CN118748206A - An enhanced gallium nitride high electron mobility transistor and a method for preparing the same - Google Patents
An enhanced gallium nitride high electron mobility transistor and a method for preparing the same Download PDFInfo
- Publication number
- CN118748206A CN118748206A CN202410819259.2A CN202410819259A CN118748206A CN 118748206 A CN118748206 A CN 118748206A CN 202410819259 A CN202410819259 A CN 202410819259A CN 118748206 A CN118748206 A CN 118748206A
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode
- equal
- ground electrode
- electron mobility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 78
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 15
- 230000004888 barrier function Effects 0.000 claims abstract description 46
- 238000002161 passivation Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 238000000059 patterning Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 239000001994 multinary alloy Substances 0.000 claims 2
- 239000002245 particle Substances 0.000 abstract description 12
- 238000002360 preparation method Methods 0.000 abstract description 11
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 98
- 239000000463 material Substances 0.000 description 10
- 229910002704 AlGaN Inorganic materials 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- -1 InGaN Inorganic materials 0.000 description 4
- 229910008599 TiW Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910001325 element alloy Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001017 electron-beam sputter deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5286—Arrangements of power or ground buses
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种增强型氮化镓高电子迁移率晶体管及其制备方法,晶体管包括:依次生长在衬底上的GaN缓冲层和具有凹槽区域的势垒层;覆盖在势垒层上的钝化保护层;覆盖在凹槽区域上的高空穴浓度结构层;贯穿势垒层和钝化保护层并位于高空穴浓度结构层两侧的源极电极和漏极电极;位于高空穴浓度结构层上的栅极电极;和位于源极电极和漏极电极外且与GaN缓冲层接触的第一地电极和第二地电极。由于在漏极电极和源极电极边缘增加第一地电极和第二地电极,其与GaN缓冲层形成欧姆接触,可抽取重离子入射产生的电子空穴对,因此可有效改善粒子入射到GaN高电子迁移率晶体管中引起器件单粒子烧毁情况。
The present invention discloses an enhanced gallium nitride high electron mobility transistor and a preparation method thereof. The transistor comprises: a GaN buffer layer and a barrier layer with a groove region sequentially grown on a substrate; a passivation protection layer covering the barrier layer; a high hole concentration structure layer covering the groove region; a source electrode and a drain electrode penetrating the barrier layer and the passivation protection layer and located on both sides of the high hole concentration structure layer; a gate electrode located on the high hole concentration structure layer; and a first ground electrode and a second ground electrode located outside the source electrode and the drain electrode and in contact with the GaN buffer layer. Since the first ground electrode and the second ground electrode are added to the edges of the drain electrode and the source electrode, they form an ohmic contact with the GaN buffer layer, and can extract electron-hole pairs generated by heavy ion incidence, thereby effectively improving the single particle burnout of the device caused by particles incident on the GaN high electron mobility transistor.
Description
技术领域Technical Field
本发明属于半导体功率电子器件技术领域,尤其涉及一种增强型氮化镓高电子迁移率晶体管及其制备方法。The present invention belongs to the technical field of semiconductor power electronic devices, and in particular relates to an enhanced gallium nitride high electron mobility transistor and a preparation method thereof.
背景技术Background Art
GaN材料因其具备禁带宽度大,临界击穿电场高,热导率高等特点,在制备高压、高温、大功率和高密度集成的电子器件方面具有独特的优势。GaN材料可以与AlGaN、InAlN等材料形成异质结结构。由于AlGaN或InAlN等材料存在自发极化和压电极化效应,因此会在异质结界面处形成高浓度和高迁移率的二维电子气(2DEG)。这种特性不仅可以提高GaN基器件的载流子迁移率和工作频率,还可以减小器件的导通电阻和开关延迟。GaN materials have unique advantages in the preparation of high-voltage, high-temperature, high-power and high-density integrated electronic devices due to their large bandgap, high critical breakdown electric field and high thermal conductivity. GaN materials can form heterojunction structures with materials such as AlGaN and InAlN. Due to the spontaneous polarization and piezoelectric polarization effects of materials such as AlGaN or InAlN, a high-concentration and high-mobility two-dimensional electron gas (2DEG) will be formed at the heterojunction interface. This characteristic can not only improve the carrier mobility and operating frequency of GaN-based devices, but also reduce the on-resistance and switching delay of the device.
