CN118292046A - A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis - Google Patents
A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis Download PDFInfo
- Publication number
- CN118292046A CN118292046A CN202410725926.0A CN202410725926A CN118292046A CN 118292046 A CN118292046 A CN 118292046A CN 202410725926 A CN202410725926 A CN 202410725926A CN 118292046 A CN118292046 A CN 118292046A
- Authority
- CN
- China
- Prior art keywords
- source
- metal sulfide
- self
- nanocatalytic
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 59
- 229910052976 metal sulfide Inorganic materials 0.000 title claims abstract description 50
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 15
- 239000001257 hydrogen Substances 0.000 title claims abstract description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000005868 electrolysis reaction Methods 0.000 title claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 157
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 230000003197 catalytic effect Effects 0.000 claims abstract description 42
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052742 iron Inorganic materials 0.000 claims abstract description 29
- 239000011593 sulfur Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 22
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000010937 tungsten Substances 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000002791 soaking Methods 0.000 claims abstract description 15
- 239000002077 nanosphere Substances 0.000 claims abstract description 14
- 239000002904 solvent Substances 0.000 claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 88
- 239000006260 foam Substances 0.000 claims description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 claims description 23
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 22
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 22
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 claims description 16
- 229940116357 potassium thiocyanate Drugs 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 5
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- DOKHEARVIDLSFF-UHFFFAOYSA-N prop-1-en-1-ol Chemical compound CC=CO DOKHEARVIDLSFF-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 229940124530 sulfonamide Drugs 0.000 claims description 2
- 150000003456 sulfonamides Chemical class 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 16
- 239000001301 oxygen Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 7
- 239000010411 electrocatalyst Substances 0.000 abstract description 5
- 239000013543 active substance Substances 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 30
- 238000000034 method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- 230000010287 polarization Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 238000009841 combustion method Methods 0.000 description 12
- 229910001868 water Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 238000011056 performance test Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 239000006262 metallic foam Substances 0.000 description 5
- 239000010970 precious metal Substances 0.000 description 5
- 238000013112 stability test Methods 0.000 description 5
- 238000012353 t test Methods 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000004098 selected area electron diffraction Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002505 iron Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- -1 tungstates Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/054—Electrodes comprising electrocatalysts supported on a carrier
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及电解制氢技术领域,具体地说,涉及自支撑金属硫化物纳米催化材料及其在电解制氢的应用。The invention relates to the technical field of electrolytic hydrogen production, and in particular to a self-supporting metal sulfide nanocatalytic material and an application thereof in electrolytic hydrogen production.
背景技术Background technique
氢气(H2)作为绿色能源载体,具有清洁低碳(燃烧不产生二氧化碳等有害物质)、热值高(约为汽油的3倍)、质量轻、来源广泛(可以通过水电解,化石燃料回收等多种办法制取)、储存灵活(可以液体,固体,气体,金属氢化物等形式出现,能够极大的满足各种场景)等特点。因此氢能有望替代传统化石燃料,缓解能源危机与环境污染等问题;推动氢能发展也被认为是实现能源转型不可或缺的选择。As a green energy carrier, hydrogen (H 2 ) has the characteristics of clean and low carbon (no harmful substances such as carbon dioxide are produced when burned), high calorific value (about 3 times that of gasoline), light weight, wide source (can be produced through water electrolysis, fossil fuel recovery and other methods), flexible storage (can appear in the form of liquid, solid, gas, metal hydride, etc., which can greatly meet various scenarios). Therefore, hydrogen energy is expected to replace traditional fossil fuels and alleviate energy crisis and environmental pollution. Promoting the development of hydrogen energy is also considered an indispensable choice for achieving energy transformation.
电解水制氢是利用太阳能、风能等可再生电力将水分子(H2O)裂解成H2(析氢反应,HER)和O2(析氧反应, OER)的过程。该路径是一种可持续的、环境友好的制备氢技术。OER比HER更加缓慢,这是因为OER过程中存在的刚性O-O双键和多步电子转移过程。滞后的动力学过程将严重阻碍整体水分解,并显著降低电解水制氢的总能源转化效率。由于阳极催化材料是影响OER催化性能的关键因素,故寻找一类高电催化性能的阳极金属材料用以加快OER反应动力学对提高电解水总能源转化效率有至关重要的作用。Hydrogen production by water electrolysis is the process of using renewable electricity such as solar energy and wind energy to split water molecules ( H2O ) into H2 (hydrogen evolution reaction, HER) and O2 (oxygen evolution reaction, OER). This route is a sustainable and environmentally friendly hydrogen production technology. OER is slower than HER because of the rigid OO double bond and multi-step electron transfer process in the OER process. The delayed kinetic process will seriously hinder the overall water decomposition and significantly reduce the total energy conversion efficiency of hydrogen production by water electrolysis. Since the anode catalyst material is the key factor affecting the catalytic performance of OER, finding a class of anode metal materials with high electrocatalytic performance to accelerate the OER reaction kinetics is crucial to improving the total energy conversion efficiency of water electrolysis.
在OER电催化材料研究中发现IrO2和RuO2在很大程度上加快了水电解过程,但因其高成本和稀缺性,应用受到限制。近年来,更符合工业应用需求(如低成本,高丰度,高催化活性等)的非贵金属催化剂备受瞩目,被视为一种很有前途的贵金属催化剂替代品。然而,在高电流密度条件下,大多数非贵金属电催化剂的OER电催化活性物质易流失到电解液中,导致电催化活性急剧衰减。为达到工业化生产的严格要求,极需探索具有更高的化学和机械稳定性的非贵金属材料,尤其是在大于100 mA cm-2电流密度下能够长期稳定运行。In the study of OER electrocatalytic materials, it was found that IrO2 and RuO2 greatly accelerated the water electrolysis process, but their applications were limited due to their high cost and scarcity. In recent years, non-precious metal catalysts that are more in line with the needs of industrial applications (such as low cost, high abundance, high catalytic activity, etc.) have attracted much attention and are regarded as a promising alternative to precious metal catalysts. However, under high current density conditions, the OER electrocatalytic active substances of most non-precious metal electrocatalysts are easily lost into the electrolyte, resulting in a sharp attenuation of the electrocatalytic activity. In order to meet the strict requirements of industrial production, it is extremely necessary to explore non-precious metal materials with higher chemical and mechanical stability, especially those that can operate stably for a long time at current densities greater than 100 mA cm -2 .
在各种非贵金属电催化中,金属硫化物具有良好的导电性和优异的析氧性能。硫元素能够改变金属氢氧化物的局部结构(形成以纳米颗粒修饰的纳米球结构)和化学结构(金属硫化物中的M-S键能弱于金属氧化物的M-O键能,导致金属硫化物电极材料中发生转化的反应动力学速度更快)。另一方面,硫原子与邻近的金属离子分享分散离子,以平衡活性位点的电子密度,调控eg电子的量子自旋态,优化OH*、O*、与OOH*中间体的吸附强度和反应活性,有效降低反应速率决定步骤的能垒,改变传统氧吸附物反应机理。硫元素的引入能够打破O*/OOH*的比例尺寸缩放关系限制,去耦原本同步的电子质子反应步骤,诱发高效的晶格氧反应机理,最终大大提高OER反应动力学和反应效应。Among various non-precious metal electrocatalysts, metal sulfides have good conductivity and excellent oxygen evolution performance. Sulfur can change the local structure of metal hydroxides (forming a nanosphere structure modified by nanoparticles) and the chemical structure (the MS bond energy in metal sulfides is weaker than the MO bond energy in metal oxides, resulting in faster reaction kinetics of transformation in metal sulfide electrode materials). On the other hand, sulfur atoms share dispersed ions with neighboring metal ions to balance the electron density of active sites, regulate the quantum spin state of e g electrons, optimize the adsorption strength and reaction activity of OH*, O*, and OOH* intermediates, effectively reduce the energy barrier of the reaction rate determining step, and change the traditional oxygen adsorbent reaction mechanism. The introduction of sulfur can break the scaling relationship of the proportional size of O*/OOH*, decouple the originally synchronous electron-proton reaction steps, induce an efficient lattice oxygen reaction mechanism, and ultimately greatly improve the OER reaction kinetics and reaction effect.
尽管之前的研究在改性金属硫化物和揭示反应机理方面已经取得显著进展,但是在进一步提高反应性能和大规模工业化应用方面依然面临严峻挑战。这些粉末状金属硫化物通常需要使用导电性差的粘合剂(例如Nafion)在导电基板上形成催化剂层,这不可避免地埋没一些活性中心,增加电极电阻、抑制质量/电荷传输。同时,大部分金属硫催化剂存在纳米结构崩塌、催化剂不规则聚集、氧化分解、金属活性相沉淀,以及催化剂脱落等问题,最终导致金属硫化物催化剂催化效率下降,稳定性差。Although previous studies have made significant progress in modifying metal sulfides and revealing reaction mechanisms, there are still severe challenges in further improving reaction performance and large-scale industrial applications. These powdered metal sulfides usually require the use of poorly conductive adhesives (such as Nafion) to form a catalyst layer on a conductive substrate, which inevitably buries some active centers, increases electrode resistance, and inhibits mass/charge transfer. At the same time, most metal sulfur catalysts have problems such as nanostructure collapse, irregular catalyst aggregation, oxidative decomposition, metal active phase precipitation, and catalyst shedding, which ultimately lead to a decrease in the catalytic efficiency of metal sulfide catalysts and poor stability.
