CN118919476A - Electrostatic chuck device - Google Patents
Electrostatic chuck device Download PDFInfo
- Publication number
- CN118919476A CN118919476A CN202411064320.3A CN202411064320A CN118919476A CN 118919476 A CN118919476 A CN 118919476A CN 202411064320 A CN202411064320 A CN 202411064320A CN 118919476 A CN118919476 A CN 118919476A
- Authority
- CN
- China
- Prior art keywords
- organic film
- layer
- electrostatic chuck
- insulating organic
- internal electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 112
- 239000010410 layer Substances 0.000 claims description 144
- 239000012790 adhesive layer Substances 0.000 claims description 49
- 239000002344 surface layer Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 29
- 239000011347 resin Substances 0.000 claims description 29
- 239000000843 powder Substances 0.000 claims description 26
- 239000011256 inorganic filler Substances 0.000 claims description 22
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 22
- 229920001721 polyimide Polymers 0.000 claims description 12
- 239000012765 fibrous filler Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 8
- 229920001709 polysilazane Polymers 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 239000012784 inorganic fiber Substances 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000010408 film Substances 0.000 description 107
- 238000001179 sorption measurement Methods 0.000 description 31
- 239000000758 substrate Substances 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 239000003822 epoxy resin Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 229920000647 polyepoxide Polymers 0.000 description 16
- 238000005507 spraying Methods 0.000 description 13
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- -1 amine compound Chemical class 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000002156 adsorbate Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 229920001568 phenolic resin Polymers 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 229930185605 Bisphenol Natural products 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004843 novolac epoxy resin Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- GIIJVDUFAYRDCS-UHFFFAOYSA-N C(C1CO1)C(C1=CC=CC=C1)(C1=CC=CC=C1)CC1CO1 Chemical compound C(C1CO1)C(C1=CC=CC=C1)(C1=CC=CC=C1)CC1CO1 GIIJVDUFAYRDCS-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000004845 glycidylamine epoxy resin Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- CCDXIADKBDSBJU-UHFFFAOYSA-N phenylmethanetriol Chemical compound OC(O)(O)C1=CC=CC=C1 CCDXIADKBDSBJU-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本申请是申请日为2019年12月25日、申请号为201980086522.9、发明名称为“静电卡盘装置”的专利申请的分案申请。This application is a divisional application of a patent application with an application date of December 25, 2019, application number 201980086522.9, and invention name “Electrostatic Chuck Device”.
技术领域Technical Field
本发明涉及一种静电卡盘装置。The invention relates to an electrostatic chuck device.
背景技术Background Art
在使用半导体晶圆制造半导体集成电路时,或在使用玻璃基板、膜等绝缘性基板制造液晶面板时,会需要将半导体晶圆、玻璃基板、绝缘性基板等基材吸附保持于规定部位。因此,为了吸附保持这些基材,使用有基于机械的方法的机械卡盘、真空卡盘等。然而,这些保持方法存在难以均匀地保持基材(被吸附体)、无法在真空中使用、试样表面的温度过度上升等问题。因此,近年来,在保持被吸附体时,使用有能够解决这些问题的静电卡盘装置。When semiconductor integrated circuits are manufactured using semiconductor wafers, or when liquid crystal panels are manufactured using insulating substrates such as glass substrates and films, substrates such as semiconductor wafers, glass substrates, and insulating substrates need to be adsorbed and held at a specified location. Therefore, in order to adsorb and hold these substrates, mechanical chucks and vacuum chucks based on mechanical methods are used. However, these holding methods have problems such as difficulty in uniformly holding the substrate (adsorbate), inability to use in a vacuum, and excessive temperature rise on the sample surface. Therefore, in recent years, electrostatic chuck devices that can solve these problems have been used when holding the adsorbate.
静电卡盘装置具备成为内部电极的导电性支承部件、以及由包覆该导电性支承部件的介电材料构成的介电层作为主要部分。可以通过该主要部分来吸附被吸附体。若向静电卡盘装置内的内部电极施加电压,使被吸附体与导电性支承部件之间产生电位差,则在介电层之间产生静电吸附力。由此,被吸附体被支承为相对于导电性支承部件大致平坦。The electrostatic chuck device has a conductive support member that serves as an internal electrode, and a dielectric layer composed of a dielectric material covering the conductive support member as a main part. The adsorbed body can be adsorbed by the main part. If a voltage is applied to the internal electrode in the electrostatic chuck device to generate a potential difference between the adsorbed body and the conductive support member, an electrostatic adsorption force is generated between the dielectric layers. As a result, the adsorbed body is supported to be roughly flat relative to the conductive support member.
作为现有的静电卡盘装置,已知有在内部电极上层叠绝缘性有机膜,而形成介电层的静电卡盘装置(例如,参照专利文献1)。另外,已知有在内部电极上喷镀陶瓷,而形成介电层的静电卡盘装置(例如,参照专利文献2)。另外,已知有在层叠于内部电极上的绝缘性有机膜上喷镀陶瓷,形成陶瓷层的静电卡盘装置(例如,参照专利文献3)。As conventional electrostatic chuck devices, there are known electrostatic chuck devices in which an insulating organic film is stacked on an internal electrode to form a dielectric layer (for example, see Patent Document 1). Also, there are known electrostatic chuck devices in which a dielectric layer is formed by spraying ceramics on an internal electrode (for example, see Patent Document 2). Also, there are known electrostatic chuck devices in which a ceramic layer is formed by spraying ceramics on an insulating organic film stacked on an internal electrode (for example, see Patent Document 3).
现有技术文献Prior art literature
专利文献Patent Literature
专利文献1:日本特开2004-235563号公报Patent Document 1: Japanese Patent Application Publication No. 2004-235563
专利文献2:日本实公平6-36583号公报Patent Document 2: Japanese Utility Model Publication No. 6-36583
专利文献3:日本特许第5054022号公报Patent Document 3: Japanese Patent No. 5054022
发明内容Summary of the invention
发明要解决的技术问题Technical problem to be solved by the invention
专利文献1所记载的那样的通过利用设置在内部电极上的由绝缘性有机膜构成的介电层形成的库仑力,来吸附被吸附体的静电卡盘装置的吸附力优异。然而,该静电卡盘装置存在以下的技术问题:在由干法蚀刻装置所使用的等离子体环境下的耐性低、产品寿命短。The electrostatic chuck device described in Patent Document 1 has excellent adsorption force by utilizing the Coulomb force formed by a dielectric layer composed of an insulating organic film provided on an internal electrode. However, the electrostatic chuck device has the following technical problems: low resistance to the plasma environment used by the dry etching device and short product life.
另外,如专利文献2所记载的那样的具有在内部电极上喷镀陶瓷形成的介电层的静电卡盘装置具有等离子体耐性。然而,由于在陶瓷粒子间存在空隙,因此,不仅难以得到稳定的绝缘性,而且为了确保绝缘性,必须加厚介电层。因此,作为利用库仑力来吸附被吸附体的静电卡盘装置,存在难以得到高吸附力的技术问题。In addition, an electrostatic chuck device having a dielectric layer formed by spraying ceramic on an internal electrode as described in Patent Document 2 has plasma resistance. However, since there are gaps between ceramic particles, it is not only difficult to obtain stable insulation, but also the dielectric layer must be thickened to ensure insulation. Therefore, as an electrostatic chuck device that uses Coulomb force to adsorb an adsorbed object, there is a technical problem that it is difficult to obtain a high adsorption force.
另外,在如专利文献3所记载的那样的具有在层叠于内部电极上的绝缘性有机膜上喷镀陶瓷形成的陶瓷层的静电卡盘装置中,由于在绝缘性有机膜上喷镀形成陶瓷层,因此需要在绝缘性有机膜上形成凹凸。然而,通过形成该凹凸、陶瓷喷镀,会降低绝缘性有机膜的绝缘性,在用作静电卡盘装置时,需要陶瓷层的厚度至少为100μm。另外,在向绝缘性有机膜上喷镀陶瓷时,无法通过陶瓷层覆盖至绝缘性有机膜的端部。当绝缘性有机膜的端部露出时,静电卡盘装置的等离子体耐性会降低。In addition, in an electrostatic chuck device having a ceramic layer formed by spraying ceramic on an insulating organic film stacked on an internal electrode as described in Patent Document 3, since the ceramic layer is sprayed on the insulating organic film, it is necessary to form a concave-convex surface on the insulating organic film. However, the insulating property of the insulating organic film is reduced by forming the concave-convex surface and spraying the ceramic. When used as an electrostatic chuck device, the thickness of the ceramic layer is required to be at least 100 μm. In addition, when spraying ceramic on the insulating organic film, the end of the insulating organic film cannot be covered by the ceramic layer. When the end of the insulating organic film is exposed, the plasma resistance of the electrostatic chuck device is reduced.
本发明鉴于上述情况而提出,其课题在于,提供一种具有优异的等离子体耐性和耐电压性,且吸附性也优异的静电卡盘装置。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrostatic chuck device having excellent plasma resistance and voltage resistance and also excellent adsorption properties.
用于解决问题的技术方案Technical solutions to solve problems
本发明具有以下方面。The present invention has the following aspects.
[1]一种静电卡盘装置,其特征在于,具备:多个内部电极;绝缘性有机膜,设置于该内部电极的厚度方向上的两面侧;以及陶瓷层,隔着中间层层叠于至少包括所述内部电极和所述绝缘性有机膜的层叠体的厚度方向上的上表面。[1] An electrostatic chuck device, characterized in that it comprises: a plurality of internal electrodes; an insulating organic film provided on both sides of the internal electrodes in a thickness direction; and a ceramic layer stacked via an intermediate layer on an upper surface in a thickness direction of a stack including at least the internal electrodes and the insulating organic film.
[2]根据[1]所述的静电卡盘装置,其特征在于,所述陶瓷层隔着所述中间层覆盖所述层叠体的外表面整面。[2] The electrostatic chuck device according to [1], wherein the ceramic layer covers the entire outer surface of the stacked body via the intermediate layer.
