CN108598494B - A fuel cell anode and fuel cell using the same - Google Patents
A fuel cell anode and fuel cell using the same Download PDFInfo
- Publication number
- CN108598494B CN108598494B CN201810645243.9A CN201810645243A CN108598494B CN 108598494 B CN108598494 B CN 108598494B CN 201810645243 A CN201810645243 A CN 201810645243A CN 108598494 B CN108598494 B CN 108598494B
- Authority
- CN
- China
- Prior art keywords
- borohydride
- solution
- catalyst
- fuel cell
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种燃料电池阳极及使用该阳极的燃料电池,包括导线、泡沫镍极板以及催化剂层,催化剂层涂覆在泡沫镍极板的一侧,导线与泡沫镍极板连接,催化剂层所使用的催化剂的结构为蜂窝状结构。本发明解决了现有的燃料电池用电极成本高、催化性能低的技术问题。本发明的电极使用的催化剂结构为立体片状蜂窝结构、类石墨烯型,与文献报道的球形、核壳结构或中空结构相比,该结构能够提供更大的反应物接触面积,促进反应物的扩散,提高传质速率,使催化剂催化性能提高。
The invention relates to a fuel cell anode and a fuel cell using the anode, comprising a lead wire, a foamed nickel electrode plate and a catalyst layer, the catalyst layer is coated on one side of the foamed nickel electrode plate, the lead wire is connected with the foamed nickel electrode plate, and the catalyst layer The structure of the catalyst used is a honeycomb structure. The invention solves the technical problems of high cost and low catalytic performance of the existing electrodes for fuel cells. The catalyst structure used in the electrode of the present invention is a three-dimensional sheet honeycomb structure and a graphene-like structure. Compared with the spherical, core-shell structure or hollow structure reported in the literature, this structure can provide a larger contact area for the reactants and promote the reactants. The diffusion of the catalyst increases the mass transfer rate and improves the catalytic performance of the catalyst.
Description
技术领域technical field
本发明属于燃料电池技术领域,具体涉及一种燃料电池阳极及使用该阳极的燃料电池。The invention belongs to the technical field of fuel cells, and in particular relates to a fuel cell anode and a fuel cell using the anode.
背景技术Background technique
近年来,燃料电池已成为世界各国竞相开发的高科技项目。它是将反应物的化学能直接转化为电能的一种高效、清洁的电化学发电装置。燃料可采用氢、醇、碳氢化合物、硼氢化物等,氧化剂一般采用氧气或空气。在低温燃料电池(如质子交换膜燃料电池(PEMFC)、甲醇燃料电池(DMFC)、硼氢化物燃料电池(DBFC)商业化的道路上,燃料电池的持久性和成本是两个主要挑战,其中降低电极组件中的贵金属含量能够直接提高电池的成本效益,但也会影响电池的性能和长期稳定性。目前,降低电极组件的成本主要通过降低电极催化剂成本来实现,降低电极催化剂成本的方式主要有以下几种:(1)制备铂合金,以降低铂含量。中国专利CN 102820475 A介绍了一种铂合金催化剂PtXNb,其中X是镍、钴、铬、铜、钛或锰,其特征在于铂的原子百分比为46-75at%,该催化剂用作燃料电池,特别是磷酸燃料电池阴极具有很好的氧还原催化活性。但该方法制备路线复杂,工艺较为苛刻,如:需要在高温1000-1200℃和惰性气氛中退火处理。CN101083325 A介绍了一种钯铂合金电催化剂的制备方法,该方法通过水相溶合还原和热处理方法制备纳米钯或钯铂催化剂,其制备方法简单,但合成的催化剂活性成分仍然是贵金属铂或钯,没有从根本上解决成本问题。中国专利CN101667644 A介绍了一种高性能的低铂催化剂制备方法,该方法通过简单的置换反应,将少量的Pt或Pt、Ru覆盖在Pd合金表面,再共同负载在碳粉上,使贵金属Pt的用量大幅度减小,并可用于甲醇燃料电池的阴极和阳极,催化性能优良,但仍然使用贵金属Pt,不能从根本上解决成本问题。(2)制备核壳结构铂催化剂,以降低铂的含量,增大铂的利用率和分散性。如:中国专利CN 10526853 A介绍了一种核壳结构铂催化剂,其优势在于提高了核壳结构的制备效率,但缺陷在于制备方法较为复杂,需要水合肼还原并且高温处理。中国专利CN105702971B公开了一种燃料电池用核壳型金@钴-硼催化剂,该催化剂为具有核壳结构的金钴硼合金,其中非晶态钴-硼为壳,晶态金为核。该结构兼具非晶态材料和晶态材料的共同特性,催化性能优越,能有效提高燃料电池的放电性能,大幅度降低了贵金属的用量,使燃料电池成本显著降低,这将有利于促进燃料电池的发展。虽然中国专利CN105702971B制备的催化剂,大幅度降低了贵金属的用量,使燃料电池成本显著降低;但是由于核壳结构,反应物接触面积小,导致电极催化性能不高。In recent years, fuel cells have become a high-tech project developed by countries all over the world. It is an efficient and clean electrochemical power generation device that directly converts the chemical energy of reactants into electrical energy. The fuel can use hydrogen, alcohol, hydrocarbon, borohydride, etc., and the oxidant generally uses oxygen or air. On the road to commercialization of low temperature fuel cells such as proton exchange membrane fuel cells (PEMFC), methanol fuel cells (DMFC), and borohydride fuel cells (DBFC), the durability and cost of fuel cells are two major challenges, among which Reducing the noble metal content in the electrode assembly can directly improve the cost-effectiveness of the battery, but it also affects the performance and long-term stability of the battery. At present, reducing the cost of electrode assemblies is mainly achieved by reducing the cost of electrode catalysts. The main way to reduce the cost of electrode catalysts is There are the following types: (1) platinum alloy is prepared to reduce platinum content. Chinese patent CN 102820475 A introduces a platinum alloy catalyst PtXNb, wherein X is nickel, cobalt, chromium, copper, titanium or manganese, and is characterized in that platinum The atomic percentage of the catalyst is 46-75at%, and the catalyst is used as a fuel cell, especially a phosphoric acid fuel cell cathode with good oxygen reduction catalytic activity. However, the preparation route of this method is complicated and the process is relatively harsh, such as: it needs to be at a high temperature of 1000-1200 ℃ and annealing treatment in an inert atmosphere. CN101083325 A introduces a preparation method of a palladium-platinum alloy electrocatalyst, the method prepares nano-palladium or palladium-platinum catalyst by water phase fusion reduction and heat treatment method, the preparation method is simple, but synthetic The active component of the catalyst is still the precious metal platinum or palladium, which does not fundamentally solve the cost problem. Chinese patent CN101667644 A introduces a high-performance low-platinum catalyst preparation method, which, through a simple replacement reaction, converts a small amount of Pt or Pt, Ru is covered on the surface of the Pd alloy, and then jointly supported on the carbon powder, which greatly reduces the amount of precious metal Pt, and can be used in the cathode and anode of methanol fuel cells. Solve the cost problem. (2) Prepare a core-shell structure platinum catalyst to reduce the content of platinum and increase the utilization rate and dispersibility of platinum. For example: Chinese patent CN 10526853 A introduces a core-shell structure platinum catalyst, the advantage of which is that The preparation efficiency of the core-shell structure is improved, but the defect is that the preparation method is relatively complicated, and requires hydrazine hydrate reduction and high-temperature treatment. Chinese patent CN105702971B discloses a core-shell type gold@cobalt-boron catalyst for fuel cells. A gold-cobalt-boron alloy with a shell structure, wherein amorphous cobalt-boron is the shell and crystalline gold is the core. The structure has the common characteristics of both amorphous and crystalline materials, and has excellent catalytic performance, which can effectively improve the efficiency of fuel cells. The discharge performance greatly reduces the amount of precious metals, which significantly reduces the cost of fuel cells, which will help promote the development of fuel cells. Although the catalyst prepared by Chinese patent CN105702971B greatly reduces the amount of precious metals, the cost of fuel cells is significantly reduced. However, due to the core-shell structure, the contact area of the reactants is small, resulting in low catalytic performance of the electrode.
发明内容SUMMARY OF THE INVENTION
为了解决现有的燃料电池用电极成本高、催化性能低的技术问题,本发明提供一种燃料电池及燃料电池用电极。In order to solve the technical problems of high cost and low catalytic performance of the existing electrodes for fuel cells, the present invention provides a fuel cell and an electrode for fuel cells.
本发明采用的技术方案是:The technical scheme adopted in the present invention is:
一种燃料电池阳极,包括导线、泡沫镍极板以及催化剂层,所述催化剂层涂覆在泡沫镍极板的一侧,所述导线与泡沫镍极板连接,其特征在于:所述催化剂层所使用的催化剂的结构为蜂窝状结构。A fuel cell anode, comprising a wire, a foamed nickel plate and a catalyst layer, the catalyst layer is coated on one side of the foamed nickel plate, the wire is connected to the foamed nickel plate, and is characterized in that: the catalyst layer The structure of the catalyst used is a honeycomb structure.
进一步的,催化剂包括金属Ni元素,Co元素及B元素,Ni与Co的摩尔比为(0.01-1):1,Ni与B的摩尔比为1:(2-5),Co与B的摩尔比为1:(2-5)。Further, the catalyst includes metal Ni element, Co element and B element, the molar ratio of Ni to Co is (0.01-1): 1, the molar ratio of Ni to B is 1: (2-5), and the molar ratio of Co to B is 1: (2-5). The ratio is 1:(2-5).
进一步的,催化剂包括金属Ni元素,Co元素及B元素,Ni与Co的摩尔比为0.01:1,Ni与B的摩尔比为1:3,Co与B的摩尔比为1:3。Further, the catalyst includes metal Ni, Co and B, the molar ratio of Ni to Co is 0.01:1, the molar ratio of Ni to B is 1:3, and the molar ratio of Co to B is 1:3.
进一步的,催化剂采用以下方法制备:Further, the catalyst is prepared by the following method:
步骤一、配置硼氢化物-氢氧化物混合溶液:
称取硼氢化物后,将硼氢化物溶于去离子水中配制成硼氢化物溶液,然后向所述硼氢化物溶液中加入氢氧化物至溶液pH值为12-13,得到硼氢化物-氢氧化物混合溶液;After weighing the borohydride, dissolve the borohydride in deionized water to prepare a borohydride solution, then add hydroxide to the borohydride solution until the pH of the solution is 12-13 to obtain a borohydride- Hydroxide mixed solution;
所述硼氢化物为硼氢化钾,氢氧化物为氢氧化钾;The borohydride is potassium borohydride, and the hydroxide is potassium hydroxide;
步骤二、配置钴盐溶液:按照钴元素与硼元素的摩尔比为1:(2-5)的标准称取钴盐,将钴盐溶于去离子水中配置成钴盐溶液;
步骤三、制备Co-B溶液:
在温度为0℃的搅拌条件下,将步骤一中所述的硼氢化物-氢氧化物混合溶液以缓慢的速度加入到步骤二中所述金属钴盐溶液中,待反应无气体产生后继续搅拌,直至反应完全,得到Co-B溶液;Under stirring conditions at a temperature of 0 °C, the borohydride-hydroxide mixed solution described in
步骤四、配置镍盐溶液:Step 4. Configure nickel salt solution:
称取镍盐,并将镍盐溶于去离子水中配置成镍盐溶液;Weigh the nickel salt, and dissolve the nickel salt in deionized water to prepare a nickel salt solution;
步骤五、再次配置硼氢化物-氢氧化物:Step 5. Configure borohydride-hydroxide again:
按照镍元素与硼元素摩尔比为1:(2-5)的标准称取硼氢化物,将硼氢化物溶于去离子水中配制成硼氢化物溶液,然后向硼氢化物溶液中加入氢氧化物至溶液pH值为12-13,得到硼氢化物-氢氧化物混合溶液;Weigh the borohydride according to the standard that the molar ratio of nickel and boron is 1:(2-5), dissolve the borohydride in deionized water to prepare a borohydride solution, and then add hydroxide to the borohydride solution The pH value of the solution is 12-13 to obtain a borohydride-hydroxide mixed solution;
步骤六、制备混合溶液:Step 6. Prepare mixed solution:
向步骤三所制备的Co-B溶液中同时滴加步骤四配置的镍盐溶液和步骤五配置的硼氢化物-氢氧化物溶液,反应温度保持0℃,待没有气体产生后继续搅拌,直至反应完全,得到Ni-Co-B混合溶液;To the Co-B solution prepared in
步骤七、制备Ni-Co-B催化剂:Step 7. Preparation of Ni-Co-B catalyst:
将步骤六制备的混合溶液进行抽滤,然后洗涤至中性,将得到的产物在60℃-120℃的真空干燥箱中干燥,得到蜂窝状Ni-Co-B催化剂。The mixed solution prepared in step 6 is subjected to suction filtration, and then washed to neutrality, and the obtained product is dried in a vacuum drying oven at 60° C.-120° C. to obtain a honeycomb Ni-Co-B catalyst.
进一步的,步骤一中所述的硼氢化物为硼氢化钾,配置的硼氢化钾溶液浓度为0.2mol/L;步骤三:将步骤一中所述的硼氢化物-氢氧化物混合溶液以1mL/min~2mL/min的速度加入到步骤二中所述金属钴盐溶液中。Further, the borohydride described in
进一步的,步骤二中所述的钴盐为氯化钴,钴元素与硼氢化钾的摩尔比为1:3;钴盐溶液为0.1mol/L。Further, the cobalt salt described in
进一步的,步骤四中所述镍盐为氯化镍;配置的镍盐溶液浓度为0.01mol/L-0.1mol/L。Further, the nickel salt described in step 4 is nickel chloride; the concentration of the configured nickel salt solution is 0.01mol/L-0.1mol/L.
进一步的,步骤五中硼氢化物为硼氢化钾,步骤四中镍元素与步骤五中硼元素摩尔比为1:3;步骤六中所述的金属Ni与Co的摩尔比为(0.01-1):1。Further, in the step 5, the borohydride is potassium borohydride, and in the step 4, the mol ratio of the nickel element to the boron element in the step 5 is 1:3; the mol ratio of the metal Ni and Co described in the step 6 is (0.01-1 ):1.
进一步的,步骤七中所述真空干燥的真空度为80Pa~100Pa,温度为60℃~120℃,干燥时间为1h~8h。Further, the vacuum degree of the vacuum drying in the seventh step is 80Pa~100Pa, the temperature is 60℃~120℃, and the drying time is 1h~8h.
一种燃料电池,使用上述的阳极。A fuel cell using the above anode.
本发明与现有技术相比具有如下效果:Compared with the prior art, the present invention has the following effects:
1、本发明的电极使用的催化剂结构为立体片状蜂窝结构、类石墨烯型,与文献报道的球形、核壳结构或中空结构相比,该结构能够提供更大的反应物接触面积,促进反应物的扩散,提高传质速率,使催化剂催化性能提高。Ni-Co-B为直接硼氢化物燃料电池DBFC阳极催化剂,LaNi0.9Ru0.1O3为阴极催化剂组装的燃料电池,测得燃料电池最大功率密度达到90.58mW·cm-2。1. The catalyst structure used in the electrode of the present invention is a three-dimensional flake honeycomb structure and a graphene-like structure. Compared with the spherical, core-shell structure or hollow structure reported in the literature, this structure can provide a larger contact area for reactants and promote The diffusion of reactants increases the mass transfer rate and improves the catalytic performance of the catalyst. Ni-Co-B is the anode catalyst of direct borohydride fuel cell DBFC, and LaNi 0.9 Ru 0.1 O 3 is the cathode catalyst. The maximum power density of the fuel cell is 90.58mW·cm -2 .
2、本发明的电极使用的催化剂组成元素均为非贵金属,避免使用铂等贵金属,使燃料电池成本大幅度降低。2. The catalyst constituent elements used in the electrode of the present invention are all non-precious metals, and the use of precious metals such as platinum is avoided, so that the cost of the fuel cell is greatly reduced.
3、本发明电极使用的催化剂制备方法简单,易于操作,采用分步还原法制备,制备的催化剂形貌均匀。3. The preparation method of the catalyst used in the electrode of the present invention is simple and easy to operate. It is prepared by a step-by-step reduction method, and the prepared catalyst has a uniform morphology.
附图说明Description of drawings
图1为本发明燃料电池阳极结构示意图;FIG. 1 is a schematic diagram of the anode structure of the fuel cell of the present invention;
图2为本发明实施例2制备的Ni-Co-B催化剂放大25000倍时的扫描电镜图;Fig. 2 is the scanning electron microscope picture when the Ni-Co-B catalyst prepared in Example 2 of the present invention is magnified 25000 times;
图3为本发明实施例2制备的Ni-Co-B催化剂放大240000倍时的扫描电镜图;Fig. 3 is the scanning electron microscope image when the Ni-Co-B catalyst prepared in Example 2 of the present invention is magnified 240,000 times;
图4为本发明实施例2制备的Ni-Co-B和中国专利CN105702971B所制备的Au@Co-B分别作直接硼氢化物燃料电池阳极的电池性能对比图。4 is a comparison diagram of the cell performance of Ni-Co-B prepared in Example 2 of the present invention and Au@Co-B prepared by Chinese patent CN105702971B as anodes of direct borohydride fuel cells, respectively.
具体实施方式Detailed ways
下面通过实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below through examples.
实施例1Example 1
如图1所示,一种燃料电池用电极,包括导线1、泡沫镍极板1以及催化剂层3,催化剂层涂覆在泡沫镍极板的一侧,导线位于泡沫镍极板的另一侧,所述催化剂层所使用的催化剂的结构为蜂窝状结构。催化剂包括金属Ni元素,Co元素及B元素,Ni与Co的摩尔比为0.01:1,Ni与B的摩尔比为1:3,Co与B的摩尔比为1:3。As shown in Figure 1, an electrode for a fuel cell includes a
一种燃料电池,包括阴极、纤维膜和实施例1的阳极电极,阴极包括阴极导线,阴极极板以及涂覆在阴极极板上的阴极催化剂LaNi0.9Ru0.1O3。阳极电极包括阳极导线、泡沫镍极板以及催化剂层,催化剂层涂覆在泡沫镍极板的一侧,导线位于泡沫镍极板的另一侧,所述催化剂层所使用的催化剂的结构为蜂窝状结构。A fuel cell includes a cathode, a fiber membrane and the anode electrode of Example 1, the cathode includes a cathode lead, a cathode plate and a cathode catalyst LaNi 0.9 Ru 0.1 O 3 coated on the cathode plate. The anode electrode includes an anode wire, a foamed nickel electrode plate and a catalyst layer, the catalyst layer is coated on one side of the foamed nickel electrode plate, the wire is located on the other side of the foamed nickel electrode plate, and the catalyst used in the catalyst layer has a honeycomb structure. like structure.
下面罗列几种本发明催化剂的制备实例,以及使用该催化剂后燃料电池性能。The following lists several preparation examples of the catalyst of the present invention, and the performance of the fuel cell after using the catalyst.
实施例2Example 2
本实施例的催化剂为具有蜂窝结构的镍钴硼合金,其制备方法采用分步还原法:The catalyst of this embodiment is a nickel-cobalt-boron alloy with a honeycomb structure, and its preparation method adopts a step-by-step reduction method:
步骤一、将1.19g六水合氯化钴溶于50ml去离子水中,配成0.1mol/L的钴盐溶液;
步骤二、将0.81g硼氢化钾溶于去离子水中配成浓度为0.2mol/L的硼氢化钾溶液,然后向所述硼氢化钾溶液中加入适量的氢氧化钾溶液至pH值为12,得到硼氢化钾-氢氧化钾混合溶液;
步骤三、将0.2mol/L的硼氢化钾-氢氧化钾溶液75ml,在0℃的剧烈搅拌下,以1mL/min的速度加入步骤一的氯化钴溶液中,待反应无气体产生后继续搅拌1h,直至反应完全;
步骤四、将0.71g六水合氯化镍溶于150ml去离子水中,配成0.02mol/L镍盐溶液中;Step 4: Dissolve 0.71g of nickel chloride hexahydrate in 150ml of deionized water to prepare a 0.02mol/L nickel salt solution;
步骤五、将0.054g硼氢化钾溶于去离子水中,配置成0.2mol/L的硼氢化钾溶液,再加适量氢氧化钾,调节pH值至12;Step 5. Dissolve 0.054g of potassium borohydride in deionized water, configure it into a 0.2mol/L potassium borohydride solution, add an appropriate amount of potassium hydroxide, and adjust the pH value to 12;
步骤六、将步骤五所配的硼氢化钾-氢氧化钾混合溶液与步骤四配置的氯化镍溶液在冰浴条件下同时逐滴加入至步骤三反应完全的沉淀溶液中,待无气体产生后再继续搅拌2h,直至反应完全;Step 6. Add the potassium borohydride-potassium hydroxide mixed solution prepared in step 5 and the nickel chloride solution prepared in step 4 dropwise to the precipitation solution that is completely reacted in
步骤七、将步骤六所得到的沉淀用去离子水反复洗涤,再用无水乙醇洗涤2~3次,80℃,80pa下真空干燥4h,得到蜂窝状结构Ni-Co-B催化剂。Step 7: Wash the precipitate obtained in step 6 with deionized water repeatedly, then with absolute ethanol for 2 to 3 times, and vacuum dry at 80° C. and 80 pa for 4 hours to obtain a honeycomb structure Ni-Co-B catalyst.
对本实施例制备的产物进行物理表征,图2为低放大倍数时Ni-Co-B的SEM扫描图。图3为高放大倍数时Ni-Co-B的SEM扫描图,从图中可以看出按照实施例1合成的Ni-Co-B为蜂窝状立体片层结构。图4为以本实施例制备的Ni-Co-B为直接硼氢化物燃料电池DBFC阳极催化剂,LaNi0.9Ru0.1O3为阴极催化剂组装的燃料电池,测得该燃料电池最大功率密度达到90.58mW·cm-2;同等条件下,与中国专利CN105702971B核壳型催化剂(Au@Co-B)为直接硼氢化物燃料电池DBFC阳极的电池性能相比,采用本实施例所制备的Ni-Co-B催化剂,电池放电性能有明显提高。The product prepared in this example is physically characterized, and FIG. 2 is a SEM scanning image of Ni-Co-B at low magnification. FIG. 3 is a SEM scanning image of Ni-Co-B at high magnification. It can be seen from the figure that the Ni-Co-B synthesized according to Example 1 has a honeycomb three-dimensional lamellar structure. Figure 4 is a fuel cell assembled with Ni-Co-B prepared in this example as the anode catalyst of the direct borohydride fuel cell DBFC and LaNi 0.9 Ru 0.1 O 3 as the cathode catalyst. The maximum power density of the fuel cell was measured to reach 90.58mW cm -2 ; under the same conditions, compared with the performance of the Chinese patent CN105702971B core-shell catalyst (Au@Co-B) as the DBFC anode of the direct borohydride fuel cell, the Ni-Co- B catalyst, the battery discharge performance is significantly improved.
实施例3Example 3
本实施例的催化剂为蜂窝状结构镍钴硼合金,其制备方法采用分步还原法:The catalyst of this embodiment is a honeycomb structure nickel-cobalt-boron alloy, and the preparation method adopts a step-by-step reduction method:
步骤一、将2.38g六水合氯化钴溶于50ml去离子水中,配成0.2mol/L的钴盐溶液;
步骤二、将1.62g硼氢化钾溶于去离子水中配成浓度为0.3mol/L的硼氢化钾溶液,然后向所述硼氢化钾溶液中加入适量的氢氧化钾溶液至pH值为13,得到硼氢化钾-氢氧化钾混合溶液;
步骤三、将0.3mol/L的硼氢化钾-氢氧化钾溶液100ml,在0℃的剧烈搅拌下,以2mL/min的速度加入步骤一的氯化钴溶液中,待反应无气体产生后继续搅拌1h,直至反应完全;
步骤四、将0.36g六水合氯化镍溶于150ml去离子水中,配成0.01mol/L镍盐溶液中;Step 4. Dissolve 0.36g of nickel chloride hexahydrate in 150ml of deionized water to prepare a 0.01mol/L nickel salt solution;
步骤五、将0.243g硼氢化钾溶于去离子水中,配置成0.3mol/L的硼氢化钾溶液,再加适量氢氧化钾,调节pH值至13;Step 5. Dissolve 0.243 g of potassium borohydride in deionized water, configure it into a 0.3 mol/L potassium borohydride solution, add an appropriate amount of potassium hydroxide, and adjust the pH value to 13;
步骤六、将步骤五所配的硼氢化钾-氢氧化钾混合溶液与步骤四配置的氯化镍溶液在冰浴条件下同时逐滴加入至步骤三反应完全的沉淀溶液中,待无气体产生后再继续搅拌2h,直至反应完全;Step 6. Add the potassium borohydride-potassium hydroxide mixed solution prepared in step 5 and the nickel chloride solution prepared in step 4 dropwise to the precipitation solution that is completely reacted in
步骤七、将步骤六所得到的沉淀用去离子水反复洗涤,再用无水乙醇洗涤2至3次,80℃,80pa下真空干燥4h,得到蜂窝状结构Ni-Co-B催化剂。Step 7: Wash the precipitate obtained in step 6 repeatedly with deionized water, then with absolute ethanol for 2 to 3 times, and vacuum dry at 80° C. and 80 pa for 4 hours to obtain a honeycomb structure Ni-Co-B catalyst.
对本实施例制备的产物进行物理表征,结果与实施例1相同,为蜂窝状立体片层结构。以本实施例制备的Ni-Co-B为直接硼氢化物燃料电池DBFC阳极催化剂,LaNi0.9Ru0.1O3为阴极催化剂组装燃料电池,燃料电池最大功率密度为88.45mW·cm-2。The product prepared in this example was physically characterized, and the result was the same as Example 1, and it was a honeycomb three-dimensional sheet structure. The Ni-Co-B prepared in this example was used as the anode catalyst of the direct borohydride fuel cell DBFC, and LaNi 0.9 Ru 0.1 O 3 was used as the cathode catalyst to assemble the fuel cell. The maximum power density of the fuel cell was 88.45 mW·cm -2 .
实施例4Example 4
本实施例的催化剂为蜂窝状结构镍钴硼合金,其制备方法采用分步还原法:The catalyst of this embodiment is a honeycomb structure nickel-cobalt-boron alloy, and the preparation method adopts a step-by-step reduction method:
步骤一、将3.81g六水合氯化钴溶于100ml去离子水中,配成0.16mol/L的钴盐溶液;
步骤二、将1.29g硼氢化钾溶于去离子水中配成浓度为0.4mol/L的硼氢化钾溶液,然后向所述硼氢化钾溶液中加入适量的氢氧化钾溶液至pH值为12,得到硼氢化钾-氢氧化钾混合溶液;
步骤三、将0.4mol/L的硼氢化钾-氢氧化钾溶液60ml,在0℃的剧烈搅拌下,以1mL/min的速度加入步骤一的氯化钴溶液中,待反应无气体产生后继续搅拌1h,直至反应完全;
步骤四、将1.19g六水合氯化镍溶于100ml去离子水中,配成0.05mol/L镍盐溶液中;Step 4. Dissolve 1.19g of nickel chloride hexahydrate in 100ml of deionized water to prepare a 0.05mol/L nickel salt solution;
步骤五、将0.81g硼氢化钾溶于去离子水中,配置成0.3mol/L的硼氢化钾溶液,再加适量氢氧化钾,调节pH值至13;Step 5: Dissolve 0.81 g of potassium borohydride in deionized water, configure it into a 0.3 mol/L potassium borohydride solution, add an appropriate amount of potassium hydroxide, and adjust the pH value to 13;
步骤六、将步骤五所配的硼氢化钾-氢氧化钾混合溶液与步骤四配置的氯化镍溶液在冰浴条件下同时逐滴加入至步骤三反应完全的沉淀溶液中,并伴以剧烈搅拌,待无气体产生后再继续搅拌2h,直至反应完全;Step 6. The potassium borohydride-potassium hydroxide mixed solution prepared in step 5 and the nickel chloride solution prepared in step 4 are added dropwise to the precipitation solution that is completely reacted in
步骤七、将步骤六所得到的沉淀用去离子水反复洗涤,再用无水乙醇洗涤2~3次,80℃,80pa下真空干燥5h,得到蜂窝状结构Ni-Co-B催化剂。Step 7. The precipitate obtained in step 6 is repeatedly washed with deionized water, then washed with absolute ethanol for 2-3 times, and vacuum dried at 80° C. and 80pa for 5h to obtain a honeycomb structure Ni-Co-B catalyst.
对本实施例制备的产物进行物理表征,结果与实施例1相同,为蜂窝状立体片层结构。以本实施例制备的Ni-Co-B为直接硼氢化物燃料电池DBFC阳极催化剂,LaNi0.9Ru0.1O3为阴极催化剂组装燃料电池,燃料电池最大功率密度为91.08mW·cm-2。The product prepared in this example was physically characterized, and the result was the same as Example 1, and it was a honeycomb three-dimensional sheet structure. The Ni-Co-B prepared in this example was used as the anode catalyst of the direct borohydride fuel cell DBFC, and LaNi 0.9 Ru 0.1 O 3 was used as the cathode catalyst to assemble the fuel cell. The maximum power density of the fuel cell was 91.08 mW·cm -2 .
实施例5Example 5
本实施例的催化剂为蜂窝状结构镍钴硼合金,其制备方法采用分步还原法:The catalyst of this embodiment is a honeycomb structure nickel-cobalt-boron alloy, and the preparation method adopts a step-by-step reduction method:
步骤一、将23.793g六水合氯化钴溶于100ml去离子水中,配成1mol/L的钴盐溶液;
步骤二、将10.788g硼氢化钾溶于去离子水中配成浓度为1mol/L的硼氢化钾溶液,然后向所述硼氢化钾溶液中加入适量的氢氧化钾溶液至pH值为13,得到硼氢化钾-氢氧化钾混合溶液;
步骤三、将1mol/L的硼氢化钾-氢氧化钾溶液200ml,在0℃的剧烈搅拌下,以2mL/min的速度加入步骤一的氯化钴溶液中,待反应无气体产生后继续搅拌1h,直至反应完全;
步骤四、将23.769g六水合氯化镍溶于100ml去离子水中,配成1mol/L镍盐溶液中;Step 4. Dissolve 23.769g of nickel chloride hexahydrate in 100ml of deionized water to prepare a 1mol/L nickel salt solution;
步骤五、将5.394g硼氢化钾溶于去离子水中,配置成1mol/L的硼氢化钾溶液,再加适量氢氧化钾,调节pH值至13;Step 5. Dissolve 5.394g potassium borohydride in deionized water, configure it into a 1mol/L potassium borohydride solution, add an appropriate amount of potassium hydroxide, and adjust the pH to 13;
步骤六、将步骤五所配的硼氢化钾-氢氧化钾混合溶液与步骤四配置的氯化镍溶液在冰浴条件下同时逐滴加入至步骤三反应完全的沉淀溶液中,并伴以剧烈搅拌,待无气体产生后再继续搅拌2h,直至反应完全;Step 6. The potassium borohydride-potassium hydroxide mixed solution prepared in step 5 and the nickel chloride solution prepared in step 4 are added dropwise to the precipitation solution that is completely reacted in
步骤七、将步骤六所得到的沉淀用去离子水反复洗涤,再用无水乙醇洗涤2~3次,60℃,80pa下真空干燥6h,得到蜂窝状结构Ni-Co-B催化剂。Step 7: The precipitate obtained in step 6 is repeatedly washed with deionized water, then washed with absolute ethanol for 2 to 3 times, and vacuum dried at 60° C. and 80 pa for 6 hours to obtain a honeycomb structure Ni-Co-B catalyst.
对本实施例制备的产物进行物理表征,结果与实施例1相同,为蜂窝状立体片层结构。以本实施例制备的Ni-Co-B为直接硼氢化物燃料电池DBFC阳极催化剂,LaNi0.9Ru0.1O3为阴极催化剂组装燃料电池,燃料电池最大功率密度为82.37mW·cm-2。The product prepared in this example was physically characterized, and the result was the same as Example 1, and it was a honeycomb three-dimensional sheet structure. The Ni-Co-B prepared in this example was used as the anode catalyst of the direct borohydride fuel cell DBFC, and LaNi 0.9 Ru 0.1 O 3 was used as the cathode catalyst to assemble the fuel cell. The maximum power density of the fuel cell was 82.37 mW·cm -2 .
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention and do not limit the present invention. Any simple modifications, changes and equivalent changes made to the above embodiments according to the technical essence of the present invention still belong to the technical solutions of the present invention. within the scope of protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810645243.9A CN108598494B (en) | 2018-06-21 | 2018-06-21 | A fuel cell anode and fuel cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810645243.9A CN108598494B (en) | 2018-06-21 | 2018-06-21 | A fuel cell anode and fuel cell using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108598494A CN108598494A (en) | 2018-09-28 |
CN108598494B true CN108598494B (en) | 2020-09-22 |
Family
ID=63628518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810645243.9A Active CN108598494B (en) | 2018-06-21 | 2018-06-21 | A fuel cell anode and fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108598494B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101347736A (en) * | 2007-07-20 | 2009-01-21 | 中国科学院金属研究所 | Catalyst for hydrogen production by catalytic hydrolysis of borohydride and preparation method thereof |
CN103840175A (en) * | 2012-11-23 | 2014-06-04 | 中国科学院大连化学物理研究所 | Anode applied to direct hydroboron fuel battery and preparation method of anode |
CN105244523A (en) * | 2015-08-28 | 2016-01-13 | 山西大学 | Solid oxide fuel cell with anti-carbon function |
CN105521804A (en) * | 2015-12-08 | 2016-04-27 | 广东石油化工学院 | Preparation method of honeycombed graphene/tungsten carbide/platinum composite electrocatalyst and application thereof |
CN106611858A (en) * | 2016-12-20 | 2017-05-03 | 云南冶金集团创能金属燃料电池股份有限公司 | Carbon-free air electrode and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8129054B2 (en) * | 2011-03-29 | 2012-03-06 | Delphi Technologies, Inc. | System for adding sulfur to a fuel cell stack system for improved fuel cell stability |
-
2018
- 2018-06-21 CN CN201810645243.9A patent/CN108598494B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101347736A (en) * | 2007-07-20 | 2009-01-21 | 中国科学院金属研究所 | Catalyst for hydrogen production by catalytic hydrolysis of borohydride and preparation method thereof |
CN103840175A (en) * | 2012-11-23 | 2014-06-04 | 中国科学院大连化学物理研究所 | Anode applied to direct hydroboron fuel battery and preparation method of anode |
CN105244523A (en) * | 2015-08-28 | 2016-01-13 | 山西大学 | Solid oxide fuel cell with anti-carbon function |
CN105521804A (en) * | 2015-12-08 | 2016-04-27 | 广东石油化工学院 | Preparation method of honeycombed graphene/tungsten carbide/platinum composite electrocatalyst and application thereof |
CN106611858A (en) * | 2016-12-20 | 2017-05-03 | 云南冶金集团创能金属燃料电池股份有限公司 | Carbon-free air electrode and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
Ni–Co–B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells;Chuan Wu;《Catalysis Today》;20110305;第33-39页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108598494A (en) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070087258A1 (en) | Catalyst, electrode for fuel electrode in fuel cell, and fuel cell | |
CN102104157B (en) | Preparation method for carbon dry gel | |
CN111943155B (en) | Preparation method of composite cobalt phosphide nano polyhedron with yolk shell structure | |
CN101976737B (en) | Preparation of load-type Pt-Fe intermetallic compound nanoparticle catalyst | |
CN108832141B (en) | Honeycomb structure nickel-cobalt-boron alloy catalyst for fuel cell and preparation method thereof | |
CN111106357A (en) | A kind of preparation method and application of platinum-based catalyst based on etching treatment carbon carrier | |
US7776781B2 (en) | Platinum/ruthenium catalyst for direct methanol fuel cells | |
CN109755600A (en) | Carbon cloth-supported nickel-cobalt-oxygen nanosheet composite material and its preparation method and electrode application | |
CN110729489B (en) | Alkaline fuel cell and preparation method of molybdenum-nickel alloy nano material | |
CN110854396A (en) | PtAg nanocrystalline with porous double-hollow-sphere structure and preparation method and application thereof | |
CN108417848A (en) | A platinum-nickel alloy catalyst nanomaterial with high-efficiency electrocatalytic oxygen reduction performance and its preparation method and application | |
CN109786773B (en) | A kind of PtPdCu ternary alloy catalyst and its preparation method and application | |
CN108598494B (en) | A fuel cell anode and fuel cell using the same | |
CN110783580B (en) | A kind of preparation method of alkaline system fuel cell anode catalyst | |
CN106935872A (en) | A kind of preparation method of the modified fuel battery anode catalyst of precipitating reagent | |
CN110061246A (en) | The preparation method of core-shell structure Te@metal electro-oxidizing-catalyzing agent | |
KR20110029573A (en) | Manufacturing Method of Electrocatalyst for Direct Methanol Fuel Cell | |
CN110729495B (en) | CNSs-Ni@Pt/PM-g-C3N4Electrocatalyst and method of making | |
CN114628700A (en) | Preparation method of platinum-nickel-gold alloy nano catalyst | |
CN114725409A (en) | Platinum-nickel nanocrystalline modified carbon-based catalyst and gram-grade low-pressure preparation method and application thereof | |
CN111575764A (en) | Composite nickel-tungsten-copper alloy, preparation method and application thereof | |
CN107403940B (en) | A kind of direct methanol fuel cell | |
CN118292046B (en) | A self-supporting metal sulfide nanocatalytic material and its application in hydrogen production by electrolysis | |
CN114100630B (en) | Platinum-cobalt bimetallic nanoflower catalyst and preparation method and application thereof | |
CN117174920A (en) | Preparation method and application of a heterostructure ruthenium cobalt boron-based oxide catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |