture from entering the organic light-emitting layer of the OLED (hereinafter it will be called an isolation film), and also forms a layer with a smaller stress than the isolation film (hereinafter it will be called a stress relaxation film) , sandwiched between the isolation membranes. In this specification, a thin film formed by laminating a separator film and a stress relaxation film is called a sealing film.
具体而言,用无机材料制作两层或者多层隔离膜(以后简称为隔离膜)。此外,在隔离膜之间形成包括树脂的一层应力松弛膜(以后简称为应力松弛膜)。然后在这些三层或者多层绝缘膜上形成OLED。将这个OLED密封起来形成一个发光装置。Specifically, two or more layers of isolation films (hereinafter referred to simply as isolation films) are made of inorganic materials. In addition, a stress relaxation film (hereinafter simply referred to as a stress relaxation film) including a resin is formed between the isolation films. OLEDs are then formed on these three or more insulating films. This OLED is sealed to form a light-emitting device.
本发明将多层隔离膜重叠起来。通过这种方式,即使这些隔离膜中的一层发生开裂,其它隔离膜也能够有效地防止湿气和氧气进入有机发光层。此外,即使由于薄膜形成温度太低而导致隔离膜质量下降,重叠起来的多层隔离膜也能够有效地阻挡湿气和氧气进入有机发光层。The present invention stacks multiple layers of isolation films. In this way, even if one layer of these isolation films is cracked, the other isolation films can effectively prevent moisture and oxygen from entering the organic light-emitting layer. In addition, even if the quality of the separator is deteriorated due to the low film formation temperature, the laminated multi-layer separator can effectively block the entry of moisture and oxygen into the organic light-emitting layer.
更进一步,将应力小于隔离膜的一层应力松弛膜夹在隔离膜之间,减小密封膜的总应力。这样,跟厚度相同的单层隔离膜相比,在多层隔离膜上很难因为应力而发生开裂,其中应力松弛膜夹在隔离膜之间。Furthermore, a layer of stress relaxation film having a lower stress than the isolation film is sandwiched between the isolation films to reduce the total stress of the sealing film. Thus, cracking due to stress is less likely to occur on a multilayer separator in which a stress relaxation film is sandwiched between the separators, compared to a single layer separator of the same thickness.
因此,跟厚度相同的单层隔离膜相比,多层薄膜能够有效地防止湿气和氧气进入有机发光层。另外,这样的多层隔离膜很难因为应力而发生开裂。Therefore, compared with a single-layer barrier film of the same thickness, the multi-layer film can effectively prevent moisture and oxygen from entering the organic light-emitting layer. In addition, such a multilayer separator is less prone to cracking due to stress.
还有,隔离膜和应力松弛膜的叠层结构能够使装置的柔软性更好,从而防止由于基底弯曲发生开裂。Also, the lamination structure of the isolation film and the stress relaxation film enables better flexibility of the device, thereby preventing cracking due to substrate bending.
另外,本发明中基底上形成的OLED密封膜(以后叫做密封膜)也可以具有上述多层结构。利用这种结构能够有效地防止湿气和氧气进入有机发光层。此外,能够防止弯曲基底的时候发生开裂。结果能够获得更加柔软的发光装置。In addition, the OLED sealing film (hereinafter referred to as sealing film) formed on the substrate in the present invention may also have the above-mentioned multilayer structure. Utilizing this structure can effectively prevent moisture and oxygen from entering the organic light-emitting layer. In addition, it is possible to prevent cracks from occurring when the substrate is bent. As a result, a more flexible light-emitting device can be obtained.
附图简述Brief description of the drawings
在附图中:In the attached picture:
图1A-1C说明本发明中发光装置的制造方法;1A-1C illustrate the manufacturing method of the light-emitting device in the present invention;
图2A-2B说明本发明中发光装置的制造方法;2A-2B illustrate the manufacturing method of the light-emitting device in the present invention;
图3A-3D说明本发明中发光装置的制造方法;3A-3D illustrate the manufacturing method of the light emitting device in the present invention;
图4A-4C说明本发明中发光装置的制造方法;4A-4C illustrate the manufacturing method of the light-emitting device in the present invention;
图5A说明本发明中发光装置的外观;图5B是FPC连接部分的一个放大图;图5C是连接部分的一个剖面图;Figure 5A illustrates the appearance of the light-emitting device in the present invention; Figure 5B is an enlarged view of the FPC connection part; Figure 5C is a sectional view of the connection part;
图6A是本发明中发光装置弯曲状态的一个示意图;图6B是它的剖面图;Fig. 6A is a schematic diagram of the bending state of the light-emitting device in the present invention; Fig. 6B is its cross-sectional view;
图7说明本发明中发光装置跟FPC连接的那一部分的剖面结构;Fig. 7 illustrates the cross-sectional structure of the part where the light-emitting device is connected to the FPC in the present invention;
图8A-8D说明本发明中发光装置的制造方法;8A-8D illustrate the manufacturing method of the light emitting device in the present invention;
图9A-9C说明本发明中发光装置的制造方法;9A-9C illustrate the manufacturing method of the light emitting device in the present invention;
图10A-10C说明包括在本发明发光装置中的TFT和OLED的制造步骤;10A-10C illustrate the manufacturing steps of TFT and OLED included in the light emitting device of the present invention;
图11A-11C说明包括在本发明发光装置中的TFT和OLED的制造步骤;11A-11C illustrate the manufacturing steps of TFT and OLED included in the light emitting device of the present invention;
图12A-12B说明包括在本发明发光装置中的TFT和OLED的制造步骤;12A-12B illustrate the manufacturing steps of TFT and OLED included in the light emitting device of the present invention;
图13是本发明中发光装置的一个剖面图;Fig. 13 is a cross-sectional view of a light emitting device in the present invention;
图14说明如何用水流喷射方法去掉粘合层;Figure 14 illustrates how to remove the adhesive layer by water jet method;
图15说明如何通过溅射形成一个有机发光层;Figure 15 illustrates how to form an organic light-emitting layer by sputtering;
图16A是像素的顶视图;图16B是像素的电路图;Figure 16A is a top view of a pixel; Figure 16B is a circuit diagram of a pixel;
图17是发光装置电路结构的一个原理图;Fig. 17 is a schematic diagram of the circuit structure of the light emitting device;
图18A-18D分别说明采用本发明的发光装置的电器;和Fig. 18A-18D respectively illustrate the electric appliance that adopts light-emitting device of the present invention; With
图19说明采用卷装进出方法的密封膜形成设备。Fig. 19 illustrates a sealing film forming apparatus employing the roll-to-roll method.
优选实施方案preferred embodiment
下面参考附图介绍本发明的实施方案模式。图1A-4C说明像素部分和驱动电路的制造步骤。Embodiment modes of the present invention will be described below with reference to the drawings. 1A-4C illustrate manufacturing steps of a pixel portion and a driver circuit.
实施方案模式1Implementation Mode 1
在图1A中第一基底101上用非晶硅薄膜形成厚度是100-500纳米(在这个实施方案模式中是300纳米)的第一粘合层102。虽然在这个实施方案模式中将玻璃基底作为第一基底101,但是也可以采用石英基底、金属基底或者陶瓷基底。可以将任意材料用作第一基底101,只要它能够承受后续制造步骤中的处理温度。A first adhesive layer 102 is formed with a thickness of 100-500 nm (300 nm in this embodiment mode) on a first substrate 101 in FIG. 1A using an amorphous silicon thin film. Although a glass substrate is used as the first substrate 101 in this embodiment mode, a quartz substrate, a metal substrate, or a ceramic substrate may also be used. Any material can be used as the first substrate 101 as long as it can withstand the processing temperature in the subsequent manufacturing steps.
作为形成第一粘合层102的一种方法,可以采用低压热CVD法、等离子体CVD法、溅射法或者蒸发法。在第一粘合层102上,用氧化硅薄膜形成厚度为200纳米的一层绝缘膜103。作为形成绝缘膜103的方法,可以采用低压热CVD法、等离子体CVD法、溅射法或者蒸发法。当第一粘合层102被剥离第一基底101的时候,绝缘膜103用于保护第一基底101上形成的元件。As one method of forming the first adhesive layer 102, a low-pressure thermal CVD method, a plasma CVD method, a sputtering method, or an evaporation method can be used. On the first adhesive layer 102, an insulating film 103 was formed with a thickness of 200 nm using a silicon oxide film. As a method of forming the insulating film 103, a low-pressure thermal CVD method, a plasma CVD method, a sputtering method, or an evaporation method can be employed. The insulating film 103 serves to protect elements formed on the first substrate 101 when the first adhesive layer 102 is peeled off the first substrate 101 .
下一步在绝缘膜103上形成元件(图1B)。该元件是半导体元件(通常是TFT)或者是MIM元件,用作有源阵列发光装置中像素、OLED之类的开关元件。对于无源发光装置,这个元件是OLED。在图1B中,将驱动电路106中的TFT 104a、像素部分中的TFT 104b和104c以及OLED 105作为元件代表。Next, elements are formed on the insulating film 103 (FIG. 1B). The element is a semiconductor element (usually a TFT) or an MIM element, and is used as a switching element such as a pixel or an OLED in an active matrix light emitting device. For passive light emitting devices, this element is an OLED. In FIG. 1B, a TFT 104a in a driving circuit 106, TFTs 104b and 104c in a pixel portion, and an OLED 105 are represented as elements.
然后,形成一层绝缘膜108,覆盖上述元件。在形成以后,上述绝缘膜108最好有一个平坦的表面。绝缘膜108是必不可少的。Then, an insulating film 108 is formed to cover the above elements. After formation, the above-mentioned insulating film 108 preferably has a flat surface. The insulating film 108 is indispensable.
接下来,如图1C所示,通过第二粘合层109将第二基底110粘合到第一基底101上。在这个实施方案模式中,将塑料基底用作第二基底110。具体而言,可以采用PES(聚醚砜)、PC(聚碳酸脂)、PET(聚对苯二甲酸乙酯)或者PEN做成的厚度是10微米或者更厚的树脂基底。Next, as shown in FIG. 1C , the second substrate 110 is bonded to the first substrate 101 through the second adhesive layer 109 . In this embodiment mode, a plastic substrate is used as the second substrate 110 . Specifically, a resin substrate having a thickness of 10 micrometers or more made of PES (polyethersulfone), PC (polycarbonate), PET (polyethylene terephthalate) or PEN can be used.
作为第二粘合层109的材料,有必要使用在以后的步骤中要去掉第一粘合层102的时候能够提供足够选择余地的这种材料。一般而言,可以将树脂做成的绝缘膜用作第二粘合层109。虽然在这个实施方案模式中将聚酰亚胺用作第二粘合层109的材料,但是也可以使用丙烯、聚酰胺或者环氧树脂。从OLED看过去的时候,如果第二粘合层109在观看者一侧(发光装置用户一侧),就需要一种材料来发射光。As the material of the second adhesive layer 109, it is necessary to use such a material that provides sufficient room for selection when the first adhesive layer 102 is to be removed in a later step. In general, an insulating film made of resin can be used as the second adhesive layer 109 . Although polyimide is used as the material of the second adhesive layer 109 in this embodiment mode, acrylic, polyamide, or epoxy resin may also be used. When looking through the OLED, if the second adhesive layer 109 is on the viewer's side (user side of the light emitting device), a material is required to emit light.
此外,在这个实施方案模式中,在第二基底110上形成两层或者多层隔离膜。然后在两层隔离膜之间形成一层应力松弛膜。结果,在第二基底110和第二粘合层109之间形成具有隔离膜和应力松弛膜这种叠层结构的一层密封膜。Also, in this embodiment mode, two or more isolation films are formed on the second substrate 110 . A stress relaxation film is then formed between the two isolation films. As a result, a sealing film having a lamination structure of a separation film and a stress relaxation film is formed between the second substrate 110 and the second adhesive layer 109 .
例如,在这个实施方案模式中,通过在第二基底110上进行溅射形成一层氮化硅薄膜作为隔离膜111a;在隔离膜111a上形成包括聚酰亚胺的一层应力松弛膜111b;通过在应力松弛膜111b上进行溅射形成一层氮化硅膜作为隔离膜111c。隔离膜111a、应力松弛膜111b和隔离膜111c形成的一层分层膜一起叫做密封膜111。然后通过第二粘合层109将其上形成密封膜111的第二基底110粘合在第一基底101上形成的元件上。For example, in this embodiment mode, a silicon nitride thin film is formed as the isolation film 111a by sputtering on the second substrate 110; a stress relaxation film 111b including polyimide is formed on the isolation film 111a; A silicon nitride film is formed as the isolation film 111c by sputtering on the stress relaxation film 111b. A layered film formed of the isolation film 111a, the stress relaxation film 111b, and the isolation film 111c is collectively referred to as the sealing film 111. The second substrate 110 on which the sealing film 111 is formed is then bonded to the element formed on the first substrate 101 through the second adhesive layer 109 .
提供两层或者多层隔离模是足够了的。可以将氮化硅、氮氧化硅、氧化铝、氮化铝、氮氧化铝或者氮氧化铝硅(AlSiON)用作隔离膜的材料。It is sufficient to provide two or more layers of isolation molds. Silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride, or aluminum silicon oxynitride (AlSiON) can be used as the material of the isolation film.
由于氮氧化铝硅具有较高的导热率,将它用作隔离膜能够有效地散除元件中产生的热。Since aluminum oxynitride has a high thermal conductivity, using it as an isolation film can effectively dissipate the heat generated in the component.
可以将透光树脂用作应力松弛膜111b。一般而言可以使用聚酰亚胺、丙烯、聚酰胺、聚酰亚酰胺、环氧树脂之类。还可以采用除了以上树脂以外的树脂。在这个实施方案模式中,利用可聚合聚酰亚酰胺然后进行烘烤来形成应力松弛膜。A light-transmitting resin may be used as the stress relaxation film 111b. Generally, polyimide, acrylic, polyamide, polyimide, epoxy resin or the like can be used. Resins other than the above resins may also be employed. In this embodiment mode, a stress relaxation film is formed using a polymerizable polyimide followed by baking.
在大约0.4Pa的溅射压力和150摄氏度的基底温度下利用氩形成氮化硅薄膜。除了氩以外还利用氮和氢,将硅作为靶子形成薄膜。对于氮氧化硅,在大约0.4Pa的溅射压力和150摄氏度的基底温度下,通过引入氩形成薄膜。将硅作为靶子,除了氩以外通过引入氮、二氧化氮和氢,形成薄膜。也可以将氧化硅作为靶子。The silicon nitride film was formed using argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. In addition to argon, nitrogen and hydrogen are used to form a thin film using silicon as a target. For silicon oxynitride, a thin film is formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. Using silicon as a target, a thin film is formed by introducing nitrogen, nitrogen dioxide, and hydrogen in addition to argon. Silicon oxide can also be used as a target.
每层隔离膜111a和111c的厚度都需要在50纳米到3微米的范围内。在这个实施方案模式中,形成厚度为1微米的氮化硅薄膜。The thickness of each isolation film 111a and 111c needs to be in the range of 50 nm to 3 microns. In this embodiment mode, a silicon nitride film is formed to a thickness of 1 micron.
形成隔离膜的方法不限于溅射;薄膜的形成方法可以由实现本发明的人确定。例如,隔离膜可以用LPCVD法、等离子体CVD法等等来形成。The method of forming the isolation film is not limited to sputtering; the method of forming the thin film can be determined by those who realize the present invention. For example, the isolation film can be formed by LPCVD, plasma CVD, or the like.
应力松弛膜111b的厚度应该在200纳米到2微米之间。在这个实施方案模式中,形成1微米的聚酰亚胺薄膜作为应力松弛膜。The thickness of the stress relaxation film 111b should be between 200 nm and 2 microns. In this embodiment mode, a 1 µm polyimide film is formed as a stress relaxation film.
对于隔离膜111a和111c以及应力松弛膜111b,有必要选择这样的材料,在以后的步骤中去掉第一粘合层102的时候它应当提供足够选择余地。For the isolation films 111a and 111c and the stress relaxation film 111b, it is necessary to select a material which should provide sufficient room for selection when removing the first adhesive layer 102 in a later step.
由于图1A所示的步骤,OLED能够跟空气完全隔离。结果,由于氧气导致的有机发光材料的老化能够被完全抑制,明显地提高OLED的可靠性。Due to the steps shown in Figure 1A, the OLED can be completely isolated from the air. As a result, aging of the organic light-emitting material due to oxygen can be completely suppressed, significantly improving the reliability of the OLED.
下一步,如图2A所示,将第一基底101、第二基底110、它们之间形成的所有元件和整个薄膜暴露在包括氟化卤的气体中,从而去掉第一粘合层102。在这个实施方案模式中,将三氟化氯(ClF3)用作氟化卤,而将氮气用作稀释气体。也可以将氩、氦或者氖用作稀释气体。可以将两种气体的流速设置为500sccm(8.35×10-6m3/s),将反应压力设置为1-10乇(1.3×102-1.3×103Pa)。处理温度可以是室温(通常是20-27摄氏度)。Next, as shown in FIG. 2A , the first substrate 101 , the second substrate 110 , all components formed therebetween, and the entire film are exposed to a gas including halogen fluoride, thereby removing the first adhesive layer 102 . In this embodiment mode, chlorine trifluoride (ClF 3 ) is used as the halogen fluoride and nitrogen is used as the diluent gas. Argon, helium or neon can also be used as diluent gas. The flow rates of the two gases can be set to 500 sccm (8.35×10 -6 m 3 /s), and the reaction pressure can be set to 1-10 Torr (1.3×10 2 -1.3×10 3 Pa). The treatment temperature may be room temperature (usually 20-27 degrees Celsius).
在这种情况下,对硅薄膜进行腐蚀,而不对塑料薄膜、玻璃基底、聚酰亚胺薄膜和二氧化硅薄膜进行腐蚀。具体而言,暴露在三氟化氯中以后,有选择性地腐蚀掉第一粘合层102,使之完全腐蚀掉。由于类似地用硅层做成的TFT的有源层没有暴露在外界,因此,有源层没有暴露在三氟化氯中,因而没有被腐蚀。In this case, the silicon film is etched, but the plastic film, glass substrate, polyimide film, and silicon dioxide film are not etched. Specifically, after being exposed to chlorine trifluoride, the first adhesive layer 102 is selectively etched away so that it is completely etched away. Since the active layer of the TFT similarly made of a silicon layer is not exposed to the outside, the active layer is not exposed to chlorine trifluoride and thus not corroded.
在这个实施方案模式中,从它暴露的边缘部分逐渐地腐蚀掉第一粘合层102。当第一粘合层102被完全去掉的时候,第一基底101和绝缘膜103被完全分开。每个都包括多层薄膜的这些TFT和OLED留在第二基底上。In this embodiment mode, the first adhesive layer 102 is gradually etched away from its exposed edge portion. When the first adhesive layer 102 is completely removed, the first substrate 101 and the insulating film 103 are completely separated. These TFTs and OLEDs each including multilayer thin films are left on the second substrate.
第一块基底101的尺寸最好是不太大,因为腐蚀是从第一粘合层102的边缘开始,因此完全去掉第一粘合层102所需要的时间随着基底尺寸增大而变长。所以在这个实施方案模式中,第一基底101的对角线应该是3英寸或者更小(最好是1英寸或者更小)。The size of the first substrate 101 is preferably not too large, because the corrosion starts from the edge of the first adhesive layer 102, so the time required to completely remove the first adhesive layer 102 becomes longer as the size of the substrate increases . So in this embodiment mode, the diagonal of the first substrate 101 should be 3 inches or less (preferably 1 inch or less).
通过这种方式剥离了第一基底101以后,按照图2B的方式形成第三粘合层113。然后通过第三粘合层113将第三基底112粘合到第二基底110上。通过这种方式,将一个塑料基底用作第三基底112。具体而言,可以将厚度为10微米或者更厚的树脂基底,例如PES(聚醚砜)基底、PC(聚碳酸脂)、PET(聚对苯二甲酸乙酯)或者PEN,用作第三基底112。After the first substrate 101 is peeled off in this way, the third adhesive layer 113 is formed in the manner shown in FIG. 2B . The third substrate 112 is then bonded to the second substrate 110 through the third adhesive layer 113 . In this way, one plastic substrate is used as the third substrate 112 . Specifically, a resin substrate having a thickness of 10 µm or more, such as a PES (polyethersulfone) substrate, PC (polycarbonate), PET (polyethylene terephthalate), or PEN, can be used as the third substrate. Substrate 112.
可以将树脂(一般是聚酰亚胺、丙烯、聚酰胺或者环氧树脂)做成的绝缘膜用作第三粘合层113。从OLED看过去,当第三粘合层113在观看者一侧的时候(发光装置用户一侧),需要能够透光的材料。An insulating film made of resin (generally polyimide, acrylic, polyamide, or epoxy) may be used as the third adhesive layer 113 . Viewed from the OLED, when the third adhesive layer 113 is on the viewer's side (light emitting device user's side), a material capable of transmitting light is required.
在这个实施方案模式中,在第三基底112上形成两层或者多层隔离膜。然后在这两层隔离膜之间做一层应力松弛膜。结果,在第二基底112和第三粘合层113之间形成具有隔离膜和应力松弛膜形成的叠层结构的一层密封膜。In this embodiment mode, two or more isolation films are formed on the third substrate 112 . A stress relaxation film is then made between the two isolation films. As a result, a sealing film having a lamination structure of a separation film and a stress relaxation film is formed between the second substrate 112 and the third adhesive layer 113 .
例如,在这个实施方案模式中,在第三基底110上通过溅射形成一层氮化硅薄膜作为隔离膜114a;在隔离膜114a上形成包括聚酰亚胺的一层应力松弛膜114b;通过在应力松弛膜114b上进行溅射形成一层氮化硅薄膜作为隔离膜114c。隔离膜114、应力松弛膜114b和隔离膜114c形成的分层膜一起叫做密封膜114。然后在它上面形成密封膜114的第三基底112,通过第三粘合层113粘合到固定在第二基底110上的元件上去。For example, in this embodiment mode, a silicon nitride thin film is formed as the isolation film 114a on the third substrate 110 by sputtering; a stress relaxation film 114b including polyimide is formed on the isolation film 114a; A silicon nitride film is formed as the isolation film 114c by sputtering on the stress relaxation film 114b. The layered film formed by the isolation film 114 , the stress relaxation film 114 b and the isolation film 114 c is collectively referred to as the sealing film 114 . Then the third substrate 112 on which the sealing film 114 is formed is bonded to the element fixed on the second substrate 110 through the third adhesive layer 113 .
提供两层或者多层隔离膜足够了。隔离膜的材料可以采用氮化硅、氮氧化硅、氧化铝、氮化氯、氮氧化铝或者氮氧化铝硅(AlSiON)。It is sufficient to provide two or more layers of isolation films. The material of the isolation film may be silicon nitride, silicon oxynitride, aluminum oxide, chlorine nitride, aluminum oxynitride or aluminum silicon oxynitride (AlSiON).
由于氮氧化铝硅的导热率较高,将它用作隔离膜能够有效地散发元件产生的热。Since aluminum oxynitride has a high thermal conductivity, using it as an isolation film can effectively dissipate the heat generated by the component.
可以将能够透光的树脂用作应力松弛膜114b。一般而言可以使用聚酰亚胺、丙烯、聚酰胺、聚酰亚胺、环氧树脂之类。在这个实施方案模式中,应力松弛模是通过使用可热聚合聚酰亚胺然后进行烘烤形成的。A resin capable of transmitting light may be used as the stress relaxation film 114b. Generally, polyimide, acrylic, polyamide, polyimide, epoxy resin or the like can be used. In this embodiment mode, the stress relaxation mold is formed by using heat-polymerizable polyimide followed by baking.
氮化硅薄膜是在大约0.4Pa的溅射压力下,在150摄氏度的基底温度上引入氩形成的。薄膜是通过将硅作为靶子,除了氩以外还要引入氮和氢形成的。氮氧化硅是在大约0.4Pa的溅射压力下,在150摄氏度的基底温度下引入氩形成的。为了形成薄膜,将硅作为靶子,除了氩以外,还引入了氮、二氧化氮和氢。也可以将二氧化硅用作靶子。The silicon nitride film is formed by introducing argon at a substrate temperature of 150 degrees Celsius at a sputtering pressure of about 0.4 Pa. The thin film is formed by using silicon as a target and introducing nitrogen and hydrogen in addition to argon. Silicon oxynitride is formed by introducing argon at a substrate temperature of 150 degrees Celsius at a sputtering pressure of about 0.4 Pa. To form a thin film, silicon is used as a target, and nitrogen, nitrogen dioxide, and hydrogen are introduced in addition to argon. Silica can also be used as a target.
隔离膜114a和114c的厚度应该在50纳米到3微米之间。在这个实施方案模式中,氮化硅薄膜的厚度是1微米。The thickness of the isolation films 114a and 114c should be between 50 nm and 3 microns. In this embodiment mode, the thickness of the silicon nitride film is 1 micron.
形成隔离膜的方法不限于溅射;薄膜形成方法可以由实现本发明的人决定。例如,隔离膜可以用LPCVD法、等离子体CVD法等等形成。The method of forming the isolation film is not limited to sputtering; the thin film forming method can be determined by those who realize the present invention. For example, the isolation film can be formed by LPCVD, plasma CVD, or the like.
应力松弛膜114b的厚度应该在200纳米到2微米之间。在这个实施方案模式中,用作应力松弛膜的聚酰亚胺薄膜的厚度是1微米。The thickness of the stress relaxation film 114b should be between 200 nm and 2 microns. In this embodiment mode, the thickness of the polyimide film used as the stress relaxation film is 1 micron.
通过这种方式,能够获得两层柔性基底110和112之间的一个柔性发光装置。将同一材料用作第二基底110和第三基底112,基底110和112会具有相同的热膨胀系数。结果,基底110和112很难受温度变化产生的应力应变的影响。In this way, a flexible light emitting device between two layers of flexible substrates 110 and 112 can be obtained. Using the same material as the second substrate 110 and the third substrate 112, the substrates 110 and 112 would have the same coefficient of thermal expansion. As a result, the substrates 110 and 112 are less susceptible to stress strains caused by temperature changes.
按照这一实施方案模式制造的发光装置允许用半导体制造元件(例如TFT)而不会受到塑料基底热阻的影响。这样就能够获得性能非常好的发光装置。A light-emitting device fabricated according to this embodiment mode allows fabrication of elements such as TFTs using semiconductors without being affected by the thermal resistance of the plastic substrate. In this way, a light emitting device with very good performance can be obtained.
虽然在这个实施方案模式中第一粘合层102是用非晶硅制作的,并且是用包括氟化卤的气体去掉的,但是本发明并不限于这种结构。可以由实现本发明的人来决定第一粘合层102采用哪种材料以及采用哪种去除方法。为第一粘合层102找到合适的材料和去除方法是非常重要的,这样才能保证除了第一粘合层102以外不需要去除的基底、元件和薄膜不被去除,同时又能够去除第一粘合层102,而不影响发光装置的工作。第一粘合层102的材料不会在第一粘合层102的去除步骤以外的步骤中被去除也是非常重要的。Although the first adhesive layer 102 is made of amorphous silicon and removed with a gas including halogen fluoride in this embodiment mode, the present invention is not limited to this structure. Which material to use for the first adhesive layer 102 and which removal method to use can be determined by the person implementing the present invention. It is very important to find a suitable material and removal method for the first adhesive layer 102, so as to ensure that the substrates, components and films that do not need to be removed except for the first adhesive layer 102 are not removed, and at the same time, the first adhesive layer can be removed. layer 102 without affecting the operation of the light emitting device. It is also very important that the material of the first adhesive layer 102 is not removed in a step other than that of the first adhesive layer 102 .
例如,可以将一种有机材料用作第一粘合层102,它是用激光束照射,从而全部或者部分地蒸发的。另外,这种材料应该能够吸收激光光束能量,例如它是有颜色的,或者是黑色材料(例如有黑色素的树脂材料),这样才能够在采用YAG激光二次谐波的时候,只有第一粘合层102能够有效地吸收激光束能量。将元件形成步骤的热处理过程中不会蒸发的一种材料用作第一粘合层102。For example, an organic material may be used as the first adhesive layer 102, which is irradiated with a laser beam to be evaporated in whole or in part. In addition, this material should be able to absorb the energy of the laser beam, for example, it is colored, or a black material (such as a resin material with melanin), so that when the second harmonic of the YAG laser is used, only the first sticky The composite layer 102 can effectively absorb the laser beam energy. A material that does not evaporate during the heat treatment of the element forming step is used as the first adhesive layer 102 .
第一、第二和第三粘合层中的每一层既可以是单层的,也可以是多层的。可以在粘合层和基底之间采用非晶硅薄膜或者DLC薄膜。Each of the first, second and third adhesive layers may be single layer or multilayer. An amorphous silicon film or a DLC film may be used between the adhesive layer and the substrate.