[3]根据[1]或[2]所述的静电卡盘装置,其特征在于,所述陶瓷层具有:基底层;以及表层,形成于该基底层的上表面,且具有凹凸。[3] The electrostatic chuck device according to [1] or [2], characterized in that the ceramic layer comprises: a base layer; and a surface layer formed on the upper surface of the base layer and having projections and depressions.
[4]根据[1]~[3]中任一项所述的静电卡盘装置,其特征在于,所述中间层包括:有机绝缘性树脂及无机绝缘性树脂中的至少一方、以及无机填充剂及纤维状填充剂中的至少一方。[4] The electrostatic chuck device according to any one of [1] to [3], wherein the intermediate layer includes: at least one of an organic insulating resin and an inorganic insulating resin, and at least one of an inorganic filler and a fibrous filler.
[5]根据[4]所述的静电卡盘装置,其特征在于,所述无机填充剂为球形粉体以及无规则粉体中的至少一方。[5] The electrostatic chuck device according to [4], wherein the inorganic filler is at least one of a spherical powder and a random powder.
[6]根据[5]所述的静电卡盘装置,其特征在于,所述球形粉体以及所述无规则粉体为选自由氧化铝、二氧化硅及氧化钇组成的组中的至少一种。[6] The electrostatic chuck device according to [5], characterized in that the spherical powder and the random powder are at least one selected from the group consisting of aluminum oxide, silicon dioxide and yttrium oxide.
[7]根据[4]~[6]中任一项所述的静电卡盘装置,其特征在于,所述纤维状填充剂为选自由植物纤维、无机纤维及纤维化的有机树脂组成的组中的至少一种。[7] The electrostatic chuck device according to any one of [4] to [6], wherein the fibrous filler is at least one selected from the group consisting of plant fibers, inorganic fibers, and fiberized organic resins.
[8]根据[1]~[7]中任一项所述的静电卡盘装置,其特征在于,所述绝缘性有机膜为聚酰亚胺膜。[8] The electrostatic chuck device according to any one of [1] to [7], wherein the insulating organic film is a polyimide film.
[9]根据[1]~[8]中任一项所述的静电卡盘装置,其特征在于,所述绝缘性有机膜由设置于所述内部电极的厚度方向上的下表面侧的第一绝缘性有机膜和设置于所述内部电极的厚度方向上的上表面侧的第二绝缘性有机膜构成,在所述第一绝缘性有机膜的与所述内部电极相反一侧的表面上设置第一粘接剂层,在所述第一绝缘性有机膜以及设置于所述第一绝缘性有机膜的厚度方向上的上表面侧的所述内部电极与所述第二绝缘性有机膜之间设置第二粘接剂层,所述第一粘接剂层的厚度、所述第一绝缘性有机膜的厚度、所述内部电极的厚度、所述第二粘接剂层的厚度、所述第二绝缘性有机膜的厚度、所述中间层的厚度以及所述陶瓷层的厚度的合计为200μm以下。[9] An electrostatic chuck device according to any one of [1] to [8], characterized in that the insulating organic film is composed of a first insulating organic film arranged on the lower surface side of the internal electrode in the thickness direction and a second insulating organic film arranged on the upper surface side of the internal electrode in the thickness direction, a first adhesive layer is arranged on the surface of the first insulating organic film on the opposite side of the internal electrode, and a second adhesive layer is arranged between the first insulating organic film and the internal electrode arranged on the upper surface side in the thickness direction of the first insulating organic film and the second insulating organic film, and the total thickness of the first adhesive layer, the thickness of the first insulating organic film, the thickness of the internal electrode, the thickness of the second adhesive layer, the thickness of the second insulating organic film, the thickness of the intermediate layer and the thickness of the ceramic layer is less than 200 μm.
发明的效果Effects of the Invention
根据本发明,可以提供一种具有优异的等离子体耐性和耐电压性,且吸附性也优异的静电卡盘装置。According to the present invention, it is possible to provide an electrostatic chuck device having excellent plasma resistance and voltage resistance and also excellent adsorption properties.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是示出本发明的静电卡盘装置的概略结构,沿着静电卡盘装置的高度方向的剖视图。FIG. 1 is a cross-sectional view showing a schematic structure of an electrostatic chuck device according to the present invention, taken along a height direction of the electrostatic chuck device.
具体实施方式DETAILED DESCRIPTION
下面,对适用本发明的实施方式的静电卡盘装置进行说明。此外,在以下的说明所使用的附图中,各构成要素的尺寸比率等并不一定与实际相同。Next, an electrostatic chuck device according to an embodiment of the present invention will be described. In the drawings used in the following description, the dimensional ratios of the components are not necessarily the same as the actual ones.
此外,本实施方式是为了更好地理解发明的主旨而进行的具体说明,只要没有特别指定,则并不限定本发明。In addition, the present embodiment is a specific description for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
[静电卡盘装置][Electrostatic chuck device]
图1是示出本实施方式的静电卡盘装置的概略结构,沿着静电卡盘装置的高度方向的剖视图。FIG. 1 is a cross-sectional view showing a schematic structure of an electrostatic chuck device according to the present embodiment, taken along a height direction of the electrostatic chuck device.
如图1所示,本实施方式的静电卡盘装置1具备:基板10、多个内部电极20、粘接剂层30、绝缘性有机膜40、中间层50和陶瓷层60。详细而言,如图1所示,本实施方式的静电卡盘装置1具备:基板10、第一内部电极21、第二内部电极22、第一粘接剂层31、第二粘接剂层32、第一绝缘性有机膜41、第二绝缘性有机膜42、中间层50和陶瓷层60。As shown in FIG1 , the electrostatic chuck device 1 of the present embodiment includes: a substrate 10, a plurality of internal electrodes 20, an adhesive layer 30, an insulating organic film 40, an intermediate layer 50, and a ceramic layer 60. Specifically, as shown in FIG1 , the electrostatic chuck device 1 of the present embodiment includes: a substrate 10, a first internal electrode 21, a second internal electrode 22, a first adhesive layer 31, a second adhesive layer 32, a first insulating organic film 41, a second insulating organic film 42, an intermediate layer 50, and a ceramic layer 60.
在本实施方式的静电卡盘装置1中,在基板10的表面(基板10的厚度方向上的上表面)10a上,按照顺序依次层叠有第一粘接剂层31、第一绝缘性有机膜41、第一内部电极21及第二内部电极22、第二粘接剂层32、第二绝缘性有机膜42、中间层50和陶瓷层60。In the electrostatic chuck device 1 of the present embodiment, on the surface 10a of the substrate 10 (the upper surface in the thickness direction of the substrate 10), a first adhesive layer 31, a first insulating organic film 41, a first internal electrode 21 and a second internal electrode 22, a second adhesive layer 32, a second insulating organic film 42, an intermediate layer 50 and a ceramic layer 60 are stacked in order.
在内部电极20的厚度方向上的两面(内部电极20的厚度方向上的上表面20a、内部电极20的厚度方向上的下表面20b)侧分别设置有绝缘性有机膜40。详细而言,在第一内部电极21的厚度方向上的上表面21a侧和第二内部电极22的厚度方向上的上表面22a侧,设置有第二绝缘性有机膜42。另外,在第一内部电极21的厚度方向上的下表面21b侧和第二内部电极22的厚度方向上的下表面22b侧,设置有第一绝缘性有机膜41。The insulating organic film 40 is provided on both sides (the upper surface 20a in the thickness direction of the internal electrode 20 and the lower surface 20b in the thickness direction of the internal electrode 20) of the internal electrode 20. Specifically, the second insulating organic film 42 is provided on the upper surface 21a side in the thickness direction of the first internal electrode 21 and the upper surface 22a side in the thickness direction of the second internal electrode 22. In addition, the first insulating organic film 41 is provided on the lower surface 21b side in the thickness direction of the first internal electrode 21 and the lower surface 22b side in the thickness direction of the second internal electrode 22.
在第一绝缘性有机膜41的与内部电极20相反一侧的表面(第一绝缘性有机膜41的下表面41b)上设置有第一粘接剂层31。在第一绝缘性有机膜41以及设置于第一绝缘性有机膜41的厚度方向上的上表面41a的内部电极20与第二绝缘性有机膜42之间设置有第二粘接剂层32。A first adhesive layer 31 is provided on the surface of the first insulating organic film 41 opposite to the internal electrode 20 (lower surface 41 b of the first insulating organic film 41 ). A second adhesive layer 32 is provided between the first insulating organic film 41 and the internal electrode 20 provided on the upper surface 41 a in the thickness direction of the first insulating organic film 41 , and the second insulating organic film 42 .
优选第一粘接剂层31的厚度、第一绝缘性有机膜41的厚度、内部电极20的厚度、第二粘接剂层32的厚度、第二绝缘性有机膜42的厚度、中间层50的厚度以及陶瓷层60(陶瓷基底层61、陶瓷表层62)的厚度的合计(以下,称为“合计厚度(1)”)为200μm以下,更优选为170μm以下。若所述的合计厚度(1)为200μm以下,则静电卡盘装置1的耐电压特性、耐等离子体性优异,结果为吸附力优异。The total thickness of the first adhesive layer 31, the first insulating organic film 41, the internal electrode 20, the second adhesive layer 32, the second insulating organic film 42, the intermediate layer 50, and the ceramic layer 60 (ceramic base layer 61, ceramic surface layer 62) (hereinafter referred to as "total thickness (1)") is preferably 200 μm or less, more preferably 170 μm or less. If the total thickness (1) is 200 μm or less, the electrostatic chuck device 1 has excellent withstand voltage characteristics and plasma resistance, resulting in excellent adsorption force.
优选第一粘接剂层31的厚度、第一绝缘性有机膜41的厚度、内部电极20的厚度、第二粘接剂层32的厚度以及第二绝缘性有机膜42的厚度的合计(以下,称为“合计厚度(2)”)为110μm以下,更优选为90μm以下。若所述的合计厚度(2)为110μm以下,则静电卡盘装置1的耐电压特性、耐等离子体性优异,结果为吸附力优异。The total thickness of the first adhesive layer 31, the first insulating organic film 41, the internal electrode 20, the second adhesive layer 32, and the second insulating organic film 42 (hereinafter referred to as "total thickness (2)") is preferably 110 μm or less, and more preferably 90 μm or less. When the total thickness (2) is 110 μm or less, the electrostatic chuck device 1 has excellent withstand voltage characteristics and plasma resistance, resulting in excellent adsorption force.
优选第二粘接剂层32的厚度以及第二绝缘性有机膜42的厚度的合计(以下,称为“合计厚度(3)”)为50μm以下,更优选为40μm以下。若所述的合计厚度(2)为50μm以下,则静电卡盘装置1的耐电压特性、耐等离子体性优异,结果为吸附力优异。The total thickness of the second adhesive layer 32 and the second insulating organic film 42 (hereinafter referred to as "total thickness (3)") is preferably 50 μm or less, and more preferably 40 μm or less. When the total thickness (2) is 50 μm or less, the electrostatic chuck device 1 has excellent voltage resistance and plasma resistance, resulting in excellent adsorption force.
在至少包括内部电极20和绝缘性有机膜40的层叠体2的厚度方向上的上表面2a(第二绝缘性有机膜42的上表面42a)上,隔着中间层50层叠有陶瓷层60。A ceramic layer 60 is stacked via an intermediate layer 50 on an upper surface 2 a (an upper surface 42 a of the second insulating organic film 42 ) in the thickness direction of the stacked body 2 including at least the internal electrode 20 and the insulating organic film 40 .
如图1所示,优选陶瓷层60隔着中间层50覆盖层叠体2的外表面(层叠体2的上表面2a、侧表面(沿着层叠体2的厚度方向的表面、第一粘接剂层31的侧表面、第二粘接剂层32的侧表面、第一绝缘性有机膜41的侧表面及第二绝缘性有机膜42的侧表面)2b整面。换言之,优选中间层50覆盖层叠体2的外表面整面,陶瓷层60覆盖该中间层50的外表面(中间层50的上表面50a、侧表面(沿着层叠体2的厚度方向的表面)50b)整面。As shown in Figure 1, the ceramic layer 60 preferably covers the entire outer surface 2b of the stack 2 (the upper surface 2a of the stack 2, the side surface (the surface along the thickness direction of the stack 2, the side surface of the first adhesive layer 31, the side surface of the second adhesive layer 32, the side surface of the first insulating organic film 41 and the side surface of the second insulating organic film 42) via the intermediate layer 50. In other words, the intermediate layer 50 preferably covers the entire outer surface of the stack 2, and the ceramic layer 60 covers the entire outer surface of the intermediate layer 50 (the upper surface 50a of the intermediate layer 50, the side surface (the surface along the thickness direction of the stack 2) 50b).
如图1所示,优选陶瓷层60具有:陶瓷基底层61;陶瓷表层62,形成于陶瓷基底层61的上表面(陶瓷基底层61的厚度方向上的上表面)61a,且具有凹凸。As shown in FIG. 1 , the ceramic layer 60 preferably includes a ceramic base layer 61 and a ceramic surface layer 62 formed on an upper surface 61 a of the ceramic base layer 61 (the upper surface in the thickness direction of the ceramic base layer 61 ) and having projections and depressions.
优选陶瓷基底层61的厚度、陶瓷表层62的厚度、中间层50、第二粘接剂层32的厚度以及第二绝缘性有机膜42的厚度的合计(以下,称为“合计厚度(4)”)为125μm以下,更优选为110μm以下。若所述的合计厚度(4)为125μm以下,则静电卡盘装置1的耐电压特性、耐等离子体性优异,结果为吸附力优异。The total thickness of the ceramic base layer 61, the ceramic surface layer 62, the intermediate layer 50, the second adhesive layer 32, and the second insulating organic film 42 (hereinafter referred to as "total thickness (4)") is preferably 125 μm or less, and more preferably 110 μm or less. If the total thickness (4) is 125 μm or less, the electrostatic chuck device 1 has excellent withstand voltage characteristics and plasma resistance, resulting in excellent adsorption force.
第一内部电极21及第二内部电极22也可以与第一绝缘性有机膜41或者第二绝缘性有机膜42相接。另外,第一内部电极21及第二内部电极22如图1所示,也可以形成于第二粘接剂层32的内部。第一内部电极21及第二内部电极22的配置可以适当设计。The first internal electrode 21 and the second internal electrode 22 may be in contact with the first insulating organic film 41 or the second insulating organic film 42. In addition, as shown in FIG1 , the first internal electrode 21 and the second internal electrode 22 may be formed inside the second adhesive layer 32. The arrangement of the first internal electrode 21 and the second internal electrode 22 may be appropriately designed.
第一内部电极21和第二内部电极22分别独立,因此不仅可以施加相同极性的电压,还可以施加极性不同的电压。第一内部电极21及第二内部电极22只要能够吸附导体、半导体及绝缘体等被吸附体,则其电极图案、形状就没有特别限定。另外,也可以仅设置第一内部电极21作为单极。The first internal electrode 21 and the second internal electrode 22 are independent of each other, so not only voltages of the same polarity but also voltages of different polarities can be applied. The first internal electrode 21 and the second internal electrode 22 are not particularly limited in their electrode pattern and shape as long as they can adsorb adsorbed bodies such as conductors, semiconductors and insulators. In addition, only the first internal electrode 21 can be provided as a single pole.
本实施方式的静电卡盘装置1只要至少在第二绝缘性有机膜42的上表面42a上隔着中间层50层叠有陶瓷层60,则对其他的层结构没有特别限定。例如,也可以不设置图1所示的基板10。The electrostatic chuck device 1 of this embodiment is not particularly limited to other layer structures as long as the ceramic layer 60 is stacked at least on the upper surface 42a of the second insulating organic film 42 via the intermediate layer 50. For example, the substrate 10 shown in FIG. 1 may not be provided.
作为基板10,并不作特别限定,可列举出陶瓷基板、碳化硅基板、由铝、不锈钢等构成的金属基板等。The substrate 10 is not particularly limited, and examples thereof include a ceramic substrate, a silicon carbide substrate, and a metal substrate made of aluminum, stainless steel, or the like.
作为内部电极20,只要是由能够在施加电压时显现出静电吸附力的导电性物质构成的电极,就没有特别限定。作为内部电极20,例如优选使用由铜、铝、金、银、铂、铬、镍、钨等金属构成的膜、以及由选自上述金属中的至少两种金属构成的膜。作为这样的金属的膜,可列举出通过蒸镀、镀敷、溅射等成膜、涂布干燥导电性糊剂成膜,具体而言,可列举出铜箔等金属箔。The internal electrode 20 is not particularly limited as long as it is an electrode made of a conductive material that can show electrostatic adsorption force when a voltage is applied. As the internal electrode 20, for example, a film made of a metal such as copper, aluminum, gold, silver, platinum, chromium, nickel, tungsten, or a film made of at least two metals selected from the above metals is preferably used. Examples of such a metal film include film formation by evaporation, plating, sputtering, or the like, and film formation by coating and drying a conductive paste. Specifically, metal foils such as copper foil can be used.
只要第二粘接剂层32的厚度比内部电极20的厚度大,则内部电极20的厚度没有特别限定。优选内部电极20的厚度为20μm以下。若内部电极20的厚度为20μm以下,则在形成第二绝缘性有机膜42时,不易在其上表面42a上产生凹凸。其结果是,当在第二绝缘性有机膜42上形成陶瓷层60时、对陶瓷层60进行研磨时,不易产生不良情况。The thickness of the internal electrode 20 is not particularly limited as long as the thickness of the second adhesive layer 32 is greater than the thickness of the internal electrode 20. The thickness of the internal electrode 20 is preferably 20 μm or less. If the thickness of the internal electrode 20 is 20 μm or less, it is difficult to generate unevenness on the upper surface 42a when the second insulating organic film 42 is formed. As a result, when the ceramic layer 60 is formed on the second insulating organic film 42 and when the ceramic layer 60 is polished, it is difficult to generate defects.
优选内部电极20的厚度为1μm以上。若内部电极20的厚度为1μm以上,则在将内部电极20与第一绝缘性有机膜41或第二绝缘性有机膜42接合时,能够得到充分的接合强度。The thickness of the internal electrode 20 is preferably 1 μm or more. When the thickness of the internal electrode 20 is 1 μm or more, sufficient bonding strength can be obtained when the internal electrode 20 is bonded to the first insulating organic film 41 or the second insulating organic film 42 .
在对第一内部电极21与第二内部电极22施加极性不同的电压时,优选相邻的第一内部电极21与第二内部电极22的间隔(与内部电极20的厚度方向垂直的方向的间隔)为2mm以下。若第一内部电极21与第二内部电极22的间隔为2mm以下,则在第一内部电极21与第二内部电极22之间产生充分的静电力,并且产生充分的吸附力。When voltages of different polarities are applied to the first internal electrode 21 and the second internal electrode 22, the interval between the adjacent first internal electrodes 21 and the second internal electrodes 22 (the interval in a direction perpendicular to the thickness direction of the internal electrode 20) is preferably 2 mm or less. If the interval between the first internal electrode 21 and the second internal electrode 22 is 2 mm or less, sufficient electrostatic force is generated between the first internal electrode 21 and the second internal electrode 22, and sufficient adsorption force is generated.