为了规避上述缺点,可在不使用粘合剂的前提下将金属硫化物相牢牢稳固在商业金属基底上,形成自支撑型OER催化剂。目前,水热(或溶剂热)方法, 惰性气氛高温退火硫化法和电沉积法等技术广泛用于制备自支撑金属硫化物电极材料。然而,这些方法通常需要大量能耗(热能和电能)、特殊化学药品、高精密反应设备、高温高压惰性气氛等严苛反应条件、以及复杂的合成步骤。其所合成的电极材料通常存在分布不均匀,催化活性较低等问题,难以在活性和经济成本之间取得平衡,从而限制了其工业化应用。In order to circumvent the above disadvantages, the metal sulfide phase can be firmly fixed on the commercial metal substrate without the use of adhesives to form a self-supporting OER catalyst. At present, hydrothermal (or solvothermal) methods, inert atmosphere high temperature annealing sulfurization method and electrodeposition method are widely used to prepare self-supporting metal sulfide electrode materials. However, these methods usually require a lot of energy consumption (heat and electricity), special chemicals, high-precision reaction equipment, high temperature and high pressure inert atmosphere and other harsh reaction conditions, as well as complex synthesis steps. The synthesized electrode materials usually have problems such as uneven distribution and low catalytic activity, making it difficult to strike a balance between activity and economic cost, thus limiting their industrial application.
发明内容Summary of the invention
本发明解决的技术问题:Technical problems solved by the present invention:
用以解决现有的金属硫化物催化剂制备过程中存在的耗能高、反应条件苛刻、合成步骤复杂的问题,以及制备得到的硫化样品由于结构不稳定和活性物流失导致的性能下降问题。It is used to solve the problems of high energy consumption, harsh reaction conditions, and complex synthesis steps in the existing preparation process of metal sulfide catalysts, as well as the performance degradation of the prepared sulfide samples due to structural instability and loss of active fluids.
本发明采用的技术方案:The technical solution adopted by the present invention is:
针对上述的技术问题,本发明的目的在于提供一种自支撑金属硫化物纳米催化材料及其在电解制氢的应用。具体方案如下:In view of the above technical problems, the purpose of the present invention is to provide a self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis. The specific scheme is as follows:
第一,本发明提供了一种自支撑金属硫化物纳米催化材料,金属硫化物修饰的纳米球分布于金属基底表面;First, the present invention provides a self-supporting metal sulfide nanocatalytic material, wherein metal sulfide-modified nanospheres are distributed on the surface of a metal substrate;
该催化材料是金属基底经处理液浸泡后,再经火焰燃烧得到;浸泡液包括可燃溶剂、铁源、负载源;The catalytic material is obtained by soaking a metal substrate in a treatment liquid and then burning it with a flame; the soaking liquid includes a combustible solvent, an iron source, and a load source;
负载源包括硫源和/或钨源。前述中,经火焰燃烧,直至火焰自然熄灭,再待金属基底自然冷却后,用去离子水清洗、再干燥得到。在前述提及的浸泡液中,金属基底于浸泡液中的浸泡时间约为2 min。The load source includes a sulfur source and/or a tungsten source. In the above, the flame is burned until the flame is naturally extinguished, and then the metal substrate is naturally cooled, washed with deionized water, and then dried. In the above-mentioned immersion solution, the immersion time of the metal substrate in the immersion solution is about 2 minutes.
本发明中,纳米球的直径为0.51-3.47 μm,金属硫化物以纳米颗粒形式存在,纳米颗粒的直径约为160-280 nm。本发明中,相邻纳米球之间的间隙为0.7-1.7 μm。In the present invention, the diameter of the nanosphere is 0.51-3.47 μm, the metal sulfide exists in the form of nanoparticles, and the diameter of the nanoparticles is about 160-280 nm. In the present invention, the gap between adjacent nanospheres is 0.7-1.7 μm.
本发明中,纳米球的表面富含有介孔结构。In the present invention, the surface of the nanosphere is rich in mesoporous structure.
本发明中,金属基底包括镍钼泡沫、镍泡沫、铁泡沫、铝泡沫、钛泡沫、钴泡沫、钢泡沫、铜泡沫中的至少一种。In the present invention, the metal substrate includes at least one of nickel-molybdenum foam, nickel foam, iron foam, aluminum foam, titanium foam, cobalt foam, steel foam and copper foam.
本发明中,负载源、铁源均可溶解于可燃溶剂;浸泡液包括如下特征:In the present invention, both the load source and the iron source can be dissolved in a combustible solvent; and the soaking liquid has the following characteristics:
铁源包括氯化铁、硫酸铁、硝酸铁中的至少一种;负载源可以是硫源、钨源中的至少一种。其中,其是硫源时,硫源包括硫氰酸钾、磺酰胺中的至少一种;其是钨源时,钨源包括钨酸钠。可燃溶剂包括低级醇;展开而言,低级醇具体包括甲醇、乙醇、正丙醇、异丙醇、丙烯醇中的至少一种;和/或,低级醇包括甲醇、乙醇中的至少一种;和/或,低级醇包括乙醇。The iron source includes at least one of ferric chloride, ferric sulfate, and ferric nitrate; the load source can be at least one of a sulfur source and a tungsten source. When it is a sulfur source, the sulfur source includes at least one of potassium thiocyanate and sulfonamide; when it is a tungsten source, the tungsten source includes sodium tungstate. The combustible solvent includes a lower alcohol; in detail, the lower alcohol specifically includes at least one of methanol, ethanol, n-propanol, isopropanol, and propenol; and/or, the lower alcohol includes at least one of methanol and ethanol; and/or, the lower alcohol includes ethanol.
在前述提及的浸泡液中,负载源为硫源时,硫源、铁源、低级醇的比例为0-0.4mol/L:0-0.5 mol/L:10 mL;和/或,负载源为硫源时,硫源、铁源、低级醇的比例为0-0.4mol/L:0.3-0.5 mol/L:10 mL;和/或,负载源为硫源时,硫源、铁源、低级醇的比例为0-0.3mol/L:0.3-0.5 mol/L:10 mL;和/或,负载源为硫源时,硫源、铁源、低级醇的比例为0-0.3mol/L:0-0.3 mol/L:10 mL;和/或,负载为硫源时,硫源、铁源、低级醇的比例为0.3 mol/L:0.3 mol/L:10 mL;和/或,负载为硫源时,硫源、铁源、低级醇的比例为0.2 mol/L:0.5 mol/L:10 mL。In the aforementioned soaking solution, when the load source is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0-0.4mol/L:0-0.5 mol/L:10 mL; and/or, when the load source is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0-0.4mol/L:0.3-0.5 mol/L:10 mL; and/or, when the load source is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0-0.3mol/L:0.3-0.5 mol/L:10 mL; and/or, when the load source is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0-0.3mol/L:0-0.3 mol/L:10 mL; and/or, when the load source is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0.3 mol/L:0.3 mol/L:10 mL; and/or, when the load is a sulfur source, the ratio of the sulfur source, the iron source, and the lower alcohol is 0.2 mol/L:0.5 mol/L:10 mL.
在前述提及的浸泡液中,负载源为钨源时,钨源、铁源、低级醇的比例为0-5 g:0-0.5 mol/L:10 mL;和/或,负载源为钨源时,钨源、铁源、低级醇的比例为5 g:0-0.5 mol/L:10 mL;和/或,负载源为钨源时,钨源、铁源、低级醇的比例为0-5 g:0.5 mol/L:10 mL;和/或,负载源为钨源时,钨源、铁源、低级醇的比例为5 g:0.5 mol/L:10 mL。In the aforementioned immersion solution, when the load source is a tungsten source, the ratio of the tungsten source, the iron source, and the lower alcohol is 0-5 g: 0-0.5 mol/L: 10 mL; and/or, when the load source is a tungsten source, the ratio of the tungsten source, the iron source, and the lower alcohol is 5 g: 0-0.5 mol/L: 10 mL; and/or, when the load source is a tungsten source, the ratio of the tungsten source, the iron source, and the lower alcohol is 0-5 g: 0.5 mol/L: 10 mL; and/or, when the load source is a tungsten source, the ratio of the tungsten source, the iron source, and the lower alcohol is 5 g: 0.5 mol/L: 10 mL.
第二,本发明提供了一种前述提及的自支撑金属硫化物纳米催化材料在电解制氢的应用。Second, the present invention provides an application of the aforementioned self-supporting metal sulfide nanocatalytic material in hydrogen production by electrolysis.
本发明采用的技术机理及有益效果:The technical mechanism and beneficial effects adopted by the present invention are as follows:
本发明充分利用浸泡液(负载源、铁源、燃烧溶剂)燃烧释放的热量将金属基底(这里可选用商用金属基底,如镍钼泡沫、镍泡沫)表面功能化为丰富的金属硫化物相。经硫化后,原始光滑金属基底表面被金属硫化物颗粒修饰、并粗糙化、最终形成分层介孔结构,该结构有利于电解液扩散和浸透,以及产生的气泡快速释放离开。The present invention makes full use of the heat released by the combustion of the immersion liquid (load source, iron source, combustion solvent) to functionalize the surface of the metal substrate (commercial metal substrates such as nickel-molybdenum foam and nickel foam can be used here) into a rich metal sulfide phase. After sulfurization, the original smooth metal substrate surface is modified and roughened by metal sulfide particles, and finally forms a hierarchical mesoporous structure, which is conducive to the diffusion and penetration of the electrolyte, and the rapid release and departure of the generated bubbles.
本发明将廉价的商业金属基底快速增值转化成高活性、高稳定的析氧催化剂。被金属硫化物颗粒修饰的纳米球直接生长并均匀阵列在商用金属泡沫基底上,与基底强烈结合,可有效解决现有OER电催化剂中存在的结构不稳定,容易脱落、性能下降等问题。The present invention rapidly converts cheap commercial metal substrates into highly active and stable oxygen evolution catalysts. Nanospheres modified with metal sulfide particles are directly grown and evenly arrayed on a commercial metal foam substrate, strongly bonded to the substrate, and can effectively solve the problems of structural instability, easy shedding, and performance degradation in existing OER electrocatalysts.
本发明采用商业金属泡沫作为基底材料,以火焰为反应容器,在高温自发燃烧条件下金属泡沫基底表面功被能化为丰富的金属硫化物相。由于自支撑电极避免了使用粘结剂,材料表面有更多暴露的活性位点、更低的电极电阻和更高的质量/电荷传输效率。The present invention uses commercial metal foam as the substrate material and flame as the reaction vessel. Under high-temperature spontaneous combustion conditions, the surface of the metal foam substrate is functionalized into a rich metal sulfide phase. Since the self-supporting electrode avoids the use of a binder, the material surface has more exposed active sites, lower electrode resistance and higher mass/charge transfer efficiency.
本发明以用浸泡液为处理液,浸泡液具有低毒性、低腐蚀性、低成本的优势,其经点燃产生的火焰为反应容器,在空气环境下能快速反应,最快三分钟内能够高产量制备出具有优异析氧性能的自支撑金属硫化物纳米电极材料。该方法有效避免了高温高压、强酸强碱、长时间(数天)、多步骤、高精密设备、惰性气氛等严苛合成条件。且合成方法具有高度重复性、廉价的合成原料、简单的操作、容易放大、制备周期短、能耗小等优势。因此,具有更广阔的工业化应用前景。The present invention uses soaking liquid as the treatment liquid. The soaking liquid has the advantages of low toxicity, low corrosiveness and low cost. The flame generated by ignition is used as a reaction vessel. It can react quickly in an air environment and can produce self-supporting metal sulfide nanoelectrode materials with excellent oxygen evolution performance in high yield within three minutes at the fastest. This method effectively avoids harsh synthesis conditions such as high temperature and high pressure, strong acid and alkali, long time (several days), multiple steps, high-precision equipment, and inert atmosphere. The synthesis method has the advantages of high repeatability, cheap synthetic raw materials, simple operation, easy amplification, short preparation cycle, and low energy consumption. Therefore, it has a broader prospect for industrial application.
本发明所形成的三维球状金属硫化物具有高电导率、大比表面积和强机械强度,能够有效弥补二维平面基底的不足之处。在本发明中,金属硫化物与基底骨架之间的强界面效应,能够有效防止活性相在气泡逃逸过程中活性相从电极表面脱落;同时强的界面电子耦合能确保电子快速迁移,大大降低反应过程中的电荷转移阻抗值。此外,由于不存在非导电性粘合剂,更多电化学活性位点将被充分暴露,有利于电解液与活性位点密切接触,显著提高析氧反应性能。The three-dimensional spherical metal sulfide formed by the present invention has high electrical conductivity, large specific surface area and strong mechanical strength, which can effectively make up for the shortcomings of the two-dimensional planar substrate. In the present invention, the strong interface effect between the metal sulfide and the substrate skeleton can effectively prevent the active phase from falling off the electrode surface during the bubble escape process; at the same time, the strong interface electronic coupling can ensure the rapid migration of electrons, greatly reducing the charge transfer impedance value during the reaction process. In addition, due to the absence of non-conductive adhesives, more electrochemical active sites will be fully exposed, which is conducive to close contact between the electrolyte and the active sites, and significantly improves the oxygen evolution reaction performance.
本发明得到的金属硫化物材料(标记为Fex/NM-S1y;其中x为铁盐摩尔数,y为硫源摩尔数)具有明显的三维分级结构,丰富的电活性位点,出色的导电性,强大的界面结合力,显著的电子结构修饰效应,提供了显著的OER性能和长期稳定性。Fe0.5M/NM-S10.2M在10 mAcm-2和50 mA cm-2的电流密度下,其过电位分别为228.43 mV和257.12 mV,优于商用镍钼泡沫基底(423.43 mV 和533.12 mV)。在电流密度为100 mA cm-2下所需的过电位仅为276.05mV。在恒电流极化条件,Fe0.5M/NM-S10.2M能够在0.5 A cm-2工业级电流密度下至少长期稳定工作1400小时,且没有明显的性能衰减,这些都表明商用金属基底被快速燃烧法硫化后的OER反应性能得到极大提高。The metal sulfide material obtained by the present invention (labeled as Fe x /NM-S1 y ; where x is the molar number of iron salt and y is the molar number of sulfur source) has a distinct three-dimensional hierarchical structure, abundant electroactive sites, excellent conductivity, strong interface binding force, and significant electronic structure modification effect, providing significant OER performance and long-term stability. The overpotential of Fe 0.5M /NM-S1 0.2M at current densities of 10 mA cm -2 and 50 mA cm -2 is 228.43 mV and 257.12 mV, respectively, which is better than the commercial nickel-molybdenum foam substrate (423.43 mV and 533.12 mV). The overpotential required at a current density of 100 mA cm -2 is only 276.05 mV. Under constant current polarization conditions, Fe 0.5M /NM-S1 0.2M can work stably for at least 1400 hours at an industrial-grade current density of 0.5 A cm -2 without obvious performance degradation, which indicates that the OER reaction performance of commercial metal substrates after fast combustion sulfurization is greatly improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为各试验样的LSV极化曲线图;FIG1 is a diagram of the LSV polarization curves of various test samples;
图2为图1中虚线方框区域的放大图;FIG2 is an enlarged view of the dotted box area in FIG1 ;
图3为实施例1中Fex/NM-S1y、商业镍钼泡沫 (NM)的LSV极化曲线图;FIG3 is a LSV polarization curve diagram of Fe x /NM-S1 y and commercial nickel-molybdenum foam (NM) in Example 1;
图4为实施例1中Fex/NM-S1y、商业镍钼泡沫 (NM)析氧反应(OER)的过电势图;FIG4 is an overpotential diagram of oxygen evolution reaction (OER) of Fe x /NM-S1 y and commercial nickel-molybdenum foam (NM) in Example 1;
图5为实施例1中Fe0.5M/NM-S10.2M的稳定性测试图;FIG5 is a stability test diagram of Fe 0.5M /NM-S1 0.2M in Example 1;
图6为实施例2中(Fex/NM-S2y)的LSV极化曲线图;FIG6 is a LSV polarization curve diagram of (Fe x /NM-S2 y ) in Example 2;
图7为实施例2中Fex/NM-S2y析氧反应(OER)反应的过电势图;FIG7 is an overpotential diagram of the oxygen evolution reaction (OER) of Fe x /NM-S2 y in Example 2;
图8为实施例2中Fe0.3M/NM-S20.3M的稳定性测试图;FIG8 is a stability test diagram of Fe 0.3M /NM-S2 0.3M in Example 2;
图9为实施例3中(Fex/NM-W)的LSV极化曲线图;FIG9 is a LSV polarization curve of (Fe x /NM-W) in Example 3;
图10为实施例3中Fex/NM-W析氧反应(OER)的过电势图;FIG10 is an overpotential diagram of Fe x /NM-W oxygen evolution reaction (OER) in Example 3;
图11为实施例4中(Fex/NM-S1y-a;Fex/NM-S1y)的LSV极化曲线图;FIG11 is a diagram of the LSV polarization curves of (Fe x /NM-S1 y -a; Fe x /NM-S1 y ) in Example 4;
图12为实施例4中Fex/NM-S1y-a;Fex/NM-S1y析氧反应(OER)反应过电势图;FIG12 is a diagram of the oxygen evolution reaction (OER) overpotential of Fe x /NM-S1 y -a; Fe x /NM-S1 y in Example 4;
图13为实施例5中Fe1x/NM-S1y;Fex/NM-S1y的LSV极化曲线图;FIG13 is a diagram showing the LSV polarization curves of Fe1 x /NM-S1 y and Fe x /NM-S1 y in Example 5;
图14为实施例5中Fe1x/NM-S1y;Fex/NM-S1y析氧反应(OER)反应过电势图;FIG14 is a diagram showing the overpotential of the oxygen evolution reaction (OER) of Fe1 x /NM-S1 y ; Fe x /NM-S1 y in Example 5;
图15为实施例6中(Fex/NF-S1y)的LSV极化曲线图;FIG15 is a LSV polarization curve diagram of ( Fex /NF- S1y ) in Example 6;
图16为实施例6中Fex/NF-S1y(OER)反应的过电势图;FIG16 is an overpotential diagram of the Fe x /NF-S1 y (OER) reaction in Example 6;
图17为实施例6中Fe0.5M/NF-S10.2M的稳定性测试图;FIG17 is a stability test diagram of Fe 0.5M /NF-S1 0.2M in Example 6;
图18 ( a-d) 及其插图分别为NM,Fe0.5M/NM,Fe0.5M/NM-S10.2M和稳定性测试后Fe0.5M/NM-S10.2M的SEM图;Figure 18 (ad) and its insets are SEM images of NM, Fe 0.5M /NM, Fe 0.5M /NM-S1 0.2M and Fe 0.5M /NM-S1 0.2M after stability test;
图19 (a) 为Fe0.5M/NM-S10.2M催化材料的TEM图,(b-f)分别对应图(a)中的Area 1-5,(g)为Fe0.5M/NM-S10.2M的SAED图。Figure 19 (a) is the TEM image of Fe 0.5M /NM-S1 0.2M catalytic material, (bf) correspond to Area 1-5 in Figure (a), and (g) is the SAED image of Fe 0.5M /NM-S1 0.2M .
图20为Fe0.5M/NM-S10.2M的元素分布(Elemental Mapping)图谱,(a)为暗场照片,(b)所有元素的位置叠加图,(c-g)分别对应元素Ni,Mo,Fe,S,O,N。Figure 20 is the elemental mapping spectrum of Fe 0.5M /NM-S1 0.2M , (a) is a dark field photo, (b) is the position overlay of all elements, and (cg) correspond to the elements Ni, Mo, Fe, S, O, and N respectively.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the purpose, technical scheme and advantages of the embodiments of the present invention clearer, the technical scheme in the embodiments of the present invention will be described clearly and completely below. If the specific conditions are not specified in the embodiments, they are carried out according to conventional conditions or conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not specified, they are all conventional products that can be purchased commercially.
实施例1Example 1
自支撑金属硫化物纳米材料,其制备方法,包括如下步骤:将0-2 mmol硫氰酸钾和0-5 mmol氯化铁溶解于10 ml乙醇中得到预处理液,将商业镍钼基底(NM)(昆山鼎盛化学材料有限公司, Ni:Mo = 17:3)浸泡于所得预处理液中(2 min),取出浸泡的商用镍钼基底,明火点燃,待火焰自然熄灭,样品自然冷后,去离子水冲洗,滤纸抹去附着的液体,室温风干得到样品(样品标记为Fex/NM-S1y;x为氯化铁摩尔数,y为硫氰酸钾摩尔数)。最佳合成条件下(即2 mmol硫氰酸钾,5 mmol氯化铁和10 ml乙醇)的样品标记为Fe0.5M/NM-S10.2M。A self-supporting metal sulfide nanomaterial, and a preparation method thereof, comprising the following steps: dissolving 0-2 mmol potassium thiocyanate and 0-5 mmol ferric chloride in 10 ml ethanol to obtain a pretreatment solution, soaking a commercial nickel molybdenum substrate (NM) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo = 17:3) in the obtained pretreatment solution (2 min), taking out the soaked commercial nickel molybdenum substrate, igniting it with an open flame, waiting for the flame to extinguish naturally, and the sample to cool naturally, then rinsing it with deionized water, wiping off the attached liquid with filter paper, and air-drying it at room temperature to obtain a sample (the sample is marked as Fe x /NM-S1 y ; x is the mole number of ferric chloride, and y is the mole number of potassium thiocyanate). The sample under the optimal synthesis conditions (i.e., 2 mmol potassium thiocyanate, 5 mmol ferric chloride and 10 ml ethanol) is marked as Fe 0.5M /NM-S1 0.2M .
实施例1中各具体参数的配比见表1。The proportions of the specific parameters in Example 1 are shown in Table 1.
表1 各参数配比表Table 1 Parameter ratio table
实施例2Example 2
本实施例与实施例1的区别在于,将0-3 mmol黄酰胺,0-3 mmol氯化铁溶解于10ml乙醇中得到预处理液。并将商用镍钼基底(NM)(昆山鼎盛化学材料有限公司,Ni:Mo=17:3)于所得预处理液中浸泡2 min,再将其置于明火下点燃,待火焰自然熄灭,样品冷却,然后用去离子水冲洗,滤纸抹去附着的液体,室温风干得到样品(样品标记Fex/NM-S2y;其中x为氯化铁摩尔数,y为黄酰胺摩尔数)。最佳合成条件为(即3 mmol黄酰胺,3 mmol氯化铁和10ml乙醇)的样品标记为Fe0.3M/NM-S20.3M。实施例2中各具体参数的配比见表2。The difference between this embodiment and embodiment 1 is that 0-3 mmol yellow amide and 0-3 mmol ferric chloride are dissolved in 10 ml of ethanol to obtain a pretreatment solution. A commercial nickel-molybdenum substrate (NM) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo=17:3) is soaked in the obtained pretreatment solution for 2 min, then ignited under an open flame, and the flame is extinguished naturally. The sample is cooled, then rinsed with deionized water, and the attached liquid is wiped off with filter paper. The sample is air-dried at room temperature to obtain a sample (the sample is marked Fe x /NM-S2 y ; where x is the mole number of ferric chloride and y is the mole number of yellow amide). The sample with the best synthesis conditions (i.e., 3 mmol yellow amide, 3 mmol ferric chloride and 10 ml of ethanol) is marked as Fe 0.3M /NM-S2 0.3M . The ratio of each specific parameter in embodiment 2 is shown in Table 2.
表2 各参数配比表Table 2 Parameter ratio table
实施例3Example 3
本实施例与实施例1的区别在于,先将5 mmol氯化铁,溶解于10 mL乙醇中,得到预处理液。并将商用镍钼基底(NM)(昆山鼎盛化学材料有限公司,Ni:Mo=17:3)浸渍于所得预处理样中,明火点燃,待火焰自然熄灭后,用去离子水充分冲洗,滤纸抹去附着的液体,室温风干得到Fe0.5M/NM。再将5 g钨酸钠,10 ml乙醇加入坩埚中,将Fe0.5M/NM插入未溶解的钨酸钠盐层中,在明火下点燃乙醇,待火焰自然熄灭,样品冷却,滤纸抹去附着的液体,室温风干得到样品,得到最终样品Fe0.5M/NM-W。实施例3中各具体参数的配比见表3和3.5(表3为第一步处理各参数配比,表3.5为第二步处理个参数配比)。The difference between this embodiment and embodiment 1 is that 5 mmol of ferric chloride is first dissolved in 10 mL of ethanol to obtain a pretreatment solution. A commercial nickel-molybdenum substrate (NM) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo=17:3) is immersed in the obtained pretreatment sample, ignited with an open flame, and after the flame is naturally extinguished, it is fully rinsed with deionized water, and the attached liquid is wiped off with filter paper, and air-dried at room temperature to obtain Fe 0.5M /NM. Then 5 g of sodium tungstate and 10 ml of ethanol are added to the crucible, and Fe 0.5M /NM is inserted into the undissolved sodium tungstate salt layer, and ethanol is ignited under an open flame. After the flame is naturally extinguished, the sample is cooled, and the attached liquid is wiped off with filter paper. The sample is air-dried at room temperature to obtain the final sample Fe 0.5M /NM-W. The ratios of the specific parameters in embodiment 3 are shown in Tables 3 and 3.5 (Table 3 is the ratio of the parameters in the first step, and Table 3.5 is the ratio of the parameters in the second step).
表3 各参数配比表Table 3 Parameter ratio table
表3.5 各参数配比表Table 3.5 Parameter ratio table
实施例4Example 4
本实施例与实施例1的区别在于,将3 mmol硫氰酸钾,5 mmol氯化铁溶解于10 ml乙醇或10 ml甲醇中得到预处理液。并将商用镍钼基底(NM)(昆山鼎盛化学材料有限公司,Ni:Mo=17:3)于所得预处理液中浸泡2 min,再将其置于明火下点燃,待火焰自然熄灭,样品冷却,然后用去离子水冲洗,滤纸抹去附着的液体,室温风干得到样品(以甲醇为溶液处理的样品标记为:Fex/NM-S1y-a;以乙醇为溶液处理的样品标记为Fex/NM-S1y,其中x为氯化铁摩尔数,y为硫氰酸钾摩尔数)。实施例4中各具体参数的配比见表4。The difference between this embodiment and embodiment 1 is that 3 mmol potassium thiocyanate and 5 mmol ferric chloride are dissolved in 10 ml ethanol or 10 ml methanol to obtain a pretreatment solution. A commercial nickel molybdenum substrate (NM) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo=17:3) is soaked in the obtained pretreatment solution for 2 min, then ignited under an open flame, and the flame is extinguished naturally. The sample is cooled and then rinsed with deionized water, and the attached liquid is wiped off with filter paper. The sample is air-dried at room temperature to obtain a sample (the sample treated with methanol as the solution is marked as: Fe x /NM-S1 y -a; the sample treated with ethanol as the solution is marked as Fe x /NM-S1 y , where x is the mole number of ferric chloride and y is the mole number of potassium thiocyanate). The ratio of each specific parameter in embodiment 4 is shown in Table 4.
表4 各参数配比表Table 4 Parameter ratio table
实施例5Example 5
本实施例与实施例1的区别在于,将2 mmol硫氰酸钾,5 mmol氯化铁或5 mmol硫酸铁溶解于10 ml乙醇中得到预处理液。并将商用镍钼基底(NM)(昆山鼎盛化学材料有限公司,Ni:Mo=17:3)于所得预处理液中浸泡2 min,再将其置于明火下点燃,待火焰自然熄灭,样品冷却,然后用去离子水冲洗,滤纸抹去附着的液体,室温风干得到样品(以硫酸铁为铁盐处理的样品标价为:Fe1x/NM-S1y;以氯化铁为铁盐处理的样品标记为Fex/NM-S1y,其中x为铁源摩尔数,y为硫氰酸钾摩尔数)。实施例5中各具体参数的配比见表5。The difference between this embodiment and embodiment 1 is that 2 mmol potassium thiocyanate, 5 mmol ferric chloride or 5 mmol ferric sulfate are dissolved in 10 ml ethanol to obtain a pretreatment solution. A commercial nickel molybdenum substrate (NM) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo=17:3) is soaked in the obtained pretreatment solution for 2 min, then ignited under an open flame, and the flame is extinguished naturally. The sample is cooled and then rinsed with deionized water, and the attached liquid is wiped off with filter paper. The sample is air-dried at room temperature to obtain a sample (the sample treated with ferric sulfate as the iron salt is marked as: Fe1 x /NM-S1 y ; the sample treated with ferric chloride as the iron salt is marked as Fe x /NM-S1 y , where x is the molar number of the iron source and y is the molar number of potassium thiocyanate). The ratio of each specific parameter in embodiment 5 is shown in Table 5.
表5 各参数配比表Table 5 Parameter ratio table
实施例6Example 6
实施例6与实施例1和2的区别在于,将0-4 mmol硫氰酸钾、0-5 mmol氯化铁溶解于10 mL乙醇中,得到预处理液。并将商业镍泡沫(NF)(苏州正泰荣科研新材料)浸渍于所得预处理液(2 min),明火点燃,待火焰自然熄灭后,用去离子水充分冲洗,滤纸抹去附着的液体,室温风干得到样品(样品标记Fex/NF-S1y;x为氯化铁摩尔数,y为硫氰酸钾摩尔数)。最佳合成条件为(2 mmol硫氰酸钾,5 mmol氯化铁和10 ml乙醇)的样品标记为Fe0.5M/NF-S10.2M。实施例6中各具体参数的配比见表6。The difference between Example 6 and Examples 1 and 2 is that 0-4 mmol potassium thiocyanate and 0-5 mmol ferric chloride are dissolved in 10 mL ethanol to obtain a pretreatment solution. Commercial nickel foam (NF) (Suzhou Zhengtai Rong Scientific Research New Materials) is immersed in the obtained pretreatment solution (2 min), ignited with an open flame, and after the flame is naturally extinguished, it is fully rinsed with deionized water, and the attached liquid is wiped off with filter paper. The sample is air-dried at room temperature to obtain a sample (the sample is marked Fe x /NF-S1 y ; x is the mole number of ferric chloride, and y is the mole number of potassium thiocyanate). The sample with the best synthesis conditions (2 mmol potassium thiocyanate, 5 mmol ferric chloride and 10 ml ethanol) is marked as Fe 0.5M /NF-S1 0.2M . The ratio of each specific parameter in Example 6 is shown in Table 6.
表6 各参数配比表Table 6 Parameter ratio table
试验例Test example
1. CV、LSV和EIS测试1. CV, LSV and EIS tests
以实施例1中的金属硫化物(Fex/NM-S1y)催化材料为例,进行性能测试。Taking the metal sulfide (Fe x /NM-S1 y ) catalytic material in Example 1 as an example, a performance test was conducted.
测试过程为:在1M KOH电解液(蒸馏水配制)中,采用三电极体系进行性能测试,金属硫化物电催化材料作为工作电极,饱和Hg/HgO电极作为参比电极,铂片作为对电极,室温下,采用武汉科斯特 Corrtest Studio 6 电化学工作站对电催化材料进行析氧反应(OER)性能测试。The test process is as follows: In a 1M KOH electrolyte (prepared with distilled water), a three-electrode system is used for performance testing, with the metal sulfide electrocatalytic material as the working electrode, the saturated Hg/HgO electrode as the reference electrode, and the platinum sheet as the counter electrode. At room temperature, the Wuhan Corrtest Studio 6 electrochemical workstation is used to test the oxygen evolution reaction (OER) performance of the electrocatalytic material.
测试结果见表7和图1所示,其中,为了更直观的分辨各LSV曲线我们放大了图1黑色虚线方框区域标记为图2。结果表明:本技术利用溶剂燃烧法成功制备了金属硫化物电催化剂,并且其OER性能得到了显著提高。最佳合成条件为2 mmol硫氰酸钾,5 mmol氯化铁,10ml乙醇,以商用镍钼基底为自支撑材料,处理液中浸泡2 min,做明火点燃处理。The test results are shown in Table 7 and Figure 1. In order to more intuitively distinguish the LSV curves, we enlarged the black dashed box area in Figure 1 and marked it as Figure 2. The results show that this technology successfully prepared metal sulfide electrocatalysts using the solvent combustion method, and its OER performance was significantly improved. The optimal synthesis conditions were 2 mmol potassium thiocyanate, 5 mmol ferric chloride, 10 ml ethanol, and a commercial nickel-molybdenum substrate as the self-supporting material. It was immersed in the treatment solution for 2 min and ignited with an open flame.
表7 析氧过电势测试结果Table 7 Oxygen evolution overpotential test results
以实施例1中的金属硫化物Fex/NM-S1y催化材料(1-1),金属氧化物Fe/NM催化材料(1-2)和商业镍钼基底NM(1-3)(昆山鼎盛化学材料有限公司, Ni:Mo = 17:3)进行性能测试。Performance tests were conducted using the metal sulfide Fe x /NM-S1 y catalytic material (1-1) in Example 1, the metal oxide Fe/NM catalytic material (1-2) and a commercial nickel-molybdenum substrate NM (1-3) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo = 17:3).
测试过程同前述,进行CV、LSV、EIS和i-t测试。测试结果见图3-图5。The test process is the same as above, and CV, LSV, EIS and i-t tests are performed. The test results are shown in Figures 3 to 5.
图3为Fex/NM-S1y的LSV极化曲线。从图中可以得出Fe0.5M/NM-S10.2M具有优异的OER性能,在低电流密度下Fe0.5M/NM-S10.2M起始电位显著低于Fe0.5M/NM和NM催化剂,随着电压增大,Fe0.5M/NM-S10.2M电流密度的增长相对于Fe0.5M/NM和NM更加明显。Figure 3 shows the LSV polarization curve of Fe x /NM-S1 y . It can be concluded from the figure that Fe 0.5M /NM-S1 0.2M has excellent OER performance. At low current density, the starting potential of Fe 0.5M /NM-S1 0.2M is significantly lower than that of Fe 0.5M /NM and NM catalysts. As the voltage increases, the increase in current density of Fe 0.5M /NM-S1 0.2M is more obvious than that of Fe 0.5M /NM and NM.
图4为过电位图,从图4可以看出Fe0.5M/NM-S10.2M在10 mA cm-2和50 mA cm-2的电流密度下,其过电位分别为228.43 mV和257.12 mV,优于Fe0.5M/NM(279.9 mV和318.22 mV)和NM(423.43 mV 和 533.12 mV)。Fe0.5M/NM-S10.2M在100 mA cm-2电流密度下过电位仅为276.05 mV,相对于NM基底(555.7 mV)性能提升了一倍。Figure 4 is an overpotential diagram. It can be seen from Figure 4 that the overpotential of Fe 0.5M /NM-S1 0.2M at current densities of 10 mA cm -2 and 50 mA cm -2 is 228.43 mV and 257.12 mV, respectively, which is better than Fe 0.5M /NM (279.9 mV and 318.22 mV) and NM (423.43 mV and 533.12 mV). The overpotential of Fe 0.5M /NM-S1 0.2M at a current density of 100 mA cm -2 is only 276.05 mV, which is twice as good as the NM substrate (555.7 mV).
图3和图4进一步表明利用乙醇燃烧法对催化剂进行硫化的可以显著提高催化剂催化活性(在10 mA cm-2, 50 mA cm-2, 100 mA cm-2电流密度下Fe0.5M/NM-S10.2M的过电势比Fe0.5M/NM分别低51.47 mV, 61.1 mV, 65.41 mV)。Figures 3 and 4 further show that sulfidation of the catalyst using the ethanol combustion method can significantly improve the catalytic activity of the catalyst (the overpotential of Fe 0.5M /NM-S1 0.2M is 51.47 mV, 61.1 mV, and 65.41 mV lower than that of Fe 0.5M /NM at current densities of 10 mA cm -2 , 50 mA cm -2 , and 100 mA cm -2 , respectively).
图5为Fe0.5M/NM-S10.2M的恒电位极化曲线图,在0.5 A cm-2工业级电流密度下Fe0.5M/NM-S10.2M至少能稳定运行1400小时。在这样工业级大电流密度能够长期运行反映出该催化材料具有优异的结构稳定性和良好的商业应用前景。Figure 5 shows the constant potential polarization curve of Fe 0.5M /NM-S1 0.2M . At an industrial current density of 0.5 A cm -2 , Fe 0.5M /NM-S1 0.2M can operate stably for at least 1400 hours. The long-term operation at such an industrial high current density reflects that the catalytic material has excellent structural stability and good commercial application prospects.
以实施例2中的金属硫化物Fe0.3M/NM-S20.3M催化材料(2-1),金属氧化物Fe0.3M/NM催化材料(2-2)和商用镍钼基底NM(2-3)(昆山鼎盛化学材料有限公司, Ni:Mo = 17:3)进行性能测试。Performance tests were conducted using the metal sulfide Fe 0.3M /NM-S2 0.3M catalytic material (2-1) in Example 2, the metal oxide Fe 0.3M /NM catalytic material (2-2) and a commercial nickel-molybdenum substrate NM (2-3) (Kunshan Dingsheng Chemical Materials Co., Ltd., Ni:Mo = 17:3).
测试过程同前述,进行CV、LSV、EIS和i-t测试。测试结果见图6-图8。The test process is the same as above, and CV, LSV, EIS and i-t tests are performed. The test results are shown in Figures 6 to 8.
图6为Fe0.3M/NM-S20.3M的LSV极化曲线。从图中可以看出Fe0.3M/NM-S20.3M具有优异的OER性能,同样在低电流密度下Fe0.3M/NM-S20.3M起始电位显著低于Fe0.3M/NM和NM催化剂。Figure 6 shows the LSV polarization curve of Fe 0.3M /NM-S2 0.3M . It can be seen from the figure that Fe 0.3M /NM-S2 0.3M has excellent OER performance. Similarly, at low current density, the onset potential of Fe 0.3M /NM-S2 0.3M is significantly lower than that of Fe 0.3M /NM and NM catalysts.
图7为过电位图,从图7可以看出Fe0.3M/NM-S20.3M在10 mA cm-2和50 mA cm-2的电流密度下,其过电位分别为239.51 mV和267.86 mV,优于商用泡沫镍钼NM(423.43 mV和533.12 mV)和在电流密度为100 mA cm-2下过电位为282.56 mV,同等电流密度下商用镍钼基底(NM)催化剂所需过电位是约为Fe0.3M/NM-S20.3M的两倍。Figure 7 is an overpotential diagram. It can be seen from Figure 7 that the overpotentials of Fe 0.3M /NM-S2 0.3M at current densities of 10 mA cm -2 and 50 mA cm -2 are 239.51 mV and 267.86 mV, respectively, which are better than commercial nickel molybdenum foam NM (423.43 mV and 533.12 mV) and 282.56 mV at a current density of 100 mA cm -2 . At the same current density, the overpotential required for the commercial nickel molybdenum substrate (NM) catalyst is about twice that of Fe 0.3M /NM-S2 0.3M .
图8为Fe0.3M/NM-S20.3M的恒电位极化曲线图,在1 A cm-2的超大工业级电流密度下Fe0.3M/NM-S20.3M至少能稳定运行1100小时。Figure 8 is a constant potential polarization curve of Fe 0.3M /NM-S2 0.3M . At an ultra-large industrial-level current density of 1 A cm -2 , Fe 0.3M /NM-S2 0.3M can operate stably for at least 1100 hours.
图6-图8进一步表明乙醇燃烧法可以将不同的硫化物(黄酰胺)掺杂到镍钼材料中,并且得到性能稳定,催化活性高的OER催化材料。Figures 6-8 further demonstrate that the ethanol combustion method can dope different sulfides (xanthocyanamides) into nickel-molybdenum materials and obtain OER catalytic materials with stable performance and high catalytic activity.
以实施例3中的金属硫化物Fe0.5M/NM-W催化材料(3-1),金属氧化物Fe0.5M/NM催化材料(3-2)和商用镍钼泡沫NM(3-3)进行性能测试。Performance tests were conducted using the metal sulfide Fe 0.5M /NM-W catalytic material (3-1) in Example 3, the metal oxide Fe 0.5M /NM catalytic material (3-2) and commercial nickel-molybdenum foam NM (3-3).
测试过程同前述,进行CV、LSV和EIS测试。测试结果见图9-图10。The test process is the same as above, and CV, LSV and EIS tests are performed. The test results are shown in Figures 9 and 10.
图9为Fe0.5M/NM-W,Fe0.5M/NM和商用镍钼泡沫NM的LSV极化曲线。从图中可以看出Fe0.5M/NM-W具有优异的OER性能,在相同电流密度下Fe0.5M/NM-W拥有更小的过电势。这意味着,乙醇燃烧法可以顺利的将钨掺入商用镍钼基底,并且具有更优异的催化活性。同时也表明乙醇燃烧法可广泛拓展到其它杂原子掺杂。Figure 9 shows the LSV polarization curves of Fe 0.5M /NM-W, Fe 0.5M /NM and commercial nickel-molybdenum foam NM. It can be seen from the figure that Fe 0.5M /NM-W has excellent OER performance, and Fe 0.5M /NM-W has a smaller overpotential at the same current density. This means that the ethanol combustion method can smoothly incorporate tungsten into commercial nickel-molybdenum substrates and has better catalytic activity. It also shows that the ethanol combustion method can be widely extended to other heteroatom doping.
图10为过电位图,从图10可以看出Fe0.5M/NM-W在10 mA cm-2和50 mA cm-2的电流密度下,其过电位分别为244.04 mV和271.02 mV,优于未加入钨的对催化材料(Fe0.5M/NM)(279.90 mV和318.22 mV)。Figure 10 is an overpotential diagram. It can be seen from Figure 10 that the overpotentials of Fe 0.5M /NM-W at current densities of 10 mA cm -2 and 50 mA cm -2 are 244.04 mV and 271.02 mV, respectively, which are better than the catalytic material (Fe 0.5M /NM) without tungsten added (279.90 mV and 318.22 mV).
图9-图10进一步表明更重要的是目前利用乙醇燃烧法可以将其他金属元素掺入到商用镍钼基底中,且得到较高催化活性的OER催化材料。Figures 9 and 10 further show that more importantly, other metal elements can be incorporated into the commercial nickel-molybdenum substrate using the ethanol combustion method to obtain OER catalytic materials with higher catalytic activity.
以实施例4中以乙醇为燃料制备的金属硫化物Fe0.5M/NM-S10.2M催化材料(4-1),和低级醇(甲醇)为燃料制备的金属硫化物Fe0.5M/NM-S10.2M-a催化材料(4-2)进行性能测试。The performance tests were conducted on the metal sulfide Fe 0.5M /NM-S1 0.2M catalytic material (4-1) prepared using ethanol as fuel in Example 4 and the metal sulfide Fe 0.5M /NM-S1 0.2M -a catalytic material (4-2) prepared using lower alcohol (methanol) as fuel.
测试过程同前述,进行CV、LSV、EIS和i-t测试。测试结果见图11-图12。The test process is the same as above, and CV, LSV, EIS and i-t tests are performed. The test results are shown in Figures 11 and 12.
图11为Fe0.5M/NM-S10.2M,Fe0.5M/NM-S10.2M-a的LSV极化曲线。从图中可以看出Fe0.5M/NM-S10.2M具有优异的OER性能,同样在低电流密度下Fe0.5M/NM-S10.2M-a起始电位显著高于Fe0.5M/NM-S10.2M催化剂,由于甲醇燃烧热值低于乙醇,因此是用甲醇作为燃料处理的样品OER性能低。Figure 11 shows the LSV polarization curves of Fe 0.5M /NM-S1 0.2M and Fe 0.5M /NM-S1 0.2M -a. It can be seen from the figure that Fe 0.5M /NM-S1 0.2M has excellent OER performance. Similarly, at low current density, the starting potential of Fe 0.5M /NM-S1 0.2M -a is significantly higher than that of Fe 0.5M /NM-S1 0.2M catalyst. Since the combustion calorific value of methanol is lower than that of ethanol, the OER performance of the sample treated with methanol as fuel is low.
图12为过电位图,从图12可以看出Fe0.5M/NM-S10.2M-a在10 mA cm-2和50 mA cm-2的电流密度下,其过电位分别为261.11 mV和296.29 mV,明显高于Fe0.5M/NM-S10.2M(228.43mV@10 mA cm-2和257.12 mV@50 mA cm-2)。电流密度为100 mA cm-2时Fe0.5M/NM-S10.2M-a过电位为315.62 mV,其所需过电位是约为Fe0.5M/NM-S10.2M的1.15倍。Figure 12 is an overpotential diagram. It can be seen from Figure 12 that the overpotential of Fe 0.5M /NM-S1 0.2M -a at current densities of 10 mA cm -2 and 50 mA cm -2 is 261.11 mV and 296.29 mV, respectively, which is significantly higher than that of Fe 0.5M /NM-S1 0.2M (228.43 mV@10 mA cm -2 and 257.12 mV@50 mA cm -2 ). When the current density is 100 mA cm -2 , the overpotential of Fe 0.5M /NM-S1 0.2M -a is 315.62 mV, and the overpotential required is about 1.15 times that of Fe 0.5M /NM-S1 0.2M .
以实施例5中以氯化铁为铁源的金属硫化物Fex/NM-S1y(5-1)催化材料,和以硫酸铁为铁源的金属硫化物Fe1x/NM-S1y(5-2)催化材料,进行性能测试。The performance tests were conducted on the metal sulfide Fe x /NM-S1 y (5-1) catalytic material using ferric chloride as the iron source and the metal sulfide Fe1 x /NM-S1 y (5-2) catalytic material using ferric sulfate as the iron source in Example 5.
测试过程同前述,进行CV、LSV、EIS和i-t测试。测试结果见图13-图14。The test process is the same as above, and CV, LSV, EIS and i-t tests are performed. The test results are shown in Figures 13 and 14.
图13为Fex/NM-S1y,Fe1x/NM-S1y的LSV极化曲线。从图中看不出明显的差异。Figure 13 shows the LSV polarization curves of Fe x /NM-S1 y and Fe1 x /NM-S1 y . No obvious difference can be seen from the figure.
图14为Fex/NM-S1y,Fe1x/NM-S1y的过电势图,图14可得Fe10.5M/NM-S10.2M在10 mAcm-2和50 mA cm-2的电流密度下,其过电位分别为239.98 mV和266.86 mV,与Fe0.5M/NM-S10.2M的催化性能相差无几。Figure 14 is the overpotential diagram of Fe x /NM-S1 y and Fe1 x /NM-S1 y . Figure 14 shows that the overpotential of Fe1 0.5M /NM-S1 0.2M at current densities of 10 mA cm -2 and 50 mA cm -2 is 239.98 mV and 266.86 mV, respectively, which is almost the same as the catalytic performance of Fe 0.5M /NM-S1 0.2M .
图13-图14进一步表明更重要的是在乙醇燃烧法中即使利用不同的铁盐处理样品也得到较高催化活性的OER催化材料。13-14 further show that more importantly, in the ethanol combustion method, even when the samples are treated with different iron salts, OER catalytic materials with higher catalytic activity are obtained.
以实施例6中的金属硫化物Fex/NF-S1y催化材料(6-1~6-4),金属氧化物Fe0.5M/NF催化材料(6-5)和商用镍基底NF(6-6)进行性能测试。The performance tests were conducted using the metal sulfide Fe x /NF-S1 y catalytic materials (6-1 to 6-4) in Example 6, the metal oxide Fe 0.5M /NF catalytic material (6-5) and the commercial nickel-based NF (6-6).
测试过程同前述,进行CV、LSV、EIS和i-t测试。测试结果见图15-图17。The test process is the same as above, and CV, LSV, EIS and i-t tests are performed. The test results are shown in Figures 15 to 17.
图15为Fex/NF-S1y的LSV极化曲线。从图中可以看出Fe0.5M/NF-S10.2M具有更优异的OER性能。Figure 15 shows the LSV polarization curve of Fe x /NF-S1 y . It can be seen from the figure that Fe 0.5M /NF-S1 0.2M has better OER performance.
图16为Fex/NF-S1y的过电位图,图16可得Fe0.5M/NF-S10.2M在10 mA cm-2和50 mAcm-2的电流密度下,其过电位分别为244.19 mV和269.66 mV,优于商用泡沫镍NF(400.49 mV和561.31 mV)。Figure 16 is the overpotential diagram of Fe x /NF-S1 y . Figure 16 shows that the overpotential of Fe 0.5M /NF-S1 0.2M at current densities of 10 mA cm -2 and 50 mA cm -2 is 244.19 mV and 269.66 mV, respectively, which is better than commercial nickel foam NF (400.49 mV and 561.31 mV).
图17为Fe0.5M/NF-S10.2M的恒电位极化曲线图,在0.5 A cm-2电流密度下Fe0.5M/NF-S10.2M至少能稳定运行500小时。Figure 17 is a constant potential polarization curve of Fe 0.5M /NF-S1 0.2M . At a current density of 0.5 A cm -2 , Fe 0.5M /NF-S1 0.2M can operate stably for at least 500 hours.
图15-图17表明乙醇燃烧法可以适用于不同的商业金属基底支撑材料中,且得到性能稳定,催化活性高的OER催化材料。Figures 15-17 show that the ethanol combustion method can be applied to different commercial metal substrate support materials to obtain OER catalytic materials with stable performance and high catalytic activity.
综上,图1-17证明快速燃烧法(以乙醇为例)是一种具有广泛适应性的合成方法。本发明充分利用快速乙醇燃烧法成功将不同硫源(硫氰酸钾,黄酰胺)掺入商用金属基底中,且形成稳定的、高催化活性的金属硫化物活性相。除此之外,部分金属盐(如钨酸盐等)也可以利用该方法掺入商用金属基底表面,形成多组分金属氧化物活性相。最后该方法可以适用于多种自支撑金属材料,如实施例6中所提及的商用镍泡沫基底。In summary, Figures 1-17 prove that the rapid combustion method (taking ethanol as an example) is a synthetic method with wide adaptability. The present invention makes full use of the rapid ethanol combustion method to successfully incorporate different sulfur sources (potassium thiocyanate, yellow amide) into commercial metal substrates, and form a stable, highly catalytically active metal sulfide active phase. In addition, some metal salts (such as tungstates, etc.) can also be incorporated into the surface of commercial metal substrates using this method to form a multi-component metal oxide active phase. Finally, this method can be applied to a variety of self-supporting metal materials, such as the commercial nickel foam substrate mentioned in Example 6.
2. 微观结构及化学性质2. Microstructure and chemical properties
以实施例1中的金属硫化物(Fex/NM-S1y)催化材料(1-1~1-3)为例,对其的微观结构和化学性质进行分析,具体结果见图18-20。Taking the metal sulfide (Fe x /NM-S1 y ) catalytic materials (1-1 to 1-3) in Example 1 as an example, the microstructure and chemical properties thereof were analyzed, and the specific results are shown in FIGS. 18-20 .
图18为Fex/NM-S1y的SEM图。原始商用镍钼基底(NM)和催化剂Fe0.5M/NM的蜂窝状骨架上分布着光滑的纳米球(图18 a, b)。硫化后(Fe0.5M/NM-S10.2M),纳米球(直径约为0.51-3.47 μm)表面原本光滑的纳米球被微小的过渡金属硫化物颗粒(直径约为160-280 nm)占领而变得粗糙(图18 c)。Fe0.5M/NM-S10.2M稳定性测试后蜂窝状骨架依然保存完整(图18 d)。Figure 18 is a SEM image of Fe x /NM-S1 y . The honeycomb skeleton of the original commercial nickel-molybdenum substrate (NM) and the catalyst Fe 0.5M /NM is distributed with smooth nanospheres (Figure 18 a, b). After sulfidation (Fe 0.5M /NM-S1 0.2M ), the originally smooth surface of the nanospheres (diameter is about 0.51-3.47 μm) is occupied by tiny transition metal sulfide particles (diameter is about 160-280 nm) and becomes rough (Figure 18 c). The honeycomb skeleton of Fe 0.5M /NM-S1 0.2M is still intact after the stability test (Figure 18 d).
图19为Fe0.5M/NM-S10.2M催化材料的TEM(Transmission Electron Microscope)图谱和SAED(Selected area electron diffraction)图谱。对催化材料微观结构进行观察,通过高分辨率投射电子显微镜分析,在基面上观测到四个不同的晶格间距:0.269 nm(Fe2O3),0.265 nm(Fe2O3),0.312 nm(FeS),0.240 nm(NiO)。SAED图谱(图19 g)观察到三个不同的衍射环,分别对应FeS的(215)晶面,NiO的(012)晶面,Fe2O3(1010)晶面。该信息表明乙醇燃烧法成功将硫源引入催化材料。Figure 19 shows the TEM (Transmission Electron Microscope) and SAED (Selected area electron diffraction) spectra of Fe 0.5M /NM-S1 0.2M catalytic materials. The microstructure of the catalytic material was observed. Through high-resolution transmission electron microscopy analysis, four different lattice spacings were observed on the base plane: 0.269 nm (Fe 2 O 3 ), 0.265 nm (Fe 2 O 3 ), 0.312 nm (FeS), and 0.240 nm (NiO). Three different diffraction rings were observed in the SAED spectrum (Figure 19 g), corresponding to the (215) crystal plane of FeS, the (012) crystal plane of NiO, and the (1010) crystal plane of Fe 2 O 3 . This information shows that the ethanol combustion method successfully introduced the sulfur source into the catalytic material.
图20为Fe0.5M/NM-S10.2M催化材料的元素分布(Elemental Mapping)图谱。由图可知表明Ni、Fe、Mo、S、N元素在材料表面均匀分布,反映出在整个NM中形成了一种新的Fe/NiMo-S复合物。Figure 20 is an elemental mapping map of the Fe 0.5M /NM-S1 0.2M catalytic material. It can be seen from the figure that Ni, Fe, Mo, S, and N elements are evenly distributed on the surface of the material, reflecting that a new Fe/NiMo-S complex is formed in the entire NM.
上述分析表明:本发明提供的快速燃烧法不仅能快速将各种商业金属泡沫表面硫化,还能将部分金属盐掺到商业金属泡沫中,形成独特的纳米球阵列结构,并表现出优异且稳定的电化学析氧性能。The above analysis shows that the rapid combustion method provided by the present invention can not only quickly sulfurize the surfaces of various commercial metal foams, but also incorporate some metal salts into the commercial metal foams to form a unique nanosphere array structure and exhibit excellent and stable electrochemical oxygen evolution performance.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410725926.0A CN118292046B (en) | 2024-06-06 | 2024-06-06 | A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410725926.0A CN118292046B (en) | 2024-06-06 | 2024-06-06 | A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118292046A true CN118292046A (en) | 2024-07-05 |
CN118292046B CN118292046B (en) | 2024-08-13 |
Family
ID=91688398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410725926.0A Active CN118292046B (en) | 2024-06-06 | 2024-06-06 | A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118292046B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126560A (en) * | 1986-11-18 | 1988-05-30 | Babcock Hitachi Kk | Catalyst for catalytic reduction of nox |
CA1337069C (en) * | 1989-09-29 | 1995-09-19 | Harry E. Gunning | Process for removal of sulphur compounds and nitrogen peroxide from fluid streams |
JP2004230281A (en) * | 2003-01-30 | 2004-08-19 | Mitsui Eng & Shipbuild Co Ltd | Production method for catalyst, catalyst, and exhaust gas treating method |
CN109243851A (en) * | 2018-11-12 | 2019-01-18 | 江苏索普(集团)有限公司 | A kind of preparation method of ferronickel sulfide/nickel foam nanometer combined electrode material |
CN113604838A (en) * | 2021-08-17 | 2021-11-05 | 江苏大学 | Preparation method and application of nickel-cobalt bimetallic selenide heterostructure electrocatalyst |
CN114855205A (en) * | 2022-04-11 | 2022-08-05 | 浙江理工大学 | Preparation method of ternary metal sulfide three-dimensional electrode with multilevel structure |
CN115029709A (en) * | 2022-05-23 | 2022-09-09 | 常州大学 | Cobalt-nickel metal sulfide bifunctional electrocatalyst and preparation method and application thereof |
CN115376835A (en) * | 2022-09-20 | 2022-11-22 | 青岛科技大学 | Reticular copper-iron sulfide nano-flake electrode material and preparation method and application thereof |
CN116445973A (en) * | 2023-06-13 | 2023-07-18 | 四川省产品质量监督检验检测院 | Nano self-supporting nickel-iron material and its application in hydrogen production by electrolysis |
US20230250538A1 (en) * | 2020-04-15 | 2023-08-10 | Fundació Institut Català D'investigació Química | Method of preparation of electrode for electrocatalysis |
CN118179537A (en) * | 2022-12-13 | 2024-06-14 | 中国科学院大连化学物理研究所 | A low-temperature acetylene selective hydrogenation catalyst and its preparation method and application |
-
2024
- 2024-06-06 CN CN202410725926.0A patent/CN118292046B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126560A (en) * | 1986-11-18 | 1988-05-30 | Babcock Hitachi Kk | Catalyst for catalytic reduction of nox |
CA1337069C (en) * | 1989-09-29 | 1995-09-19 | Harry E. Gunning | Process for removal of sulphur compounds and nitrogen peroxide from fluid streams |
JP2004230281A (en) * | 2003-01-30 | 2004-08-19 | Mitsui Eng & Shipbuild Co Ltd | Production method for catalyst, catalyst, and exhaust gas treating method |
CN109243851A (en) * | 2018-11-12 | 2019-01-18 | 江苏索普(集团)有限公司 | A kind of preparation method of ferronickel sulfide/nickel foam nanometer combined electrode material |
US20230250538A1 (en) * | 2020-04-15 | 2023-08-10 | Fundació Institut Català D'investigació Química | Method of preparation of electrode for electrocatalysis |
CN113604838A (en) * | 2021-08-17 | 2021-11-05 | 江苏大学 | Preparation method and application of nickel-cobalt bimetallic selenide heterostructure electrocatalyst |
CN114855205A (en) * | 2022-04-11 | 2022-08-05 | 浙江理工大学 | Preparation method of ternary metal sulfide three-dimensional electrode with multilevel structure |
CN115029709A (en) * | 2022-05-23 | 2022-09-09 | 常州大学 | Cobalt-nickel metal sulfide bifunctional electrocatalyst and preparation method and application thereof |
CN115376835A (en) * | 2022-09-20 | 2022-11-22 | 青岛科技大学 | Reticular copper-iron sulfide nano-flake electrode material and preparation method and application thereof |
CN118179537A (en) * | 2022-12-13 | 2024-06-14 | 中国科学院大连化学物理研究所 | A low-temperature acetylene selective hydrogenation catalyst and its preparation method and application |
CN116445973A (en) * | 2023-06-13 | 2023-07-18 | 四川省产品质量监督检验检测院 | Nano self-supporting nickel-iron material and its application in hydrogen production by electrolysis |
Non-Patent Citations (4)
Title |
---|
AARON W. PETERSDENG: "Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal−Organic Framework", 《ACS APPL. MATER. INTERFACES》, vol. 8, 3 August 2016 (2016-08-03), pages 20675 * |
JUN SHEN等: "Spherical Co3S4grown directly on Ni–Fe sulfides as a porous nanoplate array on FeNi3foam: a highly efficient and durable bifunctional catalyst for overall water splitting", 《J. MATER. CHEM. A》, vol. 10, 31 December 2022 (2022-12-31), pages 5442 - 5451 * |
吕宪伟;胡忠攀;赵挥;刘玉萍;袁忠勇;: "自支撑型过渡金属磷化物电催化析氢反应研究", 化学进展, no. 07, 24 July 2018 (2018-07-24), pages 947 - 957 * |
孙琪等: "溶液燃烧法制备Fe2O3/C及其催化苯甲醇制苯甲醛", 《辽宁师范大学学报(自然科学版)》, vol. 43, no. 1, 20 March 2020 (2020-03-20), pages 56 - 62 * |
Also Published As
Publication number | Publication date |
---|---|
CN118292046B (en) | 2024-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107346826B (en) | Preparation method of monatomic iron dispersed oxygen reduction electrocatalyst | |
CN110838588B (en) | A kind of rechargeable zinc-air battery bifunctional catalyst and its preparation method and application | |
CN113512738B (en) | Ternary iron-nickel-molybdenum-based composite material water electrolysis catalyst, and preparation method and application thereof | |
CN109967100A (en) | A kind of metal-doped CoP3, its preparation method and application | |
CN104624190A (en) | Cobalt-based transition metal oxygen reduction catalyst, preparation method and application thereof | |
CN106571474A (en) | Preparation method for platinum-nickel alloy nanoclusters and fuel cell using the same | |
CN114744224B (en) | Preparation and application of nitrogen-doped carbon nanotube-loaded nickel-cobalt composite nanowire | |
CN111653792A (en) | A method for the simultaneous preparation of hierarchically porous cobalt and nitrogen co-doped nanorods supported platinum-cobalt alloy nano-electrocatalysts for oxygen reduction | |
CN113186558B (en) | Sponge nickel/octa-nickel sulfide composite material and preparation method and application thereof | |
CN118292046B (en) | A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis | |
CN116445973B (en) | Nano self-supporting ferronickel material and application thereof in electrolytic hydrogen production | |
CN117187867A (en) | Heterostructure material, preparation method and application thereof | |
CN116532640A (en) | Ultra-small intermetallic compounds confined in the mesoporous carbon gap and preparation method | |
CN116314871A (en) | Preparation method of nickel cobalt selenide loaded platinum catalyst | |
CN114574898A (en) | Mn doped Co2P core-shell nanosphere and preparation method and application thereof | |
CN115770621A (en) | Preparation method and application of bimetallic MOF (metal organic framework) anchored Pt nanocluster catalyst | |
CN108842165A (en) | Solvent-thermal method prepares the NiFe (CN) of sulfur doping5NO electrolysis water oxygen-separating catalyst and its application | |
CN114717572A (en) | Nitrogen-doped carbon-based cobalt-iron bimetallic phosphating nanoparticles, preparation method and application thereof | |
CN110783580A (en) | A kind of preparation method of alkaline system fuel cell anode catalyst | |
CN115110113B (en) | Rod-shaped Co 2 C-MoN composite material and preparation method and application thereof | |
CN115928130B (en) | A method for preparing selenium and iron co-doped nickel disulfide three-dimensional material | |
CN115044933B (en) | Ni (nickel) 12 P 5 Or Ni 2 Preparation method and application of P nano array | |
CN113186549B (en) | A kind of MnCoFe ternary catalyst for electrolysis of water and oxygen evolution, preparation method and application thereof | |
CN117867570A (en) | Carbon-loaded WC 1-x Preparation method and application of nano material | |
CN108598494B (en) | A fuel cell anode and fuel cell using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |