背景技术
现有的实现电机低功耗的无刷电机(以下,称为电机)的PWM驱动装置已知记载于日本专利申请特开平5-38184号公报。图12示出现有的电机驱动装置的结构。在图12中,位置检测元件1500例如采用霍尔元件。这些位置检测元件1500检测电机的转子磁铁(未图示)的位置。位置检测元件1500所检测出的检测信号经位置检测电路1400被输入到通电状态指令电路1300。该通电状态指令电路1300输出用于驱动线圈1-3的换相的定时信号UHo、VHo、WHo、UL、VL及WL。
另一方面,相位比较器1204比较与电机速度成正比的频率信号Fsp的相位、和基准频率信号Fref的相位。该相位比较器1204将两个信号的相位误差信号PD输出到相位误差放大器1202。相位误差放大器1202放大输入的信号PD,向PWM比较器1201的正相输入端子输出信号Vth。向PWM比较器1201的反相输入端子输入振荡器1203的输出信号Vosc。PWM比较器1201比较信号Vth和信号Vosc,输出信号Vd。“与”门1101输入该信号Vd、和上述信号UHo,将信号UH输出到晶体管1009的基极。“与”门1102输入该信号Vd、和上述信号VHo,将信号VH输出到晶体管1007的基极。“与”门1103输入该信号Vd、和上述信号WHo,将信号WH输出到晶体管1005的基极。
上述信号UL被输入到晶体管1021的基极。上述信号VL被输入到晶体管1020的基极。上述信号WL被输入到晶体管1019的基极。
以达林顿方式连接到晶体管1009的晶体管1008的集电极、和晶体管1021的集电极相连,进而在其连接点上连接有电机驱动线圈1的第1端子。晶体管1007上达林顿连接的晶体管1006的集电极和晶体管1020的集电极相连,进而在其连接点上连接有电机驱动线圈2的第1端子。以达林顿方式连接到晶体管1005的晶体管1004的集电极和晶体管1019的集电极相连,进而在其连接点上连接有电机驱动线圈3的第1端子。在晶体管1008的发射极和集电极间连接有二极管1003。在晶体管1006的发射极和集电极间连接有二极管1002。在晶体管1004的发射极和集电极间连接有二极管1001。在晶体管1021的集电极和发射极间连接有二极管1018。在晶体管1020的集电极和发射极间连接有二极管1017。在晶体管1019的集电极和发射极间连接有二极管1016。线圈1、线圈2及线圈3各自的第2端子被连接在一起。
这样,晶体管1009、晶体管1008、二极管1003、晶体管1007、晶体管1006、二极管1002、晶体管1005、晶体管1004、二极管1001构成上臂。晶体管1021、二极管1018、晶体管1020、二极管1017、晶体管1019、二极管1016构成下臂。而在上臂和下臂之间,连接有线圈1、线圈2及线圈3。
按照转子磁铁的位置,随着上述信号UHo、VHo、WHo、UL、VL及WL各自的High(高)/Low(低)状态切换,向线圈1、线圈2及线圈3的通电状态依次切换,电机旋转。
图13是图12所示的现有例的工作说明图,示出得到PWM比较器1201的输出信号Vd的工作。相位比较器1204例如由触发器构成。如图12所示,相位比较器1204通过利用信号Fref及信号Fsp各自的上升沿使相位比较器1204(触发器)进行置位/复位工作来得到输出信号PD。相位误差放大器1202积分放大到与信号PD的High/Low的占空比对应的电压电平,输出信号Vth。PWM比较器1201比较PWM驱动的载频信号-Vosc和信号Vth,输出具有与信号Vth的电压电平对应的High/Low的占空比的信号Vd。
如图13所示,在信号Fref和信号Fsp之间的相位差大时,信号PD的脉宽也大(High区间长),信号Vth的电压电平高。其结果是,信号Vd的High的区间增加,PWM驱动的接通期间增加,电机被加速。相反,在信号Fref和信号Fsp之间的相位差小时,信号PD的脉宽也小(High区间短),信号Vth的电压电平低。其结果是,信号Vd的Low的区间增加,PWM驱动的切断期间增加,电机被减速。通过对PWM比较器1201的输出信号Vd、和通电状态指令电路1300的输出信号UHo、VHo及WHo分别进行逻辑合成,来得到给驱动线圈的第1通电切换信号UH、VH及WH。即,上臂的晶体管组根据具有与相位误差放大器1202的输出电平成正比的占空比的接通(High电平)/切断(Low电平)信号来进行斩波工作。这样,在图12所示的现有例中,通过使上臂的晶体管组进行斩波工作,能够以低功耗来进行电机的旋转控制。
然而,在上述现有例中,在上臂的各晶体管进行PWM工作时,在PWM切断期间,各线圈中积蓄的能量被与上臂的各晶体管成对的下臂的各晶体管上并联连接的续流二极管作为再生电流而消耗。其结果是,具有续流二极管上的功率损耗大这一问题。这里,将只对上臂或下臂的晶体管组中的某一方晶体管组进行PWM斩波驱动的方式称为单侧PWM驱动方式。
作为解决上述问题的方法,提出了日本专利申请特开平5-211780号公报所公开的同步整流PWM驱动方式。该方式在PWM驱动期间中,即某个驱动晶体管截止时,使与该驱动晶体管成对的驱动晶体管导通。由此,通过使驱动线圈中积蓄的能量经导通电阻比续流二极管小的驱动晶体管进行再生,降低了功率损耗。
一般,信息设备领域所使用的电机通过在起动时流过大电流来在短时间内完成起动,能够多么快地进入设备就绪状态是性能上的大的要素。为此,在起动时,数倍于平稳旋转状态的起动电流被提供给电机驱动线圈。
然而,在上述现有的结构中,如果为了满足电机所要求的旋转精度而将PWM频率设定得很高,则本来不那么要求旋转精度的电机起动时的PWM频率也同样提高。其结果是具有下述等问题:驱动晶体管在导通/截止时发生的功率损耗(开关损耗)增大,随之而来的元件发热造成可靠性降低及消耗电流增加。
此外,在同步整流PWM驱动中,在上臂的某个晶体管、和与其成对的下臂的晶体管同时变为导通状态时,在两个晶体管中发生不期望的贯通电流。为了防止该贯通电流的发生,在同步整流PWM工作中,成对的上臂及下臂的两个晶体管需要设定双方都变为截止的期间(死区)。一般,该死区不是由PWM频率,而是由晶体管的开关特性来决定。因此,如果为了提高电机的旋转精度而将PWM频率设定得很高,而且使死区具有余量而设定得很长,则死区相对于PWM占空比的比例增大,损害功率损耗降低的效果。相反,在重视功率损耗降低、设定没有余量的死区的情况下,具有下述等问题:晶体管的特性差异会使死区不足,发生贯通电流。此外,为了克服与死区有关的问题,需要开关特性良好的昂贵的开关元件或用于实现精度高的死区的复杂的电路结构,必须接受成本提高这一事实。
此外,在同步整流PWM驱动中,具有下述课题:PWM占空比随着电机转速变动、负载变动、或扭矩减少指令而减少等,使驱动线圈中流过的再生电流逆流向电源(以下,称为负电流)。再者,在该负电流流动时,电源侧的阻抗使电源电压上升,有可能给电机及电机驱动装置、或搭载它们的装置造成故障。
发明内容
本发明就是要解决上述课题,其目的在于提供一种高性能及高可靠性的电机驱动装置(motor driving apparatus),能够降低电机加速中的功率损耗,在平稳旋转时用足够高的PWM频率进行驱动来实现高旋转精度。再者,其目的在于提供一种高性能及高可靠性的电机驱动装置,能够防止电机的减速发生时的负电流。
本发明的电机驱动装置(motor driving apparatus)具有以下结构。该电机驱动装置包括:
第1驱动器,连接在电机驱动线圈上,由第1电源线路上连接的多个驱动元件构成;
第2驱动器,连接到第1驱动器,并连接在驱动线圈上,由第2电源线路上连接的多个驱动元件构成;
位置检测器,用于检测表示电机的转子磁铁和驱动线圈之间的位置关系的位置检测信号;
通电切换器,连接到位置检测器,并用于根据位置检测器的位置检测信号,向驱动线圈输出通电切换信号;
扭矩指令器,用于输出通过放大作为与电机的旋转数成比例的电机频率信号和速度的基准的相位误差而得到的、对电机产生的扭矩进行控制的扭矩指令信号;
脉宽调制器,连接到扭矩指令器,并用于输出将来自扭矩指令器的与扭矩指令信号对应的脉宽作为占空比的频率信号;
PWM控制器,连接到扭矩指令器和脉宽调制器,并用于按照来自通电切换器的通电切换信号和来自脉宽调制器的频率信号来控制后续的第1驱动器及第2驱动器中包含的多个驱动元件的导通或截止;
其特征在于,电机驱动装置还包含:
驱动状态检测器,在电机驱动状态下,检测加速模式、减速模式、平稳旋转模式内的至少某一个的驱动状态;以及
PWM频率切换器,连接到驱动状态检测器,并用于根据驱动状态检测器检测出来的驱动状态来切换后续的脉宽调制器的载频,即,切换频率信号的频率;
载频将起动中的频率设定得低于电机平稳旋转时频率。
这样,本驱动装置包括在电机加速中和平稳旋转中切换脉宽调制器的载频的PWM频率切换器。而该脉宽调制器的载频将加速中的频率设定得低于电机平稳旋转时的频率。由此,降低电机加速时的PWM斩波(开关)伴随的功率损耗,同时在电机平稳旋转时用足够高的PWM频率来实现高旋转精度的电机驱动。
除了上述结构之外,上述PWM控制器也可以采用下述结构,包括:同步整流PWM模式,使上述第1驱动器及上述第2驱动器两方进行PWM工作;以及单侧PWM模式,只使某一方进行PWM工作;在电机起动时用上述同步整流PWM模式来进行驱动。
这样,在包含电机起动时的电机加速中用同步整流PWM模式来进行驱动,在减速及平稳旋转时切换到用单侧PWM模式来进行驱动。由此,除了在电机加速时用低的PWM频率来进行驱动元件的斩波之外,还能够通过同步整流PWM驱动来进一步降低功率损耗。另一方面,在平稳旋转时能够用足够高的PWM频率进行驱动来实现高旋转精度。
再者,在由于电机的转速变动或负载变动等而使驱动线圈中流过制动电流时,通过不进行同步整流PWM驱动来防止负电流,由此,能够消除由于负电流流过而发生的各种故障。
具体实施方式
以下,参照附图来说明本发明的实施例。
(第1实施例)
图1是本发明第1实施例的电机驱动装置的电路结构图,图2是该驱动装置中的PWM控制器的电路结构图,图3A-图3C是该驱动装置的工作说明图,图4A-图4C是该驱动装置的信号时序图,图5A及图5B是该驱动装置所驱动的电机的驱动线圈电流波形说明图。
在图1中,作为本发明的驱动装置所驱动的无刷电机(以下,称为电机),以具有驱动线圈1、驱动线圈2及驱动线圈3的三相电机为例来进行说明。线圈1-3分别被缠绕在与电机的转子磁铁(未图示)对置而配设的定子铁心上。驱动元件—驱动晶体管4、5及6的各漏极被连接在与电源端子VM相连的第1电源线路160上。晶体管4的源极被连接在线圈1的第1端子上。晶体管5的源极被连接在线圈2的第1端子上。晶体管6的源极被连接在线圈3的第1端子上。线圈1、线圈2及线圈3各自的第2端子被连接在一起。在晶体管4的源极-漏极间连接有续流二极管10。在晶体管5的源极-漏极间连接有续流二极管11。在晶体管6的源极-漏极间连接有续流二极管12。晶体管4-6及二极管10-12构成第1驱动器(first driver)、即上臂。
另一方面,驱动晶体管7、8及9的各源极经电阻16被连接在与接地端子相连的第2电源线路170上。晶体管7的漏极被连接在线圈1的第1端子上。晶体管8的漏极被连接在线圈2的第1端子上。晶体管9的漏极被连接在线圈3的第1端子上。在晶体管7的源极-漏极间连接有续流二极管13。在晶体管8的源极-漏极间连接有续流二极管14。在晶体管9的源极-漏极间连接有续流二极管15。晶体管7-9及二极管13-15构成第2驱动器(second driver)、即下臂。其中,晶体管7、8及9的各源极经电阻16被连接在第2电源线路170上,但是也可以不经电阻16而直接连接在第2电源线路170上。电阻16用于检测流过它的电流,作为本发明的构件不是必须的。
这里,晶体管4-6构成第1驱动器200的一部分,所以称为第1驱动晶体管组。同样,晶体管7-9构成第2驱动器210的一部分,所以称为第2驱动晶体管组。
位置检测器20例如根据霍尔元件的输出信号、或电机驱动线圈上感应的反电动势(back electromotive force)等,来检测转子磁铁相对于驱动线圈的位置。在图1所示的三相电机的情况下,位置检测器20一般采用3个霍尔元件。通电切换器30输入来自位置检测器20的三相的位置检测信号,将三相全波驱动的换相信号Aa、Ba、Ca、Ab、Bb及Cb输出到PWM控制器40。
相位比较电路50输入与电机的转速成正比的频率信号Fsp、和作为速度基准的基准频率信号Fref,比较两者的相位,将两者的相位差作为输出信号PD而输出到误差放大电路51。误差放大电路51放大信号PD,变换为扭矩指令信号T,将其输出到脉宽调制器70。这里,相位比较电路50和误差放大电路51构成本发明的扭矩指令器180。相位同步检测电路80同样输入频率信号Fsp和基准频率信号Fref,将信号ST输出到PWM频率切换器60。相位同步检测电路80构成本发明的驱动状态检测器300。PWM频率切换器60输入信号ST,将信号FCH输出到脉宽调制器70。脉宽调制器70在PWM频率切换器60所决定的PWM频率上,将脉宽与扭矩指令信号T对应的信号PWM1输出到PWM控制器40。
PWM控制器40的6个输出信号P3u、P2u、P1u、P1d、P2d及P3d被分别输入到构成第1驱动器及第2驱动器的6个晶体管4-9的各栅极。
作为PWM控制器40的具体结构,例如考虑图2所示的电路。在图2中,通电切换器30的输出信号Aa、Ba及Ca分别作为PWM控制器40的输出信号P1u、P2u及P3u而被原封不动地输出。通电切换器30的输出信号Ab、Bb及Cb被输入到“与”门41、42及43各自的一个端子。脉宽调制器70的输出信号PWM1被输入到连接在一起的“与”门41、42及43的另一个端子。“与”门41、42及43的输出构成PWM控制器40的输出,分别作为信号P1d、P2d及P3d被输出。
下面说明如上所述构成的电机驱动装置的工作。图3A-图3C是图1所示的本第1实施例的电机驱动装置的工作说明图,示出从电机起动到平稳旋转的转速的推移、和驱动状态检测器300的输出信号ST之间的关系。
图3A示出从电机起动到平稳旋转的电机转速的推移。从电机起动到平稳旋转,存在大致3个期间:起动期间、速度或相位控制的引入期间及目标以一定转速来旋转的平稳期间。图3B同样示出从电机起动到平稳旋转的、扭矩指令器180的扭矩指令信号T的推移。该信号T在起动期间为最大加速电平以便使电机产生最大扭矩,在平稳期间大致稳定在一定的电压电平。在途中的引入期间,按照电机转速的过冲及下冲,该信号T也变为多次重复加速模式“e”及减速模式“d”的不稳定状态。图3C示出相位同步检测电路80、即驱动状态检测器300的输出信号ST的定时。在与电机的速度成正比的频率信号Fsp和基准频率信号Fref之间的相位同步完成时,即进入电机的平稳期间时,信号ST变为Low。该信号ST在平稳期间为Low,在平稳期间以外为High。
图4A-图4C是本第1实施例的工作说明图,示出各部信号的定时。图4A示出PWM频率切换器60的输出信号FCH根据相位同步检测电路80的输出信号ST来切换的工作。在该图中,PWM频率切换器60按照信号ST来切换PWM驱动的载波信号—输出信号FCH的频率。即,PWM频率切换器60在信号ST为High的情况下选择低的频率,在信号ST为Low的情况下选择高的频率,作为输出信号FCH来输出。
接着,说明信号ST为High、即从电机驱动到平稳旋转的引入之前的工作。图4B示出信号ST为High电平时各部的信号的定时。在该图中,信号Aa至Cb是通电切换器30的输出信号,是驱动线圈1-3的通电状态的切换、即换向的切换的定时。在此期间,PWM频率切换器60的输出信号FCH选择低的频率。脉宽调制器70根据与信号FCH对应的低的载频,将脉宽(占空比)与扭矩指令信号T对应的信号PWM1输出到PWM控制器40。经图2所示的电路结构的PWM控制器40,向构成第1驱动器200的第1驱动晶体管组各自的栅极输入与通电切换器30的输出信号Aa、Ba及Ca同样的信号P1u、P2u及P3u。
作为构成第2驱动器210的第2驱动晶体管组中的晶体管7的栅极信号P1d,由图2所示的“与”门41输出信号Ab和信号PWM1的逻辑“与”。同样,作为晶体管8的栅极信号P2d,输出信号Bb和信号PWM1的逻辑“与”。同样,作为晶体管9的栅极信号P3d,输出信号Cb和信号PWM1的逻辑“与”。根据这样得到的信号P1u-P3d对晶体管4-9进行导通/截止控制。
接着,说明信号ST为Low、即电机平稳旋转中的工作。图4C示出信号ST为Low电平时各部的信号的定时。在该图中,在信号ST为Low时,PWM频率切换器60的输出信号FCH选择高的频率。脉宽调制器70根据与信号FCH对应的高的载频,将脉宽(占空比)与扭矩指令信号T对应的信号PWM1输出到PWM控制器40。PWM控制器40的输出信号P1u~P3d可用图2所示的电路结构与上述信号ST为High时同样来得到,但是用高的频率对晶体管4-9进行导通/截止控制。
图5A及图5B示出本第1实施例的驱动线圈1-3的电流波形。图5A是信号ST为High时的电流波形,图5B示出信号ST为Low时的电流波形。从两个图可知,驱动线圈的电流波纹的情况是:PWM载频高的情况下的电流波纹B小于PWM载频低的情况下的电流波纹A。而在PWM载频高的情况下,电机的扭矩变动分量小,控制性的分辨率也相应地高,所以能够进行更高精度的旋转控制。
从上述可知,本第1实施例的电机驱动装置需要使大的电流流过驱动晶体管,在这些晶体管的发热大的电机起动时,用低的PWM载频来进行低损耗的驱动。另一方面,在需要高精度的旋转控制的平稳旋转时,能够用高的PWM载频以低电流波纹来实现高控制分辨率的驱动。
其中,在上述本第1实施例的结构中,驱动状态检测器300采用了相位同步检测电路80,但是驱动状态检测器也可以采用其他各种结构。例如,在电机的驱动时间大概一定的情况下,可以应用下述结构:用定时器电路等在电机的起动指令信号之后的一定时间将信号ST变为High。再者,也可以应用下述结构:用频率比较电路,在与电机转速成正比的频率信号Fsp和基准频率信号Fref一致时,使信号ST变化。此外,作为驱动状态检测器300,只要能够判别电机的平稳期间,则不必特别限定其结构,就能够得到本发明的效果。
其中,第1驱动器及第2驱动器中包含的多个驱动元件也可以应用场效应晶体管(FET)、绝缘栅型双极型晶体管(IGBT)、双极型晶体管等。
(第2实施例)
图6是本发明第2实施例的电机驱动装置的电路结构图,图7是该驱动装置中的PWM控制器的电路结构图,图8A-图8C是该驱动装置的工作说明图,图9A-图9C是该驱动装置的信号时序图,图10A及图10B是该驱动装置所驱动的电机的驱动线圈的电流路径的工作说明图。
在本第2实施例中,对与上述第1实施例功能等价者附以同一标号,省略其说明。在图6中,本第2实施例的电机驱动装置与上述第1实施例的不同点如下所述。
在比较器53的一个输入端子上,连接有扭矩指令器180的误差放大电路51的输出。在该比较器53的另一个输入端子上,连接有一个端子接地的基准电压54的另一个端子。即,基准电压Vref被输入到比较器53的另一个输入端子。比较器53的输出信号ST被分别输入到PWM频率切换器60及PWM控制器40。比较器53及基准电压54构成本发明的电机驱动装置中的驱动状态检测器300。PWM控制器40具有单侧PWM模式和同步整流PWM模式。作为PWM控制器40的具体电路结构,例如可以应用图7所示的结构。
图7记载了输入到图6所示的驱动线圈1上连接的驱动晶体管4及7的各栅极中的信号P1u及P1d。其他驱动线圈2及3上连接的各驱动晶体管的栅极信号也可以由同样的电路来形成,所以省略图示。
在图7中,信号Aa及Ab是通电切换器30的输出信号。信号Aa被输入到“或”门45。信号Ab被输入到“与”门43及“与”门46。信号ST是比较器53的输出信号,被输入到“与”门44。信号PWM1是脉宽调制器70的输出信号,被输入到“与”门46,并且经“非”门41被输入到贯通防止电路42。贯通防止电路42的输出被输入到“与”门43。“与”门43的输出被输入到“与”门44。“与”门44的输出被输入到“或”门45。“或”门45及“与”门46的输出分别构成PWM控制器40的输出P1u及P1d。PWM控制器40的输出P2u、P2d、P3u及P3d也可以用同样的电路结构来得到。
以下说明如上所述构成的驱动装置的工作。图8A及图8B是本第2实施例的驱动状态检测器300的工作说明图,示出从电机起动到平稳旋转的转速的推移和驱动状态检测器300的输出信号ST之间的关系。
图8A及图8B与第1实施例的图3A及图3B相同,省略说明。图8C示出驱动状态检测器300的输出信号ST的定时,通过将基准电压Vref设定得比扭矩指令的最大加速电平低规定的电平,能只在电机的起动期间得到变为High的信号。
图9A-图9C是本第2实施例的驱动装置的工作说明图,示出各部的信号的定时。图9A示出PWM频率切换器60的输出信号FCH根据信号ST来切换的工作。在该图中,信号ST只在电机起动期间为High,在加速模式和减速模式混杂的引入期间及平稳期间为Low。PWM频率切换器60按照信号ST来切换PWM驱动的载波信号—输出信号FCH的频率。PWM频率切换器60在信号ST为High的情况下选择低的频率,在信号ST为Low的情况下选择高的频率。PWM频率切换器60将信号FCH输出到脉宽调制器70。
接着,说明信号ST为High、即电机起动时的工作。图9B示出信号ST为High时各部的信号的定时。脉宽调制器70用与PWM频率切换器60的输出信号FCH的频率对应的载频,将脉宽与扭矩指令信号T对应的信号PWM1输出到PWM控制器40。PWM控制器40将信号PWM1、通电切换器30的输出信号Ab之间的逻辑“与”信号P1d输出到驱动晶体管7的栅极。
此外,信号PWM1由图7所示的“非”门41反转,经贯通防止电路42作为信号PWM1a被输入到“与”门43。向该“与”门43输入信号Ab。“与”门43的输出由“与”门44与信号ST进行逻辑“与”。信号ST为High,所以“与”门43的输出原封不动地通过“与”门44,被输入到“或”门45。此外,向该“或”门45输入来自通电切换器30的信号Aa。“或”门45作为PWM控制器40的输出将信号P1u输出到驱动晶体管4的栅极。这样,能够得到图9B所示的信号P1u及信号P1d。同样,也能得到P2u、P2d、P3u及P3d。根据这样得到的6个信号P1u-P3d对驱动晶体管4-9进行导通/截止控制。这里,贯通防止电路42具有下述功能:在构成上臂的第1驱动器的第1驱动晶体管组、构成下臂的第2驱动器的第2驱动晶体管组中,调整脉宽,使得上下成对的晶体管对、即晶体管4和7的对、晶体管5和8的对、晶体管6和9的对分别不同时导通。
图10A是信号ST为High时的工作说明图,示出图9B所示的期间(X)中驱动线圈1及3中流过的电流路径。期间(X)是电流按从电源VM到线圈1、线圈3的顺序流动的换相的定时。在该期间中,晶体管4始终为导通状态,另一方面,成对的晶体管6和晶体管9通过同步整流PWM驱动来进行导通/截止工作。
这里,同步整流PWM驱动是指下述方式:在图10A中,在PWM切断期间中,即,在某个驱动晶体管(晶体管9)为PWM切断期间时,使与该驱动晶体管成对的驱动晶体管(晶体管6)导通。由此,通过使驱动线圈(线圈1及3)中积蓄的能量经导通电阻比续流二极管12小的驱动晶体管(晶体管6)进行再生,来降低功率损耗。
在图10A中,晶体管4始终为导通状态,对晶体管9进行导通/截止状态切换的PWM驱动。
首先,在晶体管9导通时,与其成对的晶体管6截止,在线圈1及3中流过图10A中Ion1所示的电流。接着,在晶体管9截止的情况下,晶体管6导通,线圈1及3的能量使图10A中Ioff1所示的再生电流经晶体管6流过。
这样,在晶体管9截止时,通过不经压降大的续流二极管12使电流再生,而通过旁路到压降比较小的晶体管6,能够实现功率损耗的降低。此时的PWM频率由PWM频率切换器60选择低的频率。因此,也容易通过同步整流PWM驱动来对付贯通电流。此外,由于开关频率降低,所以单位时间的开关(导通/截止)次数相应地减少,从而晶体管导通/截止时发生的开关损耗也相应地减轻。
接着,说明信号ST为Low即电机为引入期间及平稳旋转中的工作。图9C示出信号ST为Low时各部的信号的定时。在信号ST为Low的情况下,图7的“与”门44的输出始终为Low。其结果是,信号Aa原封不动地通过“或”门45,从“或”门45作为信号P1u来输出。
图10B是信号ST为Low时的工作说明图,示出图9C的期间(Y)中线圈1及3中流过的电流路径。图9C的期间(Y)是电流按从电源VM到线圈1、线圈3的顺序流过的换相的定时。基本工作与信号ST为High时同样,但是是随着晶体管9的导通/截止、晶体管6的导通/截止工作被抑制的状态(晶体管6在期间(Y)中始终截止)的单侧PWM驱动模式。因此,在晶体管9为PWM工作的切断时,经二极管12向图10B流过Ioff2所示的再生电流。
根据上述结构,能够按照信号ST来切换PWM的斩波频率(载频)及驱动模式。即,在电机起动时,通过用低的PWM频率来进行同步整流PWM驱动,能够实现驱动晶体管导通/截止时发生的开关损耗也少、极低损耗的驱动。另一方面,在电机平稳旋转时,通过用足够高的PWM频率来进行单侧PWM驱动,能够实现高精度的驱动。此外,对于同步整流PWM模式和单侧PWM模式的切换,通过只在电机起动期间的最大加速时变为同步整流PWM模式,能够防止同步整流PWM驱动中的课题—速度控制的引入时或平稳旋转时的负载变动时等随着扭矩指令的减速而发生的流向电源的负电流。
其中,在本第2实施例的结构中,也如上述第1实施例所述,作为驱动状态检测器300,用比较器53按照扭矩指令信号T的电平来检测电机的起动期间,但是作为驱动状态检测器,也可以采用其他各种结构。例如,在电机的驱动时间大概一定的情况下,可以应用下述结构:用定时器电路等在电机的起动指令信号之后的一定时间将信号ST变为High。再者,也可以应用下述结构:用频率比较电路,在与电机转速成正比的频率信号Fsp和基准频率信号Fref第一次一致时,使信号ST变化。此外,作为驱动状态检测器,只要能够判别电机的起动期间,则不必特别限定其方法,就能够得到本发明的效果。
此外,在第1实施例及第2实施例中,PWM频率切换器60包括多个振荡源,可以切换该多个频率信号,也可以切换对单一振荡信号进行分频所得的频率信号。特别是,在对单一振荡信号进行分频来形成多个频率信号的情况下,能够简化振荡电路,能够更廉价地实现。
(第3实施例)
图11是本发明第3实施例的电机及用于驱动该电机的驱动装置。在图11中,在电机150的驱动线圈1-3上连接有驱动装置100。驱动装置100被连接在电源端子VM上连接的第1电源线路160、和接地端子上连接的第2电源线路170之间。
这里,驱动装置100应用上述说明过的本发明第1实施例的驱动装置或第2实施例的驱动装置。由此,本发明第3实施例的电机能够得到上述第1实施例或第2实施例的驱动装置的优点。
从上述第1实施例-第3实施例可知,根据本发明,能够提供一种电机驱动装置及使用其的电机,能够降低电机加速时的PWM斩波(开关)造成的功率损耗,而且在电机平稳旋转中用足够高的PWM频率来实现高旋转精度的驱动。
此外,PWM控制器具有多个驱动模式,包含:同步整流PWM模式,使第1驱动器及第2驱动器两方进行PWM工作;以及单侧PWM模式,只使一方进行PWM工作。只在电机加速中变为同步整流PWM模式,在平稳旋转中切换到单侧PWM模式。由此,在电机加速时用低的PWM频率来进行驱动元件的斩波(开关)和同步整流PWM驱动,能够进一步降低功率损耗。另一方面,在平稳旋转时能够用足够高的PWM频率进行单侧PWM驱动来实现高旋转精度。此外,在由于电机的转速变动或负载变动等而使驱动线圈中流过制动电流时,通过不进行同步整流PWM驱动来防止负电流,由此,能够预防由于负电流流过而发生的各种故障。