优选从内部电极20至被吸附体的距离,即从第一内部电极21的上表面21a和第二内部电极22的上表面22a至被吸附于陶瓷表层62上的被吸附体的距离(存在于第一内部电极21的上表面21a和第二内部电极22的上表面22a上的第二粘接剂层32、第二绝缘性有机膜42、中间层50、陶瓷基底层61和陶瓷表层62的厚度的合计)为50μm~125μm。若从内部电极20至被吸附体的距离为50μm以上,则能够确保由第二粘接剂层32、第二绝缘性有机膜42、中间层50、陶瓷基底层61和陶瓷表层62构成的层叠体的绝缘性。另一方面,若从内部电极20至被吸附体的距离为125μm以下,则产生充分的吸附力。It is preferred that the distance from the internal electrode 20 to the adsorbate, that is, the distance from the upper surface 21a of the first internal electrode 21 and the upper surface 22a of the second internal electrode 22 to the adsorbate adsorbed on the ceramic surface layer 62 (the total thickness of the second adhesive layer 32, the second insulating organic film 42, the intermediate layer 50, the ceramic base layer 61, and the ceramic surface layer 62 present on the upper surface 21a of the first internal electrode 21 and the upper surface 22a of the second internal electrode 22) is 50 μm to 125 μm. If the distance from the internal electrode 20 to the adsorbate is 50 μm or more, the insulation of the laminate composed of the second adhesive layer 32, the second insulating organic film 42, the intermediate layer 50, the ceramic base layer 61, and the ceramic surface layer 62 can be ensured. On the other hand, if the distance from the internal electrode 20 to the adsorbate is 125 μm or less, sufficient adsorption force is generated.
作为构成粘接剂层30的粘接剂,可以使用将选自环氧树脂、酚醛树脂、苯乙烯系嵌段共聚物、聚酰胺树脂、丙烯腈-丁二烯共聚物、聚酯树脂、聚酰亚胺树脂、有机硅树脂、胺化合物、双马来酰亚胺化合物等的一种或两种以上的树脂作为主要成分的粘接剂。As the adhesive constituting the adhesive layer 30, an adhesive having one or more resins selected from epoxy resin, phenolic resin, styrene block copolymer, polyamide resin, acrylonitrile-butadiene copolymer, polyester resin, polyimide resin, silicone resin, amine compound, bismaleimide compound, etc. as the main component can be used.
作为环氧树脂,可列举:双酚型环氧树脂、苯酚线型酚醛型环氧树脂、甲酚线型酚醛型环氧树脂、缩水甘油基醚型环氧树脂、缩水甘油基酯型环氧树脂、缩水甘油基胺型环氧树脂、三羟基苯基甲烷型环氧树脂、四缩水甘油基苯酚烷烃型环氧树脂、萘型环氧树脂、二缩水甘油基二苯基甲烷型环氧树脂、二缩水甘油基联苯型环氧树脂等二官能团或多官能环氧树脂等。在这些当中,优选双酚型环氧树脂。在双酚型环氧树脂中,特别优选双酚A型环氧树脂。另外,在将环氧树脂作为主要成分的情况下,根据需要,也可以配合咪唑类、叔胺类、苯酚类、双氰胺类、芳香族二胺类、有机过氧化物等环氧树脂用的固化剂、固化促进剂。As epoxy resins, there can be cited: bifunctional or multifunctional epoxy resins such as bisphenol epoxy resins, phenol novolac epoxy resins, cresol novolac epoxy resins, glycidyl ether epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, trihydroxyphenylmethane epoxy resins, tetraglycidylphenol alkane epoxy resins, naphthalene epoxy resins, diglycidyl diphenylmethane epoxy resins, and diglycidyl biphenyl epoxy resins. Among these, bisphenol epoxy resins are preferred. Among bisphenol epoxy resins, bisphenol A epoxy resins are particularly preferred. In addition, when epoxy resin is used as the main component, curing agents and curing accelerators for epoxy resins such as imidazoles, tertiary amines, phenols, dicyandiamides, aromatic diamines, and organic peroxides can also be used as needed.
作为酚醛树脂,可列举:烷基酚醛树脂、对苯基酚醛树脂、双酚A型酚醛树脂等线型酚醛树脂、甲阶酚醛树脂、聚苯基对酚醛树脂等。Examples of the phenolic resin include alkylphenolic resins, p-phenylphenolic resins, novolac resins such as bisphenol A-type phenolic resins, resol resins, and polyphenylene phenolic resins.
作为苯乙烯系嵌段共聚物,可列举:苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)、苯乙烯-乙烯-丙烯-苯乙烯共聚物(SEPS)等。Examples of the styrene-based block copolymer include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-ethylene-propylene-styrene copolymer (SEPS).
粘接剂层30(第一粘接剂层31、第二粘接剂层32)的厚度不作特别限定,优选为5μm~20μm,更优选为10μm~20μm。若粘接剂层30(第一粘接剂层31、第二粘接剂层32)的厚度为5μm以上,则充分发挥粘接剂的功能。另一方面,若粘接剂层30(第一粘接剂层31、第二粘接剂层32)的厚度为20μm以下,则可以确保内部电极20的电极间绝缘,且不会有损吸附力。The thickness of the adhesive layer 30 (the first adhesive layer 31 and the second adhesive layer 32) is not particularly limited, but is preferably 5 μm to 20 μm, and more preferably 10 μm to 20 μm. If the thickness of the adhesive layer 30 (the first adhesive layer 31 and the second adhesive layer 32) is 5 μm or more, the function of the adhesive is fully exerted. On the other hand, if the thickness of the adhesive layer 30 (the first adhesive layer 31 and the second adhesive layer 32) is 20 μm or less, the insulation between the internal electrodes 20 can be ensured without compromising the adsorption force.
作为构成绝缘性有机膜40的材料,不作特别限定,例如可以使用聚对苯二甲酸乙二醇酯等聚酯类、聚乙烯等聚烯烃类、聚酰亚胺、聚酰胺、聚酰胺酰亚胺、聚醚砜、聚苯硫醚、聚醚酮、聚醚酰亚胺、三乙酰纤维素、有机硅橡胶、聚四氟乙烯等。在它们中,从绝缘性优异这点来看,优选为聚酯类、聚烯烃类、聚酰亚胺、有机硅橡胶、聚醚酰亚胺、聚醚砜、聚四氟乙烯,更优选为聚酰亚胺。作为聚酰亚胺膜,例如可以使用东丽杜邦公司制造的Kapton(商品名)、宇部兴产公司制造的Upilex(商品名)等。The material constituting the insulating organic film 40 is not particularly limited, and for example, polyesters such as polyethylene terephthalate, polyolefins such as polyethylene, polyimide, polyamide, polyamide-imide, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetherimide, triacetylcellulose, silicone rubber, polytetrafluoroethylene, etc. can be used. Among them, polyesters, polyolefins, polyimide, silicone rubber, polyetherimide, polyethersulfone, polytetrafluoroethylene are preferred from the point of view of excellent insulation, and polyimide is more preferred. As a polyimide film, for example, Kapton (trade name) manufactured by Toray DuPont Co., Ltd. and Upilex (trade name) manufactured by Ube Industries, Ltd. can be used.
绝缘性有机膜40(第一绝缘性有机膜41、第二绝缘性有机膜42)的厚度不作特别限定,优选为10μm~100μm,更优选为10μm~50μm。若绝缘性有机膜40(第一绝缘性有机膜41、第二绝缘性有机膜42)的厚度为10μm以上,则可以确保绝缘性。另一方面,若绝缘性有机膜40(第一绝缘性有机膜41、第二绝缘性有机膜42)的厚度为100μm以下,则产生充分的吸附力。The thickness of the insulating organic film 40 (the first insulating organic film 41 and the second insulating organic film 42) is not particularly limited, but is preferably 10 μm to 100 μm, and more preferably 10 μm to 50 μm. If the thickness of the insulating organic film 40 (the first insulating organic film 41 and the second insulating organic film 42) is 10 μm or more, insulation can be ensured. On the other hand, if the thickness of the insulating organic film 40 (the first insulating organic film 41 and the second insulating organic film 42) is 100 μm or less, sufficient adsorption force is generated.
优选中间层50包含有机绝缘性树脂及无机绝缘性树脂中的至少一方、和无机填充剂及纤维状填充剂中的至少一方。The intermediate layer 50 preferably contains at least one of an organic insulating resin and an inorganic insulating resin, and at least one of an inorganic filler and a fibrous filler.
作为有机绝缘性树脂,不作特别限定,例如可列举:聚酰亚胺系树脂、环氧系树脂、丙烯酸系树脂等。The organic insulating resin is not particularly limited, and examples thereof include polyimide-based resins, epoxy-based resins, and acrylic-based resins.
作为无机绝缘性树脂,不作特别限定,例如可列举:硅烷系树脂、有机硅系树脂等。The inorganic insulating resin is not particularly limited, and examples thereof include silane-based resins and silicone-based resins.
优选中间层50含有聚硅氮烷。作为聚硅氮烷,例如可列举出该领域中公知的材料。聚硅氮烷可以为有机聚硅氮烷,也可以为无机聚硅氮烷。这些材料可以单独使用一种,也可以混合使用两种以上。The intermediate layer 50 preferably contains polysilazane. Examples of polysilazane include materials known in the art. Polysilazane may be organic polysilazane or inorganic polysilazane. These materials may be used alone or in combination of two or more.
中间层50中的无机填充剂的含量相对于聚硅氮烷100质量份,优选为100质量份~300质量份,更优选为150质量份~250质量份。若中间层50中的无机填充剂的含量为所述范围内,则无机填充剂粒子可以在作为中间层50的固化物的树脂膜表面上形成凹凸,因此喷镀材料的粉末容易进入无机填充剂粒子间,从而可以使喷镀材料牢固地粘接于所述树脂膜表面。The content of the inorganic filler in the intermediate layer 50 is preferably 100 to 300 parts by mass, more preferably 150 to 250 parts by mass, relative to 100 parts by mass of polysilazane. If the content of the inorganic filler in the intermediate layer 50 is within the above range, the inorganic filler particles can form unevenness on the surface of the resin film as the cured product of the intermediate layer 50, so that the powder of the spraying material can easily enter between the inorganic filler particles, thereby making the spraying material firmly adhered to the resin film surface.
作为无机填充剂,不作特别限定,但优选为选自由氧化铝、二氧化硅及氧化钇组成的组中的至少一种。The inorganic filler is not particularly limited, but is preferably at least one selected from the group consisting of alumina, silica, and yttrium oxide.