第一粘合层102可以用非晶硅薄膜形成,第一基底可以在以后的步骤中将激光束照射到第一粘合层102上来剥离。在这种情况下,为了方便第一基底的剥离,最好是采用包括大量氢的非晶硅薄膜。非晶硅薄膜中包括的氢在受到激光束照射的时候会蒸发,因而能够很容易地剥离第一基底。The first adhesive layer 102 may be formed of an amorphous silicon thin film, and the first substrate may be peeled off by irradiating a laser beam onto the first adhesive layer 102 in a later step. In this case, in order to facilitate the peeling of the first substrate, it is preferable to use an amorphous silicon film including a large amount of hydrogen. Hydrogen included in the amorphous silicon thin film evaporates when irradiated with the laser beam, so that the first substrate can be easily peeled off.
为了获得激光束,可以采用脉冲振荡或者是连续波激发物激光器、YAG激光器或者YVO4激光器。通过第一基底将激光束照射到第一粘合层,从而只蒸发第一粘合层,将它剥离第一基底。因此,第一基底最好是能够透过激光束的基底,例如玻璃基底、石英基底等等,它的厚度大于第二和第三基底的厚度。To obtain a laser beam, a pulsed or continuous wave excimer laser, a YAG laser or a YVO 4 laser can be used. A laser beam is irradiated to the first adhesive layer through the first substrate, thereby evaporating only the first adhesive layer and peeling it off the first substrate. Therefore, the first substrate is preferably a substrate that can transmit laser beams, such as a glass substrate, a quartz substrate, etc., and its thickness is greater than that of the second and third substrates.
在本发明中,为了让激光束能够透过第一基底,应该适当地选择激光束和第一基底。例如,将石英基底用作第一基底的时候,用YAG激光器(基波(1064纳米)、二次谐波(532纳米)、三次谐波(355纳米)、四次谐波(266纳米))或者激发物激光器(波长:308纳米)形成直光束,它能够透过石英基底。激发物激光束不能通过玻璃基底。因此,将玻璃基底用作第一基底的时候,用YAG激光器的基波、二次谐波或者三次谐波,最好是二次谐波(波长532纳米),形成一个直光束,它能够通过玻璃基底。In the present invention, in order for the laser beam to transmit through the first substrate, the laser beam and the first substrate should be properly selected. For example, when using a quartz substrate as the first substrate, use a YAG laser (fundamental (1064 nm), second harmonic (532 nm), third harmonic (355 nm), fourth harmonic (266 nm)) Or an excimer laser (wavelength: 308nm) forms a straight beam, which can pass through a quartz substrate. The excimer laser beam cannot pass through the glass substrate. Therefore, when using a glass substrate as the first substrate, use the fundamental wave, the second harmonic or the third harmonic of the YAG laser, preferably the second harmonic (wavelength 532 nm), to form a straight beam that can pass through Glass substrate.
也可以采用将一种液体(加压液体或者气体)喷射到第一粘合层上分离第一基底的一种方法(一般是水流喷射法)。A method (typically water jet method) of spraying a liquid (pressurized liquid or gas) onto the first adhesive layer to separate the first substrate may also be used.
如果第一粘合层是用非晶硅薄膜做成的,就可以用联氨去掉第一粘合层。If the first adhesive layer is made of an amorphous silicon film, the first adhesive layer can be removed with hydrazine.
也可以采用Hei 8-288522号日本专利申请中描述的通过腐蚀分离第一基底的方法。具体而言,将氧化硅薄膜(SOG)用作第一粘合层,然后用氟化氢将它去除。在这种情况下,不需要去除的氧化硅薄膜通过溅射法或者CVD法具有一种精细结构是非常重要的,这样,通过氟化氢去除第一粘合层的时候,氧化硅薄膜能够提供足够的选择余地。The method of separating the first substrate by etching described in Japanese Patent Application No. Hei 8-288522 may also be used. Specifically, a silicon oxide film (SOG) was used as the first adhesive layer, which was then removed with hydrogen fluoride. In this case, it is very important that the silicon oxide film that does not need to be removed has a fine structure by sputtering or CVD, so that when the first adhesion layer is removed by hydrogen fluoride, the silicon oxide film can provide sufficient There is room for choice.
利用这样的结构,即使是使用非常薄的基底,具体而言是50到300微米,最好是150到200微米,也能够获得高可靠性的发光装置。用传统的制造设备很难在这样薄的基底上形成元件。但是,既然这一元件是粘合到第一基底上的,就可以采用利用薄基底的制造设备,而不需要改变现有设备。With such a structure, a highly reliable light emitting device can be obtained even with a very thin substrate, specifically, 50 to 300 microns, preferably 150 to 200 microns. Forming components on such thin substrates is difficult with conventional fabrication equipment. However, since this element is bonded to the first substrate, manufacturing equipment using thin substrates can be used without changing existing equipment.
利用包括多层绝缘膜的密封膜,能够有效地防止湿气和氧气渗透导致的老化。此外,能够防止弯曲基底的时候发生开裂。结果能够获得更加柔软的发光装置。With a sealing film including a multi-layer insulating film, deterioration due to moisture and oxygen penetration can be effectively prevented. In addition, it is possible to prevent cracks from occurring when the substrate is bent. As a result, a more flexible light-emitting device can be obtained.
实施方案模式2Implementation Mode 2
下面描述本发明中不同于第一个实施方案模式的另一个实施方案模式。Another embodiment mode of the present invention different from the first embodiment mode will be described below.
在图3A中,在第一基底201上用非晶硅薄膜做成厚度是100-500纳米(在这个实施方案模式中是300纳米)的第一粘合层202。虽然在这个实施方案模式中将玻璃基底用作第一基底201,但是也可以采用石英基底、硅基底、金属基底或者陶瓷基底。第一基底201可以是任意材料,只要它能够承受后续处理步骤中的热处理。In FIG. 3A, a first
形成第一粘合层202的方法可以是低压热CVD法、等离子体CVD法、溅射法或者蒸发法。在第一粘合层202上,用氧化硅薄膜形成厚度是200纳米的一层绝缘膜203。形成绝缘膜203的方法可以是低压热CVD法、等离子体CVD法、溅射法或者蒸发法。绝缘膜203用于从第一基底201上剥离第一粘合层202的时候保护第一基底201上形成的元件。The method of forming the first
下一步在绝缘膜203上形成一个元件(图3B)。这里的这个元件是一个半导体元件(一般是一个TFT)或者是一个MIM元件,在有源阵列发光装置中用作像素的开关元件,或者是一个OLED之类。对于无源发光装置,这个元件是一个OLED。在图3B中,将驱动电路206中的TFT 204a、像素部分中TFT 204b和204c以及OLED 205作为元件实例。Next, an element is formed on the insulating film 203 (FIG. 3B). The element here is a semiconductor element (generally a TFT) or a MIM element, which is used as a switching element of a pixel in an active matrix light emitting device, or an OLED or the like. For passive light emitting devices, this element is an OLED. In FIG. 3B, the
然后形成一层绝缘膜208,覆盖上述元件。形成以后绝缘膜208最好有一个平坦表面。绝缘膜208不是必需的。An insulating
如图3C所示,下一步通过第二粘合层209将第二基底210粘合到第一基底201上去。虽然在这个实施方案模式中将玻璃基底用作第二基底210,但是也可以采用石英基底、硅基底、金属基底或者陶瓷基底。第二基底210可以采用任何材料,只要这种材料能够承受后续处理步骤中的热处理。As shown in FIG. 3C , the next step is to bond the
第二粘合层209的材料必须能够在后续步骤中去掉第一粘合层202的时候能够提供足够的选择余地。此外,对于第二粘合层209,去掉第二粘合层的时候粘合第三基底的第三粘合层必须不被去掉,不导致第三基底剥落。在这个实施方案模式中采用公开的第Hei 5-315630号日本专利申请中描述的聚酰胺酸溶液,它是聚酰亚胺树脂的前期产品。具体而言,用聚酰胺酸溶液形成厚度是10-15微米的第二粘合层209的时候,它是一种未经硬化的树脂,第二基底210和中间层绝缘膜208通过热压粘合互相粘在一起。然后加热,暂时将树脂硬化。The material of the second
在这个实施方案模式中第二粘合层209的材料不限于聚酰胺酸溶液。可以采用任何材料,只要它能够在后续步骤中去掉第一粘合层202的时候提供足够的选择余地,去掉第二粘合层209的时候粘合第三基底的第三粘合层不被去掉,不导致第三基底脱落就行。第二粘合层209的材料在去掉第二粘合层209以外的步骤中不被去掉是非常重要的。The material of the second
如图3D所示,下一步将第一基底201、第二基底210和所有元件以及它们之间形成的整个薄膜暴露在包括氟化卤的气体中,去掉第一粘合层202。在这个实施方案模式中,三氟化氯(ClF3)被用作氟化卤,将氮用作稀释气体。也可以将氩、氦或者氖用作稀释气体。两种气体的流速都可以是500sccm(8.35×10-6m3/S),反应压力可以是1-10托(1.3×102-1.3×103Pa)。处理温度可以是室温(一般是20-27摄氏度)。As shown in FIG. 3D , the next step is to expose the
在这种情况下腐蚀硅薄膜,而塑料薄膜、玻璃基底、聚酰亚胺薄膜和氧化硅薄膜则不被腐蚀。具体而言,暴露在三氟化氯气体中,有选择地腐蚀掉第一粘合层202,将它完全剥落。既然同样是由硅薄膜形成的TFT的有源层没有暴露在外面,有源层就没有暴露在三氟化氯气体中,因而没有被腐蚀。In this case, the silicon film is etched, but the plastic film, glass substrate, polyimide film, and silicon oxide film are not etched. Specifically, exposure to chlorine trifluoride gas selectively corrodes the first
在这个实施方案模式中,第一粘合层202从它暴露的边缘部分开始被逐渐腐蚀。第一粘合层202被完全去掉以后,第一基底201和绝缘膜203被互相分离。去掉第一粘合层202以后,各自都包括薄膜叠层的TFT和OLED都保留在第二基底210上。In this embodiment mode, the first
将大块基底用作第一基底201不是最佳的,因为第一粘合层202是从它的边缘开始逐渐地被腐蚀掉的,完全去掉第一粘合层202所需要的时间随着它的尺寸变大而延长。因此,在这个实施方案模式中个基底201的对角线应该是3英寸或者更小(最好是1英寸或者更小)。It is not optimal to use a bulky substrate as the
通过这种方式去掉第一基底201以后,形成第三粘合层213,如图4A所示。然后通过第三粘合层213将第三基底212粘合到第二基底212上。在这个实施方案模式中,将塑料基底用作第三基底212。具体而言,可以将厚度为10微米或者更厚的树脂基底用作第三基底212,例如用PES(聚醚砜)制作的基底、PC(聚碳酸脂)、PET(聚对苯二甲酸乙酯)或者PEN。After removing the
用树脂(一般是聚酰亚胺、丙烯、聚酰胺或者环氧树脂)制作的绝缘膜可以被用作第三粘合层213。如果从OLED看过去的时候第三粘合层213在观看者一侧(发光装置用户一侧),这种材料就应该透光。An insulating film made of resin (typically polyimide, acrylic, polyamide, or epoxy) may be used as the third
此外,在这个实施方案模式中,在第三基底212上形成两层或者多层隔离膜。然后,在两层隔离膜之间产生一个应力松弛薄。结果,在第三基底212和第三粘合层213之间形成具有隔离膜和应力松弛膜分层结构的一层密封膜。Furthermore, in this embodiment mode, two or more isolation films are formed on the
例如,在这个实施方案模式中,在第三基底212上通过溅射形成一层氮化硅薄膜作为一层隔离膜214a;在隔离膜214a上形成包括聚酰亚胺的一层应力松弛膜214b;在应力松弛膜214b上通过溅射形成一层氮化硅薄膜作为隔离膜214C。隔离膜214a、应力松弛膜214b和隔离膜214c形成的分层膜一起叫做密封膜214。然后通过第三粘合层213将上面形成了密封膜214的第三基底212粘合在固定于第二基底210的元件上。For example, in this embodiment mode, a silicon nitride thin film is formed as an
提供两层或者多层隔离膜足够了。隔离膜的材料可以采用氮化硅、氮氧化硅、氧化铝、氮化铝、氮氧化铝或者氮氧化铝硅(AlSiON)。It is sufficient to provide two or more layers of isolation films. The material of the isolation film may be silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride or aluminum silicon oxynitride (AlSiON).
由于氮氧化铝硅的导热率较高,因此用它作为隔离膜能够有效地散去元件产生的热。Due to the high thermal conductivity of silicon oxynitride, using it as an isolation film can effectively dissipate the heat generated by the component.
透光树脂能够被用作应力松弛膜214b。一般而言,可以采用聚酰亚胺、丙烯、聚酰胺、聚酰亚酰胺、环氧树脂之类。在这个实施方案模式中,通过采用丙烯,然后进行烘烤,形成应力松弛膜。A light-transmitting resin can be used as the stress relaxation film 214b. Generally, polyimide, acrylic, polyamide, polyimide, epoxy resin and the like can be used. In this embodiment mode, a stress relaxation film is formed by using propylene followed by baking.
在大约0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩形成氮化硅薄膜。薄膜是通过将硅作为靶子,除了氩以外,还引入氮和氢形成的。对于氮氧化硅,是在大约0.4Pa的溅射压力和150摄氏度的基底温度下,通过引入氩形成薄膜。薄膜是通过使用硅作为靶子,同时除了氩以外,还引入氮、二氧化氮和氢来形成的。也可以将氧化硅用作靶子。A silicon nitride film was formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. The thin film is formed by using silicon as a target and introducing nitrogen and hydrogen in addition to argon. For silicon oxynitride, a film is formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. The thin film is formed by using silicon as a target while introducing nitrogen, nitrogen dioxide, and hydrogen in addition to argon. Silicon oxide can also be used as a target.
隔离膜214a和214c的厚度应该在50纳米到3微米之间。在这个实施方案模式中,氮化硅薄膜的厚度为1微米。The thickness of the
隔离膜的形成方法不限于溅射;可以由实现本发明的人来决定采用什么样的薄膜形成方法。例如,可以用LPCVD法、等离子体CVD法之类形成隔离膜。The forming method of the isolation film is not limited to sputtering; what kind of thin film forming method to use can be determined by those who realize the present invention. For example, the isolation film can be formed by LPCVD, plasma CVD, or the like.
应力松弛膜214b的厚度应该在200纳米到2微米之间。在这个实施方案模式中,丙烯薄膜的厚度为1微米。The thickness of the stress relaxation film 214b should be between 200 nm and 2 microns. In this embodiment mode, the thickness of the acrylic film is 1 micron.
下一步,如图4B所示,将第二粘合层209剥离第二基底210。具体而言,通过浸入水中大约1个小时,去掉第二粘合层209,从而剥离第二基底210。Next, as shown in FIG. 4B , the second
根据第二粘合层209的材料、元件或者薄膜的材料、基底材料等等选择剥离方法非常重要。It is very important to select a peeling method according to the material of the second
下一步,如图4C所示,在剥离第二基底210的一侧,也就是通过OLED跟第三基底相对的一侧,提供两层或者多层中的隔离膜。然后在两层隔离膜之间提供一层应力松弛膜。Next, as shown in FIG. 4C , on the side where the
例如在这个实施方案模式中,在绝缘膜208跟接触第二基底210的一侧相对的一侧,通过溅射形成一层氮化硅薄膜作为隔离膜215a;在隔离膜215a上形成包括聚酰亚胺的一层应力松弛膜215b;在应力松弛膜215b上通过溅射形成一层氮化硅薄膜作为隔离膜215c。隔离膜215a、应力松弛膜215b和隔离膜215c一起叫做密封膜215。For example, in this embodiment mode, on the side of the insulating
提供两层或者多层隔离膜足够了。隔离膜的材料可以采用氮化硅、氮氧化硅、氧化铝、氮化铝、氮氧化铝或者氮氧化铝硅(AlSiON)。It is sufficient to provide two or more layers of isolation films. The material of the isolation film may be silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride or aluminum silicon oxynitride (AlSiON).
由于氮氧化铝硅的导热率较高,将它用作隔离膜能够有效地散去元件产生的热。Due to the high thermal conductivity of silicon oxynitride, using it as an isolation film can effectively dissipate the heat generated by the component.
透光树脂可以被用作应力松弛膜215b。一般而言可以使用聚酰亚胺、丙烯、聚酰胺、聚酰亚胺、环氧树脂之类。在这个实施方案模式中,应力松弛膜是通过采用丙烯,然后进行烘烤形成的。A light-transmitting resin may be used as the
在大约0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩形成氮化硅薄膜。薄膜形成是通过除了氩以外引入氮和氢,将硅作为靶子形成的。对于氮氧化硅,在大约0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩形成薄膜。薄膜是通过除了氩以外引入氮、二氧化氮和氢,将硅作为靶子而形成的。也可以将氧化硅用作靶子。A silicon nitride film was formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. The thin film is formed by introducing nitrogen and hydrogen in addition to argon, using silicon as a target. For silicon oxynitride, a film was formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. The thin film is formed by introducing nitrogen, nitrogen dioxide, and hydrogen in addition to argon, using silicon as a target. Silicon oxide can also be used as a target.
隔离膜215a和215c的厚度应该在范围50纳米到3微米之间。在这个实施方案模式中,氮化硅薄膜的厚度为1微米。The thickness of the
形成隔离膜的方法不限于溅射;可以由实现本发明的人决定采用什么样的薄膜形成方法。例如,薄膜可以用LPCVD法、等离子体CVD法等等形成。The method of forming the isolation film is not limited to sputtering; what kind of thin film forming method to use can be determined by those who realize the present invention. For example, a thin film can be formed by LPCVD, plasma CVD, or the like.
应力松弛膜215b的厚度应该在200纳米到2微米之间。在这个实施方案模式中,丙烯薄膜的厚度为1微米。The thickness of the
通过这种方式可以利用单个塑料基底获得柔性发光装置。In this way a flexible light-emitting device can be obtained with a single plastic substrate.
由于可以用半导体形成元件(例如TFT)而不会受到塑料基底热阻的限制,按照本发明能够制造高性能的发光装置。Since an element such as a TFT can be formed using a semiconductor without being limited by the thermal resistance of a plastic substrate, a high-performance light emitting device can be manufactured according to the present invention.
虽然本发明第一个实施方案模式中第一粘合层202是用非晶硅做成的,并且是用包括氟化卤的气体去掉的,但是本发明并不限于这一结构。可以由实现本发明的人去决定第一粘合层202采用什么材料和去除方法。第一粘合层202的材料和去除方法能够保证除了第一粘合层202以外不需要去除的基底、其它粘合层、元件和薄膜不会在去除第一粘合层202的时候被去除掉,从而不影响发光装置的工作,这一点是非常重要的。第一粘合层202的材料使得去除第一粘合层202的步骤以外的其它步骤里它不被去除掉同样重要。Although the first
虽然聚酰胺酸溶液被用作第二粘合层209然后用水去掉,它是聚酰亚胺树脂的前一级产品,但是本发明的结构并不限于此。第二粘合层209的材料和去除方法可以由实现本发明的人来确定。第二粘合层209的材料和去除方法能够保证除了第二粘合层209以外不需要去除的基底、其它粘合层、元件和薄膜在去除第二粘合层的时候不被去除掉,从而不影响发光装置的工作,这一点是非常重要的。第二粘合层209的材料使得它在去除第二粘合层209的步骤以外的其它步骤里不被去除掉同样重要。Although polyamic acid solution is used as the second
例如,可以将用激光束照射能够全部或者部分蒸发的有机材料用作第一和第二粘合层202和209。另外,应该采用能够吸收激光束能量的材料,例如有色材料或者黑色材料(例如包括黑色素的树脂材料),从而在使用YAG激光器的二次谐波的时候,只有第一和第二粘合层202和209有效地吸收激光束的能量。采用在元件形成步骤的热处理过程中不被蒸发的第一和第二粘合层202和209。For example, as the first and second
第一、第二、第三粘合层中的每一层既可以是单层的,也可以是多层的。可以在粘合层和基底之间提供一层非晶硅薄膜或者一层DLC薄膜。Each of the first, second, and third adhesive layers may be a single layer or a multilayer. An amorphous silicon film or a DLC film may be provided between the adhesive layer and the substrate.
第一粘合层202或者第二粘合层209可以用非晶硅薄膜形成,可以通过在以后的步骤里将一束激光照射在第一粘合层202或者第二粘合层209上将这一基底剥离。在这种情况下,为了方便第一基底剥离,最好是采用包括大量氢的非晶硅薄膜。非晶硅中包括的氢在激光束的照射下被蒸发,从而能够很容易地剥离这一基底。The first
激光束可以采用脉冲振荡或者连续波激发物激光器、YAG激光器或者YVO4激光器。剥离第一基底的时候,通过第一基底将激光束照射到第一粘合层上,从而只蒸发第一粘合层,将第一基底剥离。要剥离第二基底的时候,通过第二基底将激光束照射到第二粘合层上,从而只蒸发第二粘合层,剥离第二基底。因此,第一或者第二基底最好是厚度大于第三基底的基底,它至少允许激光束通过,一般情况下它能够透过光,例如玻璃基底、石英基底之类。The laser beam can be pulsed oscillation or continuous wave excimer laser, YAG laser or YVO 4 laser. When peeling off the first substrate, a laser beam is irradiated onto the first adhesive layer through the first substrate, so that only the first adhesive layer is evaporated, and the first substrate is peeled off. When the second substrate is to be peeled off, a laser beam is irradiated onto the second adhesive layer through the second substrate, so that only the second adhesive layer is evaporated, and the second substrate is peeled off. Therefore, the first or second substrate is preferably a substrate thicker than the third substrate, which at least allows the laser beam to pass through, and generally it can transmit light, such as a glass substrate, a quartz substrate and the like.
在本发明中,为了让激光束通过第一或者第二基底,需要正确地选择激光束的类型和第一基底的类型。例如,将石英基底用作第一基底的时候,用YAG激光器(基波(1064纳米)、二次谐波(532纳米)、三次谐波(355纳米)、四次谐波(266纳米))或者激发物激光器(波长:308纳米)形成直光束,它能够透过石英基底。激发物激光束不能通过玻璃基底。因此,采用玻璃基底的时候,用YAG激光器的基波、二次谐波或者三次谐波,最好是二次谐波(波长532纳米),形成一个直光束,它能够通过玻璃基底。In the present invention, in order for the laser beam to pass through the first or second substrate, it is necessary to correctly select the type of the laser beam and the type of the first substrate. For example, when using a quartz substrate as the first substrate, use a YAG laser (fundamental (1064 nm), second harmonic (532 nm), third harmonic (355 nm), fourth harmonic (266 nm)) Or an excimer laser (wavelength: 308nm) forms a straight beam, which can pass through a quartz substrate. The excimer laser beam cannot pass through the glass substrate. Therefore, when using a glass substrate, use the fundamental wave, second harmonic or third harmonic of the YAG laser, preferably the second harmonic (wavelength 532 nm), to form a straight beam that can pass through the glass substrate.
也可以采用例如将一种液体(加压流体或者气体)喷射到第一粘合层上分离第一基底的方法(通常是喷射水流法)。A method of, for example, spraying a liquid (pressurized fluid or gas) onto the first adhesive layer to separate the first substrate (usually a water jet method) may also be used.
如果第一粘合层是用非晶硅薄膜做成的,第一粘合层就可以用氢去除。If the first adhesive layer is made of an amorphous silicon film, the first adhesive layer can be removed by hydrogen.
另外,也可以采用公开的第Hei 8-288522号日本专利申请上描述的腐蚀方法分离第一基底。具体而言,可以将使用的氧化硅薄膜(SOG)用作第一或者第二粘合层,然后用氟化氢清除掉。在这种情况下,不需要去除的氧化硅薄膜通过溅射或者CVD法具有精细结构是非常重要的,这样,用氟化氢去除第一或者第二粘合层的时候氧化硅薄膜能够提供足够的选择余地。Alternatively, the first substrate may be separated by the etching method described in Japanese Patent Application Laid-Open No. Hei 8-288522. Specifically, a silicon oxide film (SOG) may be used as the first or second adhesive layer, which is then removed with hydrogen fluoride. In this case, it is very important that the silicon oxide film that does not need to be removed has a fine structure by sputtering or CVD, so that the silicon oxide film can provide sufficient options when removing the first or second adhesion layer with hydrogen fluoride. room.
利用这样的结构,即使将非常薄的基底用作第三基底,具体而言是50-300微米,最好是150-200微米,也能够获得高可靠性的发光装置。利用传统的制造设备很难在这样薄的基底上形成元件。但是既然元件是通过粘合到第一和第二基底上形成的,就能够使用采用薄基底的制造设备而不需要改变这些设备。With such a structure, even if a very thin substrate is used as the third substrate, specifically, 50-300 micrometers, preferably 150-200 micrometers, a highly reliable light-emitting device can be obtained. Forming components on such thin substrates is difficult using conventional fabrication equipment. But since the elements are formed by bonding to the first and second substrates, manufacturing equipment using thin substrates can be used without changing the equipment.
利用包括多层绝缘膜的密封膜,能够有效地缓解由于湿气或者氧气渗透而导致老化。此外还能够防止弯曲基底的时候发生开裂。结果是能够获得更加柔软的发光装置。With a sealing film including a multilayer insulating film, aging due to moisture or oxygen penetration can be effectively mitigated. It also prevents cracking when the substrate is bent. As a result, a more flexible light emitting device can be obtained.
在第一个和第二个实施方案模式中,OLED的阳极和阴极都可以被用作像素电极。In the first and second embodiment modes, both the anode and the cathode of the OLED can be used as pixel electrodes.
实施方案implementation plan
下面将描述本发明的实施方案。Embodiments of the present invention will be described below.
实施方案1Implementation 1
在实施方案1中描述本发明中发光装置的外观以及它如何跟FPC连接。In Embodiment 1, the appearance of the light emitting device in the present invention and how it is connected to the FPC are described.
图5A是实施方案模式1所描述的本发明的发光装置的一个顶视图实例。第二基底301和第三基底302都是柔软的塑料基底。像素部分303和驱动电路(源侧驱动电路304和栅侧驱动电路305)在第二基底301和第三基底302之间。FIG. 5A is an example of a top view of the light-emitting device of the present invention described in Embodiment Mode 1. FIG. Both the
在图5A中画出了一个实例,其中源侧驱动电路304和栅侧驱动电路305是在同时形成像素部分303的基底上形成的。但是,源侧驱动电路304和栅侧驱动电路305代表的驱动电路可以在不同于形成像素部分303的基底上形成。在这种情况下,驱动电路可以通过一个FPC之类跟像素部分303连接。An example is shown in FIG. 5A in which the source
源侧驱动电路304和栅侧驱动电路305的编号和布局可以不同于图5A所示的结构。The numbering and layout of the source-
编号306表示一个FPC,通过它,来自包括控制器的IC的信号或者源电压被施加在像素部分303、源侧驱动电路304和栅侧驱动电路305上。
图5B是图5A中虚线围起来的那一部分的一个放大图,在那里,FPC 306和第二基底301互相连接。图5C是沿着图5B中直线A-A’的一个剖面图。FIG. 5B is an enlarged view of a portion surrounded by a dotted line in FIG. 5A, where the
在第二基底301和第三基底302之间有导线310,它们能够提供信号或者源电压给像素部分303、源侧驱动电路304和栅侧驱动电路305。为FPC 306准备了端子311。Between the
用激光束之类将第二基底301和延伸的导线310之间密封膜和绝缘膜这样的各种薄膜以及第二基底301部分地去除,从而提供接触孔313。因此,多根延伸的导线310通过接触孔313暴露出来,通过各向异性导电树脂312分别跟端子311连接。Various thin films such as a sealing film and an insulating film between the
虽然在图5A-5C的这个实例中延伸的导线310从第二基底301部分地暴露出来,但是本发明并不限于此。延伸的导线也能够部分地从第三基底302暴露出来。Although the extending
图6A画出了图5A所示发光装置的弯曲状态。由于实施方案模式1中的发光装置的第二基底和第三基底都是柔性的,这个发光装置能够象图6A所示的一样弯曲一定的角度。这样,这种发光装置具有广泛的用途,因为它能够用于弯曲表面、橱窗中进行显示。此外,不仅是实施方案模式1中描述的发光装置能够弯曲,实施方案模式2中描述的发光装置也能够弯曲。FIG. 6A illustrates the bent state of the light emitting device shown in FIG. 5A. Since both the second substrate and the third substrate of the light emitting device in Embodiment Mode 1 are flexible, this light emitting device can be bent at a certain angle as shown in FIG. 6A. Thus, this light emitting device has a wide range of uses, as it can be used on curved surfaces, in shop windows for display. Furthermore, not only the light emitting device described in Embodiment Mode 1 but also the light emitting device described in Embodiment Mode 2 can be bent.
图6B是图6A所示发光装置的一个剖面图。在第二基底301和第三基底302之间形成了多个元件。在这里代表性地画出了TFT 303a、303b和303c以及OLED 304。虚线309表示第二基底301和第三基底302之间的一条中心线。FIG. 6B is a cross-sectional view of the light emitting device shown in FIG. 6A. A plurality of elements are formed between the
在第二基底301和多个元件之间有一层隔离膜306a、一层应力松弛膜306b和一层隔离膜306c(它们一起叫做密封膜306)。在第三基底302和多个元件之间有隔离膜307a、应力松弛膜307b和隔离膜307c(一起叫做密封膜307)。Between the
此外,在密封膜306和多个元件之间有第二粘合层305,密封膜307和多个元件之间有第三粘合层308。In addition, there is a second
下一步描述实施方案模式2中描述的发光装置跟FPC的连接。图7是一个剖面图,说明实施方案模式2中描述的发光装置跟FPC连接的部分。Next, the connection of the light emitting device described in Embodiment Mode 2 to the FPC will be described. Fig. 7 is a sectional view illustrating a portion where the light emitting device described in Embodiment Mode 2 is connected to an FPC.
第三基底401上有导线403。形成一层密封膜402,从而覆盖第三基底401上的导线403和多个元件。虽然图7中的密封膜402是单层膜,但是这一密封膜实际上包括多层密封膜和其间的一层应力松弛膜。The
用激光束之类去掉第三基底401和延伸的导线403之间密封膜402和绝缘膜这样的各种薄膜从而产生一个接触孔。因此,通过接触孔将延伸的导线403暴露出来,通过各向异性导电树脂406跟FPC 404中包括的端子405实现电连接。Various thin films such as the sealing
虽然在这个实例中延伸的导线从图7中的密封膜402部分地暴露出来,但是本发明并不限于此。延伸的导线可以从第三基底一侧部分地暴露出来。Although the extending wires are partially exposed from the sealing
实施方案2Embodiment 2
在实施方案2中描述本发明中实施方案模式1的一个实例。An example of Embodiment Mode 1 in the present invention is described in Embodiment 2.
在图8A中,用氧化硅薄膜(SOG)在第一基底501上做成厚度是100-500(在这个实施方案中是300纳米)纳米的第一粘合层502。虽然在这个实施方案中将玻璃基底用作第一基底501,但是也可以采用石英基底、硅基底、金属基底或者陶瓷基底。第一基底501可以采用任意材料,只要它能够承受后续制造步骤中的处理温度就行。In FIG. 8A, a silicon oxide film (SOG) is used to form a first
形成SOG薄膜的方法是通过旋涂将碘溶液添加到SOG溶液中去,然后干燥,使之释放出其中的碘。然后在大约400摄氏度的热处理中形成SOG薄膜。在这个实施方案中,形成厚度为100纳米的SOG薄膜。形成SOG薄膜作为第一粘合层502的方法不限于上述方法。既可以将有机SOG用作SOG,也可以将无机SOG用作SOG;可以采用任何SOG,只要能够在后续步骤中用氟化氢将它去除。不需要去除的氧化硅薄膜通过溅射或者CVD方法形成具有精细结构是非常重要的,这样才能够用氟化氢去除第一粘合层的时候能够提供足够的选择余地。The method of forming the SOG film is to add the iodine solution to the SOG solution by spin coating, and then dry it to release the iodine therein. The SOG thin film is then formed in a heat treatment at about 400 degrees Celsius. In this embodiment, a SOG thin film was formed with a thickness of 100 nm. The method of forming the SOG thin film as the first
下一步用低压热CVD法、等离子体CVD法、溅射法或者蒸发法在第一粘合层502上形成一层铝保护膜。在这个实施方案中,通过溅射在第一粘合层502上用铝形成厚度为200纳米的一层保护膜503。In the next step, an aluminum protective film is formed on the first
虽然在这个实施方案中将铝作为保护膜503的材料,但是本发明并不限于此。在去掉第一粘合层502的时候,以及在除了去掉保护膜503的步骤以外的其它处理步骤中,这样的材料不被去除是非常重要的。此外,在去掉保护膜503的步骤中这样的材料不会导致其它薄膜和基底被去除掉也是非常重要的。保护膜503用于去掉第一粘合层502的时候保护第一基底501上形成的元件不被剥离第一基底501。Although aluminum is used as the material of the
下一步在保护膜503上形成一个元件(图8B)。在图8B中,将驱动电路中的TFT 504a和504b用作代表性的元件。Next, an element is formed on the protective film 503 (FIG. 8B). In FIG. 8B,
在这个实施方案中,TFT 504a是一个n沟道的TFT,而TFT 504b则是一个p沟道的TFT。TFT 504a和504b形成一个CMOS。In this embodiment,
TFT 504a包括保护膜503上形成的第一个电极550、覆盖第一个电极550的绝缘膜551、跟绝缘膜551接触的半导体膜552、跟半导体薄膜552接触的绝缘膜553以及跟绝缘膜553接触的第二个电极554。The
TFT 504b包括第一个电极560、覆盖第一个电极560的绝缘膜551、跟绝缘膜551接触的半导体薄膜562、跟半导体薄膜562接触的绝缘膜553以及跟绝缘膜553接触的第二个电极564。The
在保护膜503上跟第一个电极550一起同时形成了一个端子570。A terminal 570 is formed simultaneously with the first electrode 550 on the
然后形成一层绝缘膜565,盖住TFT 504a和504b。通过穿透绝缘膜565、551和553形成的接触孔形成跟半导体薄膜552和端子570接触的导线571、跟半导体薄膜552和562接触的导线572以及跟半导体薄膜562接触的导线573。An insulating film 565 is then formed to cover the
形成绝缘膜574覆盖导线571、572和573以及绝缘膜565。虽然图中没有画出,但是在绝缘膜574上形成了一个OLED。An insulating
然后形成一层绝缘膜508,盖住这些元件。形成以后绝缘膜508最好具有平坦的表面。没有必要形成绝缘膜508。An insulating
下一步如图8C所示,通过第二粘合层509将第二基底510粘合到第一基底上。在这个实施方案中将塑料基底用作第二基底510。具体而言,可以将例如厚度为10纳米或者更厚的树脂基底、PES(聚醚砜)、PC(聚碳酸脂)、PET(聚对苯二甲酸乙酯)或者PEN用作第二基底510。The next step is to bond the
第二粘合层509的材料应该能够保证在后续步骤中去掉第一粘合层502的时候能够提供足够的选择余地。一般而言可以采用树脂制作的绝缘膜。虽然在这个实施方案中采用聚酰亚胺,但是也可以采用丙烯、聚酰胺或者环氧树脂。当第二粘合层590放在从OLED看过去的观看者一侧(发光装置用户一侧)的时候,这种材料应该能够透光。The material of the second
此外,在这个实施方案中,在第二基底510上形成两层或者多层隔离膜。然后在两层隔离膜之间形成一层应力松弛膜。结果,在第二基底510和第二粘合层509之间形成隔离膜和应力松弛膜构成一层密封膜。Also, in this embodiment, two or more isolation films are formed on the
例如,在这个实施方案中,通过在第二基底510上进行溅射形成一层氮化硅薄膜作为隔离膜51;在隔离膜511a上形成包括聚酰亚胺的一层应力松弛膜511b;在应力松弛膜511b上通过溅射形成一层氮化硅薄膜作为隔离膜511c。隔离膜511a、应力松弛膜511b和隔离膜511c一起叫做密封膜511。然后,通过第二粘合层509将形成密封膜511的第二基底510粘合在第一基底上形成的元件上。For example, in this embodiment, a silicon nitride thin film is formed as the isolation film 51 by sputtering on the
提供两层或者多层隔离膜足够了。隔离膜的材料可以是氮化硅、氮氧化硅、氧化铝、氮化铝、氮氧化铝或者氮氧化铝硅(AlSiON)。It is sufficient to provide two or more layers of isolation films. The material of the isolation film may be silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride or aluminum silicon oxynitride (AlSiON).
可以将能够透光的树脂用作应力松弛膜511b。一般而言,可以采用聚酰亚胺、丙烯、聚酰胺、聚酰亚胺、环氧树脂之类。在这个实施方案中,应力松弛模是通过采用热可聚合聚酰亚胺然后进行烘烤形成的。A resin capable of transmitting light may be used as the
在0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩形成一层氮化硅薄膜。形成薄膜的时候将硅作为靶子,除了氩以外同时引入氮和氢。对于氮氧化硅,在0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩形成一层薄膜。形成薄膜的时候将硅作为靶子,除了氩以外,同时引入氮、二氧化氮和氢。也可以将氧化硅作为靶子。A silicon nitride film was formed by introducing argon at a sputtering pressure of 0.4 Pa and a substrate temperature of 150°C. When forming a thin film, silicon is used as a target, and nitrogen and hydrogen are simultaneously introduced in addition to argon. For silicon oxynitride, a thin film was formed by introducing argon at a sputtering pressure of 0.4 Pa and a substrate temperature of 150°C. When forming a thin film, silicon is used as a target, and nitrogen, nitrogen dioxide, and hydrogen are simultaneously introduced in addition to argon. Silicon oxide can also be used as a target.
每层隔离膜511a和511c的厚度都应该在50纳米到3微米之间。在这个实施方案中,氮化硅薄膜的厚度为1微米。The thickness of each
形成隔离膜的方法不限于溅射法;可以由实现本发明的人决定采用什么样的薄膜形成方法。例如,可以用LPCVD法、等离子体CVD法等等来形成薄膜。The method of forming the isolation film is not limited to the sputtering method; what kind of thin film forming method to use can be determined by those who realize the present invention. For example, the thin film can be formed by LPCVD method, plasma CVD method, or the like.
应力松弛膜511b的厚度应该在200纳米到2微米之间。在这个实施方案中,聚酰亚胺薄膜的厚度是1微米。The thickness of the
对于第一个和第二个隔离层511a和511c以及应力松弛层511b,采用的材料在后续步骤去除第一粘合层502的时候应该能够提供足够的选择余地。For the first and
由于图8C所示的过程,OLED能够跟空气完全隔离。结果,能够充分延缓由于氧化而导致有机发光材料的老化,从而显著地提高OLED的可靠性。Due to the process shown in Figure 8C, the OLED can be completely isolated from the air. As a result, aging of the organic light-emitting material due to oxidation can be sufficiently delayed, thereby significantly improving the reliability of the OLED.
下一步,如图8D所示,用氟化氢去除第一粘合层502。在这个实施方案中,将第一和第二基底501和510、它们之间形成的所有元件和整个薄膜浸入缓冲氢氟酸(HF/NH4F=0.01-0.2,例如0.1),去掉第一粘合层502。Next, as shown in FIG. 8D, the first
由于不应该去掉的氧化硅薄膜是通过溅射或者CVD法用精细薄膜形成的,因此用氟化氢只去掉第一粘合层。Since the silicon oxide film that should not be removed is formed with a fine film by sputtering or CVD, only the first adhesive layer is removed with hydrogen fluoride.
对于这个实施方案,从暴露的边缘部分逐渐地腐蚀掉第一粘合层502。完全去掉第一粘合层502的时候,第一基底501和保护膜503被互相隔离。去掉第一粘合层502以后,每个都包括许多薄膜的TFT和OLED保留在第二基底510上。For this embodiment, the first
将大基底用作第一基底501不是最佳的,因为随着第一基底的尺寸变大,从边缘开始完全去掉第一粘合层502所需要的时间会越来越长。因此,这个实施方案中第一基底501的对角线应该是3英寸或者更短(最好是1英寸或者更短)。Using a large substrate as the
下一步去掉保护膜503,如图9A所示。在这个实施方案中,用磷酸类型的腐蚀剂进行湿腐蚀去掉铝做成的保护膜503,从而暴露出端子570和第一个电极550和560。The next step is to remove the
然后,如图9B所示,形成导电树脂做成的各向异性的第三粘合层513。通过第三粘合层513,将第三基底512接合到暴露出端子570和第一个电极550和560的一侧。Then, as shown in FIG. 9B, an anisotropic third adhesive layer 513 made of conductive resin is formed. Through the third adhesive layer 513 , the third substrate 512 is bonded to a side where the terminal 570 and the
在这个实施方案中,将塑料基底用作第三基底512。具体而言,可以将厚度为10微米或者更厚的树脂基底,例如,PES(聚醚砜)、PC(聚碳酸脂)、PET(聚对苯二甲酸乙酯)或者PEN做成的基底,用作第三基底512。In this embodiment, a plastic substrate is used as the third substrate 512 . Specifically, a resin substrate having a thickness of 10 microns or thicker, for example, a substrate made of PES (polyethersulfone), PC (polycarbonate), PET (polyethylene terephthalate) or PEN, Used as the third substrate 512.
第三粘合层513可以采用树脂(一般而言是聚酰亚胺、丙烯、聚酰胺或者环氧树脂)做成的绝缘膜。如果从OLED看过去,第三粘合层513在观看者一侧,这种材料就必须透光。The third adhesive layer 513 can be an insulating film made of resin (generally, polyimide, acrylic, polyamide or epoxy resin). If viewed from the OLED, the third adhesive layer 513 is on the viewer's side, and this material must transmit light.
在这个实施方案中,在第三基底512上形成两层或者多层隔离膜。然后,在这两层隔离膜之间形成一层应力松弛膜。结果,在第三基底512和第三粘合层513之间形成隔离膜和应力松弛膜形成的一个叠层结构的一层密封膜。In this embodiment, two or more layers of isolation films are formed on the third substrate 512 . Then, a stress relaxation film is formed between the two isolation films. As a result, between the third substrate 512 and the third adhesive layer 513, a sealing film of a lamination structure formed of a separation film and a stress relaxation film is formed.
例如,在这个实施方案中,通过在第三基底512上进行溅射形成一层氮化硅薄膜作为隔离膜514a;在隔离膜514a上形成包括聚酰亚胺的一层应力松弛膜514b;在应力松弛膜514b上通过溅射形成一层氮化硅薄膜作为隔离膜514c。隔离膜514a、应力松弛膜514b和隔离膜514c形成的叠层膜一起叫做密封膜514。然后,通过第三粘合层513将上面形成密封膜514的第三基底512粘合到固定在第二基底510上的元件上。For example, in this embodiment, a silicon nitride film is formed as the isolation film 514a by sputtering on the third substrate 512; a stress relaxation film 514b including polyimide is formed on the isolation film 514a; A silicon nitride thin film is formed as an isolation film 514c on the stress relaxation film 514b by sputtering. A laminated film formed of the isolation film 514 a , the stress relaxation film 514 b , and the isolation film 514 c is collectively referred to as the sealing film 514 . Then, the third substrate 512 on which the sealing film 514 is formed is bonded to the element fixed on the
提供两层或者多层隔离膜足够了。隔离膜的材料可以采用氮化硅、氮氧化硅、氧化铝、氮化铝、氮氧化铝或者氮氧化铝硅(AlSiON)。It is sufficient to provide two or more layers of isolation films. The material of the isolation film may be silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride or aluminum silicon oxynitride (AlSiON).
应力松弛膜51b可以采用透光的树脂。一般而言,可以使用聚酰亚胺、丙烯、聚酰胺、聚酰亚胺、环氧树脂之类。在这个实施方案中,应力松弛模是通过采用热可聚合聚酰亚胺然后进行烘烤来形成。A light-transmitting resin can be used for the stress relaxation film 51b. Generally, polyimide, acrylic, polyamide, polyimide, epoxy resin or the like can be used. In this embodiment, the stress relaxation mold is formed by using heat polymerizable polyimide followed by baking.
在大约0.4Pa的溅射压力和150摄氏度的基底温度下通过引入氩来形成氮化硅薄膜。除了氩以外,还引入氮和氢,并且将硅作为靶子来形成薄膜。至于氮氧化硅,是在大约0.4Pa溅射压力和150摄氏度的基底温度下通过引入压来形成薄膜的。薄膜的形成是通过引入除了氩以外的氮、二氧化氮和氢,并且将硅作为靶子来实现的。也可以将氧化硅用作靶子。A silicon nitride film was formed by introducing argon at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. In addition to argon, nitrogen and hydrogen are introduced, and silicon is used as a target to form a thin film. As for silicon oxynitride, a film is formed by introducing a pressure at a sputtering pressure of about 0.4 Pa and a substrate temperature of 150 degrees Celsius. Thin film formation is achieved by introducing nitrogen, nitrogen dioxide, and hydrogen other than argon, and using silicon as a target. Silicon oxide can also be used as a target.
每层隔离膜514a和514c的厚度都应该在50纳米到3微米之间。在这个实施方案中,氮化硅薄膜的厚度是1微米。The thickness of each isolation film 514a and 514c should be between 50 nm and 3 microns. In this embodiment, the thickness of the silicon nitride film is 1 micron.
形成隔离膜的方法不限于溅射;薄膜形成方法可以由实现本发明的人来确定。例如,可以用LPCVD法、等离子体CVD法等等来形成薄膜。The method of forming the isolation film is not limited to sputtering; the thin film forming method can be determined by those who realize the present invention. For example, the thin film can be formed by LPCVD method, plasma CVD method, or the like.
应力松弛膜514b的厚度应该在200纳米到2微米之间。在这个实施方案中,聚酰亚胺薄膜的厚度为1微米。The thickness of the stress relaxation film 514b should be between 200 nm and 2 microns. In this embodiment, the thickness of the polyimide film is 1 micron.
然后,利用激光束照射,通过第三基底512和密封膜形成接触孔。在第三基底512上形成接触孔的地方及其周围蒸发上铝,在第三基底512的相应表面上形成端子580和581,它们之间互相有电连接。形成端子580和581的方法不限于上述结构。Then, with laser beam irradiation, a contact hole is formed through the third substrate 512 and the sealing film. Aluminum is evaporated on the third substrate 512 where the contact holes are formed and around them, and terminals 580 and 581 are formed on the corresponding surfaces of the third substrate 512 to be electrically connected to each other. The method of forming the terminals 580 and 581 is not limited to the above structure.
在第三基底512上形成的端子580通过第三粘合层513跟端子570实现连接,这个端子570是跟第一个电极550和560同时形成的。The terminal 580 formed on the third substrate 512 is connected to the terminal 570 which is formed simultaneously with the
通过这种方式能够获得塑料基底510和512之间的柔性发光装置。第二基底510和第三基底512采用同样的材料,基底510和512具有同样的热膨胀系数。结果,基底510和512很难因为温度变化而受到影响。In this way a flexible light emitting device between the
如图9C所示,这样形成不会跟第三粘合层513接触,但是会跟第三基底512连接的端子581和FPC 590中包括的端子591通过各向异性导电树脂做成的第四个粘合层592互相连接。As shown in FIG. 9C , the fourth one made of the terminal 581 and the terminal 591 included in the FPC 590 will not be in contact with the third adhesive layer 513 but will be connected with the third substrate 512 and made by anisotropic conductive resin. Adhesive layers 592 are interconnected.
按照本发明制造的发光装置允许采用半导体制作元件(例如TFT)而不会受到塑料基底热阻的限制。这样就能够获得具有特别高性能的发光装置。The light-emitting device manufactured according to the present invention allows the use of semiconductor components (such as TFT) without being limited by the thermal resistance of the plastic substrate. This makes it possible to obtain a lighting device with particularly high performance.
虽然在这个实施方案中的粘合层502是用SOG做成的,并且最终用氟化氢去除掉,但是本发明并不限于这一结构。第一粘合层502的材料和去除方法可以由实现本发明的人来确定。第一粘合层502的材料和去除方法应该保证在去除第一粘合层502的时候,不会去掉不需要去掉的基底、元件和第一粘合层502以外的其它薄膜,同时不会影响发光装置的工作。此外,第一粘合层502的材料在去除第一粘合层502的步骤以外的步骤中不会被去除掉也是非常重要的。Although the
例如,通过激光束照射部分或者全部蒸发的有机材料可以被用作第一粘合层502。另外,应该采用能够吸收激光束的材料例如有色材料或者黑色材料(例如包括黑色色素的树脂材料),这样才能够保证采用来自YAG激光器的二次谐波的时候,只有第一粘合层502才有效地吸收激光束的能量。采用在元件形成步骤中的热处理过程里不会被蒸发的第一粘合层502。For example, an organic material partially or fully evaporated by laser beam irradiation may be used as the first
第一、第二和第三粘合层都可以是单层的,也可以是多层的。在粘合层和基底之间可以采用非晶硅薄膜或者DLC薄膜。The first, second and third adhesive layers can all be single-layer or multi-layer. An amorphous silicon film or a DLC film may be used between the adhesive layer and the substrate.
第一粘合层502可以用非晶硅薄膜形成,在以后的步骤中,第一基底可以通过用激光束照射第一粘合层502而剥离。在这种情况下,为了方便第一基底的剥离,采用包括大量氢的非晶硅薄膜。通过激光束照射蒸发非晶硅里的氢,从而很容易地剥离第一基底。The first
激光束可以是脉冲或者连续波激发物激光器、YAG激光器或者YVO4激光器。通过第一基底将激光束照射在第一粘合层上,只蒸发第一粘合层,从而剥离第一基底。因此,第一基底最好是采用厚度大于第二和第三基底的基底,它至少能够透过照射的激光,通常是具有透光性的基底,例如玻璃基底、石英基底等等。The laser beam can be a pulsed or continuous wave excimer laser, a YAG laser or a YVO 4 laser. A laser beam is irradiated on the first adhesive layer through the first substrate to evaporate only the first adhesive layer, thereby peeling off the first substrate. Therefore, the first substrate is preferably a substrate with a thickness greater than that of the second and third substrates, which can at least transmit the irradiated laser light, and is usually a light-transmitting substrate, such as a glass substrate, a quartz substrate, and the like.
在本发明中,为了让激光束通过第一基底,需要正确地选择激光束和第一基底的类型。例如,将石英基底用作第一基底的时候,用YAG激光器(基波(1064纳米)、二次谐波(532纳米)、三次谐波(355纳米)、四次谐波(266纳米))或者激发物激光器(波长:308纳米)形成直光束,它能够透过石英基底。激发物激光束不能通过玻璃基底。因此,将玻璃基底用作第一基底的时候,用YAG激光器的基波、二次谐波或者三次谐波,最好是二次谐波(波长:532纳米)来形成直光束,它能够通过玻璃基底。In the present invention, in order for the laser beam to pass through the first substrate, it is necessary to properly select the types of the laser beam and the first substrate. For example, when using a quartz substrate as the first substrate, use a YAG laser (fundamental (1064 nm), second harmonic (532 nm), third harmonic (355 nm), fourth harmonic (266 nm)) Or an excimer laser (wavelength: 308nm) forms a straight beam, which can pass through a quartz substrate. The excimer laser beam cannot pass through the glass substrate. Therefore, when a glass substrate is used as the first substrate, the fundamental wave, the second harmonic wave or the third harmonic wave, preferably the second harmonic wave (wavelength: 532 nm) of the YAG laser is used to form a straight beam, which can pass through Glass substrate.
另外,可以采用通过将流体(加压流体或者气体)喷射到第一粘合层分离第一基底的方法(通常是喷射水流法),或者采用结合该方法的方法。In addition, a method of separating the first substrate by spraying a fluid (pressurized fluid or gas) to the first adhesive layer (usually a water jet method) may be used, or a method combining the method may be used.
如果第一粘合层是用非晶硅薄膜做成的,第一粘合层就可以用联氨去除。If the first adhesive layer is made of an amorphous silicon film, the first adhesive layer can be removed with hydrazine.
另外,可以采用JP 8-288522 A中描述的通过腐蚀分离第一基底的方法。具体而言,将氧化硅薄膜(SOG)用作第一粘合层,用氟化氢去除它。此时,通过溅射或者CVD法,不需要去除的氧化硅薄膜具有精细结构,从而用氟化氢去除第一粘合层的时候氧化硅薄膜能够提供足够的选择余地是非常重要的。Alternatively, the method of separating the first substrate by etching described in JP 8-288522 A may be employed. Specifically, a silicon oxide film (SOG) was used as the first adhesive layer, which was removed with hydrogen fluoride. At this time, since the silicon oxide film that does not need to be removed has a fine structure by sputtering or CVD, it is very important that the silicon oxide film can provide sufficient options when removing the first adhesive layer with hydrogen fluoride.
利用这样一种结构,即使第二和第三基底采用非常薄的基底,具体而言50-300微米,最好是150-200微米,仍然能够获得高可靠性的发光装置。利用已知的制造设备也很难在这样薄的基底上形成元件。但是,由于元件是粘合到第一基底上去的,因此可以利用厚基底制造设备而不需要改变设备。With such a structure, even if very thin substrates are used for the second and third substrates, specifically 50-300 microns, preferably 150-200 microns, a highly reliable light-emitting device can still be obtained. It is also difficult to form components on such thin substrates using known fabrication equipment. However, since the components are bonded to the first substrate, the device can be fabricated using a thick substrate without changing the device.
利用包括多层绝缘膜的密封膜,能够有效地缓解湿气或者氧气透过而引起老化。此外还能够防止基底弯曲的时候发生开裂。结果是能够获得更加柔软的发光装置。With the sealing film including the multi-layer insulating film, aging caused by moisture or oxygen permeation can be effectively mitigated. In addition, cracking occurs when the substrate is bent. As a result, a more flexible light emitting device can be obtained.
实施方案3Embodiment 3
利用这个实施方案,详细介绍形成像素部分周围驱动电路(源信号线驱动电路和栅信号线驱动电路)TFT和像素部分的一种方法。在这个实施方案中,仅仅是将CMOS电路作为驱动电路的一个基本单元来加以简要介绍。Using this embodiment, a method of forming TFTs of driver circuits (source signal line driver circuit and gate signal line driver circuit) around the pixel portion and the pixel portion will be described in detail. In this embodiment, only the CMOS circuit is briefly introduced as a basic unit of the driving circuit.
首先,如图10A所示,用非晶硅薄膜在玻璃,比方说CORNING公司的第7059号和第1737号玻璃,鹏硅酸钡玻璃或者硼酸硅铝玻璃,形成的第一基底上形成第一粘合膜5001,它的厚度为100-500纳米(最好是300纳米)。可以用低压CVD法、等离子体法、溅射法或者蒸发法形成第一粘合膜5001。在这个实施方案中用溅射法形成第一粘合膜5001。First, as shown in FIG. 10A, an amorphous silicon film is used to form a first substrate on a glass, such as No. 7059 and No. 1737 glasses of CORNING, barium silicate glass or borosilicate glass. The
下一步在第一粘合膜5001上形成氧化硅薄膜、氮氧化硅薄膜或者氮氧化硅薄膜这样的绝缘膜形成的一层基薄膜5002。基薄膜5002能够在去掉第一粘合层5001的时候防止基底5000上形成的元件从基底5000上剥离。例如,用等离子体CVD法从SiH4、NH3和N2O形成厚度为10-200纳米(最好是50-100纳米)的氮氧化硅薄膜。同样,在它的上面利用SiH4和N2O叠上厚度为50-200纳米(最好是100-150纳米)的氮氧化硅薄膜。在这个实施方案中,这个基薄膜5002有两层,但是也可以用上述绝缘膜之一形成一个单层薄膜,或者是用上述绝缘膜形成两层以上的多层膜。Next, a
在非晶半导体薄膜上采用激光结晶或者已知的热结晶方法获得结晶半导体薄膜,从这样的结晶半导体薄膜形成岛屿一样的半导体层5003-5006。这些岛屿一样的半导体层5003-5006的厚度在25-80纳米(最好是30-60纳米)之间。没有对结晶半导体薄膜的材料进行任何限制,但是这种结晶半导体薄膜最好是用硅、锗化硅(SiGe)合金等等形成。A crystalline semiconductor film is obtained by laser crystallization or a known thermal crystallization method on an amorphous semiconductor film, and island-like semiconductor layers 5003-5006 are formed from such a crystalline semiconductor film. The thickness of these island-like semiconductor layers 5003-5006 is between 25-80 nanometers (preferably 30-60 nanometers). The material of the crystalline semiconductor film is not limited in any way, but the crystalline semiconductor film is preferably formed of silicon, silicon germanium (SiGe) alloy, or the like.
用激光结晶法制造结晶半导体薄膜的时候,采用脉冲类型或者连续发光类型的激发物激光器、YAG激光器和YVO4激光器。采用这些激光器的时候,最好是采用一种方法,用光学系统将激发光装置发射的激光束汇聚成一条直线,然后照射到半导体薄膜上。由操作员选择合适的结晶条件。采用激发物激光器的时候,将脉冲振荡频率设置为300赫兹,将激光能量密度设置为100-400毫焦耳每平方厘米(一般是200-300毫焦耳每平方厘米)。采用YAG激光器的时候,脉冲振荡频率最好是设置成30-300kHz,采用它的二次谐波,激光能量密度最好是300-600毫焦耳每平方厘米(一般是350-500毫焦耳每平方厘米)。汇聚成直线形状,宽度为100-1000微米,例如400微米,的激光光束,照射到整个基底表面。此时,直线激光光束的重叠比被设置为50-90%。When producing crystalline semiconductor thin films by laser crystallization, excimer lasers, YAG lasers, and YVO 4 lasers of pulse type or continuous emission type are used. When using these lasers, it is preferable to use a method in which the laser beam emitted from the excitation light device is converged into a straight line by an optical system, and then irradiated onto the semiconductor thin film. It is up to the operator to select the appropriate crystallization conditions. When an excimer laser is used, the pulse oscillation frequency is set to 300 Hz, and the laser energy density is set to 100-400 millijoules per square centimeter (generally 200-300 millijoules per square centimeter). When using a YAG laser, the pulse oscillation frequency is preferably set to 30-300kHz, and its second harmonic is used, and the laser energy density is preferably 300-600 millijoules per square centimeter (generally 350-500 millijoules per square centimeter centimeter). A laser beam converged into a straight line with a width of 100-1000 microns, such as 400 microns, is irradiated onto the entire surface of the substrate. At this time, the overlapping ratio of the straight laser beams is set to 50-90%.
下一步形成覆盖岛屿一样的半导体层5003-5006的一个栅绝缘膜5007。这个栅绝缘膜5007是利用包括硅,厚度为40-150纳米,采用CVD法或者溅射法形成的。在这个实施方案中,栅绝缘膜5007是从120纳米厚的氮氧化硅形成的。但是,栅绝缘膜并不限于这样的氮氧化硅薄膜,而是可以是包括其它东西,单层或者多层的绝缘膜。例如,采用氧化硅薄膜的时候,用等离子体CVD法混合TEOS和O2,反应压力为40Pa,基底温度为300-400摄氏度,采用0.5-0.8W/cm2的高频(13.56MHz)功率密度放电。这样就可以通过放电形成氧化硅薄膜。在400-500摄氏度的退火温度下,通过这种方式制造的氧化硅薄膜能够使栅绝缘膜获得良好的特性。Next, a
形成栅电极的第一导电膜5008和第二导电膜5009是在栅绝缘膜5007上形成的。在这个实施方案中,用Ta形成厚度为50-100纳米的第一导电膜5008,用W形成厚度为100-300纳米的第二导电膜5009。A first
采用溅射方法形成Ta薄膜,Ta的靶子被Ar溅射。此时,Ar中添加适当量的Xe和Kr的时候,Ta薄膜的内部应力被释放,因而能够防止该薄膜剥落。α相Ta薄膜的电阻是大约20μΩcm,这个Ta薄膜可以被用作栅电极。但是,β相Ta薄膜的电阻是大约180μΩcm,这个Ta薄膜不适合用作栅电极。事先形成晶体结构接近Ta薄膜的α相的结构,并且厚度为10-50纳米的氮化钽,作为Ta薄膜的基,形成α相Ta薄膜的时候,就能够很容易地获得α相Ta薄膜。The Ta film is formed by sputtering, and the Ta target is sputtered by Ar. At this time, when an appropriate amount of Xe and Kr is added to Ar, the internal stress of the Ta thin film is released, thereby preventing the thin film from peeling off. The resistance of the α-phase Ta film is about 20 µΩcm, and this Ta film can be used as a gate electrode. However, the resistance of the β-phase Ta film is about 180 µΩcm, and this Ta film is not suitable for use as a gate electrode. The tantalum nitride with a crystal structure close to the α-phase structure of the Ta film and a thickness of 10-50 nanometers is formed in advance as the base of the Ta film. When the α-phase Ta film is formed, the α-phase Ta film can be easily obtained.
将钨作为靶子,采用溅射方法形成钨薄膜。此外,可以利用六氟化钨(WF6)采用热CVD法形成钨薄膜。无论如何,要将这个薄膜用作栅电极,都要减小它的电阻。需要将钨薄膜的电阻设置成等于或者小于20μΩcm。当钨的晶体颗粒变大的时候,能够减小钨薄膜的电阻。但是,当钨薄膜中有许多杂质,比方说氧气等等的时候,就能够防止结晶,电阻会增大。因此,对于溅射法,采用纯度为99.9999%或者99.99%的钨靶,形成薄膜的时候充分注意不要将杂质从气相混合到钨薄膜中,就能够形成这个钨薄膜。这样就能够实现9-20μΩcm的电阻。Using tungsten as a target, a tungsten thin film is formed by sputtering. In addition, a tungsten thin film can be formed using tungsten hexafluoride (WF 6 ) by thermal CVD. In any case, to use this thin film as a gate electrode, its resistance must be reduced. It is necessary to set the resistance of the tungsten thin film to be equal to or less than 20 μΩcm. When the crystal grains of tungsten become larger, the resistance of the tungsten thin film can be reduced. However, when there are many impurities in the tungsten film, such as oxygen, etc., crystallization can be prevented and the resistance will increase. Therefore, for the sputtering method, the tungsten film can be formed by using a tungsten target with a purity of 99.9999% or 99.99%, and paying sufficient attention not to mix impurities from the gas phase into the tungsten film when forming the film. This enables a resistance of 9-20 μΩcm to be achieved.
在这个实施方案中,第一导电膜5008是用Ta形成的,第二导电膜5009是用钨形成的。但是,本发明并不限于这种情况。这些导电薄膜中的每一个也可以用Ta、W、Ti、Mo、Al和Cu或这一这些元素为主要组成的合金材料或者化合物材料来制作。还有,也可以采用掺杂了磷这种杂质的多晶硅薄膜代表的半导体薄膜。除了这个实施方案说明的以外的其它组合实例包括:用氮化钽(TaN)形成的第一导电膜5008、用W形成的第二导电膜的组合;第一导电膜5008是用氮化钽(TaN)、第二导电膜5009是用Al形成的一个组合;以及第一导电膜5008是用氮化钽(TaN),第二导电膜5009是用Cu形成的一个组合。In this embodiment, the first
下面用抗蚀剂形成一个模板,进行第一次腐蚀形成电极和导线。在这个实施方案中,采用ICP(电感耦合等离子体)腐蚀法,将CF4和Cl2跟一种气体混合起来进行腐蚀。在1Pa的压力下,将500W的RF(13.56MHz)功率施加到线圈类型的电极上,产生等离子体。同时将100W的RF(13.56MHz)功率施加到基底一侧(样本级)施加基本上是负电压的一个自偏置电压。CF4和Cl2混合的时候,将W薄膜和Ta薄膜腐蚀到同样程度。Next, a template is formed with a resist, and the first etching is performed to form electrodes and wires. In this embodiment, ICP (Inductively Coupled Plasma) etching is used, and CF 4 and Cl 2 are mixed with a gas for etching. Under a pressure of 1 Pa, 500 W of RF (13.56 MHz) power was applied to the coil-type electrode to generate plasma. Simultaneously, 100 W of RF (13.56 MHz) power was applied to the substrate side (sample level) to apply a self-bias voltage that was substantially negative. When CF 4 and Cl 2 are mixed, W film and Ta film are etched to the same extent.
在上述腐蚀条件下,通过将抗蚀剂形成的模板做成适当的形状,利用加在基底一侧的偏置电压,将第一导电层和第二导电层的末端部分做成锥形。锥子部分的角度为15到45度。延长腐蚀时间10-20%比较好,这样就能够完成腐蚀而不会在栅绝缘膜上留下残留物。由于氮氧化硅到W薄膜的选择比为2-4(通常是3),氮氧化硅薄膜暴露的表面被过腐蚀过程腐蚀掉20-50纳米。这样,第一个腐蚀过程形成第一和第二导电层形成的第一个形状的导电层5011-5016(第一导电层5011a-5016a和第二导电层5011b-5016B)。在栅绝缘膜5007上将第一个形状的导电层5011-5016没有覆盖的区域腐蚀大约20-50纳米(见图10A)。Under the above etching conditions, the end portions of the first conductive layer and the second conductive layer are tapered by applying a bias voltage to the substrate side by making a template formed of a resist into an appropriate shape. The angle of the awl portion is 15 to 45 degrees. It is better to extend the etching time by 10-20% so that the etching can be completed without leaving residues on the gate insulating film. Since the selectivity ratio of the silicon oxynitride film to the W film is 2-4 (usually 3), the exposed surface of the silicon oxynitride film is etched away by 20-50 nm by the overetching process. Thus, the first etching process forms the conductive layers 5011-5016 (first conductive layers 5011a-5016a and second conductive layers 5011b-5016B) of the first shape formed by the first and second conductive layers. Areas not covered by the conductive layers 5011-5016 of the first shape are etched by about 20-50 nm on the gate insulating film 5007 (see FIG. 10A).
然后,进行第一次掺杂,添加杂质元素,得到n型导体。掺杂方法可以是离子掺杂法或者离子植入法。离子掺杂法的条件是剂量为1×1013-5×1014个原子每平方厘米,电子电压为60-100keV。属于第15族的元素,通常是磷(P)或者砷(As)被用作杂质元素来获得n型导体。但是在这里使用磷(P)。此时,导电层5011-5015被用作杂质元素模板,形成n型导体,用自对准方法形成第一杂质区5017-5025。以1×1020-1×1021个原子每立方厘米的密度将给出n型导体的杂质添加到第一个杂质区5017-5025。(见图10B)Then, the first doping is performed to add impurity elements to obtain an n-type conductor. The doping method may be an ion doping method or an ion implantation method. The conditions of the ion doping method are that the dose is 1×10 13 -5×10 14 atoms per square centimeter, and the electron voltage is 60-100keV. An element belonging to Group 15, usually phosphorus (P) or arsenic (As) is used as an impurity element to obtain an n-type conductor. But phosphorus (P) is used here. At this time, the conductive layers 5011-5015 are used as impurity element templates to form n-type conductors, and the first impurity regions 5017-5025 are formed by a self-alignment method. Impurities giving n-type conductors are added to the first impurity regions 5017-5025 at a density of 1x1020-1x1021 atoms per cubic centimeter. (See Figure 10B)
下一步进行第二次腐蚀过程,而不去掉抗蚀剂模板,如图10C所示。用CF4、Cl2和O2有选择地腐蚀W薄膜。用第二个腐蚀过程形成第二个形状的导电层5026-5031(第一导电层5026a-5031a和第二导电层5026b-5031b)。进一步将第二个形状的导电层5026-5031没有覆盖的栅绝缘膜5007的区域腐蚀大约20-50纳米,从而形成一个薄区域。The next step is to perform a second etching process without removing the resist template, as shown in FIG. 10C. The W film was selectively etched with CF 4 , Cl 2 and O 2 . A second etching process is used to form the second shape of conductive layers 5026-5031 (first
利用CF4和Cl2混合气体和Ta薄膜腐蚀W薄膜的腐蚀反应可以利用产生的蒸汽压力和离子以及反应产品来实现。将W和Ta的氟和氯化物蒸汽压力进行比较的时候,作为W的氟化物的WF6蒸汽压力特别高,其它WCl5、TaF5和TaCl5的蒸汽压力互相相等。因此,用CF4和Cl2的混合气体腐蚀W薄漠和Ta薄膜。但是,将适当量的O2添加到这种混合气体中去的时候,CF4和O2发生反应,成CO和F,于是产生大量的F原子团或者F离子。结果,氟化物蒸汽压力非常高的W薄膜的腐蚀速度加快。与此相反,增加F的时候Ta薄膜腐蚀速度的增加非常小。由于跟W比,Ta很容易氧化,所以Ta薄膜的表面通过添加O2而氧化。由于没有任何Ta的氧化物跟氟或者氯化物反应,Ta薄膜的腐蚀速度进一步降低。因此,有可能使W薄膜和Ta薄膜的腐蚀速度出现差别,使W薄膜的腐蚀速度比Ta薄膜的腐蚀速度高。The corrosion reaction of W film corrosion using CF4 and Cl2 mixed gas and Ta film can be realized by using the generated vapor pressure and ions and reaction products. When comparing the vapor pressures of fluorine and chloride of W and Ta, the vapor pressure of WF 6 which is the fluoride of W is particularly high, and the vapor pressures of other WCl 5 , TaF 5 , and TaCl 5 are equal to each other. Therefore, the W thin film and Ta film were etched with the mixed gas of CF 4 and Cl 2 . However, when an appropriate amount of O 2 is added to this mixed gas, CF 4 and O 2 react to form CO and F, thus producing a large number of F atomic groups or F ions. As a result, the corrosion rate of the W film whose fluoride vapor pressure is very high increases. On the contrary, the increase of Ta film etching rate is very small when F is increased. Since Ta is easily oxidized compared to W, the surface of the Ta film was oxidized by adding O2 . Since there is no reaction of any Ta oxide with fluorine or chloride, the corrosion rate of the Ta film is further reduced. Therefore, there is a possibility that the etching rate of the W film and the Ta film may be different, and the etching rate of the W film may be higher than that of the Ta film.
如图11A所示,进行第二次掺杂。在这种情况下,通过将剂量减小到低于第一次掺杂过程的剂量,用于给出n型导电性的杂质元素的量比第一次掺杂过程的少,加速电压更高。例如,加速电压被设置成70-120keV,剂量是1×1013个原子每平方厘米。这样,在图10B所示的岛屿一样的半导体层内形成的第一个杂质区内形成一个新的杂质区。掺杂的时候,第二种形状的导电层5026-5030被用作杂质元素的模板,进行掺杂从而使得杂质元素也被添加到第一导电层5026a-5030a下面的区域。这样就形成第三个杂质区5032-5041。第三个杂质区5032-5036包括磷(P),密度梯度比较小,跟第一导电层5026a-5030a的锥形部分的厚度梯度相吻合。在重叠第一导电层5026a-5030a的锥形部分的半导体层中,杂质密度在中心略微低于第一导电层5026a-5030a的锥形部分的边缘部分。但是这种差别很小,整个半导体层几乎是具有相同的杂质密度。As shown in FIG. 11A, the second doping is performed. In this case, by reducing the dose to be lower than that of the first doping process, the amount of impurity elements used to give n-type conductivity is less than that of the first doping process, and the acceleration voltage is higher . For example, the acceleration voltage is set to 70-120keV, and the dose is 1×10 13 atoms per square centimeter. Thus, a new impurity region is formed in the first impurity region formed in the island-like semiconductor layer shown in FIG. 10B. When doping, the conductive layers 5026-5030 of the second shape are used as templates for impurity elements, and doping is performed so that the impurity elements are also added to the regions below the first
然后进行第三次腐蚀处理,如图11B所示。将CHF6用作腐蚀气体,采用反应离子腐蚀(RIE)技术。通过第三次腐蚀处理,第一导电层5026a-5031a的锥形部分被部分地腐蚀,缩小第一导电层重叠半导体层的区域。这样形成的是第三种形状的导电层5037-5042(第一导电层5037a-5042a和第二导电层5037b-5042b)。此时,第三种形状的导电层5037-5042没有覆盖的栅绝缘膜5007的区域被进一步腐蚀,削薄到大约20-50纳米。Then a third etching treatment is performed, as shown in FIG. 11B. Using CHF 6 as the etching gas, reactive ion etching (RIE) technology is employed. Through the third etching process, the tapered portion of the first
通过第三次腐蚀处理形成第三个杂质区5032-5036。第三个杂质区5032a-5036a分别重叠第一导电层5037a-5041a,第二个杂质区5032b-5036b每个都在第一个杂质区和第三个杂质区之间形成。The third impurity regions 5032-5036 are formed by the third etching process. The third impurity regions 5032a-5036a overlap the first conductive layers 5037a-5041a, respectively, and the second impurity regions 5032b-5036b are each formed between the first impurity region and the third impurity region.
如图11C所示,在岛屿一样的半导体层5004和5006中形成跟第一个导电类型相反的第四个杂质区5043-5054,形成p沟道TFT。第三种形状的导电层5038b和5041b被用作杂质元素的模板,以一种自对准方式形成杂质区。在这一点上,用于形成n沟道TFT和导线部分5042的岛屿一样的半导体层5003和5005全部被抗蚀剂模板5200覆盖。杂质区5043-5054已经掺杂了不同密度的磷。杂质区5043-5054通过离子掺杂掺杂了乙硼烷(B2H6),从而使每个区域内乙硼烷比磷多,每个区域都包括密度为2×1020-2×1021个原子每立方厘米的杂质元素。As shown in FIG. 11C, a fourth impurity region 5043-5054 having a conductivity type opposite to that of the first one is formed in the island-
通过以上步骤,在岛屿一样的半导体层中形成杂质区。覆盖岛屿一样的半导体层的第三种形状的导体层5037-5041被用作栅电极。数字5042说明的部分被用作岛屿一样的源信号线。Through the above steps, impurity regions are formed in the island-like semiconductor layer. Conductor layers 5037-5041 of the third shape covering the island-like semiconductor layer are used as gate electrodes. The portion illustrated by the numeral 5042 is used as the island-like source signal line.
去掉抗蚀剂模板5200以后,激活添加到岛屿一样的半导体层中的杂质元素,控制导电类型。这一工艺是利用一个熔炉进行炉内退火通过热退火方法完成的。也可以采用激光退火法或者快速热退火法(RTA法)。在热退火法中,这一工艺是在400-700摄氏度,通常是500-600摄氏度的温度,在氮气中,其中氧气浓度等于或者小于1ppm,最好是等于或者小于0.1ppm的情况下完成的。在这个实施方案中,在500摄氏度的温度下进行4个小时的热处理。当第三种形状的导电层5037-5042里使用的导电材料抗不住热的时候,最好是在形成一个中间层绝缘膜(将硅作为基本组成)以后进行激活,以便保护导线等等。After removing the resist
此外,在包括3-100%氢的气体内,在300-450摄氏度的温度下进行1-12个小时的热处理,使岛屿一样的半导体层被氢化。这个步骤是利用热激活的氢终止半导体层的不饱和键。等离子体氢化(利用等离子体激活的氢)可以作为另一种氢化手段。In addition, the island-like semiconductor layer is hydrogenated by performing heat treatment at a temperature of 300-450 degrees Celsius for 1-12 hours in a gas including 3-100% hydrogen. This step is to terminate the unsaturated bonds of the semiconductor layer with thermally activated hydrogen. Plasma hydrogenation (using plasma-activated hydrogen) can be used as another means of hydrogenation.
下一步,如图12A所示,用100-200纳米厚的氮氧化硅薄膜形成第一个层间绝缘膜5055。在第一个层间绝缘膜的上面用有机绝缘材料形成第二个层间绝缘膜。然后,通过第一个层间绝缘膜5055、第二个层间绝缘膜5056和栅绝缘膜5007形成接触孔。形成每根导线(包括连接线和信号线)5057-5062以及5064的图案。然后形成跟连接导线5062连接的像素电极5063的图案,并形成它。Next, as shown in FIG. 12A, a first
以有机树脂为材料的薄膜被用作第二个层间绝缘膜5056。聚酰亚胺、聚酰胺、丙烯酸、BCB等等可以被用作这一有机树脂。具体而言,由于第二个层间绝缘膜5056主要是用于平面化,能够使薄膜平整的丙烯酸是最好的。在这个实施方案中,形成厚度足以平整TFT造成的差异的一层丙烯酸薄膜。它的薄膜厚度最好是1-5微米(设置成2-4微米更好)。A thin film made of an organic resin is used as the second
在接触孔的形成过程中,形成到达n型杂质区5017、5018、5021和5023或者p型杂质区5043-5054的接触孔,到达导线5042的接触孔,到达电源线的接触孔(图中没有画出),以及到达栅电极的接触孔(没有画出)。In the formation process of the contact holes, contact holes reaching the n-
此外,按照需要的形状形成一个三层结构,用作导线(包括连接线和信号线)5057-5062、5064。在这个三层结构中,用溅射方法形成厚度为100纳米的Ti薄膜,厚度为300纳米包括Ti的铝薄膜,以及厚度为150纳米的Ti薄膜。但是也可以使用另一个导电薄膜。In addition, a three-layer structure is formed according to the required shape, which is used as wires (including connecting wires and signal wires) 5057-5062, 5064. In this three-layer structure, a Ti film with a thickness of 100 nm, an aluminum film including Ti with a thickness of 300 nm, and a Ti film with a thickness of 150 nm were formed by the sputtering method. But another conductive film can also be used.
在这个实施方案中,形成厚度是110纳米的一个ITO薄膜,作为像素电极,在它上面形成图案。通过这个像素电极5063跟连接电极5062接触,跟这个连接导线5062重叠,而形成接触。此外,也可以使用混合2-20%氧化锌(ZnO)和氧化铟得到的透明导电膜。这个像素电极5063成为OLED的阳极(见图12A)。In this embodiment, an ITO film having a thickness of 110 nm was formed as a pixel electrode, and a pattern was formed thereon. The
如图12B所示,形成包括硅,厚度为500纳米的绝缘膜(在这个实施方案中是氧化硅薄膜)。形成第三个层间绝缘膜5065,其中的开孔跟像素电极5063的位置相对应。形成开孔的时候,利用湿腐蚀法能够很容易地使开孔的侧壁成为锥形。当开孔的侧壁不够平缓的时候,不平坦引起有机发光层的性能下降成为一个严重的问题。As shown in FIG. 12B, an insulating film (in this embodiment, a silicon oxide film) comprising silicon is formed to a thickness of 500 nm. A third
下一步利用真空蒸发法而不暴露在空气中,连续形成一个有机发光层5066和一个阴极(MgAg电极)5067。有机发光层5066的厚度为80-200纳米(一般是100-120纳米),阴极5067的厚度是180-300纳米(一般是200-250纳米)。Next, an organic light-emitting
在这个过程中,顺序地形成对应于红色、绿色和蓝色像素的有机发光层。在这种情况下,由于有机发光层对溶液的抗蚀能力不够,因此必须单独为每一种颜色形成有机发光层,而不是采用光刻技术。因此,最好是用金属模板覆盖一部分,除了需要的像素以外,从而只在需要的部分有选择地形成有机发光层。In this process, organic light emitting layers corresponding to red, green, and blue pixels are sequentially formed. In this case, since the organic light emitting layer is not sufficiently resistant to solution, it is necessary to form the organic light emitting layer for each color separately instead of using photolithography. Therefore, it is preferable to cover a part with a metal template, except required pixels, so that the organic light emitting layer is selectively formed only in required parts.
换言之,首先做成一个模板,覆盖除了对应于红色的像素以外的所有部分,用这个模板有选择地形成发射红光的有机发光层。下一步做成一个模板,覆盖除了对应于绿色像素以外的所有部分,用这个模板有选择地形成发射绿光的有机发光层。接下来,做成一个模板,覆盖除了对应于蓝光像素以外的所有部分,用这个模板有选择地形成发射蓝光的有机发光层。在这里采用不同的模板,但是也可以重复使用同一个模板。In other words, a template is first made to cover all parts except the pixels corresponding to red, and the organic light-emitting layer that emits red light is selectively formed with this template. The next step is to make a template that covers all but the pixels corresponding to green, and use this template to selectively form the organic light-emitting layer that emits green light. Next, a template is made to cover all parts except the pixels corresponding to blue light, and the organic light-emitting layer that emits blue light is selectively formed with this template. A different template is used here, but the same template can also be reused.
在这里采用形成对应于RGB的三种OLED的一个系统。但是也可以采用结合了发射白光的OLED和滤色片的系统,OLED发射蓝光或者蓝绿光结合了荧光物质的系统(荧光色转换层:CCM),利用透明电极等等将对应于R、G、B的OLED跟阴极重叠的系统。A system forming three kinds of OLEDs corresponding to RGB is employed here. However, it is also possible to use a system that combines OLEDs that emit white light and color filters, OLEDs that emit blue light or blue-green light that combine fluorescent substances (fluorescence color conversion layer: CCM), and use transparent electrodes, etc. to convert the corresponding R, G , A system in which the OLED of B overlaps with the cathode.
可以将一种已知的材料用作有机发光层5066。使用有机材料的时候最好考虑驱动电压。例如,最好是将包括空穴注入层、空穴传递层、发光层和电子注入层的一个四层结构用作有机发光层。A known material can be used as the organic
在像素(同一条线上的像素)旁边形成阴极5067,包括用金属模板将栅电极跟同一个栅信号线连接的开关TFT。这个实施方案将MgAg用作阴极5067,但是并不限于此。也可以将其它材料用作阴极5067。A
最后形成厚度为300纳米,用氮化硅薄膜形成的一个平面化薄膜5068。实际上,平面化薄膜5068起到了保护有机发光层5066不受水汽等影响的作用。但是,可以通过形成平面化薄膜5068进一步提高OLED的可靠性。Finally, a
这样就完成了图12B所示的状态。虽然图中没有说明,但是按照实施方案模式1的制造方法,利用第二粘合层将提供密封膜的第二基底跟平面化薄膜5068粘合起来。另外,可以按照实施方案模式1所示的方法执行以下步骤。按照实施方案模式2的制造方法,成为密封膜的第二基底利用第二粘合层跟平面化薄膜5068粘合起来。另外,可以按照实施方案模式2的方法执行以下步骤。This completes the state shown in Fig. 12B. Although not illustrated in the drawings, according to the manufacturing method of Embodiment Mode 1, the second substrate providing the sealing film and the
在这个实施方案中形成发光装置的过程里,为了电路结构简单和工艺过程方便,源信号线是用Ta和W形成的,它们是栅电极的材料,栅信号线是从Al形成的,它们是源和漏极的导线材料。In the process of forming the light-emitting device in this embodiment, for the sake of simple circuit structure and convenient process, the source signal line is formed of Ta and W, which are the materials of the gate electrode, and the gate signal line is formed of Al, which is source and drain wire material.
这个实施方案中的发光装置具有很高的可靠性,除了像素部分以外,在驱动电路部分安排最佳结构的TFT,改进了工作特性。另外,在结晶工艺中,通过增加Ni这样的金属催化剂,还提高了结晶度。这样,源信号线驱动电路的驱动频率可以达到10MHz甚至更高。The light-emitting device in this embodiment has high reliability, except for the pixel portion, by arranging optimally structured TFTs in the driving circuit portion, improving the operating characteristics. In addition, in the crystallization process, by adding a metal catalyst such as Ni, the crystallinity is also improved. In this way, the driving frequency of the source signal line driving circuit can reach 10 MHz or even higher.
首先,将其结构能够减少热载流子注入,从而尽可能地不降低工作速度的TFT用作形成驱动电路的CMOS电路的n沟道TFT。在这里,驱动电路包括移位寄存器、缓冲器、电平变换器、行顺序驱动中的锁存器、点顺序驱动中的传输栅。First, a TFT whose structure can reduce hot carrier injection so as not to lower the operating speed as much as possible is used as an n-channel TFT of a CMOS circuit forming a driver circuit. Here, the driving circuit includes a shift register, a buffer, a level shifter, a latch in row-sequential driving, and a transfer gate in dot-sequential driving.
对于这个实施方案,n沟道TFT的活动层包括源区、漏区、通过栅绝缘膜跟栅电极重叠的重叠LDD(Lov区域)、不通过栅绝缘膜跟栅电极重叠的偏移LDD区(Loff区域)和沟道形成区。For this embodiment, the active layer of an n-channel TFT includes a source region, a drain region, an overlapping LDD (Lov region) overlapping with a gate electrode through a gate insulating film, an offset LDD region not overlapping with a gate electrode through a gate insulating film ( Loff region) and channel formation region.
CMOS电路的p沟道TFT中的热载流子注入引起的性能变坏几乎是可以忽略的。因此在这种n沟道TFT中不需要形成LDD区域。但是,跟n沟道TFT相似,LDD区可以用作热载流子的防范措施。The performance degradation caused by hot carrier injection in p-channel TFTs of CMOS circuits is almost negligible. Therefore, there is no need to form an LDD region in such an n-channel TFT. However, similar to the n-channel TFT, the LDD region can be used as a hot carrier protection measure.
此外,当这个驱动电路中采用CMOS电路,通过沟道形成区双向流过电流,也就是CMOS电路中源区和漏区的角色颠倒,的时候,构成CMOS电路的n沟道TFT最好是形成LDD区,从而使沟道形成区夹在LDD区中间。作为它的一个实例,给出点顺序驱动中使用的一个传输栅。驱动电路中使用尽可能地减小截止状态电流所需要的CMOS电路的时候,形成CMOS电路的n沟道TFT最好有一个Lov区。点顺序驱动中使用的传输栅也可以作为它的一个实例。In addition, when a CMOS circuit is used in this drive circuit, and current flows bidirectionally through the channel forming region, that is, the role of the source region and the drain region in the CMOS circuit is reversed, the n-channel TFT constituting the CMOS circuit is preferably formed LDD region, so that the channel formation region is sandwiched between the LDD region. As an example thereof, a transmission gate used in dot sequential driving is given. When a CMOS circuit required to reduce the off-state current as much as possible is used in the driving circuit, it is preferable that the n-channel TFT forming the CMOS circuit has a Lov region. A transfer gate used in point sequential driving can also be used as an example of it.
实际上,按照实施方案模式1或者2做出发光装置的时候,最好是采用一层保护膜(分层膜、紫外可修复树脂膜)对它进行封装(密封),该保护膜具有很好的气密性,不允许除气和半透明密封膜,以便防止暴露给外界空气。在这种情况下,OLED的可靠性通过在密封膜内部填充惰性气体,放置稀释材料(例如氧化钡)而得以提高。In fact, when making a light-emitting device according to Embodiment Mode 1 or 2, it is best to use a layer of protective film (layered film, UV-repairable resin film) to encapsulate (seal) it, and the protective film has a good Airtight, does not allow outgassing and a translucent sealing film, in order to prevent exposure to the outside air. In this case, the reliability of the OLED is improved by filling the inside of the sealing film with an inert gas, placing a diluent material such as barium oxide.
此外,通过封装等等增强气密性以后,用一个连接器(柔性印刷电路:FPC)使这个装置成为一个产品。连接器用于跟外部信号端子连接。这种状态的装置已经能够装运,在这里将它叫做自发射装置。Furthermore, after enhancing airtightness by packaging or the like, this device is made a product with a connector (flexible printed circuit: FPC). Connectors are used to connect with external signal terminals. A device in this state is ready for shipment and is referred to herein as a self-launching device.
此外,根据这个实施方案中的工艺,可以减少制造发光装置所需要的遮光膜的数量。结果减少了过程,从而降低了成本,提高了产量。Furthermore, according to the process in this embodiment, the number of light-shielding films required to manufacture a light-emitting device can be reduced. The result is a reduced process, resulting in lower costs and higher yields.
要注意可以将实施方案1-2结合起来成为实施方案3。It is to be noted that embodiments 1-2 can be combined into embodiment 3.
实施方案4Embodiment 4
在实施方案4中介绍本发明中采用逆参差类型TFT的发光装置的结构。In Embodiment 4, the structure of a light emitting device employing an inverse stagger type TFT in the present invention is described.
图13是本发明中发光装置的一个剖面图。在柔性第三基底601上形成一层密封膜601。密封膜601包括一层隔离膜601a、一层应力松弛膜601b和一层隔离膜601c。Fig. 13 is a cross-sectional view of a light emitting device in the present invention. A sealing film 601 is formed on the flexible third substrate 601 . The sealing film 601 includes an isolation film 601a, a stress relaxation film 601b, and an isolation film 601c.
在柔性第二基底606上形成一层密封膜608。密封膜608包括隔离膜608a、应力松弛膜608b和隔离膜608c。A sealing film 608 is formed on the flexible second substrate 606 . The sealing film 608 includes an isolation film 608a, a stress relaxation film 608b, and an isolation film 608c.
在密封膜601和608之间形成TFT、OLED和其它元件。在这个实施方案中,将驱动电路610中包括的TFT 604a和像素部分611中包括的TFT 604b和604c作为代表性的实例。TFTs, OLEDs, and other elements are formed between the sealing films 601 and 608 . In this embodiment, the TFT 604a included in the driver circuit 610 and the TFTs 604b and 604c included in the pixel portion 611 are taken as a representative example.
OLED 605包括一个像素电极640、一个有机发光层641和一个阴极642。OLED 605 includes a pixel electrode 640, an organic light emitting layer 641 and a cathode 642.
TFT 604a包括栅电极613和614、形成用来跟栅电极613和614接触的绝缘膜612以及形成用来跟绝缘膜612接触的半导体膜615。TFT 604b包括栅电极620和621、形成用来跟栅电极620和621接触的绝缘膜612以及形成用来跟绝缘膜612接触的半导体膜622。TFT604c包括栅电极630、形成用来跟栅电极630接触的绝缘膜612和形成用来跟绝缘膜612接触的半导体膜631。The TFT 604a includes gate electrodes 613 and 614, an insulating film 612 formed to be in contact with the gate electrodes 613 and 614, and a semiconductor film 615 formed to be in contact with the insulating film 612. The TFT 604b includes gate electrodes 620 and 621, an insulating film 612 formed to be in contact with the gate electrodes 620 and 621, and a semiconductor film 622 formed to be in contact with the insulating film 612. The TFT 604c includes a gate electrode 630 , an insulating film 612 formed to be in contact with the gate electrode 630 , and a semiconductor film 631 formed to be in contact with the insulating film 612 .
虽然在这个实例中逆参差类型的TFT被用于按照实施方案模式1制造的发光装置里,但是本发明的结构并不限于此。逆参差类型的TFT可以用于按照实施方案模式2制造的发光装置中。Although in this example an inverse stagger type TFT is used in the light-emitting device manufactured according to Embodiment Mode 1, the structure of the present invention is not limited thereto. An inverse stagger type TFT can be used in the light-emitting device manufactured according to Embodiment Mode 2.
实施方案4可以跟实施方案1随意结合。Embodiment 4 can be freely combined with Embodiment 1.
实施方案5Embodiment 5
在实施方案5中,描述通过喷射流体去掉粘合层的一个实例。In Embodiment 5, an example of removing an adhesive layer by jetting a fluid is described.
作为喷射流体的一种方法,可以从喷嘴将高压水流喷向物体(叫做喷射水流法),或者将高压气流喷向物体。如果是喷射水流法,可以用有机溶剂、酸溶液或者碱溶液替代水。对于气流,可以采用空气、氮气、二氧化碳气体或者稀有气体。此外,也可以采用从这些气体获得的等离子体。根据不希望被去除的薄膜和基底的材料和粘合层的材料来选择适当的流体是非常重要的,这样才能够在去掉粘合层的时候不会去掉这些薄膜和基底。As a method of spraying fluid, it is possible to spray a high-pressure water stream from a nozzle to an object (called a water jet method), or to spray a high-pressure air stream to an object. In the case of the water jet method, organic solvents, acid solutions, or alkaline solutions can be used instead of water. For gas flow, air, nitrogen, carbon dioxide gas, or rare gas can be used. In addition, plasmas obtained from these gases can also be used. It is very important to select the appropriate fluid based on the material of the film and substrate that is not desired to be removed and the material of the adhesive layer so that the adhesive layer can be removed without removing these films and substrates.
作为粘合层,可以采用添加了氢气、氧气、氮气或者稀有气体的多孔硅层或者硅层。在采用多孔硅层的情况下,可以对非晶硅薄膜或者多晶硅薄膜进行阳极化处理,增强它们的多孔性。As the adhesive layer, a porous silicon layer or a silicon layer to which hydrogen, oxygen, nitrogen, or a rare gas is added can be used. In the case of using a porous silicon layer, the amorphous silicon film or the polycrystalline silicon film can be anodized to enhance their porosity.
图14说明如何用喷射水流法去掉粘合层。在基底603和606之间有OLED 604。OLED 604覆盖了一层绝缘膜603。在绝缘膜603和基底606之间有包括多层绝缘膜的密封膜609。Figure 14 illustrates how to remove the adhesive layer with a water jet. Between the substrates 603 and 606 there is an OLED 604. The OLED 604 is covered with an insulating film 603. Between the insulating film 603 and the base 606 is a sealing film 609 including a multilayer insulating film.
在基底603和OLED 604之间提供绝缘膜603和粘合层606。粘合层606跟基底603接触。虽然图14中只是将OLED作为代表,但是在绝缘膜605和603之间常常采用TFT和其它元件。An insulating film 603 and an adhesive layer 606 are provided between the substrate 603 and the OLED 604. The adhesive layer 606 is in contact with the substrate 603 . Although only OLEDs are represented in FIG. 14 , TFTs and other elements are often used between insulating films 605 and 603 .
粘合层606的厚度为0.1-900微米(最好是0.5-10微米)。在实施方案5中,将厚度为1微米的SOG薄膜用作粘合层606。The adhesive layer 606 has a thickness of 0.1-900 microns (preferably 0.5-10 microns). In Embodiment 5, an SOG film having a thickness of 1 micron is used as the adhesive layer 606 .
从喷嘴608将流体607喷向粘合层606。为了将流体607有效地喷射到粘合层606暴露的整个部分,建议喷射流体的时候,让粘合层606沿着垂直于基底601的一个中心线旋转,如图14所示。Fluid 607 is sprayed from nozzle 608 towards adhesive layer 606 . In order to effectively spray the fluid 607 onto the entire exposed portion of the adhesive layer 606 , it is recommended that the adhesive layer 606 rotate along a centerline perpendicular to the substrate 601 when spraying the fluid, as shown in FIG. 14 .
用压力为1×107-1×109pa(最好是3×107-5×108Pa)的流体607从喷嘴608喷向粘合层606暴露的部分。由于这个样本在旋转,流体607对着粘合层606暴露的表面喷过去。A fluid 607 with a pressure of 1×10 7 -1×10 9 Pa (preferably 3×10 7 -5×10 8 Pa) is sprayed from a nozzle 608 to the exposed portion of the adhesive layer 606 . As the sample rotates, fluid 607 is sprayed against the exposed surface of adhesive layer 606 .
从喷嘴608喷射出来的流体喷向粘合层606的时候,粘合层由于较脆弱而破裂,然后被清除掉,或者被化学方法清除掉。结果,粘合层606被去掉,将基底603和绝缘膜605互相分开。如果是通过破碎粘合层606分开的,剩下的粘合层就可以用腐蚀法去除。When the fluid sprayed from the nozzle 608 sprays to the adhesive layer 606, the adhesive layer is broken due to its fragility, and then removed, or removed by chemical methods. As a result, the adhesive layer 606 is removed, separating the substrate 603 and the insulating film 605 from each other. If separated by breaking the bonding layer 606, the remaining bonding layer can be removed by etching.
流体607可以采用水、有机溶剂、酸溶液或者碱溶液。也可以采用空气、氮气、二氧化碳气体或者稀有气体。还可以采用从这些气体获得的等离子体。The fluid 607 can be water, organic solvent, acid solution or alkaline solution. Air, nitrogen, carbon dioxide gas or rare gases can also be used. Plasmas obtained from these gases can also be used.
实施方案5可以跟实施方案1-4结合起来使用。Embodiment 5 can be used in combination with Embodiments 1-4.
实施方案6Embodiment 6
在这个实施方案中,可以利用有机发光材料显著地提高外部发光量子效率,利用它可以采用三重激子发出的磷光来发射光。于是能够降低OLED消耗的功率,延长OLED的寿命,减轻OLED的重量。In this embodiment, the extrinsic luminescence quantum efficiency can be significantly improved by using an organic luminescent material, with which light can be emitted using phosphorescence from triplet excitons. Therefore, the power consumed by the OLED can be reduced, the lifetime of the OLED can be prolonged, and the weight of the OLED can be reduced.
在下面的报告中用三重激子提高外部发光量子效率(T.Tsutsui,C.Adachi,S.Saito,有机分子系统中的磷化学工艺,K.Honda编辑(Elsvier Sci.Pub.,东京,1991)第437页)。Enhancing the quantum efficiency of external luminescence with triplet excitons in the following report (T.Tsutsui, C.Adachi, S.Saito, Phosphorus Chemical Processes in Organic Molecular Systems, edited by K.Honda (Elsvier Sci.Pub., Tokyo, 1991 ) on page 437).
以上文章报告的有机发光材料(香豆素颜料)的分子是可以表示为:化学式1The molecule of the organic luminescent material (coumarin pigment) reported in the above article can be expressed as: chemical formula 1
(M.A.Baldo,D.F.O Brien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson,S.R.Forrest,自然杂质395(1998)第151页)(M.A.Baldo, D.F.O Brien, Y.You, A.Shoustikov, S.Sibley, M.E.Thompson, S.R.Forrest, Natural Impurities 395 (1998) p. 151)
以上文章报道的EL材料(Pt合成物)的分子式表示为:化学式2The molecular formula of the EL material (Pt composite) reported in the above article is expressed as: chemical formula 2
(M.A.Baldo,S.Lamansky,P.E.Burrows,M.E.Thompson,S.R.Forrest,应用物理通信,75(1999)第4页)(T.Tsutsui,M.-J.Yang,M.Yahiro,K.Nakamura,T. Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto,S.Mayaguchi,日本应用物理,38(12B)(1999)L1502)。(M.A.Baldo, S.Lamansky, P.E.Burrows, M.E.Thompson, S.R.Forrest, Applied Physics Communications, 75 (1999) p. 4) (T.Tsutsui, M.-J.Yang, M.Yahiro, K.Nakamura, T. . Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, S. Mayaguchi, Applied Physics of Japan, 38(12B)(1999)L1502).
以上文章报告的EL材料(Ir合成物)的分子式如下:化学式3The molecular formula of the EL material (Ir composition) reported in the above article is as follows: chemical formula 3
如上所述,如果三重激子发出的磷光可以投入实用,从原理上讲,它可以将外部发光量子效率提高到单重激子荧光的三到四倍。As mentioned above, if phosphorescence from triplet excitons can be put into practical use, it could, in principle, increase the quantum efficiency of extrinsic luminescence to three to four times that of singlet exciton fluorescence.
这个实施方案的结构能够自由地跟实施方案1-5的结构结合起来使用。The structure of this embodiment can be freely used in combination with the structures of Embodiments 1-5.
实施方案7Embodiment 7
有机发光材料薄膜一般是用喷墨法、旋涂法或者蒸发法形成的。在实施方案7中介绍形成有机发光层的方法中以上方法以外的一种方法。Organic light emitting material thin films are generally formed by inkjet method, spin coating method or evaporation method. In Embodiment 7, a method other than the above method among methods of forming an organic light-emitting layer is described.
在这个实施方案中,利用其中散布了构成有机发光材料的分子团的胶体溶液(也叫做溶胶)进行溅射,在惰性气体中的基底上形成包括有机发光材料的分子团的一个薄膜。这种有机发光材料是作为颗粒存在的,每一个颗粒都有液体中的几个分子的一团。In this embodiment, sputtering is performed using a colloidal solution (also called sol) in which molecular groups constituting an organic light emitting material are dispersed to form a thin film including molecular groups of an organic light emitting material on a substrate in an inert gas. This organic luminescent material exists as particles, each particle has a cluster of several molecules in the liquid.
图15说明如何在惰性气体(在这个实施方案里是氮气)里从喷嘴(没有画出)喷洒合成物形成有机发光层650。这种合成物是通过在甲苯中喷洒三(2-苯基吡啶)铱(Ir(ppy)3)获得的,它是一种铱化合物,用作有机发光材料,以及浴铜灵(BCP),它是一种有机发光材料,用作一种基质(以后将它叫做基质材料)。FIG. 15 illustrates how to form the organic light emitting layer 650 by spraying the composition from a nozzle (not shown) in an inert gas (nitrogen in this embodiment). The composition was obtained by spraying tris(2-phenylpyridine)iridium (Ir(ppy) 3 ), an iridium compound used as an organic light-emitting material, and bathocuproine (BCP), in toluene. It is an organic light-emitting material used as a matrix (it will be called a matrix material hereinafter).
在图15中,用模板651有选择地形成厚度为25-40纳米的有机发光层650。铱化合物和BCP都不溶于甲苯。In FIG. 15, a template 651 is used to selectively form an organic light emitting layer 650 with a thickness of 25-40 nm. Both iridium compounds and BCP are insoluble in toluene.
实际上,有时将有机发光层作为单层形式来使用,有时将它作为多层来使用。如果有机发光层具有多层结构,就以类似的方式在形成有机发光层650以后形成另一种(其它)有机发光层。此时,沉积的所有有机发光层一起叫做有机发光层。Actually, the organic light-emitting layer is sometimes used as a single layer, and sometimes it is used as a multilayer. If the organic light emitting layer has a multilayer structure, another (other) organic light emitting layer is formed after forming the organic light emitting layer 650 in a similar manner. At this time, all organic light-emitting layers deposited are collectively referred to as an organic light-emitting layer.
这个实施方案里的薄膜形成法能够形成薄膜,即使液体中的有机发光材料处于任意状态。具体而言,利用很难溶解的有机发光材料,这种方法允许形成的有机发光层具有良好的质量。还有,由于薄膜是通过利用运载气体溅射包括有机发光材料的液体来形成的,因此能够在很短的时间内形成薄膜。产生包括有机发光材料的液体用来喷洒的方法能够大大地简化。更进一步,在这个实施方案中用一个模板来形成具有所需图案的薄膜,从而使薄膜的形成是通过模板的开孔来进行的。此外,除了有效地利用昂贵的有机发光材料以外,还有可能将附着在模板上的有机发光材料收集起来重新使用。The thin film forming method in this embodiment is capable of forming a thin film even if the organic light-emitting material in the liquid is in any state. In particular, this method allows the formation of an organic light-emitting layer of good quality using a hardly soluble organic light-emitting material. Also, since a thin film is formed by sputtering a liquid including an organic light-emitting material with a carrier gas, it is possible to form a thin film in a short time. The method of producing a liquid comprising an organic light-emitting material for spraying can be greatly simplified. Further, in this embodiment a template is used to form the film with a desired pattern so that the film is formed through the openings of the template. In addition, in addition to effectively utilizing expensive organic light-emitting materials, it is also possible to collect and reuse organic light-emitting materials attached to templates.
喷墨法和旋涂法有一个局限性,那就是不能使用易溶于溶剂的有机发光材料。蒸发的局限性是有机发光材料,它在蒸发之前分解,因而不能使用。但是,这个实施方案中的薄膜形成方法没有以上局限性。The ink-jet method and the spin-coating method have a limitation that organic light-emitting materials that are easily soluble in solvents cannot be used. The limitation of evaporation is that organic light-emitting materials, which decompose before evaporation, cannot be used. However, the thin film forming method in this embodiment does not have the above limitations.
适合于这个实施方案中的薄膜形成方法的有机发光材料有二羟基喹啉并吖啶、三(2-苯基吡啶)铱、浴铜灵、聚(1,4-二乙烯基苯)、聚(1,4-二乙烯基萘)、聚(2-苯基-1,4-二乙烯基苯)、聚噻吩、聚(3-苯基噻吩)、聚(1,4-亚苯基)、聚(2,7-芴)等等。Organic light-emitting materials suitable for the thin film forming method in this embodiment include dihydroxyquinoacridine, tris(2-phenylpyridine) iridium, bathocuproine, poly(1,4-divinylbenzene), poly (1,4-divinylnaphthalene), poly(2-phenyl-1,4-divinylbenzene), polythiophene, poly(3-phenylthiophene), poly(1,4-phenylene) , poly(2,7-fluorene) and so on.
实施方案7的结构可以跟实施方案1-6中的任意一个自由结合。The structure of Embodiment 7 can be freely combined with any one of Embodiments 1-6.
实施方案8Embodiment 8
这个实施方案更加详细地描述本发明中获得的发光装置的像素部分。像素部分的顶部结构如图16A所示,它的电路图在图16B中给出。图16A和16B采用相同的引用符号。This embodiment describes in more detail the pixel portion of the light-emitting device obtained in the present invention. The top structure of the pixel portion is shown in Fig. 16A, and its circuit diagram is shown in Fig. 16B. Figures 16A and 16B use the same reference symbols.
开关TFT 802的源跟源导线815连接,它的漏跟漏导线805连接。漏导线805跟电流控制TFT 806的栅电极有电连接。电流控制TFT 806的源跟电源线816有电连接,漏跟漏导线817有电连接。漏导线817跟虚线所示的像素电极(阴极)818有电连接。The source of the switching TFT 802 is connected to the source wire 815, and its drain is connected to the drain wire 805. The drain wire 805 is electrically connected to the gate electrode of the current control TFT 806. The source of the current control TFT 806 is electrically connected to the power line 816, and the drain is electrically connected to the drain wire 817. The drain wire 817 is electrically connected to the pixel electrode (cathode) 818 shown by the dotted line.
在区域819形成存储电容。电容存储器819包括跟电源线816连接的半导体薄膜820、跟栅绝缘薄莫在同一层上的绝缘膜(没有画出)和栅电极807。包括栅电极807、第一个中间层绝缘膜所在的那一层(没有画出)和电源线816的电容也可以用作存储电容。A storage capacitor is formed in region 819 . The capacitive memory 819 includes a semiconductor film 820 connected to the power line 816, an insulating film (not shown) on the same layer as the gate insulating film and a gate electrode 807. Capacitors including the gate electrode 807, the layer (not shown) where the first interlayer insulating film is located, and the power supply line 816 can also be used as storage capacitors.
这个实施方案8可以跟实施方案1-7结合使用。This embodiment 8 can be used in combination with embodiments 1-7.
实施方案9Embodiment 9
这个实施方案参考图17描述发光装置的一个电路结构实例。这个实施方案中的电路结构是用于数字驱动的。这个实施方案中的结构有源一侧驱动电路901、像素部分906和栅一侧的驱动电路907。This embodiment describes an example of a circuit configuration of a light emitting device with reference to FIG. 17. FIG. The circuit configuration in this embodiment is for digital driving. The structure in this embodiment has an active-side driver circuit 901, a pixel portion 906, and a gate-side driver circuit 907.
源一侧的驱动电路901有一个移位寄存器902、一个锁存器(A)903、一个锁存器(B)904和一个缓冲器905。对于模拟驱动,用采样电路(传输门)替换锁存器(A)和(B)。栅一侧的驱动电路907有移位寄存器908和缓冲器909。但是,不必总是有缓冲器909。The drive circuit 901 on the source side has a shift register 902 , a latch (A) 903 , a latch (B) 904 and a buffer 905 . For analog driving, replace latches (A) and (B) with sampling circuits (transmission gates). The driver circuit 907 on the gate side has a shift register 908 and a buffer 909 . However, buffer 909 does not always have to be present.
在这个实施方案中,像素部分906包括多个像素,每个像素都有OLED。最好是OLED的阴极跟电流控制TFT的漏连接。In this embodiment, pixel portion 906 includes a plurality of pixels, each pixel having an OLED. Preferably, the cathode of the OLED is connected to the drain of the current control TFT.
源一侧的驱动电路901和栅一侧的驱动电路907包括按照实施方案2-4获得的n沟道TFT或者p沟道TFT。The driver circuit 901 on the source side and the driver circuit 907 on the gate side include n-channel TFTs or p-channel TFTs obtained in Embodiments 2-4.
虽然没有说明,在栅一侧的驱动电路907对面跨过像素部分906增加另一个栅一侧驱动电路。此时,两个栅一侧的驱动电路具有相同的结构,共享同一跟栅导线,于是另一个可以发送一个栅信号替代分开的,让像素部分正常工作。Although not illustrated, another gate-side driver circuit is added across the pixel portion 906 opposite to the gate-side driver circuit 907 . At this time, the drive circuits on the two gate sides have the same structure and share the same gate wire, so the other can send a gate signal instead of the separate one, so that the pixel part can work normally.
这个实施方案能够跟实施方案1-8结合起来使用。This embodiment can be used in combination with embodiments 1-8.
实施方案10Embodiment 10
在实施方案10中描述柔性塑料基底上形成密封膜的卷装进出方法。In Embodiment 10, a roll-to-roll method of forming a sealing film on a flexible plastic substrate is described.
图19简单地画出了实施方案10中薄膜形成设备的结构。图19所示的本发明的薄膜形成设备包括通过溅射形成隔离膜的两个空间804和890,用于控制两个空间804和809内空气压力的空间805-808,使用树脂的机构820以及固化所用树脂的机构813。Fig. 19 schematically shows the structure of a thin film forming apparatus in Embodiment 10. The thin film forming apparatus of the present invention shown in FIG. 19 includes two spaces 804 and 890 for forming an isolation film by sputtering, spaces 805-808 for controlling air pressure in the two spaces 804 and 809, a mechanism 820 for using resin, and A mechanism 813 for curing the resin used.
用于通过溅射形成隔离膜空间804包括一个滚筒801,用于展开基底802,还包括有一个靶子的电压电极810,以及同时用作电极的一个加热器811。用于通过溅射形成隔离膜的空间809包括用于卷基底802的一个滚筒803、有一个靶子的一个电压电极814和同时用作电极的一个加热器815。A space 804 for forming an isolation film by sputtering includes a roller 801 for spreading a substrate 802, a voltage electrode 810 having a target, and a heater 811 also serving as an electrode. A space 809 for forming an isolation film by sputtering includes a roll 803 for the roll substrate 802, a voltage electrode 814 with a target, and a heater 815 also serving as an electrode.
基底802从展开滚筒801展开,由卷基底的滚筒803卷起来。The substrate 802 is unrolled from the unwinding roller 801 and rolled up by the roller 803 for rolling the substrate.
在这个实施方案中,在空间804中形成氮化硅薄膜。具体而言,用涡轮分子泵之类将空间804内的空气压力维持在0.4Pa。在这种状态下,应用流速为10sccm的氩、35sccm的氮和5sccm的氢。In this embodiment, a silicon nitride film is formed in the space 804 . Specifically, the air pressure in the space 804 is maintained at 0.4 Pa with a turbomolecular pump or the like. In this state, a flow rate of 10 seem of argon, 35 seem of nitrogen and 5 seem of hydrogen was applied.
在空间804内在它上面形成氮化硅薄膜的基底802连续地通过空间805和806,然后暴露在大气压力内。用机构820将树脂812涂在基底802上。用涡轮分子泵之类将空间805和806抽成真空,使空间804中的空气压力维持在需要的水平,而不受大气压力的影响。虽然采用了两个空间805和806来防止大气压力的影响,一个空间也许就足够了,具体看情形而定。如果需要,还可以提供三个或者更多的空间。The substrate 802 on which the silicon nitride film is formed in the space 804 passes through the spaces 805 and 806 successively, and is then exposed to atmospheric pressure. Resin 812 is applied to substrate 802 by mechanism 820 . The spaces 805 and 806 are evacuated with a turbomolecular pump or the like to maintain the air pressure in the space 804 at a desired level without being affected by atmospheric pressure. Although two spaces 805 and 806 are used to prevent the influence of atmospheric pressure, one space may be sufficient, depending on the situation. There are also spaces for three or more if required.
在这个实施方案中,树脂812采用热可聚合聚乙烯。涂上树脂812以后,用卤素灯813加热基底802,固化涂上的树脂812。In this embodiment, resin 812 employs thermally polymerizable polyethylene. After the resin 812 is applied, the substrate 802 is heated with a halogen lamp 813 to cure the applied resin 812 .
具体而言,在这个实施方案中,加热基底的卤素灯作为固化所用树脂的机构813。如果要用加热方式固化树脂,加热装置不限于卤素灯;也可以采用红外灯、金属卤化物灯、氙弧灯、碳弧灯、高压钠灯或者高压水银灯。此外,加热装置也不限于灯;可以用加热器之类进行加热。如果树脂不是可以用热固化的而是可以用紫外线固化的,树脂就可以通过用紫外线照射而固化。Specifically, in this embodiment, a halogen lamp that heats the substrate serves as the mechanism 813 for curing the resin used. If the resin is to be cured by heating, the heating device is not limited to a halogen lamp; infrared lamps, metal halide lamps, xenon arc lamps, carbon arc lamps, high pressure sodium lamps or high pressure mercury lamps may also be used. In addition, the heating means is not limited to lamps; heating may be performed with a heater or the like. If the resin is curable not by heat but by ultraviolet rays, the resin can be cured by irradiating with ultraviolet rays.
将上面形成树脂薄膜的基底802送进空间807和808,最终到达空间809。空间807和808用涡轮分子泵之类抽成真空,使空间809内的空气压力为需要的压力而不受到大气压力的影响。虽然采用了两个空间807和808来防止大气压力影响,但是一个空间也许就足够了,具体看情形而定。需要的时候可以采用三个或者多个空间。The substrate 802 on which the resin film is formed is sent into the spaces 807 and 808 and finally reaches the space 809 . Spaces 807 and 808 are evacuated with a turbomolecular pump or the like, so that the air pressure in space 809 is a required pressure without being affected by atmospheric pressure. Although two spaces 807 and 808 are used to prevent atmospheric pressure effects, one space may be sufficient, depending on the situation. Three or more spaces can be used when necessary.
在空间809中形成氮氧化硅薄膜。具体而言,用涡轮分子泵之类保持空间809内的空气压力为0.4Pa,同时采用流速为10sccm的氩、31sccm的氮、5sccm的氢和4sccm的N2O。A silicon nitride oxide film is formed in the space 809 . Specifically, while maintaining the air pressure in the space 809 at 0.4 Pa with a turbomolecular pump or the like, a flow rate of 10 sccm of argon, 31 sccm of nitrogen, 5 sccm of hydrogen, and 4 sccm of N2O was used.
形成氮氧化硅薄膜的基底802由卷基底的滚筒803卷好。The substrate 802 on which the silicon oxynitride film is formed is rolled up by a roller 803 for rolling the substrate.
上述结构能够用于大批量生产柔性塑料基底,它在两层隔离膜之间有包括一层应力松弛膜的一层密封膜。The structure described above can be used for mass production of flexible plastic substrates having a sealing film including a stress relaxation film between two separating films.
虽然在这个实施方案中描述了用于形成密封膜的薄膜形成设备包括氮化硅薄膜、聚乙烯薄墨盒氮氧化硅薄膜,但是隔离膜的材料不限于此。另外,应力松弛膜不限于聚乙烯;可以采用比隔离膜的应力小的任意树脂材料。Although it is described in this embodiment that the film forming apparatus for forming the sealing film includes a silicon nitride film, a polyethylene thin film and a silicon oxynitride film, the material of the isolation film is not limited thereto. In addition, the stress relaxation film is not limited to polyethylene; any resin material having a smaller stress than that of the separator can be used.
虽然在这个实施方案中形成了两层隔离膜,但是也可以形成三层或者多层隔离膜。在这种情况下,按照适合于每个薄膜形成的方式提供一个溅射空间、一个防止大气压力影响的空间、应用树脂的一个机构以及固化所用树脂的机构足够了。Although two layers of isolation films are formed in this embodiment, three or more layers of isolation films may also be formed. In this case, it is sufficient to provide a sputtering space, a space protected from the influence of atmospheric pressure, a mechanism for applying resin, and a mechanism for curing the used resin in a manner suitable for each thin film formation.
此外,通过将基底802卷到滚筒803上以后重复用展开滚筒801展开卷起来的基底,可以形成包括隔离膜和应力松弛膜的多层密封膜。In addition, by repeatedly unwinding the rolled substrate with the unrolling roller 801 after rolling the substrate 802 onto the roller 803, a multilayer sealing film including a release film and a stress relaxation film can be formed.
实施方案10可以跟实施方案1-9中的任意一个结合起来使用。Embodiment 10 can be used in combination with any one of Embodiments 1-9.
实施方案11Embodiment 11
跟液晶显示器相比,利用发光元件,能够自己照明的发光装置在明亮的地方有更好的能见度和更大的视角。因此,这种发光装置可以用于各种电器的显示装置。Using light-emitting elements, light-emitting devices capable of self-illumination have better visibility and wider viewing angles in bright places than liquid crystal displays. Therefore, this light emitting device can be used in display devices of various electric appliances.
采用按照本发明制造的发光装置的电器的实例有摄像机、数码相机、眼镜一样的显示器(头带式显示器)、导航系统、音频重放装置(比方说汽车音频和音频部件)、笔记本计算机、游戏机、便携式信息终端(比方说移动计算机、蜂窝电话、便携式游戏机和电子图书)以及配备了记录媒介的图像重现装置(具体而言是配置了显示器的装置,它能够再现记录在数字光盘(DVD)这样的记录媒介上的数据显示数据的图像)。视角广是非常重要的,特别是对于便携式信息终端,因为看它们的时候它们常常是斜着的。因此,便携式信息终端最好是采用利用发光元件的发光装置。这些电器的具体实例在图18A-18H中给出。Examples of electrical appliances employing light-emitting devices manufactured according to the invention are video cameras, digital cameras, eyeglass-like displays (head-band displays), navigation systems, audio playback devices (such as car audio and audio components), notebook computers, gaming machines, portable information terminals (such as mobile computers, cellular phones, portable game machines, and electronic books), and image reproducing devices equipped with recording media (specifically, devices equipped with displays capable of reproducing data recorded on digital discs ( data on a recording medium such as a DVD) to display an image of the data). A wide viewing angle is very important, especially for portable information terminals, since they are often viewed at an angle. Therefore, it is preferable that a portable information terminal employs a light emitting device using a light emitting element. Specific examples of these appliances are given in Figures 18A-18H.
图18A画出了一个数码相机,它包括主体2101、显示单元2102、图像接受单元2103、控制键2104、外部连接口2105和快门按钮2106等等。按照本发明制造的发光装置可以用于显示单元2102。FIG. 18A shows a digital camera, which includes a
图18B画出了一个移动计算机,它包括主体2301、显示单元2302、开关2303、控制键2304、红外口2305等等。按照本发明制造的发光装置可以用于显示单元2302。FIG. 18B shows a mobile computer, which includes a main body 2301, a display unit 2302, a switch 2303, control keys 2304, an infrared port 2305 and so on. The light emitting device manufactured according to the present invention can be used for the display unit 2302 .
图18C画出了一个眼镜式显示器(头带式显示器),它包括主体2501、显示单元2502和眼镜腿2503。按照本发明制造的发光装置能够用于显示单元2502。FIG. 18C shows a glasses-type display (head-mounted display), which includes a
图18D画出了一个蜂窝电话,它包括主体2701、外壳2702、显示单元2703、音频输入单元2704、音频输出单元2705、控制键2706、外部连接口2707、天线2708等等。按照本发明制造的发光装置能够用于显示单元2703。如果显示单元2703在黑色背景上显示白字母,蜂窝电话消耗的电力更小。18D shows a cellular phone, which includes a
如果将来增强了有机材料发射的光的强度,这种发光装置就能够用于投影机或者背投机,通过透镜之类放大包括图像信息的光,将光投射出去。If the intensity of the light emitted by the organic material is enhanced in the future, this light-emitting device can be used in a projector or a rear projector to amplify the light including image information through a lens or the like, and project the light out.
这些电器越来越频繁地用来显示通过因特网和CATV(有线电视)这样的通信线路发送的信息,特别是动画信息。由于有机材料具有很高的响应速度,因此这种发光装置适合于动画显示。These appliances are used more and more frequently to display information, especially animation information, transmitted through communication lines such as the Internet and CATV (Cable TV). Due to the high response speed of organic materials, this light-emitting device is suitable for animation display.
在这种发光装置里,发光部分会消耗功率,因此最好是用一种方式来显示信息,从而需要较少的发光部分。将发光装置用于便携式信息终端的显示单元,特别是主要显示文本信息的蜂窝电话和音频再现装置,的时候,最好是这样来驱动这一装置,使得不发射光的部分构成背景,发射光的部分构成文本信息。In such lighting devices, the light emitting parts consume power, so it is desirable to display information in a way that requires fewer light emitting parts. When a light-emitting device is used in a display unit of a portable information terminal, especially a cellular phone and an audio reproduction device mainly displaying text information, it is preferable to drive the device so that the part that does not emit light constitutes the background and the part that emits light The part of constitutes the text information.
如上所述,按照本发明的沉积装置制造的发光装置的应用范围如此之广,它可以用于所有领域的电器。这个实施方案的电器可以采用实施方案1-10中的任意发光装置。As described above, the application range of the light emitting device manufactured according to the deposition apparatus of the present invention is so wide that it can be used for electric appliances in all fields. The electric appliance of this embodiment can adopt any light-emitting device in Embodiments 1-10.
根据本发明,由于存在多层隔离膜形成的叠层结构,因此即使是一层隔离膜发生了开裂,其它的隔离膜仍然能够有效地防止湿气或者氧气进入有机发光层。此外,即使隔离膜的质量由于膜的形成温度太低而下降,多层隔离膜的叠层结构仍然能够有效地防止湿气和氧气进入有机发光层。According to the present invention, due to the laminated structure formed by multiple isolation films, even if one isolation film cracks, the other isolation films can still effectively prevent moisture or oxygen from entering the organic light-emitting layer. In addition, even if the quality of the isolation film is reduced due to the low film formation temperature, the laminated structure of the multi-layer isolation film can still effectively prevent moisture and oxygen from entering the organic light-emitting layer.
此外,在隔离膜之间插入了比隔离膜薄的应力松弛膜,因此能够减小整层绝缘膜的应力。这样,跟单层隔离膜相比,将应力松弛膜夹在其中的隔离膜很少会因为应力而发生开裂,即使是多层隔离膜的总厚度跟单层隔离膜一样。In addition, a stress relaxation film thinner than the isolation films is interposed between the isolation films, so the stress of the entire insulating film can be reduced. Thus, a separator sandwiching a stress relaxation film is less likely to crack due to stress than a single-layer separator, even though the multilayer separator has the same total thickness as the single-layer separator.
因此,跟单层隔离膜比较,多层隔离膜能够有效地防止湿气和氧气进入有机发光层,即使是多层隔离膜的总厚度跟单层隔离膜一样。还有,这样的多层隔离膜很少因为应力而发生开裂。Therefore, compared with the single-layer isolation film, the multi-layer isolation film can effectively prevent moisture and oxygen from entering the organic light-emitting layer, even though the total thickness of the multi-layer isolation film is the same as that of the single-layer isolation film. Also, such a multilayer separator rarely cracks due to stress.
Claims (102)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP187351/01 | 2001-06-20 | ||
JP2001187351 | 2001-06-20 | ||
JP187351/2001 | 2001-06-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1392615A true CN1392615A (en) | 2003-01-22 |
CN100350633C CN100350633C (en) | 2007-11-21 |
Family
ID=19026650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021226687A Expired - Lifetime CN100350633C (en) | 2001-06-20 | 2002-06-20 | Luminous device and its producing method |
Country Status (4)
Country | Link |
---|---|
US (8) | US6849877B2 (en) |
KR (2) | KR100913927B1 (en) |
CN (1) | CN100350633C (en) |
TW (1) | TW548860B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100442534C (en) * | 2003-02-24 | 2008-12-10 | 索尼株式会社 | Display device and method of manufacturing same |
US7554121B2 (en) | 2003-12-26 | 2009-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor device |
US7994617B2 (en) | 2004-02-06 | 2011-08-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN102279468A (en) * | 2009-12-09 | 2011-12-14 | X盘D公司 | Active 3D glasses with OLED light valves |
CN103280256A (en) * | 2013-06-26 | 2013-09-04 | 汕头万顺包装材料股份有限公司光电薄膜分公司 | Transparent conductive film |
CN103456896A (en) * | 2012-05-30 | 2013-12-18 | 三星显示有限公司 | display device |
CN103489880A (en) * | 2013-10-12 | 2014-01-01 | 京东方科技集团股份有限公司 | Display substrate and flexible display device containing same |
CN104485351A (en) * | 2014-12-31 | 2015-04-01 | 深圳市华星光电技术有限公司 | Flexible organic light-emitting display and manufacturing method thereof |
CN104752438A (en) * | 2013-12-26 | 2015-07-01 | 英特尔公司 | Method and apparatus for flexible electronic communication device |
CN105552225A (en) * | 2016-01-20 | 2016-05-04 | 京东方科技集团股份有限公司 | Method for manufacturing flexible substrate, flexible substrate and display device |
CN105655373A (en) * | 2014-11-28 | 2016-06-08 | 乐金显示有限公司 | Flexible organic light emitting display and method of fabricating same |
CN107611120A (en) * | 2013-02-20 | 2018-01-19 | 株式会社日本显示器 | Display device and its manufacture method |
CN108511487A (en) * | 2017-02-28 | 2018-09-07 | 三星显示有限公司 | Show equipment |
CN110649175A (en) * | 2013-05-16 | 2020-01-03 | 三星显示有限公司 | Organic light emitting diode display, electronic device including the same, and method of manufacturing the same |
CN110992832A (en) * | 2019-12-18 | 2020-04-10 | 厦门天马微电子有限公司 | Stretchable display panel and stretchable display device |
CN112447929A (en) * | 2019-09-03 | 2021-03-05 | 三星显示有限公司 | Display device |
CN114300521A (en) * | 2021-12-28 | 2022-04-08 | 深圳市华星光电半导体显示技术有限公司 | Flexible display panel and manufacturing method thereof |
US11621407B2 (en) | 2012-05-09 | 2023-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having first to third supports |
US11930668B2 (en) | 2008-10-16 | 2024-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Flexible light-emitting device and EL module including transparent conductive film |
Families Citing this family (215)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3256084B2 (en) * | 1994-05-26 | 2002-02-12 | 株式会社半導体エネルギー研究所 | Semiconductor integrated circuit and manufacturing method thereof |
JP2002340989A (en) * | 2001-05-15 | 2002-11-27 | Semiconductor Energy Lab Co Ltd | Measuring method, inspection method and inspection apparatus |
US7211828B2 (en) | 2001-06-20 | 2007-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic apparatus |
TW548860B (en) * | 2001-06-20 | 2003-08-21 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
TW546857B (en) * | 2001-07-03 | 2003-08-11 | Semiconductor Energy Lab | Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment |
US7038377B2 (en) | 2002-01-16 | 2006-05-02 | Seiko Epson Corporation | Display device with a narrow frame |
US7098069B2 (en) * | 2002-01-24 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of preparing the same and device for fabricating the same |
US7164155B2 (en) * | 2002-05-15 | 2007-01-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7230271B2 (en) * | 2002-06-11 | 2007-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising film having hygroscopic property and transparency and manufacturing method thereof |
JP4397814B2 (en) * | 2002-10-09 | 2010-01-13 | 株式会社半導体エネルギー研究所 | Method for manufacturing light emitting device |
CN1176565C (en) * | 2002-11-25 | 2004-11-17 | 清华大学 | A kind of encapsulation layer of organic electroluminescent device and its preparation method and application |
WO2004053816A1 (en) * | 2002-12-10 | 2004-06-24 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and its fabricating method |
US7710019B2 (en) | 2002-12-11 | 2010-05-04 | Samsung Electronics Co., Ltd. | Organic light-emitting diode display comprising auxiliary electrodes |
KR100895313B1 (en) * | 2002-12-11 | 2009-05-07 | 삼성전자주식회사 | Organic light emitting panel |
JP2004220874A (en) * | 2003-01-14 | 2004-08-05 | Tohoku Pioneer Corp | Organic EL element and manufacturing method thereof |
TWI351548B (en) * | 2003-01-15 | 2011-11-01 | Semiconductor Energy Lab | Manufacturing method of liquid crystal display dev |
US7436050B2 (en) * | 2003-01-22 | 2008-10-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a flexible printed circuit |
JP3972825B2 (en) * | 2003-01-28 | 2007-09-05 | セイコーエプソン株式会社 | Manufacturing method of active matrix display device |
TWI260944B (en) * | 2003-01-29 | 2006-08-21 | Au Optronics Corp | Display device with passivation structure |
TW582099B (en) * | 2003-03-13 | 2004-04-01 | Ind Tech Res Inst | Method of adhering material layer on transparent substrate and method of forming single crystal silicon on transparent substrate |
JP4526771B2 (en) | 2003-03-14 | 2010-08-18 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP4417027B2 (en) * | 2003-05-21 | 2010-02-17 | 株式会社半導体エネルギー研究所 | Light emitting device |
US8665247B2 (en) * | 2003-05-30 | 2014-03-04 | Global Oled Technology Llc | Flexible display |
WO2005031890A1 (en) * | 2003-09-24 | 2005-04-07 | E.I. Dupont De Nemours And Company | Process for laminating a dielectric layer onto a semiconductor |
US7902747B2 (en) | 2003-10-21 | 2011-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having a thin insulating film made of nitrogen and silicon and an electrode made of conductive transparent oxide and silicon dioxide |
US8048251B2 (en) * | 2003-10-28 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing optical film |
TWI372462B (en) * | 2003-10-28 | 2012-09-11 | Semiconductor Energy Lab | Method for manufacturing semiconductor device |
CN1934707B (en) * | 2004-03-22 | 2014-09-10 | 株式会社半导体能源研究所 | Method of forminig integrated circuit |
JP4116587B2 (en) * | 2004-04-13 | 2008-07-09 | 浜松ホトニクス株式会社 | Semiconductor light emitting device and manufacturing method thereof |
US7202504B2 (en) | 2004-05-20 | 2007-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and display device |
US8040469B2 (en) * | 2004-09-10 | 2011-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device, method for manufacturing the same and apparatus for manufacturing the same |
JP2006082260A (en) * | 2004-09-14 | 2006-03-30 | Oki Data Corp | Semiconductor composite device, method for manufacturing semiconductor composite device, LED head using semiconductor composite device, and image forming apparatus using this LED head |
US7753751B2 (en) | 2004-09-29 | 2010-07-13 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating the display device |
US8344410B2 (en) | 2004-10-14 | 2013-01-01 | Daktronics, Inc. | Flexible pixel element and signal distribution means |
US7893948B1 (en) * | 2004-10-14 | 2011-02-22 | Daktronics, Inc. | Flexible pixel hardware and method |
US7868903B2 (en) * | 2004-10-14 | 2011-01-11 | Daktronics, Inc. | Flexible pixel element fabrication and sealing method |
US7736964B2 (en) * | 2004-11-22 | 2010-06-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US20060132030A1 (en) * | 2004-12-22 | 2006-06-22 | Zhanjun Gao | Display element stress free at the critical layer |
US7355204B2 (en) * | 2004-12-30 | 2008-04-08 | E.I. Du Pont De Nemours And Company | Organic device with environmental protection structure |
CN1822385B (en) | 2005-01-31 | 2013-02-06 | 株式会社半导体能源研究所 | Display device and electronic equipment containing same |
KR20060104531A (en) * | 2005-03-30 | 2006-10-09 | 삼성에스디아이 주식회사 | Manufacturing method of light emitting display device |
TW200642109A (en) * | 2005-05-20 | 2006-12-01 | Ind Tech Res Inst | Solid light-emitting display and its manufacturing method |
GB0510721D0 (en) * | 2005-05-25 | 2005-06-29 | Cambridge Display Tech Ltd | Electroluminescent device |
US7829394B2 (en) * | 2005-05-26 | 2010-11-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
CN100419817C (en) * | 2005-05-27 | 2008-09-17 | 财团法人工业技术研究院 | Solid-state light-emitting display and its manufacturing method |
US7605056B2 (en) * | 2005-05-31 | 2009-10-20 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device including separation by physical force |
KR20060124940A (en) * | 2005-06-01 | 2006-12-06 | 삼성전자주식회사 | Manufacturing Method of Flexible Display |
DE102005032741A1 (en) * | 2005-07-08 | 2007-01-18 | Samsung Sdi Germany Gmbh | Production process for organic LED component, such a component and an active matrix organic LED display and production process |
US20070020451A1 (en) * | 2005-07-20 | 2007-01-25 | 3M Innovative Properties Company | Moisture barrier coatings |
US8138502B2 (en) * | 2005-08-05 | 2012-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and manufacturing method thereof |
JP5167580B2 (en) * | 2005-08-23 | 2013-03-21 | 日本電気株式会社 | Electronic devices |
KR100730168B1 (en) * | 2005-11-22 | 2007-06-19 | 삼성에스디아이 주식회사 | Display device and manufacturing method thereof |
KR100721957B1 (en) * | 2005-12-13 | 2007-05-25 | 삼성에스디아이 주식회사 | Polycrystalline silicon layer, flat panel display device using the polycrystalline silicon layer and method of manufacturing the same |
KR100774950B1 (en) * | 2006-01-19 | 2007-11-09 | 엘지전자 주식회사 | Electroluminescent element |
US20070202917A1 (en) * | 2006-02-27 | 2007-08-30 | Andrew Phelps | Display and speaker module |
US8173519B2 (en) | 2006-03-03 | 2012-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US8222116B2 (en) | 2006-03-03 | 2012-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US20070246717A1 (en) * | 2006-04-21 | 2007-10-25 | Ng Kee Y | Light source having both thermal and space efficiency |
US20080006819A1 (en) * | 2006-06-19 | 2008-01-10 | 3M Innovative Properties Company | Moisture barrier coatings for organic light emitting diode devices |
JP5204959B2 (en) | 2006-06-26 | 2013-06-05 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
TWI424499B (en) * | 2006-06-30 | 2014-01-21 | Semiconductor Energy Lab | Method of manufacturing a semiconductor device |
US20080121907A1 (en) * | 2006-08-08 | 2008-05-29 | Way-Jze Wen | Light emitting diode and fabricating method thereof |
TWI433306B (en) * | 2006-09-29 | 2014-04-01 | Semiconductor Energy Lab | Semiconductor device manufacturing method |
US8137417B2 (en) | 2006-09-29 | 2012-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Peeling apparatus and manufacturing apparatus of semiconductor device |
JP5110851B2 (en) * | 2006-11-01 | 2012-12-26 | キヤノン株式会社 | Organic light emitting device |
US7498603B2 (en) * | 2006-12-06 | 2009-03-03 | General Electric Company | Color tunable illumination source and method for controlled illumination |
JP4963419B2 (en) * | 2007-01-31 | 2012-06-27 | キヤノン株式会社 | Flexible display device |
US7968382B2 (en) | 2007-02-02 | 2011-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
KR100889677B1 (en) * | 2007-06-19 | 2009-03-19 | 삼성모바일디스플레이주식회사 | Organic electroluminescent display and manufacturing method thereof |
US7763502B2 (en) | 2007-06-22 | 2010-07-27 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device, and electronic device |
JP5208591B2 (en) * | 2007-06-28 | 2013-06-12 | 株式会社半導体エネルギー研究所 | Light emitting device and lighting device |
US8354674B2 (en) * | 2007-06-29 | 2013-01-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer |
US8049253B2 (en) | 2007-07-11 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR20090009612A (en) * | 2007-07-20 | 2009-01-23 | 엘지디스플레이 주식회사 | Inorganic insulating film formation method through sputtering |
JP5074129B2 (en) * | 2007-08-21 | 2012-11-14 | 株式会社ジャパンディスプレイイースト | Display device |
US8236668B2 (en) * | 2007-10-10 | 2012-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
JP5464843B2 (en) * | 2007-12-03 | 2014-04-09 | 株式会社半導体エネルギー研究所 | Method for manufacturing SOI substrate |
KR20090078446A (en) * | 2008-01-15 | 2009-07-20 | 삼성전자주식회사 | Organic light emitting device and manufacturing method thereof |
JP5232498B2 (en) | 2008-02-25 | 2013-07-10 | 株式会社ジャパンディスプレイイースト | Liquid crystal display device and manufacturing method thereof |
JP2009245893A (en) * | 2008-03-31 | 2009-10-22 | Toshiba Corp | Light-emitting device sealing structure and method for manufacturing the same |
KR100941858B1 (en) * | 2008-04-03 | 2010-02-11 | 삼성모바일디스플레이주식회사 | Organic light emitting display |
KR102026604B1 (en) | 2008-07-10 | 2019-10-01 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light emitting device and electronic device |
JP5216716B2 (en) * | 2008-08-20 | 2013-06-19 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
KR101678206B1 (en) * | 2008-11-17 | 2016-11-22 | 엘지디스플레이 주식회사 | Organic Light Emitting Display Device |
US8610155B2 (en) | 2008-11-18 | 2013-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, method for manufacturing the same, and cellular phone |
JP5586920B2 (en) * | 2008-11-20 | 2014-09-10 | 株式会社半導体エネルギー研究所 | Method for manufacturing flexible semiconductor device |
TWI571684B (en) | 2008-11-28 | 2017-02-21 | 半導體能源研究所股份有限公司 | Liquid crystal display device |
KR101702329B1 (en) | 2008-12-17 | 2017-02-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device and electronic device |
US8189292B2 (en) * | 2008-12-24 | 2012-05-29 | Hitachi Global Storage Technologies Netherlands B.V. | Method for manufacturing a magnetic write head having a write pole with a trailing edge taper using a Rieable hard mask |
KR20100097513A (en) * | 2009-02-26 | 2010-09-03 | 삼성모바일디스플레이주식회사 | Organic light emitting diode display |
TWI401635B (en) | 2009-04-13 | 2013-07-11 | Innolux Corp | Display panel and image display system using the same |
KR101155907B1 (en) * | 2009-06-04 | 2012-06-20 | 삼성모바일디스플레이주식회사 | Organic light emitting diode display and method for manufacturing the same |
US8576209B2 (en) | 2009-07-07 | 2013-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
CN101989018B (en) * | 2009-08-05 | 2012-09-05 | 群康科技(深圳)有限公司 | Thin-film transistor substrate |
JP5707058B2 (en) * | 2009-09-01 | 2015-04-22 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescent device, organic electroluminescent device manufacturing method, display device and lighting device |
US9101005B2 (en) * | 2009-09-15 | 2015-08-04 | Industrial Technology Research Institute | Package of environmental sensitive element |
KR101084230B1 (en) * | 2009-11-16 | 2011-11-16 | 삼성모바일디스플레이주식회사 | Organic light emitting display device and manufacturing method of organic light emitting display device |
KR101065318B1 (en) * | 2009-12-03 | 2011-09-16 | 삼성모바일디스플레이주식회사 | Method of manufacturing flexible display device |
KR101097321B1 (en) * | 2009-12-14 | 2011-12-23 | 삼성모바일디스플레이주식회사 | Organic light emitting device and manufacturing method thereof |
TWI589042B (en) * | 2010-01-20 | 2017-06-21 | 半導體能源研究所股份有限公司 | Light emitting device, flexible light emitting device, electronic device, lighting device, and manufacturing method of light emitting device and flexible light emitting device |
US9000442B2 (en) * | 2010-01-20 | 2015-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, flexible light-emitting device, electronic device, and method for manufacturing light-emitting device and flexible-light emitting device |
KR101745644B1 (en) * | 2010-05-28 | 2017-06-12 | 삼성디스플레이 주식회사 | Organic light emitting diode display and manufacturing method thereof |
KR101783781B1 (en) * | 2010-07-05 | 2017-10-11 | 삼성디스플레이 주식회사 | A flat display device and the manufacturing method thereof |
US8647919B2 (en) * | 2010-09-13 | 2014-02-11 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting display device and method for manufacturing the same |
JP5970198B2 (en) | 2011-02-14 | 2016-08-17 | 株式会社半導体エネルギー研究所 | Lighting device |
US8764504B2 (en) | 2011-02-25 | 2014-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Lighting device and method for manufacturing the same |
EP2503621A1 (en) | 2011-03-24 | 2012-09-26 | Moser Baer India Ltd. | A barrier layer and a method of manufacturing the barrier layer |
JP5352620B2 (en) * | 2011-04-26 | 2013-11-27 | 日東電工株式会社 | Method and apparatus for manufacturing organic EL element |
TWI433625B (en) | 2011-07-04 | 2014-04-01 | Ind Tech Res Inst | Method for fabricating the flexible electronic device |
KR101773088B1 (en) | 2011-09-22 | 2017-08-31 | 삼성디스플레이 주식회사 | Organic light emitting display apparatus and the method for manufacturing the same |
CN103035663B (en) * | 2011-10-04 | 2016-08-10 | 乐金显示有限公司 | Display device |
KR101868148B1 (en) * | 2011-11-01 | 2018-07-19 | 엘지디스플레이 주식회사 | Flexible organic light emitting diode display device and fabricating method thereof |
CN102646676B (en) * | 2011-11-03 | 2015-06-10 | 京东方科技集团股份有限公司 | TFT (thin film transistor) array substrate |
US9496255B2 (en) | 2011-11-16 | 2016-11-15 | Qualcomm Incorporated | Stacked CMOS chipset having an insulating layer and a secondary layer and method of forming same |
JP2013161023A (en) * | 2012-02-08 | 2013-08-19 | Sony Corp | Display device and electronic apparatus |
JP2013251255A (en) | 2012-05-04 | 2013-12-12 | Semiconductor Energy Lab Co Ltd | Method for manufacturing light-emitting device |
US9379350B2 (en) * | 2012-05-22 | 2016-06-28 | Electronics And Telecommunications Research Institute | Dual mode display apparatus and method of manufacturing the same |
KR102086545B1 (en) * | 2012-07-19 | 2020-03-10 | 삼성디스플레이 주식회사 | Flexible display apparatus and method of fabricating the same |
KR102114212B1 (en) * | 2012-08-10 | 2020-05-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device |
US20140061610A1 (en) * | 2012-08-31 | 2014-03-06 | Hyo-Young MUN | Organic light emitting device and manufacturing method thereof |
US8941128B2 (en) * | 2012-11-21 | 2015-01-27 | Intel Corporation | Passivation layer for flexible display |
US9586291B2 (en) | 2012-11-28 | 2017-03-07 | Globalfoundries Inc | Adhesives for bonding handler wafers to device wafers and enabling mid-wavelength infrared laser ablation release |
US20140144593A1 (en) * | 2012-11-28 | 2014-05-29 | International Business Machiness Corporation | Wafer debonding using long-wavelength infrared radiation ablation |
TWI492374B (en) * | 2012-12-03 | 2015-07-11 | Au Optronics Corp | Electroluminescent display panel |
KR102000051B1 (en) * | 2012-12-17 | 2019-10-01 | 엘지디스플레이 주식회사 | The flexible organic light emitting display device and method for fabricating the same |
KR20140091346A (en) * | 2013-01-11 | 2014-07-21 | 삼성디스플레이 주식회사 | Display apparatus and method for manufacturing the same |
JPWO2014141330A1 (en) * | 2013-03-13 | 2017-02-16 | パナソニック株式会社 | Electronic devices |
JP6490901B2 (en) | 2013-03-14 | 2019-03-27 | 株式会社半導体エネルギー研究所 | Method for manufacturing light emitting device |
CN104058363B (en) * | 2013-03-22 | 2016-01-20 | 上海丽恒光微电子科技有限公司 | Based on the display unit and forming method thereof of MEMS transmissive light valve |
JP6026331B2 (en) * | 2013-03-22 | 2016-11-16 | 富士フイルム株式会社 | Organic EL laminate |
KR102250061B1 (en) | 2013-04-15 | 2021-05-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device |
KR102199217B1 (en) * | 2014-03-06 | 2021-01-07 | 삼성디스플레이 주식회사 | TFT substrate including barrier layer including silicon oxide layer and silicon silicon nitride layer, Organic light-emitting device comprising the TFT substrate, and the manufacturing method of the TFT substrate |
US9178178B2 (en) * | 2013-05-16 | 2015-11-03 | Samsung Display Co., Ltd. | Organic light-emitting diode display having improved adhesion and damage resistance characteristics, an electronic device including the same, and method of manufacturing the organic light-emitting diode display |
KR102071629B1 (en) * | 2013-05-27 | 2020-01-31 | 삼성디스플레이 주식회사 | Display |
CN103296013B (en) * | 2013-05-28 | 2017-08-08 | 上海华虹宏力半导体制造有限公司 | The forming method of radio-frequency devices |
KR102134845B1 (en) * | 2013-07-12 | 2020-07-17 | 삼성디스플레이 주식회사 | organic light emitting display device and the fabrication method thereof |
KR102233048B1 (en) | 2013-07-12 | 2021-03-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device |
KR102054991B1 (en) * | 2013-07-31 | 2019-12-12 | 삼성디스플레이 주식회사 | Flexible display device |
US9269914B2 (en) | 2013-08-01 | 2016-02-23 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, electronic device, and lighting device |
TWI576190B (en) | 2013-08-01 | 2017-04-01 | Ibm | Wafer debonding using mid-wavelength infrared radiation ablation |
TWD161478S (en) * | 2013-08-06 | 2014-07-01 | 璨圓光電股份有限公司 | Semiconductor light emitting device parts |
CN105474355B (en) | 2013-08-06 | 2018-11-13 | 株式会社半导体能源研究所 | Stripping means |
TWD161479S (en) * | 2013-08-06 | 2014-07-01 | 璨圓光電股份有限公司 | Semiconductor light emitting device part |
TWD164808S (en) * | 2013-08-06 | 2014-12-11 | 璨圓光電股份有限公司 | Semiconductor light emitting device parts |
TWI794098B (en) | 2013-09-06 | 2023-02-21 | 日商半導體能源研究所股份有限公司 | Light-emitting device and method for manufacturing light-emitting device |
KR102092707B1 (en) * | 2013-09-17 | 2020-03-25 | 삼성디스플레이 주식회사 | Flexible display device and the fabrication method thereof |
KR20150043890A (en) | 2013-10-15 | 2015-04-23 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
KR102180037B1 (en) * | 2013-11-06 | 2020-11-18 | 삼성디스플레이 주식회사 | Flexible display and manufacturing method thereof |
JP6513929B2 (en) | 2013-11-06 | 2019-05-15 | 株式会社半導体エネルギー研究所 | Peeling method |
KR101504117B1 (en) * | 2013-11-14 | 2015-03-19 | 코닝정밀소재 주식회사 | Organic light emitting display device |
KR102239367B1 (en) * | 2013-11-27 | 2021-04-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Touch panel |
KR102102911B1 (en) * | 2013-11-29 | 2020-04-21 | 엘지디스플레이 주식회사 | Organic light emitting display device and manufacturing method of the same |
WO2015083029A1 (en) | 2013-12-02 | 2015-06-11 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
TWI514564B (en) | 2013-12-10 | 2015-12-21 | Au Optronics Corp | Display panel and method of making the same |
WO2015125046A1 (en) | 2014-02-19 | 2015-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and peeling method |
CN106105388B (en) * | 2014-03-06 | 2018-07-31 | 株式会社半导体能源研究所 | Light-emitting device |
KR102292148B1 (en) | 2014-03-13 | 2021-08-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing display device and method for manufacturing electronic device |
TWI831924B (en) * | 2014-04-25 | 2024-02-11 | 日商半導體能源研究所股份有限公司 | Display device and electronic device |
US20150371905A1 (en) * | 2014-06-20 | 2015-12-24 | Rf Micro Devices, Inc. | Soi with gold-doped handle wafer |
KR102377341B1 (en) * | 2014-06-23 | 2022-03-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device and electronic device |
CN105280590B (en) * | 2014-07-14 | 2019-06-14 | 旺宏电子股份有限公司 | Semiconductor structure and manufacturing method thereof |
JP6636736B2 (en) | 2014-07-18 | 2020-01-29 | 株式会社半導体エネルギー研究所 | Method for manufacturing circuit board, method for manufacturing light-emitting device, method for manufacturing electronic device, and light-emitting device |
US9799829B2 (en) | 2014-07-25 | 2017-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Separation method, light-emitting device, module, and electronic device |
US20160049729A1 (en) * | 2014-08-12 | 2016-02-18 | Rainsun Co., Ltd. | Antenna structure |
JP2016057616A (en) * | 2014-09-05 | 2016-04-21 | 株式会社半導体エネルギー研究所 | Display panel, input/output device, and data processor |
CN111710794B (en) | 2014-10-17 | 2024-06-28 | 株式会社半导体能源研究所 | Light-emitting device, module, electronic device, and method for manufacturing light-emitting device |
US10181580B2 (en) | 2014-12-05 | 2019-01-15 | Sharp Kabushiki Kaisha | Organic EL display device |
TWI696108B (en) | 2015-02-13 | 2020-06-11 | 日商半導體能源研究所股份有限公司 | Functional panel, functional module, light-emitting module, display module, location data input module, light-emitting device, lighting device, display device, data processing device, and manufacturing method of functional panel |
WO2016132460A1 (en) * | 2015-02-17 | 2016-08-25 | パイオニア株式会社 | Light-emitting device |
CN104966696B (en) * | 2015-05-06 | 2017-11-28 | 深圳市华星光电技术有限公司 | The preparation method and its structure of TFT substrate |
CN104851892A (en) * | 2015-05-12 | 2015-08-19 | 深圳市华星光电技术有限公司 | Narrow frame flexible display device and manufacturing method thereof |
JP2017009725A (en) * | 2015-06-19 | 2017-01-12 | ソニー株式会社 | Display device |
CN105118844A (en) * | 2015-07-01 | 2015-12-02 | 深圳市华星光电技术有限公司 | Manufacturing method for flexible display panel and flexible display panel |
KR102427672B1 (en) * | 2015-08-11 | 2022-08-02 | 삼성디스플레이 주식회사 | Flexible display apparatus and manufacturing method thereof |
JP2017040859A (en) * | 2015-08-21 | 2017-02-23 | 株式会社ジャパンディスプレイ | Image display device |
GB2549734B (en) | 2016-04-26 | 2020-01-01 | Facebook Tech Llc | A display |
GB2541970B (en) | 2015-09-02 | 2020-08-19 | Facebook Tech Llc | Display manufacture |
GB2544728B (en) | 2015-11-17 | 2020-08-19 | Facebook Tech Llc | Redundancy in inorganic light emitting diode displays |
US10600823B2 (en) * | 2015-09-02 | 2020-03-24 | Facebook Technologies, Llc | Assembly of semiconductor devices |
CN105552247B (en) * | 2015-12-08 | 2018-10-26 | 上海天马微电子有限公司 | Composite substrate, flexible display device and preparation method thereof |
CN106981498A (en) * | 2016-01-19 | 2017-07-25 | 上海和辉光电有限公司 | Display device structure, display device preparation method |
US10259207B2 (en) | 2016-01-26 | 2019-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming separation starting point and separation method |
KR102643637B1 (en) * | 2016-03-02 | 2024-03-06 | 삼성디스플레이 주식회사 | Display apparatus |
KR102568632B1 (en) | 2016-04-07 | 2023-08-21 | 삼성디스플레이 주식회사 | Transistor array panel, manufacturing method thereof, and disalay device including the same |
JP6863803B2 (en) | 2016-04-07 | 2021-04-21 | 株式会社半導体エネルギー研究所 | Display device |
KR102340066B1 (en) * | 2016-04-07 | 2021-12-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Peeling method and manufacturing method of flexible device |
US10522574B2 (en) | 2016-05-16 | 2019-12-31 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of display device and manufacturing method of electronic device |
JP2017212365A (en) * | 2016-05-26 | 2017-11-30 | 株式会社Joled | Substrate for semiconductor device, and display device |
WO2018020333A1 (en) | 2016-07-29 | 2018-02-01 | Semiconductor Energy Laboratory Co., Ltd. | Separation method, display device, display module, and electronic device |
TWI753868B (en) | 2016-08-05 | 2022-02-01 | 日商半導體能源研究所股份有限公司 | Peeling method, display device, display module and electronic device |
TWI730017B (en) | 2016-08-09 | 2021-06-11 | 日商半導體能源研究所股份有限公司 | Manufacturing method of display device, display device, display module and electronic device |
CN109564851A (en) | 2016-08-31 | 2019-04-02 | 株式会社半导体能源研究所 | Manufacturing method of semiconductor device |
JP6981812B2 (en) | 2016-08-31 | 2021-12-17 | 株式会社半導体エネルギー研究所 | Manufacturing method of semiconductor device |
US10369664B2 (en) | 2016-09-23 | 2019-08-06 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
CN106384743B (en) * | 2016-10-20 | 2019-12-24 | 武汉华星光电技术有限公司 | OLED display and method of making the same |
US10991906B2 (en) | 2017-06-21 | 2021-04-27 | Sharp Kabushiki Kaisha | Display device, method for manufacturing display device, and manufacturing apparatus of display device |
US10490758B2 (en) * | 2017-10-30 | 2019-11-26 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Flexible OLED display panel and manufacturing method thereof |
JP7086582B2 (en) * | 2017-12-11 | 2022-06-20 | 株式会社ジャパンディスプレイ | Display device |
CN108281466B (en) * | 2018-01-19 | 2020-11-20 | 上海天马微电子有限公司 | Rollable display module and rollable display device |
KR102593533B1 (en) | 2018-02-28 | 2023-10-26 | 삼성디스플레이 주식회사 | Method for manufacturing substratefor display apparatus and method for manufacturing display apparatus |
US10879489B2 (en) * | 2018-05-21 | 2020-12-29 | Korea Advanced Institute Of Science And Technology | Organic device having protective film and method of manufacturing the same |
KR20190137458A (en) * | 2018-06-01 | 2019-12-11 | 삼성전자주식회사 | Method of display module using light emitting diode |
KR102595915B1 (en) | 2018-06-18 | 2023-10-31 | 삼성디스플레이 주식회사 | Display apparatus and method of manufacturing the same |
TWI669815B (en) * | 2018-06-26 | 2019-08-21 | 智晶光電股份有限公司 | Side film package on flexible substrate |
TWI850281B (en) * | 2018-12-27 | 2024-08-01 | 日商索尼半導體解決方案公司 | Semiconductor components |
JP6814230B2 (en) * | 2019-01-11 | 2021-01-13 | 株式会社Joled | Light emitting panel, light emitting device and electronic equipment |
CN109979977A (en) * | 2019-03-28 | 2019-07-05 | 武汉华星光电半导体显示技术有限公司 | OLED display panel and preparation method thereof |
TWI693460B (en) * | 2019-05-24 | 2020-05-11 | 友達光電股份有限公司 | Pixel structure |
JP7415561B2 (en) * | 2020-01-06 | 2024-01-17 | セイコーエプソン株式会社 | Organic electroluminescent devices and electronic equipment |
JP7419821B2 (en) | 2020-01-06 | 2024-01-23 | セイコーエプソン株式会社 | Organic electroluminescent devices and electronic equipment |
KR20210094462A (en) * | 2020-01-20 | 2021-07-29 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method |
KR20220007754A (en) * | 2020-07-09 | 2022-01-19 | 삼성디스플레이 주식회사 | Display device and tiled display device including the same |
CN112201678A (en) * | 2020-09-30 | 2021-01-08 | 云南北方奥雷德光电科技股份有限公司 | High-color-saturation silicon-based OLED (organic light emitting diode) micro display and preparation method thereof |
KR20220070114A (en) | 2020-11-20 | 2022-05-30 | 삼성디스플레이 주식회사 | Display device and method of manufacturing the same |
KR20220121274A (en) * | 2021-02-24 | 2022-09-01 | 삼성디스플레이 주식회사 | display device |
Family Cites Families (282)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489481A (en) | 1982-09-20 | 1984-12-25 | Texas Instruments Incorporated | Insulator and metallization method for VLSI devices with anisotropically-etched contact holes |
US4599538A (en) | 1982-09-30 | 1986-07-08 | Gte Prod Corp | Electroluminescent display device |
JPS625597A (en) | 1985-07-01 | 1987-01-12 | シャープ株式会社 | Thin film el element |
JPH0613180Y2 (en) | 1986-09-08 | 1994-04-06 | 日本板硝子株式会社 | Adsorption reversing device for standing glass plate |
JPH0765950B2 (en) | 1986-10-07 | 1995-07-19 | ティーディーケイ株式会社 | Fluorescent X-ray analysis method and apparatus |
JPH0414440Y2 (en) | 1987-06-08 | 1992-03-31 | ||
JPS6459791A (en) * | 1987-08-28 | 1989-03-07 | Toray Industries | Electroluminescence element |
JP2742057B2 (en) * | 1988-07-14 | 1998-04-22 | シャープ株式会社 | Thin film EL panel |
US5189405A (en) * | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
JP2859288B2 (en) * | 1989-03-20 | 1999-02-17 | 株式会社日立製作所 | Semiconductor integrated circuit device and method of manufacturing the same |
JPH0329291A (en) * | 1989-06-27 | 1991-02-07 | Sumitomo Bakelite Co Ltd | Water-trapping film for organic dispersed EL lamps |
JPH0362497A (en) | 1989-07-31 | 1991-03-18 | Ricoh Co Ltd | Thin film electroluminescent element |
JPH0362497U (en) | 1989-10-24 | 1991-06-19 | ||
US5244820A (en) | 1990-03-09 | 1993-09-14 | Tadashi Kamata | Semiconductor integrated circuit device, method for producing the same, and ion implanter for use in the method |
JPH0414440A (en) | 1990-05-07 | 1992-01-20 | Toray Ind Inc | Laminated film |
US5347154A (en) * | 1990-11-15 | 1994-09-13 | Seiko Instruments Inc. | Light valve device using semiconductive composite substrate |
JP2875076B2 (en) | 1990-11-29 | 1999-03-24 | 三井化学株式会社 | Flexible wiring board |
US5206749A (en) * | 1990-12-31 | 1993-04-27 | Kopin Corporation | Liquid crystal display having essentially single crystal transistors pixels and driving circuits |
US5946561A (en) | 1991-03-18 | 1999-08-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for forming the same |
US5396100A (en) * | 1991-04-05 | 1995-03-07 | Hitachi, Ltd. | Semiconductor integrated circuit device having a compact arrangement of SRAM cells |
JP2838338B2 (en) * | 1991-05-21 | 1998-12-16 | 株式会社半導体エネルギー研究所 | Driving method of electro-optical device |
JP2650519B2 (en) | 1991-07-25 | 1997-09-03 | 株式会社日立製作所 | Horizontal insulated gate transistor |
US5317433A (en) * | 1991-12-02 | 1994-05-31 | Canon Kabushiki Kaisha | Image display device with a transistor on one side of insulating layer and liquid crystal on the other side |
JP3181712B2 (en) | 1992-04-28 | 2001-07-03 | 東北パイオニア株式会社 | EL display module |
JP2975766B2 (en) | 1992-05-13 | 1999-11-10 | 三洋電機株式会社 | Method for manufacturing flexible thin film solar cell |
TW214603B (en) * | 1992-05-13 | 1993-10-11 | Seiko Electron Co Ltd | Semiconductor device |
CN1052568C (en) | 1992-07-06 | 2000-05-17 | 株式会社半导体能源研究所 | Semiconductor device and method for forming the same |
US5633176A (en) * | 1992-08-19 | 1997-05-27 | Seiko Instruments Inc. | Method of producing a semiconductor device for a light valve |
US5652067A (en) | 1992-09-10 | 1997-07-29 | Toppan Printing Co., Ltd. | Organic electroluminescent device |
TW250618B (en) | 1993-01-27 | 1995-07-01 | Mitsui Toatsu Chemicals | |
JPH06296023A (en) | 1993-02-10 | 1994-10-21 | Semiconductor Energy Lab Co Ltd | Thin-film semiconductor device and manufacture thereof |
DE4325885A1 (en) | 1993-08-02 | 1995-02-09 | Basf Ag | Electroluminescent arrangement |
DE69433244T2 (en) * | 1993-08-05 | 2004-07-29 | Matsushita Electric Industrial Co., Ltd., Kadoma | Manufacturing method for semiconductor device with capacitor of high dielectric constant |
JPH0765950A (en) * | 1993-08-31 | 1995-03-10 | Shin Etsu Chem Co Ltd | Dispersion type el element |
US5455625A (en) | 1993-09-23 | 1995-10-03 | Rosco Inc. | Video camera unit, protective enclosure and power circuit for same, particularly for use in vehicles |
JPH07109573A (en) | 1993-10-12 | 1995-04-25 | Semiconductor Energy Lab Co Ltd | Glass substrate and heat treatment |
US5448020A (en) | 1993-12-17 | 1995-09-05 | Pendse; Rajendra D. | System and method for forming a controlled impedance flex circuit |
JPH07192866A (en) | 1993-12-26 | 1995-07-28 | Ricoh Co Ltd | Organic thin film type electroluminescent element |
JP3254072B2 (en) | 1994-02-15 | 2002-02-04 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP3256084B2 (en) | 1994-05-26 | 2002-02-12 | 株式会社半導体エネルギー研究所 | Semiconductor integrated circuit and manufacturing method thereof |
JP3093604B2 (en) * | 1994-06-20 | 2000-10-03 | キヤノン株式会社 | Liquid crystal display |
JP3637078B2 (en) | 1994-08-29 | 2005-04-06 | 三井化学株式会社 | Gas barrier low moisture permeability insulating transparent electrode substrate and use thereof |
EP0781075B1 (en) | 1994-09-08 | 2001-12-05 | Idemitsu Kosan Company Limited | Method for sealing organic el element and organic el element |
US5627364A (en) * | 1994-10-11 | 1997-05-06 | Tdk Corporation | Linear array image sensor with thin-film light emission element light source |
JP3561302B2 (en) | 1994-10-11 | 2004-09-02 | Tdk株式会社 | Solid-state imaging device with integrated light source |
JP3578417B2 (en) | 1994-10-21 | 2004-10-20 | 出光興産株式会社 | Organic EL device |
DE4438359C2 (en) | 1994-10-27 | 2001-10-04 | Schott Glas | Plastic container with a barrier coating |
US5684365A (en) | 1994-12-14 | 1997-11-04 | Eastman Kodak Company | TFT-el display panel using organic electroluminescent media |
US5550066A (en) | 1994-12-14 | 1996-08-27 | Eastman Kodak Company | Method of fabricating a TFT-EL pixel |
WO1996025020A1 (en) | 1995-02-06 | 1996-08-15 | Idemitsu Kosan Co., Ltd. | Multi-color light emission apparatus and method for production thereof |
JP3364081B2 (en) | 1995-02-16 | 2003-01-08 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP3471966B2 (en) | 1995-03-16 | 2003-12-02 | 株式会社半導体エネルギー研究所 | Method for manufacturing thin film semiconductor device |
JP3454965B2 (en) | 1995-03-22 | 2003-10-06 | 株式会社半導体エネルギー研究所 | Liquid crystal display device and manufacturing method thereof |
US5834327A (en) | 1995-03-18 | 1998-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for producing display device |
KR100265179B1 (en) | 1995-03-27 | 2000-09-15 | 야마자끼 순페이 | Semiconductor device and manufacturing method |
US5771562A (en) * | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
JP3613294B2 (en) | 1995-07-24 | 2005-01-26 | 富士通ディスプレイテクノロジーズ株式会社 | LCD panel |
JP3107743B2 (en) * | 1995-07-31 | 2000-11-13 | カシオ計算機株式会社 | Electron-emitting electrode, method of manufacturing the same, and cold cathode fluorescent tube and plasma display using the same |
JPH0982476A (en) | 1995-09-14 | 1997-03-28 | Casio Comput Co Ltd | Organic electroluminescent device |
TW439003B (en) | 1995-11-17 | 2001-06-07 | Semiconductor Energy Lab | Display device |
US5811177A (en) * | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
US5686360A (en) | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
TW309633B (en) | 1995-12-14 | 1997-07-01 | Handotai Energy Kenkyusho Kk | |
US6195142B1 (en) | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
JPH09232475A (en) | 1996-02-22 | 1997-09-05 | Nitto Denko Corp | Semiconductor device and its manufacture |
JPH09260059A (en) | 1996-03-18 | 1997-10-03 | Nec Corp | Electrode connecting structure of organic thin film el element, electrode taking-out method therefor and organic thin film el device |
US6121542A (en) | 1996-05-17 | 2000-09-19 | Canon Kabushiki Kaisha | Photovoltaic device |
DE69707233T2 (en) | 1996-05-28 | 2002-07-11 | Koninklijke Philips Electronics N.V., Eindhoven | ORGANIC ELECTROLUMINESCENT DEVICE |
DE19627071A1 (en) | 1996-07-05 | 1998-01-08 | Bayer Ag | Electroluminescent devices |
US5693956A (en) * | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
US5817366A (en) | 1996-07-29 | 1998-10-06 | Tdk Corporation | Method for manufacturing organic electroluminescent element and apparatus therefor |
EP1351308B1 (en) | 1996-08-27 | 2009-04-22 | Seiko Epson Corporation | Exfoliating method and transferring method of thin film device |
JP3809681B2 (en) | 1996-08-27 | 2006-08-16 | セイコーエプソン株式会社 | Peeling method |
JP4619462B2 (en) | 1996-08-27 | 2011-01-26 | セイコーエプソン株式会社 | Thin film element transfer method |
US6127199A (en) | 1996-11-12 | 2000-10-03 | Seiko Epson Corporation | Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device |
JP2762993B2 (en) | 1996-11-19 | 1998-06-11 | 日本電気株式会社 | Light emitting device and method of manufacturing the same |
JP3281848B2 (en) | 1996-11-29 | 2002-05-13 | 三洋電機株式会社 | Display device |
JP3392672B2 (en) * | 1996-11-29 | 2003-03-31 | 三洋電機株式会社 | Display device |
JP3297619B2 (en) | 1996-12-18 | 2002-07-02 | ティーディーケイ株式会社 | Organic EL color display |
US6046543A (en) | 1996-12-23 | 2000-04-04 | The Trustees Of Princeton University | High reliability, high efficiency, integratable organic light emitting devices and methods of producing same |
TW441136B (en) | 1997-01-28 | 2001-06-16 | Casio Computer Co Ltd | An electroluminescent display device and a driving method thereof |
US5757139A (en) | 1997-02-03 | 1998-05-26 | The Trustees Of Princeton University | Driving circuit for stacked organic light emitting devices |
KR100266532B1 (en) | 1997-02-03 | 2000-09-15 | 가네꼬 히사시 | Organic electroluminescent device |
US6049167A (en) | 1997-02-17 | 2000-04-11 | Tdk Corporation | Organic electroluminescent display device, and method and system for making the same |
US5952778A (en) * | 1997-03-18 | 1999-09-14 | International Business Machines Corporation | Encapsulated organic light emitting device |
US5953094A (en) | 1997-04-04 | 1999-09-14 | Sanyo Electric Co., Ltd. | Liquid crystal display device |
US6432516B1 (en) | 1997-04-17 | 2002-08-13 | Kureha Kagaku Kogyo K.K. | Moistureproofing film and electroluminescent device |
JP3290375B2 (en) * | 1997-05-12 | 2002-06-10 | 松下電器産業株式会社 | Organic electroluminescent device |
JPH10321374A (en) | 1997-05-20 | 1998-12-04 | Tdk Corp | Organic EL device |
US6198220B1 (en) * | 1997-07-11 | 2001-03-06 | Emagin Corporation | Sealing structure for organic light emitting devices |
JP3529989B2 (en) * | 1997-09-12 | 2004-05-24 | 株式会社東芝 | Film forming method and semiconductor device manufacturing method |
KR100254536B1 (en) | 1997-09-29 | 2000-05-01 | 정선종 | A EL device using a synthesis of silyl disubstituted PPV derivatives and a method of manufacturing the same |
JPH11168263A (en) * | 1997-09-30 | 1999-06-22 | Canon Inc | Optical device and manufacturing method thereof |
KR100249784B1 (en) * | 1997-11-20 | 2000-04-01 | 정선종 | Packaging method of organic or polymer electroluminescent device using polymer composite membrane |
US5998805A (en) * | 1997-12-11 | 1999-12-07 | Motorola, Inc. | Active matrix OED array with improved OED cathode |
JPH11212047A (en) * | 1998-01-21 | 1999-08-06 | Semiconductor Energy Lab Co Ltd | Electronic equipment |
JPH11218777A (en) | 1998-01-30 | 1999-08-10 | Matsushita Electric Ind Co Ltd | Liquid crystal display panel |
JP3809733B2 (en) | 1998-02-25 | 2006-08-16 | セイコーエプソン株式会社 | Thin film transistor peeling method |
JPH11243209A (en) | 1998-02-25 | 1999-09-07 | Seiko Epson Corp | Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic equipment |
JP4126747B2 (en) | 1998-02-27 | 2008-07-30 | セイコーエプソン株式会社 | Manufacturing method of three-dimensional device |
JPH11329719A (en) | 1998-04-08 | 1999-11-30 | Lg Electronics Inc | Organic electroluminescent device |
US6226862B1 (en) | 1998-04-30 | 2001-05-08 | Sheldahl, Inc. | Method for manufacturing printed circuit board assembly |
TW410478B (en) * | 1998-05-29 | 2000-11-01 | Lucent Technologies Inc | Thin-film transistor monolithically integrated with an organic light-emitting diode |
US6252253B1 (en) | 1998-06-10 | 2001-06-26 | Agere Systems Optoelectronics Guardian Corp. | Patterned light emitting diode devices |
JP3215822B2 (en) | 1998-07-13 | 2001-10-09 | 住友特殊金属株式会社 | Magnetic head wafer and magnetic head |
JP2000048951A (en) | 1998-07-24 | 2000-02-18 | Oputeku:Kk | Luminescent element |
US6172459B1 (en) | 1998-07-28 | 2001-01-09 | Eastman Kodak Company | Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer |
US6146225A (en) * | 1998-07-30 | 2000-11-14 | Agilent Technologies, Inc. | Transparent, flexible permeability barrier for organic electroluminescent devices |
JP2000058256A (en) | 1998-08-07 | 2000-02-25 | Canon Inc | Organic light emitting device |
JP3785821B2 (en) | 1998-08-12 | 2006-06-14 | セイコーエプソン株式会社 | Liquid crystal display panel inspection apparatus and inspection method |
JP2000068050A (en) | 1998-08-24 | 2000-03-03 | Casio Comput Co Ltd | Electroluminescent device and method of manufacturing the same |
US6111361A (en) * | 1998-09-11 | 2000-08-29 | Motorola, Inc. | Light emitting apparatus and method of fabrication |
JP4269195B2 (en) | 1998-09-25 | 2009-05-27 | ソニー株式会社 | Light emitting or dimming element and manufacturing method thereof |
CN1139837C (en) | 1998-10-01 | 2004-02-25 | 三星电子株式会社 | Film transistor array substrate for liquid crystal display and manufacture thereof |
US6343171B1 (en) | 1998-10-09 | 2002-01-29 | Fujitsu Limited | Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making |
JP2000133450A (en) | 1998-10-20 | 2000-05-12 | Rohm Co Ltd | Organic EL panel |
JP3782245B2 (en) | 1998-10-28 | 2006-06-07 | Tdk株式会社 | Manufacturing apparatus and manufacturing method of organic EL display device |
US6214631B1 (en) | 1998-10-30 | 2001-04-10 | The Trustees Of Princeton University | Method for patterning light emitting devices incorporating a movable mask |
US6274887B1 (en) * | 1998-11-02 | 2001-08-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method therefor |
JP4159712B2 (en) | 1998-11-17 | 2008-10-01 | 株式会社半導体エネルギー研究所 | Semiconductor device, active matrix display device, liquid crystal display device, electroluminescence display device, video camera, digital camera, projector, goggle type display, car navigation system, personal computer or portable information terminal |
US6909114B1 (en) | 1998-11-17 | 2005-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having LDD regions |
JP3899499B2 (en) | 1998-11-18 | 2007-03-28 | ソニー株式会社 | Non-aqueous electrolyte battery |
US6420988B1 (en) * | 1998-12-03 | 2002-07-16 | Semiconductor Energy Laboratory Co., Ltd. | Digital analog converter and electronic device using the same |
JP2000174282A (en) * | 1998-12-03 | 2000-06-23 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
EP1145338B1 (en) | 1998-12-16 | 2012-12-05 | Samsung Display Co., Ltd. | Environmental barrier material for organic light emitting device and method of making |
US6268695B1 (en) | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
US6274412B1 (en) * | 1998-12-21 | 2001-08-14 | Parelec, Inc. | Material and method for printing high conductivity electrical conductors and other components on thin film transistor arrays |
JP4004672B2 (en) * | 1998-12-28 | 2007-11-07 | シャープ株式会社 | Substrate for liquid crystal display device and manufacturing method thereof |
US6380558B1 (en) * | 1998-12-29 | 2002-04-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of fabricating the same |
EP1144197B1 (en) | 1999-01-15 | 2003-06-11 | 3M Innovative Properties Company | Thermal Transfer Method. |
US6114088A (en) * | 1999-01-15 | 2000-09-05 | 3M Innovative Properties Company | Thermal transfer element for forming multilayer devices |
TW460927B (en) | 1999-01-18 | 2001-10-21 | Toshiba Corp | Semiconductor device, mounting method for semiconductor device and manufacturing method for semiconductor device |
US6573195B1 (en) * | 1999-01-26 | 2003-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a semiconductor device by performing a heat-treatment in a hydrogen atmosphere |
US6674136B1 (en) * | 1999-03-04 | 2004-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having driver circuit and pixel section provided over same substrate |
JP2001009963A (en) | 1999-04-26 | 2001-01-16 | Toyo Ink Mfg Co Ltd | Laminate, production thereof and use thereof |
EP1186065A1 (en) | 1999-04-28 | 2002-03-13 | E.I. Du Pont De Nemours And Company | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
JP2000323273A (en) | 1999-05-07 | 2000-11-24 | Dainippon Printing Co Ltd | Electroluminescent element |
JP4664455B2 (en) | 1999-05-11 | 2011-04-06 | 株式会社東芝 | Non-aqueous electrolyte secondary battery |
US6734535B1 (en) | 1999-05-14 | 2004-05-11 | Seiko Epson Corporation | Semiconductor device, method of manufacture thereof, circuit board, and electronic instrument |
JP2000323276A (en) | 1999-05-14 | 2000-11-24 | Seiko Epson Corp | Method for manufacturing organic EL device, organic EL device, and ink composition |
JP2001052864A (en) | 1999-06-04 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | Making method of opto-electronical device |
TWI232595B (en) | 1999-06-04 | 2005-05-11 | Semiconductor Energy Lab | Electroluminescence display device and electronic device |
JP4730994B2 (en) | 1999-06-04 | 2011-07-20 | 株式会社半導体エネルギー研究所 | Electro-optical device, manufacturing method thereof, and electronic device |
US7288420B1 (en) | 1999-06-04 | 2007-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing an electro-optical device |
US6770975B2 (en) | 1999-06-09 | 2004-08-03 | Alliedsignal Inc. | Integrated circuits with multiple low dielectric-constant inter-metal dielectrics |
JP3666305B2 (en) | 1999-06-14 | 2005-06-29 | セイコーエプソン株式会社 | Semiconductor device, electro-optical device, and manufacturing method of semiconductor device |
JP2000357585A (en) | 1999-06-14 | 2000-12-26 | Futaba Corp | Organic EL device |
US6541294B1 (en) * | 1999-07-22 | 2003-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TW504941B (en) | 1999-07-23 | 2002-10-01 | Semiconductor Energy Lab | Method of fabricating an EL display device, and apparatus for forming a thin film |
JP3804349B2 (en) | 1999-08-06 | 2006-08-02 | セイコーエプソン株式会社 | Thin film device device manufacturing method, active matrix substrate manufacturing method, and electro-optical device |
JP2001057286A (en) | 1999-08-20 | 2001-02-27 | Tdk Corp | Organic EL device |
JP4472073B2 (en) * | 1999-09-03 | 2010-06-02 | 株式会社半導体エネルギー研究所 | Display device and manufacturing method thereof |
JP2001085156A (en) | 1999-09-14 | 2001-03-30 | Sony Corp | Organic electroluminescent element, its manufacturing method, and display device |
US6660409B1 (en) | 1999-09-16 | 2003-12-09 | Panasonic Communications Co., Ltd | Electronic device and process for producing the same |
JP3942770B2 (en) * | 1999-09-22 | 2007-07-11 | 株式会社半導体エネルギー研究所 | EL display device and electronic device |
TW540251B (en) * | 1999-09-24 | 2003-07-01 | Semiconductor Energy Lab | EL display device and method for driving the same |
US6833668B1 (en) | 1999-09-29 | 2004-12-21 | Sanyo Electric Co., Ltd. | Electroluminescence display device having a desiccant |
JP4780826B2 (en) | 1999-10-12 | 2011-09-28 | 株式会社半導体エネルギー研究所 | Method for manufacturing electro-optical device |
TW480722B (en) | 1999-10-12 | 2002-03-21 | Semiconductor Energy Lab | Manufacturing method of electro-optical device |
JP2001118674A (en) | 1999-10-19 | 2001-04-27 | Auto Network Gijutsu Kenkyusho:Kk | Organic EL display |
US20070196682A1 (en) | 1999-10-25 | 2007-08-23 | Visser Robert J | Three dimensional multilayer barrier and method of making |
US6413645B1 (en) * | 2000-04-20 | 2002-07-02 | Battelle Memorial Institute | Ultrabarrier substrates |
US6573652B1 (en) | 1999-10-25 | 2003-06-03 | Battelle Memorial Institute | Encapsulated display devices |
US6623861B2 (en) | 2001-04-16 | 2003-09-23 | Battelle Memorial Institute | Multilayer plastic substrates |
US6548912B1 (en) | 1999-10-25 | 2003-04-15 | Battelle Memorial Institute | Semicoductor passivation using barrier coatings |
US6866901B2 (en) | 1999-10-25 | 2005-03-15 | Vitex Systems, Inc. | Method for edge sealing barrier films |
US7198832B2 (en) | 1999-10-25 | 2007-04-03 | Vitex Systems, Inc. | Method for edge sealing barrier films |
US6587086B1 (en) * | 1999-10-26 | 2003-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US6580094B1 (en) * | 1999-10-29 | 2003-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro luminescence display device |
JP2001148291A (en) * | 1999-11-19 | 2001-05-29 | Sony Corp | Display device and method of manufacturing the same |
JP4727029B2 (en) * | 1999-11-29 | 2011-07-20 | 株式会社半導体エネルギー研究所 | EL display device, electric appliance, and semiconductor element substrate for EL display device |
TW587239B (en) | 1999-11-30 | 2004-05-11 | Semiconductor Energy Lab | Electric device |
US6197663B1 (en) | 1999-12-07 | 2001-03-06 | Lucent Technologies Inc. | Process for fabricating integrated circuit devices having thin film transistors |
CN100352022C (en) * | 1999-12-10 | 2007-11-28 | 株式会社半导体能源研究所 | Semiconductor device and a method of manufacturing the same |
TW465122B (en) | 1999-12-15 | 2001-11-21 | Semiconductor Energy Lab | Light-emitting device |
JP3409762B2 (en) | 1999-12-16 | 2003-05-26 | 日本電気株式会社 | Organic electroluminescence device |
JP2001185346A (en) | 1999-12-24 | 2001-07-06 | Victor Co Of Japan Ltd | Self-luminescent device |
US6606080B2 (en) * | 1999-12-24 | 2003-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device and electronic equipment |
JP4478268B2 (en) | 1999-12-28 | 2010-06-09 | セイコーエプソン株式会社 | Thin film device manufacturing method |
TW473800B (en) * | 1999-12-28 | 2002-01-21 | Semiconductor Energy Lab | Method of manufacturing a semiconductor device |
US7060153B2 (en) | 2000-01-17 | 2006-06-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing the same |
JP4748859B2 (en) | 2000-01-17 | 2011-08-17 | 株式会社半導体エネルギー研究所 | Method for manufacturing light emitting device |
US6747638B2 (en) | 2000-01-31 | 2004-06-08 | Semiconductor Energy Laboratory Co., Ltd. | Adhesion type area sensor and display device having adhesion type area sensor |
JP2001217423A (en) * | 2000-02-01 | 2001-08-10 | Sony Corp | Thin-film semiconductor device, display device and method of manufacturing the same |
TW494447B (en) | 2000-02-01 | 2002-07-11 | Semiconductor Energy Lab | Semiconductor device and manufacturing method thereof |
US6559594B2 (en) | 2000-02-03 | 2003-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US7098884B2 (en) * | 2000-02-08 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device and method of driving semiconductor display device |
JP4434411B2 (en) | 2000-02-16 | 2010-03-17 | 出光興産株式会社 | Active drive type organic EL light emitting device and manufacturing method thereof |
TW525305B (en) * | 2000-02-22 | 2003-03-21 | Semiconductor Energy Lab | Self-light-emitting device and method of manufacturing the same |
TWI249363B (en) | 2000-02-25 | 2006-02-11 | Seiko Epson Corp | Organic electroluminescence device and manufacturing method therefor |
KR100685312B1 (en) * | 2000-02-25 | 2007-02-22 | 엘지.필립스 엘시디 주식회사 | LCD panel and manufacturing method thereof |
US6882012B2 (en) * | 2000-02-28 | 2005-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
JP4542659B2 (en) | 2000-03-07 | 2010-09-15 | 出光興産株式会社 | Active drive type organic EL display device and manufacturing method thereof |
US6838696B2 (en) * | 2000-03-15 | 2005-01-04 | Advanced Display Inc. | Liquid crystal display |
US6872607B2 (en) * | 2000-03-21 | 2005-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
JP2001338755A (en) | 2000-03-21 | 2001-12-07 | Seiko Epson Corp | Organic EL device and method of manufacturing the same |
TW521226B (en) * | 2000-03-27 | 2003-02-21 | Semiconductor Energy Lab | Electro-optical device |
TWI226205B (en) * | 2000-03-27 | 2005-01-01 | Semiconductor Energy Lab | Self-light emitting device and method of manufacturing the same |
JP2001284592A (en) * | 2000-03-29 | 2001-10-12 | Sony Corp | Thin film semiconductor device and driving method thereof |
JP2001282123A (en) | 2000-03-30 | 2001-10-12 | Toshiba Corp | Display device and method for manufacturing the same |
TW493282B (en) | 2000-04-17 | 2002-07-01 | Semiconductor Energy Lab | Self-luminous device and electric machine using the same |
US7525165B2 (en) * | 2000-04-17 | 2009-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
TW447138B (en) * | 2000-04-28 | 2001-07-21 | Unipac Optoelectronics Corp | Manufacturing method of thin-film transistor |
US7579203B2 (en) * | 2000-04-25 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6611108B2 (en) * | 2000-04-26 | 2003-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device and driving method thereof |
TW531901B (en) * | 2000-04-27 | 2003-05-11 | Semiconductor Energy Lab | Light emitting device |
TW442979B (en) * | 2000-04-28 | 2001-06-23 | Unipac Optoelectronics Corp | Manufacturing method of thin-film transistor |
US6515310B2 (en) | 2000-05-06 | 2003-02-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and electric apparatus |
US6989805B2 (en) * | 2000-05-08 | 2006-01-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8610645B2 (en) * | 2000-05-12 | 2013-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US6692845B2 (en) * | 2000-05-12 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
TW554637B (en) | 2000-05-12 | 2003-09-21 | Semiconductor Energy Lab | Display device and light emitting device |
JP3783099B2 (en) | 2000-05-16 | 2006-06-07 | 株式会社豊田中央研究所 | Organic electroluminescence device |
JP2001326071A (en) | 2000-05-18 | 2001-11-22 | Stanley Electric Co Ltd | Method for forming passivation film of organic LED element |
TW521256B (en) * | 2000-05-18 | 2003-02-21 | Semiconductor Energy Lab | Electronic device and method of driving the same |
JP2001332741A (en) | 2000-05-25 | 2001-11-30 | Sony Corp | Method for manufacturing thin film transistor |
TW483038B (en) * | 2000-05-26 | 2002-04-11 | Koninkl Philips Electronics Nv | Display device |
US7339317B2 (en) * | 2000-06-05 | 2008-03-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having triplet and singlet compound in light-emitting layers |
US6872604B2 (en) * | 2000-06-05 | 2005-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating a light emitting device |
US6729922B2 (en) * | 2000-06-05 | 2004-05-04 | Semiconductor Energy Laboratory Co., Ltd. | Device for inspecting element substrates and method of inspection using this device |
JP2001357973A (en) | 2000-06-15 | 2001-12-26 | Sony Corp | Display device |
GB0014962D0 (en) * | 2000-06-20 | 2000-08-09 | Koninkl Philips Electronics Nv | Matrix array display devices with light sensing elements and associated storage capacitors |
US7503975B2 (en) * | 2000-06-27 | 2009-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and fabrication method therefor |
US6738034B2 (en) | 2000-06-27 | 2004-05-18 | Hitachi, Ltd. | Picture image display device and method of driving the same |
JP3840926B2 (en) | 2000-07-07 | 2006-11-01 | セイコーエプソン株式会社 | Organic EL display, method for manufacturing the same, and electronic device |
US6940223B2 (en) * | 2000-07-10 | 2005-09-06 | Semiconductor Energy Laboratory Co., Ltd. | Film forming apparatus and method of manufacturing light emitting device |
US6828950B2 (en) * | 2000-08-10 | 2004-12-07 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of driving the same |
JP3501218B2 (en) | 2000-08-11 | 2004-03-02 | 日本電気株式会社 | Flat panel display module and manufacturing method thereof |
US6605826B2 (en) * | 2000-08-18 | 2003-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and display device |
KR100748818B1 (en) | 2000-08-23 | 2007-08-13 | 이데미쓰 고산 가부시키가이샤 | Organic electroluminescent display |
TW463393B (en) * | 2000-08-25 | 2001-11-11 | Ind Tech Res Inst | Structure of organic light emitting diode display |
US6739931B2 (en) | 2000-09-18 | 2004-05-25 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of fabricating the display device |
TW466888B (en) * | 2000-09-29 | 2001-12-01 | Ind Tech Res Inst | Pixel device structure and process of organic light emitting diode display |
US6924594B2 (en) | 2000-10-03 | 2005-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6664732B2 (en) | 2000-10-26 | 2003-12-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
JP4116764B2 (en) | 2000-10-27 | 2008-07-09 | 松下電工株式会社 | Method for producing organic electroluminescent device |
TW522577B (en) | 2000-11-10 | 2003-03-01 | Semiconductor Energy Lab | Light emitting device |
US6515428B1 (en) * | 2000-11-24 | 2003-02-04 | Industrial Technology Research Institute | Pixel structure an organic light-emitting diode display device and its manufacturing method |
GB0028877D0 (en) * | 2000-11-28 | 2001-01-10 | Koninkl Philips Electronics Nv | Liquid crystal displays |
US6583440B2 (en) * | 2000-11-30 | 2003-06-24 | Seiko Epson Corporation | Soi substrate, element substrate, semiconductor device, electro-optical apparatus, electronic equipment, method of manufacturing the soi substrate, method of manufacturing the element substrate, and method of manufacturing the electro-optical apparatus |
US6646284B2 (en) * | 2000-12-12 | 2003-11-11 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US6624839B2 (en) * | 2000-12-20 | 2003-09-23 | Polaroid Corporation | Integral organic light emitting diode printhead utilizing color filters |
US6825496B2 (en) * | 2001-01-17 | 2004-11-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6639360B2 (en) * | 2001-01-31 | 2003-10-28 | Gentex Corporation | High power radiation emitter device and heat dissipating package for electronic components |
JP4831874B2 (en) * | 2001-02-26 | 2011-12-07 | 株式会社半導体エネルギー研究所 | LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE |
JP4147008B2 (en) | 2001-03-05 | 2008-09-10 | 株式会社日立製作所 | Film used for organic EL device and organic EL device |
US6624568B2 (en) * | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
JP3608613B2 (en) * | 2001-03-28 | 2005-01-12 | 株式会社日立製作所 | Display device |
JP4801278B2 (en) * | 2001-04-23 | 2011-10-26 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
US6734463B2 (en) | 2001-05-23 | 2004-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising a window |
JP4244120B2 (en) | 2001-06-20 | 2009-03-25 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
JP2003086356A (en) | 2001-09-06 | 2003-03-20 | Semiconductor Energy Lab Co Ltd | Light emitting device and electronic device |
US7211828B2 (en) | 2001-06-20 | 2007-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic apparatus |
TW548860B (en) | 2001-06-20 | 2003-08-21 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
TW546857B (en) | 2001-07-03 | 2003-08-11 | Semiconductor Energy Lab | Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment |
JP2003017244A (en) | 2001-07-05 | 2003-01-17 | Sony Corp | Organic electroluminescent device and method of manufacturing the same |
JP3879463B2 (en) * | 2001-09-19 | 2007-02-14 | 株式会社日立製作所 | Liquid crystal display panel, liquid crystal display device, and liquid crystal television |
US6737753B2 (en) | 2001-09-28 | 2004-05-18 | Osram Opto Semiconductor Gmbh | Barrier stack |
KR20010106343A (en) * | 2001-10-25 | 2001-11-29 | 윤차랑 | Using of minute ampere to the burglar alarm and the method |
US6852997B2 (en) | 2001-10-30 | 2005-02-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP4019690B2 (en) | 2001-11-02 | 2007-12-12 | セイコーエプソン株式会社 | ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE |
US6822264B2 (en) | 2001-11-16 | 2004-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6731064B2 (en) * | 2001-11-20 | 2004-05-04 | International Business Machines Corporation | Yield enchancement pixel structure for active matrix organic light-emitting diode displays |
KR100483988B1 (en) | 2001-11-29 | 2005-04-15 | 삼성에스디아이 주식회사 | Method of Varying Transmittance in transparent conductive film |
JP3705264B2 (en) | 2001-12-18 | 2005-10-12 | セイコーエプソン株式会社 | Display device and electronic device |
JP2003203771A (en) | 2002-01-09 | 2003-07-18 | Matsushita Electric Ind Co Ltd | Organic light emitting device, display device and lighting device |
KR100563675B1 (en) | 2002-04-09 | 2006-03-28 | 캐논 가부시끼가이샤 | Organic light emitting device and organic light emitting device package |
US6819044B2 (en) | 2002-04-10 | 2004-11-16 | Tdk Corporation | Thin-film EL device and composite substrate |
US6835950B2 (en) | 2002-04-12 | 2004-12-28 | Universal Display Corporation | Organic electronic devices with pressure sensitive adhesive layer |
US6728278B2 (en) | 2002-05-23 | 2004-04-27 | Eastman Kodak Company | Organic vertical cavity laser array device |
US6792333B2 (en) | 2002-06-04 | 2004-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Product management method, program for performing product management, and storage medium having recorded the program therein |
US7230271B2 (en) | 2002-06-11 | 2007-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising film having hygroscopic property and transparency and manufacturing method thereof |
US6911772B2 (en) | 2002-06-12 | 2005-06-28 | Eastman Kodak Company | Oled display having color filters for improving contrast |
KR100473591B1 (en) | 2002-07-18 | 2005-03-10 | 엘지.필립스 엘시디 주식회사 | Dual Panel Type Organic Electroluminescent Device and Method for Fabricating the same |
GB0217900D0 (en) | 2002-08-02 | 2002-09-11 | Qinetiq Ltd | Optoelectronic devices |
US6710542B2 (en) | 2002-08-03 | 2004-03-23 | Agilent Technologies, Inc. | Organic light emitting device with improved moisture seal |
TWI304706B (en) | 2002-08-30 | 2008-12-21 | Au Optronics Corp | |
JP2004207084A (en) | 2002-12-25 | 2004-07-22 | Semiconductor Energy Lab Co Ltd | Light emitting device and manufacturing method thereof |
TWI228941B (en) | 2002-12-27 | 2005-03-01 | Au Optronics Corp | Active matrix organic light emitting diode display and fabricating method thereof |
US7692378B2 (en) | 2004-04-28 | 2010-04-06 | Semiconductor Energy Laboratory Co., Ltd. | Display device including an insulating layer with an opening |
US7202504B2 (en) | 2004-05-20 | 2007-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and display device |
DE102009026478A1 (en) | 2009-05-26 | 2010-12-02 | Hilti Aktiengesellschaft | Fastener with a base body for use in mining and tunneling |
-
2002
- 2002-06-11 TW TW091112667A patent/TW548860B/en not_active IP Right Cessation
- 2002-06-19 US US10/174,547 patent/US6849877B2/en not_active Expired - Lifetime
- 2002-06-20 KR KR1020020034626A patent/KR100913927B1/en active IP Right Grant
- 2002-06-20 CN CNB021226687A patent/CN100350633C/en not_active Expired - Lifetime
-
2005
- 2005-01-27 US US11/043,283 patent/US7420208B2/en not_active Expired - Fee Related
-
2008
- 2008-07-18 US US12/175,516 patent/US7952101B2/en not_active Expired - Fee Related
-
2009
- 2009-03-20 KR KR1020090024003A patent/KR100975800B1/en active IP Right Grant
-
2011
- 2011-05-16 US US13/108,021 patent/US8134149B2/en not_active Expired - Fee Related
-
2012
- 2012-03-09 US US13/416,100 patent/US8415660B2/en not_active Expired - Lifetime
-
2013
- 2013-04-08 US US13/858,121 patent/US9166180B2/en not_active Expired - Fee Related
- 2013-11-26 US US14/090,692 patent/US9276224B2/en not_active Expired - Fee Related
-
2014
- 2014-08-07 US US14/453,750 patent/US9178168B2/en not_active Expired - Fee Related
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100442534C (en) * | 2003-02-24 | 2008-12-10 | 索尼株式会社 | Display device and method of manufacturing same |
US7554121B2 (en) | 2003-12-26 | 2009-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor device |
US7749804B2 (en) | 2003-12-26 | 2010-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor device and method for manufacturing the same |
CN1797807B (en) * | 2003-12-26 | 2010-09-29 | 株式会社半导体能源研究所 | Organic semiconductor device and method for manufacturing the same |
US8575740B2 (en) | 2004-02-06 | 2013-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN1918708B (en) * | 2004-02-06 | 2013-07-17 | 株式会社半导体能源研究所 | Semiconductor device |
US7994617B2 (en) | 2004-02-06 | 2011-08-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US11930668B2 (en) | 2008-10-16 | 2024-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Flexible light-emitting device and EL module including transparent conductive film |
CN102279468A (en) * | 2009-12-09 | 2011-12-14 | X盘D公司 | Active 3D glasses with OLED light valves |
US11839106B2 (en) | 2012-05-09 | 2023-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and electronic device |
US11621407B2 (en) | 2012-05-09 | 2023-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having first to third supports |
CN103456896A (en) * | 2012-05-30 | 2013-12-18 | 三星显示有限公司 | display device |
CN107611120A (en) * | 2013-02-20 | 2018-01-19 | 株式会社日本显示器 | Display device and its manufacture method |
US10976580B2 (en) | 2013-02-20 | 2021-04-13 | Japan Display Inc. | Display device |
US11656488B2 (en) | 2013-02-20 | 2023-05-23 | Japan Display Inc. | Display device |
US11409145B2 (en) | 2013-02-20 | 2022-08-09 | Japan Display Inc. | Display device |
CN110649175A (en) * | 2013-05-16 | 2020-01-03 | 三星显示有限公司 | Organic light emitting diode display, electronic device including the same, and method of manufacturing the same |
CN103280256A (en) * | 2013-06-26 | 2013-09-04 | 汕头万顺包装材料股份有限公司光电薄膜分公司 | Transparent conductive film |
US9444061B2 (en) | 2013-10-12 | 2016-09-13 | Boe Technology Group Co., Ltd. | Display substrate, manufacturing method thereof and flexible display device |
CN103489880B (en) * | 2013-10-12 | 2015-03-25 | 京东方科技集团股份有限公司 | Display substrate and flexible display device containing same |
CN103489880A (en) * | 2013-10-12 | 2014-01-01 | 京东方科技集团股份有限公司 | Display substrate and flexible display device containing same |
CN104752438A (en) * | 2013-12-26 | 2015-07-01 | 英特尔公司 | Method and apparatus for flexible electronic communication device |
CN104752438B (en) * | 2013-12-26 | 2019-01-11 | 英特尔公司 | Method and apparatus for flexible electronic communication device |
CN105655373B (en) * | 2014-11-28 | 2019-01-11 | 乐金显示有限公司 | Flexible organic light emitting display and its manufacturing method |
CN105655373A (en) * | 2014-11-28 | 2016-06-08 | 乐金显示有限公司 | Flexible organic light emitting display and method of fabricating same |
CN104485351A (en) * | 2014-12-31 | 2015-04-01 | 深圳市华星光电技术有限公司 | Flexible organic light-emitting display and manufacturing method thereof |
US10096664B2 (en) | 2014-12-31 | 2018-10-09 | Shenzhen China Star Optoelectronics Co., Ltd. | Flexible organic light emitting display manufacturing method |
US9680114B2 (en) | 2014-12-31 | 2017-06-13 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Flexible organic light emitting display and method for manufacturing the same |
US10319924B2 (en) | 2016-01-20 | 2019-06-11 | Boe Technology Group Co., Ltd. | Method for manufacturing flexible substrate, flexible substrate and display device |
CN105552225A (en) * | 2016-01-20 | 2016-05-04 | 京东方科技集团股份有限公司 | Method for manufacturing flexible substrate, flexible substrate and display device |
CN105552225B (en) * | 2016-01-20 | 2020-04-17 | 京东方科技集团股份有限公司 | Method for manufacturing flexible substrate, and display device |
WO2017124682A1 (en) * | 2016-01-20 | 2017-07-27 | 京东方科技集团股份有限公司 | Method for manufacturing flexible substrate, and flexible substrate and display apparatus |
CN108511487A (en) * | 2017-02-28 | 2018-09-07 | 三星显示有限公司 | Show equipment |
CN108511487B (en) * | 2017-02-28 | 2023-10-24 | 三星显示有限公司 | display screen |
US11812644B2 (en) | 2017-02-28 | 2023-11-07 | Samsung Display Co., Ltd. | Display apparatus including conductive pattern in substrate and method of manufacturing the same |
US12082468B2 (en) | 2017-02-28 | 2024-09-03 | Samsung Display Co., Ltd. | Display apparatus including conductive pattern in substrate and method of manufacturing the same |
CN112447929A (en) * | 2019-09-03 | 2021-03-05 | 三星显示有限公司 | Display device |
US12193262B2 (en) | 2019-09-03 | 2025-01-07 | Samsung Display Co., Ltd. | Display apparatus |
CN110992832A (en) * | 2019-12-18 | 2020-04-10 | 厦门天马微电子有限公司 | Stretchable display panel and stretchable display device |
CN114300521A (en) * | 2021-12-28 | 2022-04-08 | 深圳市华星光电半导体显示技术有限公司 | Flexible display panel and manufacturing method thereof |
CN114300521B (en) * | 2021-12-28 | 2025-02-11 | 深圳市华星光电半导体显示技术有限公司 | Flexible display panel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20020097028A (en) | 2002-12-31 |
US20080303408A1 (en) | 2008-12-11 |
US7420208B2 (en) | 2008-09-02 |
US20050127371A1 (en) | 2005-06-16 |
CN100350633C (en) | 2007-11-21 |
US20110233557A1 (en) | 2011-09-29 |
US8415660B2 (en) | 2013-04-09 |
KR20090033861A (en) | 2009-04-06 |
US9178168B2 (en) | 2015-11-03 |
KR100975800B1 (en) | 2010-08-16 |
US20140077199A1 (en) | 2014-03-20 |
US8134149B2 (en) | 2012-03-13 |
US9276224B2 (en) | 2016-03-01 |
US20130228763A1 (en) | 2013-09-05 |
KR100913927B1 (en) | 2009-08-27 |
TW548860B (en) | 2003-08-21 |
US9166180B2 (en) | 2015-10-20 |
US20030034497A1 (en) | 2003-02-20 |
US6849877B2 (en) | 2005-02-01 |
US20140346488A1 (en) | 2014-11-27 |
US7952101B2 (en) | 2011-05-31 |
US20120187388A1 (en) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100350633C (en) | Luminous device and its producing method | |
CN100350634C (en) | Luminescent device, method and electronic equipment for manufacturing luminescent device | |
CN1218408C (en) | Self-luminous device and its producing method | |
CN100350623C (en) | Luminous device | |
CN1294656C (en) | Semiconductor device and producing method thereof | |
CN1227739C (en) | Electroluminescent display device and electronic device having electroluminescent display device | |
CN1263153C (en) | Semiconductor and producing method thereof | |
CN1223017C (en) | Self-luminescent apparatus and mfg. method thereof | |
CN1264199C (en) | Production method for semiconductor device | |
CN1434668A (en) | Light emitting device and making method thereof | |
CN1599056A (en) | Light emitting device and method of manufacturing thereof | |
CN1444427A (en) | Luminous device and its making method | |
CN1409581A (en) | Luminous device and its producing method | |
CN1649454A (en) | Display device, manufacturing method thereof, and television equipment | |
CN1893145A (en) | Method for manufacturing light emitting device | |
CN1828931A (en) | Semiconductor device, electronic device, and method for manufacturing semiconductor device | |
CN1311522A (en) | Displaying device and its mfg. method | |
CN1783533A (en) | A method of forming a display device | |
CN101054657A (en) | Film formation apparatus and film formation method and cleaning method | |
CN1422104A (en) | Illuminating device | |
CN1620215A (en) | Display device and manufacturing method thereof | |
CN101069222A (en) | Display device | |
CN1822384A (en) | Semiconductor device and manufacturing method thereof | |
CN1449229A (en) | Light-emitting device and method for manufacturing the same | |
CN1797757A (en) | Semiconductor device, display device and method for manufacturing thereof, and television device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20071121 |
|
CX01 | Expiry of patent term |