由于GaN基器件优越的电学性能,在深空探测等航空航天领域具有广阔的应用前景,近年来,国内外对于GaN功率器件空间应用中的单粒子效应展开研究,研究表明粒子入射到GaN高电子迁移率晶体管中,产生高密度电子空穴对非平衡载流子,可能会引起器件性能退化甚至烧毁失效。Due to the superior electrical properties of GaN-based devices, they have broad application prospects in aerospace fields such as deep space exploration. In recent years, domestic and foreign research has been conducted on the single particle effects of GaN power devices in space applications. Studies have shown that particles incident on GaN high electron mobility transistors produce high-density electron-hole pairs of non-equilibrium carriers, which may cause device performance degradation or even burnout and failure.
发明内容Summary of the invention
本发明的目的在于克服现有技术缺陷,提出了一种增强型氮化镓高电子迁移率晶体管,本发明还公开了一种增强型氮化镓高电子迁移率晶体管制备方法,可以提高器件的单粒子烧毁阈值电压,对抗单粒子烧毁效应。The purpose of the present invention is to overcome the defects of the prior art and propose an enhanced gallium nitride high electron mobility transistor. The present invention also discloses a method for preparing an enhanced gallium nitride high electron mobility transistor, which can increase the single particle burnout threshold voltage of the device and counteract the single particle burnout effect.
一种增强型氮化镓高电子迁移率晶体管,包括:衬底、GaN缓冲层、势垒层、高空穴浓度结构层、钝化保护层、源极电极、漏极电极、栅极电极和第一地电极和第二地电极,其中:An enhanced gallium nitride high electron mobility transistor comprises: a substrate, a GaN buffer layer, a barrier layer, a high hole concentration structure layer, a passivation protection layer, a source electrode, a drain electrode, a gate electrode, a first ground electrode, and a second ground electrode, wherein:
所述GaN缓冲层和所述势垒层依次生长在所述衬底上;The GaN buffer layer and the barrier layer are sequentially grown on the substrate;
所述势垒层的一侧具有凹槽区域;One side of the barrier layer has a groove region;
所述钝化保护层覆盖在所述势垒层上;The passivation protection layer covers the barrier layer;
所述高空穴浓度结构层覆盖在所述凹槽区域上;The high hole concentration structure layer covers the groove area;
所述源极电极和所述漏极电极分别位于所述高空穴浓度结构层两侧,贯穿所述势垒层和所述钝化保护层;The source electrode and the drain electrode are respectively located on both sides of the high hole concentration structure layer and penetrate the barrier layer and the passivation protection layer;
所述栅极电极位于所述高空穴浓度结构层上;The gate electrode is located on the high hole concentration structure layer;
所述第一地电极位于所述漏极电极外,所述第二地电极位于所述源极电极外,与所述GaN缓冲层接触;The first ground electrode is located outside the drain electrode, and the second ground electrode is located outside the source electrode and contacts the GaN buffer layer;
所述源极电极和漏极电极与所述势垒层之间形成欧姆接触,所述栅电极与所述高空穴浓度结构层形成肖特基接触,所述第一地电极和所述第二地电极与所述GaN缓冲层形成欧姆接触。The source electrode and the drain electrode form an ohmic contact with the barrier layer, the gate electrode forms a Schottky contact with the high hole concentration structure layer, and the first ground electrode and the second ground electrode form an ohmic contact with the GaN buffer layer.
在一种改进的晶体管中,所述第一地电极与漏极电极之间的距离大于等于1um且小于等于50μm。In an improved transistor, the distance between the first ground electrode and the drain electrode is greater than or equal to 1 um and less than or equal to 50 μm.
在一种改进的晶体管中,所述第二地电极与源极电极之间的距离大于等于1um且小于等于50μm。In an improved transistor, the distance between the second ground electrode and the source electrode is greater than or equal to 1 um and less than or equal to 50 μm.
在一种改进的晶体管中,所述凹槽区域的深度大于等于0nm且小于等于所述势垒层的厚度。In an improved transistor, the depth of the groove region is greater than or equal to 0 nm and less than or equal to the thickness of the barrier layer.