优选无机填充剂为球形粉体以及无规则粉体中的至少一方。The inorganic filler is preferably at least one of a spherical powder and a random powder.
此外,球形粉体是指使粉体粒子的角部成圆角的球状体。另外,无规则粉体是指无法获得固定形状的破碎状、板状、鳞片状、针状等形状的粉体。In addition, spherical powder refers to a spherical body with rounded corners of powder particles, and irregular powder refers to powder in a shape such as a crushed, plate-like, flaky, or needle-like shape that cannot be fixed.
无机填充剂的平均粒径优选为1μm~20μm。在无机填充剂为球形粉体的情况下,将其直径(外径)作为粒径,在无机填充剂为无规则粉体的情况下,将其形状的最长的部位作为粒径。The average particle size of the inorganic filler is preferably 1 μm to 20 μm. When the inorganic filler is a spherical powder, the diameter (outer diameter) is taken as the particle size, and when the inorganic filler is a random powder, the longest part of the shape is taken as the particle size.
优选纤维状填充剂为选自由植物纤维、无机纤维及纤维化的有机树脂组成的组中的至少一种。It is preferred that the fibrous filler is at least one selected from the group consisting of plant fibers, inorganic fibers, and fiberized organic resins.
作为植物纤维,可列举出纸浆等。Examples of the plant fiber include pulp and the like.
作为无机纤维,可列举出由氧化铝构成的纤维等。Examples of the inorganic fibers include fibers made of alumina.
作为纤维化的有机树脂,可列举出由芳纶、特氟隆(注册商标)等构成的纤维。Examples of the fiberized organic resin include fibers made of aramid, Teflon (registered trademark), and the like.
无机填充剂优选与纤维状填充剂并用,并优选相对于中间层50整体(100体积%)的无机填充剂与纤维状填充剂的合计含量为10体积%~80体积%。若中间层50中的无机填充剂与纤维状填充剂的合计含量为上述的范围内,则可以通过喷镀,在中间层50上均匀地形成陶瓷层60。The inorganic filler is preferably used together with the fibrous filler, and the total content of the inorganic filler and the fibrous filler is preferably 10 volume % to 80 volume % relative to the entire intermediate layer 50 (100 volume %). If the total content of the inorganic filler and the fibrous filler in the intermediate layer 50 is within the above range, the ceramic layer 60 can be uniformly formed on the intermediate layer 50 by thermal spraying.
优选中间层50的厚度为1μm~40μm,更优选为5μm~20μm。若中间层50的厚度为1μm以上,则可以通过喷镀,在中间层50上均匀地形成陶瓷层60,而不会使中间层50的局部较薄。另一方面,若中间层50的厚度为40μm以下,则产生充分的吸附力。The thickness of the intermediate layer 50 is preferably 1 μm to 40 μm, more preferably 5 μm to 20 μm. If the thickness of the intermediate layer 50 is 1 μm or more, the ceramic layer 60 can be uniformly formed on the intermediate layer 50 by spraying without making the intermediate layer 50 partially thin. On the other hand, if the thickness of the intermediate layer 50 is 40 μm or less, sufficient adsorption force is generated.
作为构成陶瓷层60的材料,不作特别限定,例如可以使用氮化硼、氮化铝、氧化锆,氧化硅、氧化锡、氧化铟、石英玻璃、钠玻璃、铅玻璃、硼硅酸玻璃、氮化锆、氧化钛等。这些材料可以单独使用一种,也可以混合使用两种以上。The material constituting the ceramic layer 60 is not particularly limited, and examples thereof include boron nitride, aluminum nitride, zirconium oxide, silicon oxide, tin oxide, indium oxide, quartz glass, soda glass, lead glass, borosilicate glass, zirconium nitride, titanium oxide, etc. These materials may be used alone or in combination of two or more.
这些材料优选平均粒径为1μm~25μm的粉体。通过使用这样的粉体,可以减少陶瓷层60的空隙,并且提高陶瓷层60的耐电压。These materials are preferably in the form of powders having an average particle size of 1 μm to 25 μm. By using such powders, voids in the ceramic layer 60 can be reduced and the withstand voltage of the ceramic layer 60 can be improved.
陶瓷基底层61的厚度优选为10μm~80μm,更优选为40μm~60μm。若陶瓷基底层61的厚度为10μm以上,则示出充分的耐等离子体性和耐电压性。另一方面,若陶瓷基底层61的厚度为80μm以下,则产生充分的吸附力。The thickness of the ceramic base layer 61 is preferably 10 μm to 80 μm, and more preferably 40 μm to 60 μm. If the thickness of the ceramic base layer 61 is 10 μm or more, sufficient plasma resistance and voltage resistance are exhibited. On the other hand, if the thickness of the ceramic base layer 61 is 80 μm or less, sufficient adsorption force is generated.
陶瓷表层62的厚度优选为5μm~20μm。若陶瓷表层62的厚度为5μm以上,则可以遍及陶瓷表层62的整个范围形成凹凸。另一方面,若陶瓷表层62的厚度为20μm以下,则产生充分的吸附力。The thickness of the ceramic surface layer 62 is preferably 5 μm to 20 μm. If the thickness of the ceramic surface layer 62 is 5 μm or more, the irregularities can be formed over the entire range of the ceramic surface layer 62. On the other hand, if the thickness of the ceramic surface layer 62 is 20 μm or less, sufficient adsorption force is generated.
对于陶瓷表层62而言,通过对其表面进行研磨,可以提高其吸附力,并且可以将其表面的凹凸调整为表面粗糙度Ra。The ceramic surface layer 62 can improve its adsorption force by polishing its surface, and can adjust the surface roughness to Ra.
在此,表面粗糙度Ra是指通过由JIS B0601-1994规定的方法测定出的值的意思。Here, the surface roughness Ra means a value measured by a method specified in JIS B0601-1994.
优选陶瓷表层62的表面粗糙度Ra为0.05μm~0.5μm。若陶瓷表层62的表面粗糙度Ra为所述的范围内,则可以良好地吸附被吸附体。当陶瓷表层62的表面粗糙度Ra增大时,被吸附体与陶瓷表层62的接触面积变小,因此吸附力也减小。The surface roughness Ra of the ceramic surface layer 62 is preferably 0.05 μm to 0.5 μm. If the surface roughness Ra of the ceramic surface layer 62 is within the above range, the adsorbate can be adsorbed well. When the surface roughness Ra of the ceramic surface layer 62 increases, the contact area between the adsorbate and the ceramic surface layer 62 becomes smaller, so the adsorption force also decreases.
在以上说明的本实施方式的静电卡盘装置1中,具备:多个内部电极20;绝缘性有机膜40,设置于内部电极20的厚度方向上的两面侧;以及陶瓷层60,隔着中间层50层叠于至少包括内部电极20和绝缘性有机膜40的层叠体2的厚度方向上的上表面2a。因此,在至少层叠体2的厚度方向上的上表面2a侧,可以提高耐等离子体性和耐电压性,并且可以抑制使用过程中的异常放电。因此,本实施方式的静电卡盘装置1的吸附性也优异。In the electrostatic chuck device 1 of the present embodiment described above, there are provided: a plurality of internal electrodes 20; an insulating organic film 40 provided on both sides in the thickness direction of the internal electrode 20; and a ceramic layer 60 laminated on the upper surface 2a in the thickness direction of the laminate 2 including at least the internal electrode 20 and the insulating organic film 40 via the intermediate layer 50. Therefore, at least on the upper surface 2a side in the thickness direction of the laminate 2, the plasma resistance and the voltage resistance can be improved, and abnormal discharge during use can be suppressed. Therefore, the electrostatic chuck device 1 of the present embodiment is also excellent in adsorption.
在本实施方式的静电卡盘装置1中,只要陶瓷层60隔着中间层50覆盖层叠体2的外表面整面,就可以在层叠体2的上表面2a侧和侧表面2b侧提高耐等离子体性和耐电压性,并且可以抑制使用时的异常放电。因此,本实施方式的静电卡盘装置1的吸附性也进一步优异。In the electrostatic chuck device 1 of the present embodiment, as long as the ceramic layer 60 covers the entire outer surface of the stack 2 via the intermediate layer 50, the plasma resistance and voltage resistance can be improved on the upper surface 2a side and the side surface 2b side of the stack 2, and abnormal discharge during use can be suppressed. Therefore, the adsorption property of the electrostatic chuck device 1 of the present embodiment is further improved.
在本实施方式的静电卡盘装置1中,陶瓷层60具有:陶瓷基底层61;以及陶瓷表层62,形成于陶瓷基底层61的上表面61a,且具有凹凸,由此,可以控制为所希望的吸附力。In the electrostatic chuck device 1 of the present embodiment, the ceramic layer 60 includes a ceramic base layer 61 and a ceramic surface layer 62 formed on an upper surface 61 a of the ceramic base layer 61 and having projections and depressions, thereby enabling control to achieve a desired adsorption force.
在本实施方式的静电卡盘装置1中,中间层50包括有机绝缘性树脂以及无机绝缘性树脂中的至少一方、和无机填充剂以及纤维状填充剂中的至少一方,由此,可以在中间层50上均匀地形成陶瓷层60。In the electrostatic chuck device 1 of the present embodiment, the intermediate layer 50 includes at least one of an organic insulating resin and an inorganic insulating resin and at least one of an inorganic filler and a fibrous filler, thereby allowing the ceramic layer 60 to be uniformly formed on the intermediate layer 50 .
在本实施方式的静电卡盘装置1中,无机填充剂为球形粉体以及无规则粉体中的至少一方,由此,能够以使中间层50的树脂中的填充状态成为均匀分散或者最密填充的方式进行配合设计,并且还能够设计为填充剂的一部分从树脂中露出,由此,能够提高与陶瓷基底层61的紧贴性。In the electrostatic chuck device 1 of the present embodiment, the inorganic filler is at least one of a spherical powder and an irregular powder, thereby, the filling state in the resin of the intermediate layer 50 can be designed to be uniformly dispersed or densely filled, and it can also be designed so that a part of the filler is exposed from the resin, thereby improving the close contact with the ceramic base layer 61.
在本实施方式的静电卡盘装置1中,纤维状填充剂为选自由植物纤维、无机纤维及纤维化的有机树脂组成的组中的至少一种,由此,能够提高中间层50的强度和韧性,提高由在中间层50的表面上配置纤维而实现的与陶瓷基底层61的紧贴性,并且缓和由隔着中间层50的陶瓷基底层61与绝缘性有机膜40的热膨胀系数差导致的变形。In the electrostatic chuck device 1 of the present embodiment, the fibrous filler is at least one selected from the group consisting of plant fibers, inorganic fibers and fiberized organic resins, thereby improving the strength and toughness of the intermediate layer 50, improving the close contact with the ceramic base layer 61 achieved by arranging fibers on the surface of the intermediate layer 50, and alleviating deformation caused by the difference in thermal expansion coefficients between the ceramic base layer 61 and the insulating organic film 40 separated by the intermediate layer 50.
在本实施方式的静电卡盘装置1中,绝缘性有机膜为聚酰亚胺膜,由此提高耐电压性。In the electrostatic chuck device 1 of the present embodiment, the insulating organic film is a polyimide film, thereby improving the withstand voltage.
在本实施方式的静电卡盘装置1中,由球形粉体和无规则粉体构成的无机填充剂为选自由氧化铝、二氧化硅及氧化钇组成的组中的至少一种,由此提高耐等离子体性和耐电压性。In the electrostatic chuck device 1 of the present embodiment, the inorganic filler composed of spherical powder and random powder is at least one selected from the group consisting of alumina, silica, and yttrium oxide, thereby improving plasma resistance and voltage resistance.
[静电卡盘的制造方法][Method for manufacturing electrostatic chuck]
参照图1,说明本实施方式的静电卡盘装置1的制造方法。1 , a method for manufacturing an electrostatic chuck device 1 according to the present embodiment will be described.
在第一绝缘性有机膜41的表面(第一绝缘性有机膜41的厚度方向的上面)41a上蒸镀铜等金属,形成金属的膜。然后,进行蚀刻,使金属的膜图案化为规定的形状,形成第一内部电极21和第二内部电极22。A metal such as copper is deposited on the surface 41a of the first insulating organic film 41 (the upper surface in the thickness direction of the first insulating organic film 41) to form a metal film. Then, the metal film is etched to pattern into a predetermined shape to form the first internal electrode 21 and the second internal electrode 22.
接着,在内部电极20的上表面20a上隔着第二粘接剂层32粘贴第二绝缘性有机膜42。Next, the second insulating organic film 42 is bonded onto the upper surface 20 a of the internal electrode 20 via the second adhesive layer 32 .
接着,以使第一绝缘性有机膜41的下表面41b位于基板10的表面10a侧的方式,隔着第一粘接剂层31将由第一绝缘性有机膜41、内部电极20、第二粘接剂层32和第二绝缘性有机膜42构成的层叠体接合于基板10的表面10a。Next, the stack consisting of the first insulating organic film 41, the internal electrode 20, the second adhesive layer 32 and the second insulating organic film 42 is joined to the surface 10a of the substrate 10 via the first adhesive layer 31 in such a way that the lower surface 41b of the first insulating organic film 41 is located on the surface 10a side of the substrate 10.
接着,以覆盖包括内部电极20和绝缘性有机膜40的层叠体2的外表面整面的方式形成中间层50。Next, the intermediate layer 50 is formed so as to cover the entire outer surface of the laminated body 2 including the internal electrode 20 and the insulating organic film 40 .
对于形成中间层50的方法而言,只要能够以覆盖层叠体2的外表面整面的方式形成中间层50,就不作特别限定。作为形成中间层50的方法,例如可列举出棒式涂布法、旋转涂布法、喷涂法等。The method for forming the intermediate layer 50 is not particularly limited as long as the intermediate layer 50 can be formed to cover the entire outer surface of the laminate 2. Examples of the method for forming the intermediate layer 50 include bar coating, spin coating, and spray coating.
接着,以覆盖中间层50的外表面整面的方式形成陶瓷基底层61。Next, the ceramic base layer 61 is formed so as to cover the entire outer surface of the intermediate layer 50 .
对于形成陶瓷基底层61的方法,例如可列举出:将包含构成陶瓷基底层61的材料的浆料涂布于中间层50的外表面整面,对其进行烧结从而形成陶瓷基底层61的方法;将构成陶瓷基底层61的材料喷镀于中间层50的外表面整面从而形成陶瓷基底层61的方法等。The method for forming the ceramic base layer 61 includes, for example: applying a slurry containing a material constituting the ceramic base layer 61 to the entire outer surface of the intermediate layer 50, and sintering it to form the ceramic base layer 61; spraying the material constituting the ceramic base layer 61 to the entire outer surface of the intermediate layer 50 to form the ceramic base layer 61, etc.
在此,喷镀是指将成为覆层(在本实施方式中为陶瓷基底层61)的材料加热熔融后,使用压缩气体向被处理体射出从而成膜的方法。Here, thermal spraying refers to a method of forming a film by heating and melting a material to be a coating layer (the ceramic base layer 61 in this embodiment) and then injecting it toward a treatment object using compressed gas.
接着,在陶瓷基底层61的上表面61a形成陶瓷表层62。Next, the ceramic surface layer 62 is formed on the upper surface 61 a of the ceramic base layer 61 .
对于形成陶瓷表层62的方法,例如可列举出:对陶瓷基底层61的上表面61a实施规定的形状的掩模,然后,将构成陶瓷表层62的材料喷镀于陶瓷基底层61的上表面61a,从而形成陶瓷表层62的方法;将构成陶瓷表层62的材料喷镀于陶瓷基底层61的上表面61a整面,从而形成陶瓷表层62,然后,对该陶瓷表层62通过喷砂处理进行切削,将陶瓷表层62形成为凹凸形状的方法等。The method for forming the ceramic surface layer 62 includes, for example: applying a mask of a prescribed shape to the upper surface 61a of the ceramic base layer 61, and then spraying the material constituting the ceramic surface layer 62 onto the upper surface 61a of the ceramic base layer 61 to form the ceramic surface layer 62; spraying the material constituting the ceramic surface layer 62 onto the entire upper surface 61a of the ceramic base layer 61 to form the ceramic surface layer 62, and then cutting the ceramic surface layer 62 by sandblasting to form the ceramic surface layer 62 into a concave-convex shape, etc.
通过以上的工序,可以制作出本实施方式的静电卡盘装置1。Through the above steps, the electrostatic chuck device 1 of this embodiment can be manufactured.
实施例Example
以下,通过实施例和比较例进一步具体说明本发明,但本发明并不受以下实施例的限定。Hereinafter, the present invention will be described in more detail by way of Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[实施例1][Example 1]
在作为第一绝缘性有机膜41,膜厚12.5μm的聚酰亚胺膜(商品名:Kapton、东丽杜邦公司制造)的单面上镀敷9μm厚度的铜。在该铜箔表面上涂布光致抗蚀剂,然后,在图案曝光后进行显影处理,通过蚀刻去除不需要的铜箔。然后,通过清洗聚酰亚胺膜上的铜箔,将光致抗蚀剂去除,形成了第一内部电极21、第二内部电极22。在该第一内部电极21和第二内部电极22上,层叠了通过干燥和加热而使其半固化的绝缘性粘接剂片作为第二粘接剂层32。作为绝缘性粘接剂片,使用了将双马来酰亚胺树脂27质量份、二氨基硅氧烷3质量份、甲阶酚醛树脂20质量份、联苯基环氧树脂10质量份、以及丙烯酸乙基酯-丙烯酸丁基酯-丙烯腈共聚物240质量份混合溶解于适量的四氢呋喃而成形为片状的材料。然后,粘贴作为第二绝缘性有机膜42的膜厚12.5μm的聚酰亚胺膜(商品名:Kapton、东丽杜邦公司制造),得到了通过热处理粘接的层叠体。此外,干燥后的第二粘接剂层32的厚度为20μm。A 9 μm thick copper is plated on one side of a polyimide film (trade name: Kapton, manufactured by Toray DuPont) with a film thickness of 12.5 μm as the first insulating organic film 41. A photoresist is applied to the surface of the copper foil, and then a development process is performed after pattern exposure, and unnecessary copper foil is removed by etching. Then, the copper foil on the polyimide film is washed and the photoresist is removed, thereby forming the first internal electrode 21 and the second internal electrode 22. An insulating adhesive sheet semi-cured by drying and heating is laminated on the first internal electrode 21 and the second internal electrode 22 as the second adhesive layer 32. As the insulating adhesive sheet, a material formed into a sheet by mixing and dissolving 27 parts by mass of bismaleimide resin, 3 parts by mass of diaminosiloxane, 20 parts by mass of resol phenolic resin, 10 parts by mass of biphenyl epoxy resin, and 240 parts by mass of ethyl acrylate-butyl acrylate-acrylonitrile copolymer in an appropriate amount of tetrahydrofuran is used. Then, a 12.5 μm thick polyimide film (trade name: Kapton, manufactured by DuPont Toray) was attached as the second insulating organic film 42 , and a laminated body bonded by heat treatment was obtained. The thickness of the second adhesive layer 32 after drying was 20 μm.
另外,在所述层叠体的第一绝缘性有机膜41的与形成有第一内部电极21和第二内部电极22的表面的相反侧的表面上,层叠有由与上述半固化的绝缘性粘接剂片相同组分的绝缘性粘接剂构成的片作为第一粘接剂层31。然后,将层叠体粘贴于铝制的基板10,通过热处理使其粘接。此外,干燥后的第一粘接剂层31的厚度为10μm。In addition, a sheet composed of an insulating adhesive having the same component as the semi-cured insulating adhesive sheet is laminated as a first adhesive layer 31 on the surface of the first insulating organic film 41 of the laminate on the opposite side to the surface on which the first internal electrode 21 and the second internal electrode 22 are formed. Then, the laminate is attached to the aluminum substrate 10 and bonded by heat treatment. In addition, the thickness of the first adhesive layer 31 after drying is 10 μm.
接着,将聚硅氮烷100质量份和由氧化铝构成的无机填充剂(平均粒径:3μm)200质量份混合于作为稀释介质的乙酸丁酯,进一步通过超声波分散机使无机填充剂均匀分散,从而制成涂料。Next, 100 parts by mass of polysilazane and 200 parts by mass of an inorganic filler composed of aluminum oxide (average particle size: 3 μm) were mixed in butyl acetate as a diluent, and the inorganic filler was uniformly dispersed using an ultrasonic disperser to prepare a coating material.
接着,对粘接于所述基板10的层叠体的第二绝缘性有机膜42的表面和所述层叠体2侧表面喷涂所述涂料,然后,使其加热干燥,从而形成中间层50。此外,第二绝缘性有机膜42的表面上的干燥后的中间层50的厚度为10μm。Next, the coating was sprayed on the surface of the second insulating organic film 42 of the laminate bonded to the substrate 10 and the surface of the laminate 2, and then heated and dried to form an intermediate layer 50. The thickness of the dried intermediate layer 50 on the surface of the second insulating organic film 42 was 10 μm.
接着,通过等离子体喷镀法向所述中间层50的整个表面喷镀氧化铝(Al2O3)的粉末(平均粒径:8μm),形成厚度50μm的陶瓷基底层61。Next, aluminum oxide (Al 2 O 3 ) powder (average particle size: 8 μm) was sprayed onto the entire surface of the intermediate layer 50 by plasma spraying to form a ceramic base layer 61 having a thickness of 50 μm.
接着,对陶瓷基底层61的表面实施规定的形状的掩模,然后,向陶瓷基底层61的表面喷镀上述的氧化铝(Al2O3)的粉末(平均粒径:8μm),形成厚度15μm的陶瓷表层62。Next, a mask of a predetermined shape was applied to the surface of the ceramic base layer 61 , and then the above-mentioned aluminum oxide (Al 2 O 3 ) powder (average particle size: 8 μm) was thermally sprayed onto the surface of the ceramic base layer 61 to form a ceramic surface layer 62 having a thickness of 15 μm.
接着,通过金刚石砂轮对吸附被吸附物的陶瓷表层62的吸附面进行平面磨削,得到实施例1的静电卡盘装置。Next, the adsorption surface of the ceramic surface layer 62 for adsorbing the adsorbed object is plane-ground by a diamond grinding wheel, thereby obtaining the electrostatic chuck device of Example 1.
通过JIS B0601-1994对得到的静电卡盘装置的表面进行测定,结果表面粗糙度Ra为0.3μm。The surface of the obtained electrostatic chuck device was measured in accordance with JIS B0601-1994. As a result, the surface roughness Ra was 0.3 μm.
[实施例2][Example 2]
除了在所述实施例1中,将第一绝缘性有机膜41的厚度和第二绝缘性有机膜42的厚度变更为25μm以外,以与实施例1相同的方式,得到实施例2的静电卡盘装置。An electrostatic chuck device of Example 2 was obtained in the same manner as in Example 1 except that the thickness of the first insulating organic film 41 and the thickness of the second insulating organic film 42 were changed to 25 μm.
[实施例3][Example 3]
除了在所述实施例1中,将第一绝缘性有机膜41的厚度和第二绝缘性有机膜42的厚度变更为38μm,将第二粘接剂层32的厚度变更为10μm,将第一内部电极21的厚度和第二内部电极22的厚度变更为5μm以外,以与实施例1相同的方式,得到实施例3的静电卡盘装置。The electrostatic chuck device of Example 3 is obtained in the same manner as in Example 1, except that in Example 1, the thickness of the first insulating organic film 41 and the thickness of the second insulating organic film 42 are changed to 38 μm, the thickness of the second adhesive layer 32 is changed to 10 μm, and the thickness of the first internal electrode 21 and the thickness of the second internal electrode 22 are changed to 5 μm.
[比较例1][Comparative Example 1]
除了在所述实施例1中,将第一绝缘性有机膜41的厚度和第二绝缘性有机膜42的厚度变更为50μm,将陶瓷基底层61的厚度变更为30μm,将中间层50的厚度变更为15μm,将第一内部电极21的厚度和第二内部电极22的厚度变更为5μm,将第一粘接剂层31的厚度变更为20μm以外,以与实施例1相同的方式,得到比较例1的静电卡盘装置。The electrostatic chuck device of Comparative Example 1 is obtained in the same manner as in Example 1, except that in Example 1, the thickness of the first insulating organic film 41 and the thickness of the second insulating organic film 42 are changed to 50 μm, the thickness of the ceramic base layer 61 is changed to 30 μm, the thickness of the intermediate layer 50 is changed to 15 μm, the thickness of the first internal electrode 21 and the thickness of the second internal electrode 22 are changed to 5 μm, and the thickness of the first adhesive layer 31 is changed to 20 μm.
[比较例2][Comparative Example 2]
除了在所述比较例1中,将陶瓷基底层61的厚度变更为50μm以外,以与比较例1相同的方式,得到比较例2的静电卡盘装置。An electrostatic chuck device of Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the thickness of the ceramic base layer 61 was changed to 50 μm.
[比较例3][Comparative Example 3]
除了在所述比较例2中,将陶瓷表层62的厚度变更为20μm,将陶瓷基底层61的厚度变更为80μm,将中间层50的厚度变更为30μm以外,以与比较例2相同的方式,得到比较例3的静电卡盘装置。The electrostatic chuck device of Comparative Example 3 was obtained in the same manner as Comparative Example 2, except that in Comparative Example 2, the thickness of the ceramic surface layer 62 was changed to 20 μm, the thickness of the ceramic base layer 61 was changed to 80 μm, and the thickness of the intermediate layer 50 was changed to 30 μm.
[比较例4][Comparative Example 4]
除了在所述比较例3中,以不设置中间层50的方式,向第二绝缘性有机膜42的表面直接通过等离子体喷镀法喷镀氧化铝(Al2O3)的粉末(平均粒径:8μm)以外,以与比较例3相同的方式,得到比较例4的静电卡盘装置。An electrostatic chuck device of Comparative Example 4 was obtained in the same manner as Comparative Example 3 except that aluminum oxide (Al 2 O 3 ) powder (average particle size: 8 μm) was directly sprayed onto the surface of the second insulating organic film 42 by plasma spraying without providing the intermediate layer 50 .
在表1中示出由所述实施例1~实施例3以及比较例1~比较例4得到的静电卡盘装置的各层的厚度和其合计值。Table 1 shows the thickness of each layer of the electrostatic chuck devices obtained in Examples 1 to 3 and Comparative Examples 1 to 4 and the total value thereof.
[表1][Table 1]
接着,使用由所述实施例1~实施例3和比较例1~比较例4得到的静电卡盘装置,评价耐电压特性、吸附力和耐等离子体性。在表2中示出其结果。Next, the withstand voltage characteristics, the adsorption force, and the plasma resistance were evaluated using the electrostatic chuck devices obtained in Examples 1 to 3 and Comparative Examples 1 to 4. Table 2 shows the results.
[评价项目][Evaluation items]
<耐电压特性><Withstand voltage characteristics>
耐电压特性通过以下来进行评价,在真空下(10Pa)通过高压电源装置对静电卡盘装置的第一内部电极21和第二内部电极22施加±2.5kV的电压,并保持2分钟来进行评价。在2分钟期间,通过目视进行观察,将不存在变化视为“合格”,将电极彼此或者绝缘性有机膜和陶瓷层产生绝缘破坏视为“不合格”。The withstand voltage characteristics were evaluated by applying a voltage of ±2.5 kV to the first internal electrode 21 and the second internal electrode 22 of the electrostatic chuck device under vacuum (10 Pa) by a high voltage power supply device and maintaining the voltage for 2 minutes. During the 2-minute period, visual observation was performed, and no change was considered "qualified", while insulation breakdown between the electrodes or between the insulating organic film and the ceramic layer was considered "unqualified".
<吸附力><Adsorption capacity>
对于吸附力而言,使用作为被吸附体的有机硅制虚设晶圆,在真空下(10Pa以下)使其吸附于静电卡盘装置表面,对第一内部电极21和第二内部电极22施加±2.5kV的电压,然后,保持30秒钟。在保持施加电压的状态下使氦气从设置于基板10的通孔流动,一边提高空气压力一边测定氦气的泄漏量。将在空气压力100Torr时能够稳定吸附虚设晶圆视为“合格”,将无法稳定吸附视为“不合格”。稳定吸附是指不会产生通过提高氦气压力使晶圆浮起,氦气泄漏量急剧增加的现象。As for the adsorption force, a dummy wafer made of silicone is used as the adsorbate, and it is adsorbed on the surface of the electrostatic chuck device under vacuum (below 10Pa), and a voltage of ±2.5kV is applied to the first internal electrode 21 and the second internal electrode 22, and then maintained for 30 seconds. While maintaining the applied voltage, helium is allowed to flow from the through hole provided in the substrate 10, and the amount of helium leakage is measured while increasing the air pressure. The ability to stably adsorb the dummy wafer at an air pressure of 100Torr is considered "qualified", and the inability to stably adsorb is considered "unqualified". Stable adsorption means that the wafer will not float due to increasing the helium pressure, and the helium leakage will not increase sharply.
<耐等离子体性><Plasma resistance>
对于耐等离子体性,将静电卡盘装置设置于平行平板型RIE装置,然后,在真空下(20Pa以下),用高频电源(输出250W)导入氧气(10sccm)和四氟化碳气体(40sccm),通过目视来观察24小时暴露后的静电卡盘装置表面状态的变化。将表面整体残留有陶瓷层视为“合格”,将一部分陶瓷层消失,露出绝缘性有机膜视为“不合格”。For plasma resistance, the electrostatic chuck device was set in a parallel plate RIE device, and then oxygen (10sccm) and carbon tetrafluoride gas (40sccm) were introduced using a high-frequency power supply (output 250W) under vacuum (below 20Pa), and the changes in the surface state of the electrostatic chuck device after 24 hours of exposure were visually observed. The surface was considered "qualified" if the ceramic layer remained on the entire surface, and "unqualified" if part of the ceramic layer disappeared and the insulating organic film was exposed.
[表2][Table 2]
根据表2可知,由实施例1~实施例3得到的静电卡盘装置虽然是从基板10的表面10a至陶瓷表层62的表面的距离为200μm以下的膜,但可以确认到耐电压特性、耐等离子体性优异,结果为吸附力优异。As can be seen from Table 2, the electrostatic chuck devices obtained by Examples 1 to 3 are films in which the distance from the surface 10a of the substrate 10 to the surface of the ceramic surface layer 62 is less than 200 μm, but it can be confirmed that the voltage resistance characteristics and plasma resistance are excellent, and the results show that the adsorption force is excellent.
另一方面,由于由比较例1得到的静电卡盘装置的陶瓷基底层61较薄,因此无法得到充分的耐等离子体性。由于由比较例2和比较例3得到的静电卡盘装置的从基板10的表面10a至陶瓷表层62的表面的距离超过200μm,因此可以确认到吸附力较差。On the other hand, the electrostatic chuck device obtained in Comparative Example 1 had a thin ceramic base layer 61, and therefore could not obtain sufficient plasma resistance. The electrostatic chuck devices obtained in Comparative Examples 2 and 3 had a distance from the surface 10a of the substrate 10 to the surface of the ceramic surface layer 62 exceeding 200 μm, and therefore it was confirmed that the adsorption force was poor.
另外,由于由比较例4得到的静电卡盘装置不具有中间层50,因此可以确认到陶瓷喷镀材未充分附着于第二绝缘性有机膜42的表面,从而耐等离子体性较差。In addition, since the electrostatic chuck device obtained in Comparative Example 4 does not have the intermediate layer 50, it can be confirmed that the ceramic sprayed material is not sufficiently attached to the surface of the second insulating organic film 42, and the plasma resistance is poor.
产业上的可利用性Industrial Applicability
根据本发明的静电卡盘装置,通过隔着中间层将陶瓷层层叠于包括内部电极和设置于其厚度方向上的两面侧的绝缘性有机膜的层叠体的厚度方向上的上表面,由此可以一边具有优异的耐等离子体性和耐电压特性,一边得到较高的吸附力。因此,根据本发明的静电卡盘装置,可以稳定地静电吸附保持半导体制造工艺的干法蚀刻装置用晶圆等导电体或者半导体。According to the electrostatic chuck device of the present invention, by stacking a ceramic layer via an intermediate layer on the upper surface in the thickness direction of a stacked body including an internal electrode and an insulating organic film provided on both sides in the thickness direction, it is possible to obtain a high adsorption force while having excellent plasma resistance and voltage resistance characteristics. Therefore, according to the electrostatic chuck device of the present invention, a conductive body or semiconductor such as a wafer for a dry etching device in a semiconductor manufacturing process can be stably electrostatically adsorbed and held.
附图标记说明:Description of reference numerals:
1:静电卡盘装置;2:层叠体;10:基板;20:内部电极;21:第一内部电极;22:第二内部电极;30:粘接剂层;31:第一粘接剂层;32:第二粘接剂层;40:绝缘性有机膜;41:第一绝缘性有机膜;42:第二绝缘性有机膜;50:中间层;60:陶瓷层;61:陶瓷基底层;62:陶瓷表层。1: electrostatic chuck device; 2: laminate; 10: substrate; 20: internal electrode; 21: first internal electrode; 22: second internal electrode; 30: adhesive layer; 31: first adhesive layer; 32: second adhesive layer; 40: insulating organic film; 41: first insulating organic film; 42: second insulating organic film; 50: intermediate layer; 60: ceramic layer; 61: ceramic base layer; 62: ceramic surface layer.
Claims (9)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-244941 | 2018-12-27 | ||
JP2018244941 | 2018-12-27 | ||
PCT/JP2019/050846 WO2020138179A1 (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
CN201980086522.9A CN113228495B (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980086522.9A Division CN113228495B (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118919476A true CN118919476A (en) | 2024-11-08 |
Family
ID=71129461
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411064327.5A Pending CN118919477A (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
CN201980086522.9A Active CN113228495B (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
CN202411064320.3A Pending CN118919476A (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411064327.5A Pending CN118919477A (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
CN201980086522.9A Active CN113228495B (en) | 2018-12-27 | 2019-12-25 | Electrostatic chuck device |
Country Status (5)
Country | Link |
---|---|
JP (4) | JP7100716B2 (en) |
KR (1) | KR102481728B1 (en) |
CN (3) | CN118919477A (en) |
TW (1) | TWI813840B (en) |
WO (1) | WO2020138179A1 (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210554A (en) * | 1987-02-25 | 1988-09-01 | Daikin Ind Ltd | Heat pump water heater |
JPH0636583A (en) | 1992-07-21 | 1994-02-10 | Nec Niigata Ltd | Eprom and socket for eprom and device for programming eprom |
JPH07335732A (en) * | 1994-06-14 | 1995-12-22 | Tokyo Electron Ltd | Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture |
JPH10261697A (en) * | 1997-03-19 | 1998-09-29 | Kobe Steel Ltd | Electrostatic chuck |
JP2002057207A (en) | 2000-01-20 | 2002-02-22 | Sumitomo Electric Ind Ltd | Wafer holder for semiconductor manufacturing apparatus, method for manufacturing the same, and semiconductor manufacturing apparatus |
JP3626933B2 (en) * | 2001-02-08 | 2005-03-09 | 東京エレクトロン株式会社 | Manufacturing method of substrate mounting table |
JP4868649B2 (en) | 2001-03-29 | 2012-02-01 | ラム リサーチ コーポレーション | Plasma processing equipment |
JP2004235563A (en) | 2003-01-31 | 2004-08-19 | Tomoegawa Paper Co Ltd | Electrode sheet for electrostatic chuck device and electrostatic chuck device using the same |
JP2006082474A (en) * | 2004-09-17 | 2006-03-30 | Tosoh Corp | Resin member |
JP4386360B2 (en) * | 2004-12-06 | 2009-12-16 | 信越化学工業株式会社 | Electrostatic chuck |
JP4542959B2 (en) * | 2005-07-14 | 2010-09-15 | 東京エレクトロン株式会社 | Electrostatic chucking electrode, substrate processing apparatus, and method of manufacturing electrostatic chucking electrode |
JP5054022B2 (en) | 2006-10-31 | 2012-10-24 | 株式会社巴川製紙所 | Electrostatic chuck device |
JP5059450B2 (en) * | 2007-03-06 | 2012-10-24 | 東京エレクトロン株式会社 | Substrate mounting table and substrate processing apparatus |
JP5982887B2 (en) * | 2012-03-09 | 2016-08-31 | 住友大阪セメント株式会社 | Electrostatic chuck device |
KR102209272B1 (en) * | 2013-06-18 | 2021-01-29 | 에이지씨 가부시키가이샤 | Glass-conveying roll, method for manufacturing same, and method for manufacturing flat glass using same |
JP6244804B2 (en) * | 2013-10-15 | 2017-12-13 | 住友大阪セメント株式会社 | Electrostatic chuck device |
JP6123952B1 (en) * | 2015-08-27 | 2017-05-10 | 住友大阪セメント株式会社 | Electrostatic chuck device |
-
2019
- 2019-12-25 CN CN202411064327.5A patent/CN118919477A/en active Pending
- 2019-12-25 WO PCT/JP2019/050846 patent/WO2020138179A1/en active Application Filing
- 2019-12-25 JP JP2020563349A patent/JP7100716B2/en active Active
- 2019-12-25 CN CN201980086522.9A patent/CN113228495B/en active Active
- 2019-12-25 KR KR1020207037594A patent/KR102481728B1/en active Active
- 2019-12-25 TW TW108147643A patent/TWI813840B/en active
- 2019-12-25 CN CN202411064320.3A patent/CN118919476A/en active Pending
-
2022
- 2022-02-03 JP JP2022015913A patent/JP7256311B2/en active Active
- 2022-02-03 JP JP2022015912A patent/JP7256310B2/en active Active
- 2022-02-03 JP JP2022015914A patent/JP7335371B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW202034443A (en) | 2020-09-16 |
CN113228495A (en) | 2021-08-06 |
CN118919477A (en) | 2024-11-08 |
JP7256310B2 (en) | 2023-04-11 |
JP7335371B2 (en) | 2023-08-29 |
WO2020138179A1 (en) | 2020-07-02 |
JP2022058894A (en) | 2022-04-12 |
JP2022058893A (en) | 2022-04-12 |
JP2022058892A (en) | 2022-04-12 |
JP7100716B2 (en) | 2022-07-13 |
KR102481728B1 (en) | 2022-12-29 |
KR20210013729A (en) | 2021-02-05 |
TWI813840B (en) | 2023-09-01 |
JPWO2020138179A1 (en) | 2021-09-09 |
JP7256311B2 (en) | 2023-04-11 |
CN113228495B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5054022B2 (en) | Electrostatic chuck device | |
TWI836092B (en) | Substrate fixing apparatus and method for manufacturing same | |
US20250069936A1 (en) | Electrostatic chuck device | |
JP7324677B2 (en) | ELECTROSTATIC CHUCK DEVICE AND MANUFACTURING METHOD THEREOF | |
JP7402022B2 (en) | Base for electrostatic chuck device, electrostatic chuck device and manufacturing method thereof | |
WO2021192935A1 (en) | Electrostatic chuck device and sleeve for electrostatic chuck device | |
CN118919476A (en) | Electrostatic chuck device | |
JP2020178077A (en) | Electrostatic chuck device and its manufacturing method | |
KR20240144345A (en) | Static chuck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |