CN1259469C - Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal - Google Patents
Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal Download PDFInfo
- Publication number
- CN1259469C CN1259469C CN 200410016885 CN200410016885A CN1259469C CN 1259469 C CN1259469 C CN 1259469C CN 200410016885 CN200410016885 CN 200410016885 CN 200410016885 A CN200410016885 A CN 200410016885A CN 1259469 C CN1259469 C CN 1259469C
- Authority
- CN
- China
- Prior art keywords
- crystal
- moo
- laser
- periodic domain
- farmland
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 40
- 230000000737 periodic effect Effects 0.000 title claims abstract description 25
- 229910015667 MoO4 Inorganic materials 0.000 title abstract 3
- 238000000034 method Methods 0.000 claims abstract description 23
- 230000005684 electric field Effects 0.000 claims abstract description 5
- 238000000137 annealing Methods 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 2
- 239000010437 gem Substances 0.000 claims 2
- 229910001751 gemstone Inorganic materials 0.000 claims 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种实现Gd2(MoO4)3晶体周期性畴反转的方法,其特征是先将Gd2(MoO4)3晶体片沿极化方向(001)方向抛光,将超强超快激光用分波片分成两束激光,通过调节激光束的入射角来改变干涉条纹之间的间距,在飞秒激光的强电场的作用下,实现畴的周期性反转。本发明的关于周期性畴结构的制备工艺简单,易于操作,尺寸准确,成本较低,便于实现快速,规模化生产,此种结构的非线性光学晶体适于高能量的倍频激光输出。
A method for achieving periodic domain inversion of a Gd2 ( MoO4 ) 3 crystal is characterized in that a Gd2 ( MoO4 ) 3 crystal sheet is first polished along the polarization direction (001), an ultra-strong ultrafast laser is divided into two laser beams by a wave splitter, the interval between interference fringes is changed by adjusting the incident angle of the laser beam, and the periodic domain inversion is achieved under the action of the strong electric field of the femtosecond laser. The preparation process of the periodic domain structure of the invention is simple, easy to operate, accurate in size, low in cost, and easy to achieve rapid and large-scale production. The nonlinear optical crystal with such a structure is suitable for high-energy frequency-doubling laser output.
Description
技术领域technical field
本发明与钼酸钆(以下简称Gd2(MoO4)3)晶体有关,特别是一种实现Gd2(MoO4)3晶体周期性畴反转的方法。该晶体的周期性畴反转可用于激光的倍频输出。The present invention relates to gadolinium molybdate (hereinafter referred to as Gd 2 (MoO 4 ) 3 ) crystal, in particular a method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 crystal. The periodic domain inversion of this crystal can be used for frequency doubling output of laser.
背景技术Background technique
1962年Bloembergen等人提出准相位匹配(Quasi phase matching,以下简称QPM)理论:通过晶体的非线性极化率的周期性调制(周期性畴反转)来弥补由于折射率色散造成的基波和谐波之间的位相失配,已获得非线性光学效应的增强。用微结构材料代替均匀材料,用QPM实现激光倍频转换效率的增强,在技术上具有很大的吸引力。利用晶体周期性畴反转实现准相位匹配较之双折射相位匹配有一系列主要的优点:In 1962, Bloembergen et al. proposed the theory of quasi phase matching (Quasi phase matching, hereinafter referred to as QPM): through the periodic modulation of the nonlinear susceptibility of the crystal (periodic domain inversion) to compensate for the fundamental wave and phase caused by the refractive index dispersion. The phase mismatch between harmonics has been enhanced by nonlinear optical effects. Replacing homogeneous materials with microstructured materials and using QPM to achieve enhanced laser frequency-doubling conversion efficiency is technically very attractive. The use of crystal periodic domain inversion to achieve quasi-phase matching has a series of major advantages over birefringent phase matching:
首先由于使用者控制着周期性,它可以选用某一周期来匹配希望的非线性相互作用;First, since the user controls the periodicity, it can choose a certain period to match the desired nonlinear interaction;
第二,无需使用正交光束偏振,这意味着非线性系数不再局限于非对称d张量元素;Second, there is no need to use orthogonal beam polarizations, which means that the nonlinear coefficients are no longer restricted to asymmetric d-tensor elements;
第三,准相位匹配为临界相位匹配不存在正交极化传播光束的双折射感应离散。Third, quasi-phase matching is critical phase matching in the absence of birefringence-induced divergence of orthogonally polarized propagating beams.
另外,还可以在周期极化晶体上设置多种光栅间距和改变晶体的温度可实现简单的调谐。In addition, various grating pitches can be set on the periodically poled crystal and simple tuning can be realized by changing the temperature of the crystal.
目前实现Gd2(MoO4)3晶体周期性畴反转的方法有:电子束扫描、离子扩散和外电场诱导等方式。它们的缺点是都不能实现微区(仅能在微米量级以上)的周期性相位匹配,并且准确度不是很高。At present, the methods to achieve periodic domain inversion of Gd 2 (MoO 4 ) 3 crystals include electron beam scanning, ion diffusion and external electric field induction. Their disadvantages are that they cannot achieve periodic phase matching of micro-regions (only on the order of microns), and the accuracy is not very high.
三、发明内容3. Contents of the invention
本发明要解决的技术问题在于克服上述现有技术的缺点,提供一种用于Gd2(MoO4)3晶体周期性畴反转的方法,以实现纳米级的周期性畴反转。The technical problem to be solved by the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a method for periodic domain inversion of Gd 2 (MoO 4 ) 3 crystals, so as to realize nanoscale periodic domain inversion.
本发明的基本思想是:在Gd2(MoO4)3单晶沿[001]方向上,通过两束超强超快激光相互干涉形成的干涉条纹的强电场下实现极化率反转,实现畴结构反转,从而形成准相位匹配。The basic idea of the present invention is: in the Gd 2 (MoO 4 ) 3 single crystal along the [001] direction, under the strong electric field of the interference fringes formed by the mutual interference of two ultra-strong and ultra-fast lasers, the polarizability inversion is realized, and the The domain structure is reversed, resulting in a quasi-phase match.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种实现Gd2(MoO4)3晶体周期性畴反转的方法,其特征是先将Gd2(MoO4)3晶体片沿极化方向(001)方向抛光,将超强超快激光用分波片分成两束激光,通过调节激光束的入射角来改变干涉条纹之间的间距,在超强-超快激光的强电场的作用下,实现畴的周期性反转。A method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 crystal, which is characterized in that the Gd 2 (MoO 4 ) 3 crystal sheet is firstly polished along the polarization direction (001), and an ultra-strong ultra-fast laser is used to The split-wave plate is divided into two laser beams, and the spacing between the interference fringes is changed by adjusting the incident angle of the laser beams. Under the action of the strong electric field of the ultra-intense-ultrafast laser, the periodic inversion of domains is realized.
本发明实现Gd2(MoO4)3晶体周期性畴反转的方法的具体工艺步骤如下:The specific process steps of the method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 crystal in the present invention are as follows:
<1>先将Gd2(MoO4)3单晶进行定向,垂直于[001]的方向将Gd2(MoO4)3切成一定厚度的单晶片,经抛光(光洁度大于III级)后,通过退火进行单畴化处理,所述的晶体退火温度为870±20℃;<1> Orientate the Gd 2 (MoO 4 ) 3 single crystal first, cut the Gd 2 (MoO 4 ) 3 single crystal into a single wafer with a certain thickness perpendicular to the [001] direction, and after polishing (the finish is greater than grade III), Monodomain treatment is performed by annealing, and the crystal annealing temperature is 870±20°C;
<2>光路调整,将钛宝石飞秒激光通过分光镜,分成两束激光,然后经透镜聚焦,达到9-11J/cm2的能量密度,通过调两束光之间的入射夹角Θ,调整干涉条纹的宽度;<2>Optical path adjustment, the titanium sapphire femtosecond laser is divided into two beams through the beam splitter, and then focused by the lens to achieve an energy density of 9-11J/ cm2 . By adjusting the incident angle Θ between the two beams, Adjust the width of interference fringes;
<3>将经<1>处理单晶片置于激光束的焦点处,激光辐照该单晶片,其辐照时间为19-30分钟,即实现了Gd2(MoO4)3晶体周期性畴反转。<3> Place the single wafer processed by <1> at the focal point of the laser beam, and irradiate the single wafer with the laser for 19-30 minutes, that is, the periodic domains of Gd 2 (MoO 4 ) 3 crystals are realized reverse.
所述的飞秒激光为800nm,钛宝石120fs,200kHz激光。The femtosecond laser is 800nm, titanium sapphire 120fs, 200kHz laser.
所述的两束光的入射夹角Θ为37.5°。The incident angle Θ of the two beams of light is 37.5°.
所述的飞秒激光辐照的时间为24±3分钟。The time of the femtosecond laser irradiation is 24±3 minutes.
本发明的技术效果是:Technical effect of the present invention is:
(1)提出了一种用飞秒激光实现Gd2(MoO4)3单晶周期性畴反转的方法,该方法与先前的实现准相位匹配的方法相比,具有操作方便、精密度较高、便于实现自动控制等优点,可以实现纳米级周期性畴反转。(1) A method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 single crystal with femtosecond laser is proposed. Compared with the previous method of realizing quasi-phase matching, this method has the advantages of convenient operation and higher precision High, easy to realize automatic control and other advantages, can realize nanoscale periodic domain inversion.
(2)本发明提出用于实现Gd2(MoO4)3单晶周期性畴反转的方法,与先前的方法相比:它可以实现Gd2(MoO4)3单晶片纳米级的周期性畴反转,可以在纳米级实现准相位匹配。可应用于未来的全光路系统中。(2) The present invention proposes a method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 single crystal, compared with the previous method: it can realize nanoscale periodicity of Gd 2 (MoO 4 ) 3 single crystal Domain inversion enables quasi-phase matching at the nanoscale. It can be applied to future all-optical system.
附图说明Description of drawings
图1是本发明实现Gd2(MoO4)3晶体周期性畴反转的方法的激光系统示意图。Fig. 1 is a schematic diagram of a laser system of the method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 crystals according to the present invention.
图中:M-反光镜,1-分光镜,2,3-凸透镜,4-光程调节器In the figure: M-mirror, 1-beam splitter, 2, 3-convex lens, 4-optical path adjuster
具体实施方式Detailed ways
图1是本发明实现Gd2(MoO4)3晶体周期性畴反转的方法的激光系统示意图。本发明是利用飞秒激光实现Gd2(MoO4)3单晶周期性畴反转的具体工艺流程如下:Fig. 1 is a schematic diagram of a laser system of the method for realizing periodic domain inversion of Gd 2 (MoO 4 ) 3 crystals according to the present invention. The present invention utilizes femtosecond laser to realize the specific technological process of periodic domain inversion of Gd 2 (MoO 4 ) 3 single crystal as follows:
<1>先将Gd2(MoO4)3单晶进行定向,垂直于[001]的方向将Gd2(MoO4)3切成一定厚度的单晶片,经抛光(光洁度大于III级)后,通过退火进行单畴化处理,所述的晶体退火温度为870±20℃;<1> Orientate the Gd 2 (MoO 4 ) 3 single crystal first, cut the Gd 2 (MoO 4 ) 3 single crystal into a single wafer with a certain thickness perpendicular to the [001] direction, and after polishing (the finish is greater than grade III), Monodomain treatment is performed by annealing, and the crystal annealing temperature is 870±20°C;
<2>光路调整,将钛宝石飞秒激光通过分光镜,分成两束激光,然后经透镜聚焦,达到9-11J/cm2的能量密度,通过调两束光之间的入射夹角,调整干涉条纹的宽度;<2>Optical path adjustment, the titanium sapphire femtosecond laser is divided into two beams through the beam splitter, and then focused by the lens to achieve an energy density of 9-11J/cm 2 , by adjusting the incident angle between the two beams, adjust The width of the interference fringes;
<3>将经<1>处理单晶片置于激光束的焦点处,激光辐照该单晶片,其辐照时间为19-30分钟,即实现了Gd2(MoO4)3晶体周期性畴反转。<3> Place the single wafer processed by <1> at the focal point of the laser beam, and irradiate the single wafer with the laser for 19-30 minutes, that is, the periodic domains of Gd 2 (MoO 4 ) 3 crystals are realized reverse.
下面给出一个具体实施例:A specific embodiment is given below:
飞秒激光为800nm,120fs,200kHz钛宝石激光,两束光的入射夹角Θ为37.5°,晶体退火温度为870℃,飞秒激光辐照的时间为24分钟。The femtosecond laser is 800nm, 120fs, 200kHz Ti:Sapphire laser, the incident angle Θ of the two beams is 37.5°, the crystal annealing temperature is 870°C, and the femtosecond laser irradiation time is 24 minutes.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410016885 CN1259469C (en) | 2004-03-11 | 2004-03-11 | Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410016885 CN1259469C (en) | 2004-03-11 | 2004-03-11 | Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1560333A CN1560333A (en) | 2005-01-05 |
CN1259469C true CN1259469C (en) | 2006-06-14 |
Family
ID=34440710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410016885 Expired - Fee Related CN1259469C (en) | 2004-03-11 | 2004-03-11 | Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1259469C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101887203A (en) * | 2010-06-23 | 2010-11-17 | 中国科学院上海光学精密机械研究所 | Device for Inducing Periodic Domain Reversal in Ferroelectric Crystals by Laser Interference |
CN111007586B (en) * | 2019-12-18 | 2021-09-17 | 中国工程物理研究院上海激光等离子体研究所 | Preparation method of large-size nano periodic grating |
CN112269264B (en) * | 2020-09-07 | 2021-06-22 | 南京大学 | A method for fine tuning of second-order nonlinear optical processes |
CN112436372B (en) * | 2020-11-23 | 2021-11-02 | 成都理工大学 | An all-optical optical parametric oscillator |
-
2004
- 2004-03-11 CN CN 200410016885 patent/CN1259469C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1560333A (en) | 2005-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rodrigues Jr et al. | Optical properties of L-threonine crystals | |
JPH10503602A (en) | Fabrication of patterned polarized dielectric structures and devices | |
CN103605248B (en) | Based on the Enhancement Method of the frequency multiplication of periodic polarized lithium niobate | |
JPH01270036A (en) | Non-linear optical apparatus | |
CN113196163B (en) | Method for making patterned SrB4BO7 and PbB4O7 crystals | |
WO2015139353A1 (en) | Micro/nano region liquid crystal alignment method and system thereof based on laser direct writing | |
CN1259469C (en) | Realization of Gd2(MoO4) 3Method for periodic domain inversion of crystal | |
US6952307B2 (en) | Electric field poling of ferroelectric materials | |
CN1595274A (en) | Realization of LiNbO3Method for crystal domain inversion | |
CN104570209B (en) | A kind of method of manufacturing cycle polarization KTiOPO4 slab guides | |
Poberaj et al. | UV integrated optics devices based on beta-barium borate | |
CN100353253C (en) | Preparation method of lithium niobate crystal micro-region periodic domain structure | |
Canalias et al. | Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings | |
JP3946092B2 (en) | Method for forming periodically poled structure | |
JP2002287191A (en) | Method for generating polarization reversal structure by femtosecond laser irradiation | |
JP2006259338A (en) | Method and device for fabricating polarization reversal structure | |
Engelbrecht et al. | Femtosecond rapid prototyping technique for patterning of lithium niobate samples | |
Watanabe et al. | A novel phase matching technique for a poled polymer waveguide | |
Han Sr et al. | High-contrast detection of z-cut lithium niobate by using radially polarized light | |
Lisjikh et al. | The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate. | |
Chao et al. | Femtosecond laser processing of lithium niobate crystal: principle and applications | |
Canalias et al. | Sub-wavelength domain engineering in KTP isomorphs: QPM devices with counter-propagating photons | |
CN118584728A (en) | A lithium niobate single crystal thin film sector-shaped periodic domain inversion structural element, preparation method and frequency converter | |
Nolte et al. | Femtosecond laser induced structural modifications in lithium niobate for integrated optical applications | |
Steigerwald | Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060614 Termination date: 20100311 |