在一种改进的晶体管中,所述高空穴浓度结构层的制作材料为p型氮化物多元合金,p型氮化物的掺杂浓度大于105/cm-3小于等于1022/cm-3。In an improved transistor, the high hole concentration structural layer is made of a p-type nitride multi-element alloy, and the doping concentration of the p-type nitride is greater than 10 5 /cm -3 and less than or equal to 10 22 /cm -3 .
另一方面,本发明提出了一种增强型氮化镓高电子迁移率晶体管的制备方法,包括:On the other hand, the present invention provides a method for preparing an enhanced-mode gallium nitride high electron mobility transistor, comprising:
在衬底上生长GaN缓冲层;growing a GaN buffer layer on the substrate;
在所述GaN缓冲层上生长势垒层;growing a barrier layer on the GaN buffer layer;
在所述势垒层和GaN缓冲层上形成台面图形;forming a mesa pattern on the barrier layer and the GaN buffer layer;
在台面图形上形成钝化保护层;forming a passivation protective layer on the mesa pattern;
对所述钝化保护层进行图形化,得到第一图形;Patterning the passivation protection layer to obtain a first pattern;
在所述第一图形中势垒层上形成凹槽区域;forming a groove region on the barrier layer in the first pattern;
在所述凹槽区域中选择性再生长高空穴浓度结构层;selectively regrowing a high hole concentration structure layer in the groove region;
对所述钝化保护层进行图形化,得到第二图形、第三图形、第四图形和第五图形;Patterning the passivation protection layer to obtain a second pattern, a third pattern, a fourth pattern and a fifth pattern;
在所述第二图形和第三图形中分别制备源极电极和漏极电极,在所述第四图形和第五图形中制备第一地电极和第二地电极,并利用高温合金退火,使所述源极电极、所述漏极电极与所述势垒层之间形成欧姆接触,所述第一地电极和所述第二地电极与GaN缓冲层之间形成欧姆接触;A source electrode and a drain electrode are prepared in the second and third graphics respectively, a first ground electrode and a second ground electrode are prepared in the fourth and fifth graphics, and high-temperature alloy annealing is performed to form an ohmic contact between the source electrode, the drain electrode and the barrier layer, and an ohmic contact is formed between the first and second ground electrodes and the GaN buffer layer;
在高空穴浓度结构层上制备栅极电极,使所述栅极电极与所述高空穴浓度结构层之间形成肖特基接触。A gate electrode is prepared on the high hole concentration structural layer, so that a Schottky contact is formed between the gate electrode and the high hole concentration structural layer.
在一种改进的制备方法中,所述第一地电极与漏极电极之间的距离大于等于1um且小于等于50μm。In an improved preparation method, the distance between the first ground electrode and the drain electrode is greater than or equal to 1 um and less than or equal to 50 μm.
在一种改进的制备方法中,所述第二地电极与源极电极之间的距离大于等于1um且小于等于50μm。In an improved preparation method, the distance between the second ground electrode and the source electrode is greater than or equal to 1 um and less than or equal to 50 μm.
在一种改进的制备方法中,所述凹槽区域的深度大于等于0nm且小于等于所述势垒层的厚度。In an improved preparation method, the depth of the groove region is greater than or equal to 0 nm and less than or equal to the thickness of the barrier layer.
在一种改进的制备方法中,所述高空穴浓度结构层的制作材料为p型氮化物多元合金,p型氮化物的掺杂浓度大于等于105/cm-3且小于等于1022/cm-3。In an improved preparation method, the high hole concentration structural layer is made of a p-type nitride multi-element alloy, and the doping concentration of the p-type nitride is greater than or equal to 10 5 /cm -3 and less than or equal to 10 22 /cm -3 .
与现有技术相比,本发明的优势在于:Compared with the prior art, the advantages of the present invention are:
在晶体管的漏极电极和源极电极边缘增加第一地电极和第二地电极,第一地电极和第二地电极与GaN缓冲层形成欧姆接触,通过设置地电极的偏置电压,在源极、漏极和地电极之间建立电场,可抽取重离子入射产生的电子空穴对,防止器件在低漏极偏置电压下发生单粒子烧毁效应,提高器件的单粒子烧毁阈值电压,因此可有效改善粒子入射到GaN高电子迁移率晶体管中引起器件单粒子烧毁情况。A first ground electrode and a second ground electrode are added to the edges of the drain electrode and the source electrode of the transistor. The first ground electrode and the second ground electrode form an ohmic contact with the GaN buffer layer. By setting the bias voltage of the ground electrode, an electric field is established between the source, the drain and the ground electrode, which can extract electron-hole pairs generated by heavy ion incidence, prevent the device from having a single particle burnout effect at a low drain bias voltage, and increase the single particle burnout threshold voltage of the device. Therefore, the single particle burnout of the device caused by particles incident on the GaN high electron mobility transistor can be effectively improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例1提供的氮化镓高电子迁移率晶体管的结构示意图;FIG1 is a schematic structural diagram of a gallium nitride high electron mobility transistor provided in Example 1 of the present invention;
图2为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之一;FIG2 is a flow chart of a manufacturing process of a gallium nitride high electron mobility transistor according to Embodiment 2 of the present invention;
图3为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之二;FIG3 is a second flow chart of the preparation process of a gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图4为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之三;FIG4 is a third flow chart of the preparation process of a gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图5为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之四;FIG5 is a fourth flow chart of the manufacturing process of the gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图6为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之五;FIG6 is a fifth process flow chart of the preparation process of the gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图7为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之六;FIG. 7 is a sixth flow chart of the manufacturing process of a gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图8为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之七;FIG8 is a seventh process flow chart of the preparation process of a gallium nitride high electron mobility transistor provided in Example 2 of the present invention;
图9为本发明实施例2提供的氮化镓高电子迁移率晶体管的制备工艺流程图之八。FIG. 9 is an eighth flowchart of the manufacturing process of the gallium nitride high electron mobility transistor provided in Example 2 of the present invention.
附图标记Reference numerals
100、衬底 200、GaN缓冲层100, substrate 200, GaN buffer layer
300、势垒层 301、台面图形300, Barrier layer 301, Table top pattern
400、钝化保护层 401、第一图形400, passivation protection layer 401, first pattern
402、凹槽区域 500、高空穴浓度结构层402, groove area 500, high hole concentration structure layer
601、第二图形 602、第三图形601, second figure 602, third figure
603、第四图形 604、第五图形603, fourth figure 604, fifth figure
611、源极电极 612、漏极电极611, source electrode 612, drain electrode
613、栅极电极 614、第一地电极613. Gate electrode 614. First ground electrode
615、第二地电极。615. Second ground electrode.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明的技术方案进行详细的说明。The technical solution of the present invention is described in detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
图1为本发明实施例1提供的氮化镓高电子迁移率晶体管的结构示意图,氮化镓高电子迁移率晶体管包括:FIG1 is a schematic diagram of the structure of a gallium nitride high electron mobility transistor provided in Example 1 of the present invention. The gallium nitride high electron mobility transistor comprises:
衬底100、GaN缓冲层200、势垒层300、钝化保护层400、高空穴浓度结构层500、源极电极611、漏极电极612、栅极电极613、第一地电极614和第二地电极615,其中:Substrate 100, GaN buffer layer 200, barrier layer 300, passivation protection layer 400, high hole concentration structure layer 500, source electrode 611, drain electrode 612, gate electrode 613, first ground electrode 614 and second ground electrode 615, wherein:
所述GaN缓冲层200和势垒层300依次生长在所述衬底100上;The GaN buffer layer 200 and the barrier layer 300 are sequentially grown on the substrate 100;
所述势垒层的一侧具有凹槽区域;One side of the barrier layer has a groove region;
所述高空穴浓度结构层500覆盖在所述凹槽区域上;The high hole concentration structure layer 500 covers the groove area;
所述源极电极611和漏极电极612分别位于所述势垒层300上表面未被所述高空穴浓度结构层500覆盖的两侧,贯穿所述势垒层和所述钝化保护层;The source electrode 611 and the drain electrode 612 are respectively located on two sides of the upper surface of the barrier layer 300 that is not covered by the high hole concentration structure layer 500, and penetrate the barrier layer and the passivation protection layer;
所述栅极电极613位于所述高空穴浓度结构层500上;The gate electrode 613 is located on the high hole concentration structure layer 500;
所述第一地电极614和所述第二地电极615位于所述源极电极611和所述漏极电极612两侧的GaN缓冲层200上表面;The first ground electrode 614 and the second ground electrode 615 are located on the upper surface of the GaN buffer layer 200 on both sides of the source electrode 611 and the drain electrode 612;
所述钝化保护层400覆盖在所述势垒层300上,具体覆盖在所述势垒层300上表面未被所述高空穴浓度结构层500、源极电极611、漏极电极612、栅极电极613、第一地电极614和第二地电极615覆盖的区域、所述势垒层300的端面、所述GaN缓冲层200的部分端面以及所述GaN缓冲层200上表面的部分区域;The passivation protection layer 400 covers the barrier layer 300, specifically covers the area on the upper surface of the barrier layer 300 that is not covered by the high hole concentration structure layer 500, the source electrode 611, the drain electrode 612, the gate electrode 613, the first ground electrode 614 and the second ground electrode 615, the end surface of the barrier layer 300, part of the end surface of the GaN buffer layer 200, and part of the upper surface of the GaN buffer layer 200;
其中,所述源极电极611和漏极电极612与势垒层300之间形成欧姆接触,所述栅极电极613与高空穴浓度结构层500之间形成肖特基接触,所述第一地电极614和第二地电极615与GaN缓冲层200之间形成欧姆接触。The source electrode 611 and the drain electrode 612 form an ohmic contact with the barrier layer 300 , the gate electrode 613 forms a Schottky contact with the high hole concentration structure layer 500 , and the first ground electrode 614 and the second ground electrode 615 form an ohmic contact with the GaN buffer layer 200 .
具体的,所述衬底100可选为GaN、蓝宝石、Si、金刚石或SiC等衬底材料。Specifically, the substrate 100 can be made of GaN, sapphire, Si, diamond or SiC.
其中,所述GaN缓冲层200的厚度范围为50nm-10μm,厚度可以为端点值50nm和10μm。The thickness of the GaN buffer layer 200 is in the range of 50 nm to 10 μm, and the thickness may be an end value of 50 nm and 10 μm.
所述势垒层300的制作材料可以为AlN、InN、AlGaN、InGaN或者InAlN,厚度范围为5nm-1μm,厚度可以为端点值5nm和1μm。The barrier layer 300 may be made of AlN, InN, AlGaN, InGaN or InAlN, and has a thickness ranging from 5 nm to 1 μm, with the thickness having end values of 5 nm and 1 μm.
所述高空穴浓度结构层500的制作材料可为p型氮化物多元合金,如AlGaN、InGaN、GaN等。The high hole concentration structure layer 500 may be made of a p-type nitride multi-element alloy, such as AlGaN, InGaN, GaN, etc.
所述高空穴浓度结构层500的p型氮化物的掺杂浓度大于105/cm-3小于等于1022/cm-3。The doping concentration of the p-type nitride of the high hole concentration structural layer 500 is greater than 10 5 /cm −3 and less than or equal to 10 22 /cm −3 .
所述钝化保护层400的厚度为5nm-1μm,厚度可以为端点值5nm和1μm。The passivation protection layer 400 has a thickness of 5 nm-1 μm, and the thickness may be an end value of 5 nm and 1 μm.
所述钝化保护层400的制作材料可以为SiO2、Si3N4、AlN、Al2O3、MgO、Sc2O3、TiO2、HfO2、BCB、ZrO2、Ta2O5或La2O3等材料。The passivation protection layer 400 may be made of materials such as SiO 2 , Si 3 N 4 , AlN, Al 2 O 3 , MgO, Sc 2 O 3 , TiO 2 , HfO 2 , BCB, ZrO 2 , Ta 2 O 5 or La 2 O 3 .
所述源极电极611、所述漏极电极612和所述栅极电极613的制作材料可以为Ti、Al、Ni、Mo、Pt、Pd、Au、W、TiW、TiN或它们之间的任意合成。The source electrode 611 , the drain electrode 612 , and the gate electrode 613 may be made of materials such as Ti, Al, Ni, Mo, Pt, Pd, Au, W, TiW, TiN, or any combination thereof.
所述第一地电极614和所述第二地电极615的制作材料可以为Ti、Al、Ni、Mo、Pt、Pd、Au、W、TiW、TiN或它们之间的任意合成。实施例2The first ground electrode 614 and the second ground electrode 615 may be made of materials such as Ti, Al, Ni, Mo, Pt, Pd, Au, W, TiW, TiN, or any combination thereof.
图2-图9为本发明实施例2的提供的氮化镓高电子迁移率晶体管的制备工艺流程图,如图2-图9所示,相应的氮化镓高电子迁移率晶体管制备方法包括以下步骤:FIG. 2 to FIG. 9 are flow charts of a manufacturing process of a gallium nitride high electron mobility transistor provided in Example 2 of the present invention. As shown in FIG. 2 to FIG. 9 , the corresponding method for manufacturing a gallium nitride high electron mobility transistor includes the following steps:
步骤1,在衬底100上生长GaN缓冲层200,如图2所示。Step 1: growing a GaN buffer layer 200 on a substrate 100, as shown in FIG. 2 .
其中,所述衬底100可选为GaN、蓝宝石、Si、金刚石或SiC等衬底材料。所述GaN缓冲层200的厚度范围可以为50nm-10μm。The substrate 100 may be made of GaN, sapphire, Si, diamond or SiC etc. The thickness of the GaN buffer layer 200 may be in the range of 50 nm to 10 μm.
步骤2,在所述GaN缓冲层200上生长势垒层300,如图2所示。Step 2: growing a barrier layer 300 on the GaN buffer layer 200 , as shown in FIG. 2 .
其中,所述势垒层300的制作材料可以为AlN、InN、AlGaN、InGaN或者InAlN,厚度范围可以为5nm-1μm。The barrier layer 300 may be made of AlN, InN, AlGaN, InGaN or InAlN, and may have a thickness ranging from 5 nm to 1 μm.
步骤3,在所述势垒层300和GaN缓冲层200上形成台面图形301,以与其他GaN高电子迁移率晶体管隔离,如图3所示。Step 3, forming a mesa pattern 301 on the barrier layer 300 and the GaN buffer layer 200 to isolate the GaN high electron mobility transistor from other GaN high electron mobility transistors, as shown in FIG. 3 .
可以利用离子注入、光刻和等离子体干法刻蚀技术形成台面图形301。The mesa pattern 301 may be formed by ion implantation, photolithography, and plasma dry etching techniques.
其中,台面图形301的台面高度≥势垒层300的厚度。The mesa height of the mesa pattern 301 is greater than or equal to the thickness of the barrier layer 300 .
步骤4,在台面图形301上形成钝化保护层400,如图4所示。Step 4: forming a passivation protection layer 400 on the mesa pattern 301, as shown in FIG. 4 .
可采用淀积等常用工艺形成所述钝化保护层400,其中,淀积钝化保护层400的方式可以为溅射或化学气相沉积。The passivation protection layer 400 may be formed by a common process such as deposition, wherein the passivation protection layer 400 may be deposited by sputtering or chemical vapor deposition.
其中,所述钝化保护层400的厚度为20nm-1μm,制作材料可以为SiO2、Si3N4、AlN、Al2O3、MgO、Sc2O3、TiO2、HfO2、BCB、ZrO2、Ta2O5或La2O3等材料。The thickness of the passivation protection layer 400 is 20 nm-1 μm, and the material of the passivation protection layer 400 may be SiO 2 , Si 3 N 4 , AlN, Al 2 O 3 , MgO, Sc 2 O 3 , TiO 2 , HfO 2 , BCB, ZrO 2 , Ta 2 O 5 or La 2 O 3 or the like.
步骤5,对所述钝化保护层400进行图形化,得到第一图形401,如图5所示。Step 5: patterning the passivation protection layer 400 to obtain a first pattern 401, as shown in FIG. 5 .
可以利用光刻、等离子体干法刻蚀技术或者湿法腐蚀技术对所述钝化保护层400进行图形化。The passivation protection layer 400 may be patterned by using photolithography, plasma dry etching technology or wet etching technology.
步骤6,使所述第一图形401区域的势垒层形成凹槽区域402,凹槽深度≤势垒层300的厚度且凹槽区域的深度可为0nm,如图6所示。Step 6: Form a groove region 402 in the barrier layer in the first pattern 401 region, wherein the groove depth is ≤ the thickness of the barrier layer 300 and the depth of the groove region can be 0 nm, as shown in FIG. 6 .
可以利用光刻、等离子体干法刻蚀技术或者湿法腐蚀技术使所述势垒层形成凹槽。The barrier layer may be formed into grooves by using photolithography, plasma dry etching technology or wet etching technology.
步骤7,在所述凹槽区域402中选择性再生长高空穴浓度结构层500,如图7所示。Step 7: selectively re-grow a high hole concentration structure layer 500 in the groove region 402 , as shown in FIG. 7 .
所述高空穴浓度结构层500的制作材料为p型氮化物多元合金,如AlGaN、InGaN、GaN等。The high hole concentration structural layer 500 is made of a p-type nitride multi-element alloy, such as AlGaN, InGaN, GaN, etc.
其中,所述高空穴浓度结构层500的p型氮化物的掺杂浓度为大于等于105/cm-3小于等于1022/cm-3。The doping concentration of the p-type nitride of the high hole concentration structural layer 500 is greater than or equal to 10 5 / cm -3 and less than or equal to 10 22 /cm -3 .
所述高空穴浓度结构层500可以通过生长和沉积的方式形成于所述凹槽区域402中,比如金属氧化物化学气相沉积(MOCVD,Metal-organic Chemical Vapor Deposition)、分子束外延(MBE,Molecular Beam Epitaxy)和/或原子层沉积(ALD,Atomic LayerDeposition)。The high hole concentration structure layer 500 may be formed in the recessed region 402 by growth and deposition, such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) and/or atomic layer deposition (ALD).
步骤8,对所述钝化保护层400进行图形化,得到第二图形601、第三图形602,第四图形603和第五图形604,如图8所示。Step 8, patterning the passivation protection layer 400 to obtain a second pattern 601, a third pattern 602, a fourth pattern 603 and a fifth pattern 604, as shown in FIG. 8 .
可以利用光刻、等离子体干法刻蚀技术或者湿法腐蚀技术对所述钝化保护层400进行图形化。The passivation protection layer 400 may be patterned by using photolithography, plasma dry etching technology or wet etching technology.
步骤9,在所述第二图形601中制备源极电极611,第三图形602中制备漏极电极612,第四图形603中制备第一地电极614,第五图形604中制备第二地电极615,如图9所示,并利用高温合金退火,使源极电极611和漏极电极612与势垒层300之间形成欧姆接触,第一地电极614和第二地电极615与GaN缓冲层之间形成欧姆接触。Step 9, prepare a source electrode 611 in the second figure 601, prepare a drain electrode 612 in the third figure 602, prepare a first ground electrode 614 in the fourth figure 603, and prepare a second ground electrode 615 in the fifth figure 604, as shown in Figure 9, and use high-temperature alloy annealing to form an ohmic contact between the source electrode 611 and the drain electrode 612 and the barrier layer 300, and an ohmic contact between the first ground electrode 614 and the second ground electrode 615 and the GaN buffer layer.
可以利用光刻、电子束蒸发或者溅射技术制备金属电极。Metal electrodes can be prepared using photolithography, electron beam evaporation or sputtering techniques.
其中,所述源极电极611、漏极电极612、第一地电极614和第二地电极615的制作材料可以为Ti、Al、Ni、Mo、Pt、Pd、Au、W、TiW、TiN及它们之间的任意组合。The source electrode 611, the drain electrode 612, the first ground electrode 614 and the second ground electrode 615 may be made of materials such as Ti, Al, Ni, Mo, Pt, Pd, Au, W, TiW, TiN and any combination thereof.
步骤10,在所述高空穴浓度结构层500上制备栅极电极613,如图1所示,使栅极电极613与高空穴浓度结构层500之间形成肖特基接触。Step 10: prepare a gate electrode 613 on the high hole concentration structure layer 500 , as shown in FIG. 1 , so that a Schottky contact is formed between the gate electrode 613 and the high hole concentration structure layer 500 .
可以利用光刻、电子束蒸发或者溅射技术制备金属电极。Metal electrodes can be prepared using photolithography, electron beam evaporation or sputtering techniques.
其中,所述栅极电极613的制作材料可以为Ti、Al、Ni、Mo、Pt、Pd、Au、W、TiW、TiN及它们之间的任意组合。The gate electrode 613 may be made of a material selected from Ti, Al, Ni, Mo, Pt, Pd, Au, W, TiW, TiN, and any combination thereof.
本发明在传统氮化镓高电子迁移率晶体管的基础上,在晶体管漏极电极和源极电极边缘增加第一地电极614和第二地电极615,可以抽取重离子入射产生的电子空穴对,进而防止器件在低漏极偏置电压下发生单粒子效应,提高器件的单粒子烧毁阈值电压。本发明可靠性高,重复性好。Based on the traditional gallium nitride high electron mobility transistor, the present invention adds a first ground electrode 614 and a second ground electrode 615 at the edges of the drain electrode and the source electrode of the transistor, which can extract the electron-hole pairs generated by the heavy ion incidence, thereby preventing the device from having a single particle effect under a low drain bias voltage, and improving the single particle burnout threshold voltage of the device. The present invention has high reliability and good repeatability.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to limit the present invention. Although the present invention is described in detail with reference to the embodiments, it should be understood by those skilled in the art that any modification or equivalent replacement of the technical solutions of the present invention does not depart from the spirit and scope of the technical solutions of the present invention and should be included in the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410819259.2A CN118748206A (en) | 2024-06-24 | 2024-06-24 | An enhanced gallium nitride high electron mobility transistor and a method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410819259.2A CN118748206A (en) | 2024-06-24 | 2024-06-24 | An enhanced gallium nitride high electron mobility transistor and a method for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118748206A true CN118748206A (en) | 2024-10-08 |
Family
ID=92922986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410819259.2A Pending CN118748206A (en) | 2024-06-24 | 2024-06-24 | An enhanced gallium nitride high electron mobility transistor and a method for preparing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118748206A (en) |
-
2024
- 2024-06-24 CN CN202410819259.2A patent/CN118748206A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4022708B2 (en) | Semiconductor device | |
US7728355B2 (en) | Nitrogen polar III-nitride heterojunction JFET | |
CN104465748B (en) | A kind of enhanced HEMT device of GaN base and preparation method thereof | |
CN102097483B (en) | GaN-based heterostructure enhancement type insulated gate field effect transistor and preparation method thereof | |
CN110648914B (en) | Method for improving breakdown voltage of gallium nitride transistor | |
JP2010206020A (en) | Semiconductor device | |
CN113380623A (en) | Method for realizing enhanced HEMT (high Electron mobility transistor) through p-type passivation | |
CN107978642B (en) | GaN-based heterojunction diode and preparation method thereof | |
JPWO2009147774A1 (en) | Semiconductor device | |
CN111223777B (en) | GaN-based HEMT device and manufacturing method thereof | |
TWI641133B (en) | Semiconductor cell | |
CN220065702U (en) | An enhanced HEMT device | |
CN111081763B (en) | Normally-off HEMT device with honeycomb groove barrier layer structure below field plate and preparation method thereof | |
CN110299407A (en) | Power device and preparation method thereof | |
CN113972263B (en) | An enhanced AlGaN/GaN HEMT device and its preparation method | |
CN101477951A (en) | Enhanced AlGaN/GaN field effect tube and manufacturing method thereof | |
CN108711578A (en) | A kind of part p-type GaN cap RESURF GaN base Schottky-barrier diodes | |
TWI569439B (en) | Semiconductor cell | |
KR101207701B1 (en) | GaN SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME | |
CN113594232B (en) | An enhanced high-voltage HEMT device with a multi-finger buried gate structure and a method for preparing the same | |
CN112201689B (en) | Field effect transistor based on III-nitride heterojunction and preparation method thereof | |
CN104393045A (en) | Novel GaN-base reinforced HEMT device and manufacturing method thereof | |
CN110970499A (en) | GaN-based lateral superjunction device and fabrication method thereof | |
CN116387344A (en) | Single particle burnout resistant gallium nitride reference vertical trench MOSFET device structure and manufacturing method thereof | |
CN118748206A (en) | An enhanced gallium nitride high electron mobility transistor and a method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |