CN117497414A - Preparation method of gallium oxide field effect transistor with high electron mobility and transistor - Google Patents
Preparation method of gallium oxide field effect transistor with high electron mobility and transistor Download PDFInfo
- Publication number
- CN117497414A CN117497414A CN202311580701.2A CN202311580701A CN117497414A CN 117497414 A CN117497414 A CN 117497414A CN 202311580701 A CN202311580701 A CN 202311580701A CN 117497414 A CN117497414 A CN 117497414A
- Authority
- CN
- China
- Prior art keywords
- field effect
- electron mobility
- effect transistor
- high electron
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 46
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910001195 gallium oxide Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- 230000004888 barrier function Effects 0.000 claims abstract description 42
- 238000005530 etching Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 238000005468 ion implantation Methods 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910004205 SiNX Inorganic materials 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- PYTMYKVIJXPNBD-UHFFFAOYSA-N clomiphene citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C1=CC(OCCN(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C(Cl)C1=CC=CC=C1 PYTMYKVIJXPNBD-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 238000000137 annealing Methods 0.000 description 13
- 238000000206 photolithography Methods 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000002955 isolation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000000407 epitaxy Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/8303—Diamond
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/881—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being a two-dimensional material
- H10D62/882—Graphene
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical field
本申请涉及射频技术领域,具体涉及一种高电子迁移率氧化镓场效应晶体管制备方法及晶体管。The present application relates to the field of radio frequency technology, and specifically to a method for preparing a high electron mobility gallium oxide field effect transistor and a transistor.
背景技术Background technique
氧化镓(Ga2O3)材料作为一种新兴的超宽带隙半导体材料,最常见的晶体结构包括α、β、γ、δ、ε和过渡态的κ相,能带带隙达到4.8-5.2eV,击穿电场高达8MV/cm,是GaN的2.5倍,是SiC的3倍多。由于Ga2O3材料具有高耐压、低功耗的优势,未来在高温、高频、大功率电力电子器件制备中具有广阔的应用价值。Gallium oxide (Ga 2 O 3 ) material is an emerging ultra-wide bandgap semiconductor material. The most common crystal structures include α, β, γ, δ, ε and transition state κ phase, with an energy band gap of 4.8-5.2. eV, the breakdown electric field is as high as 8MV/cm, which is 2.5 times that of GaN and more than 3 times that of SiC. Because the Ga 2 O 3 material has the advantages of high withstand voltage and low power consumption, it will have broad application value in the preparation of high-temperature, high-frequency, and high-power power electronic devices in the future.
但是,Ga2O3材料的电子迁移率较低,理论极限仅为300cm2/V·s,且由于外延、工艺原因,目前报道的Ga2O3场效应晶体管室温下测得的最大电子迁移率仅为180cm2/V·s,相比于其它材料的场效应晶体管,其低的电子迁移率,限制了其在大功率、高频的应用。However, the electron mobility of Ga 2 O 3 material is low, with a theoretical limit of only 300cm 2 /V·s. Due to epitaxy and process reasons, the maximum electron mobility measured at room temperature for Ga 2 O 3 field effect transistors currently reported is The rate is only 180cm 2 /V·s. Compared with field effect transistors of other materials, its low electron mobility limits its application in high power and high frequency.
而其它半导体中,有许多材料的电子迁移率均明显优于Ga2O3,以GaN为例,其具有较高的电子迁移率-1200cm2/V·s,由AlGaN/GaN异质结组成的高电子迁移率场效应晶体管的2DEG电子迁移率最高可达2200cm2/V·s,且GaN与Ga2O3的晶格失配小,可以实现准同质外延,此外,由其组成的可变组分InAlGaN、AlGaN等材料,还能灵活参与能带调节工程,给Ga2O3场效应晶体管的设计带来更多的可能性。Among other semiconductors, there are many materials whose electron mobility is significantly better than Ga 2 O 3 . Taking GaN as an example, it has a high electron mobility of -1200cm 2 /V·s and is composed of AlGaN/GaN heterojunction. The 2DEG electron mobility of the high electron mobility field effect transistor can reach up to 2200cm 2 /V·s, and the lattice mismatch between GaN and Ga 2 O 3 is small, which can achieve quasi-homoepitaxial growth. In addition, it is composed of Materials such as variable composition InAlGaN and AlGaN can also flexibly participate in energy band adjustment projects, bringing more possibilities to the design of Ga 2 O 3 field effect transistors.
现有技术方案1为Ga2O3金属氧化物场效应晶体管,通过重n型掺杂的Ga2O3与金属接触形成低阻的源漏接触,栅下区域刻蚀部分Ga2O3沟道,增加栅控能力,随后使用Al2O3介质将栅金属与沟道隔离,降低器件的反向栅漏电,提高器件的开关比。The existing technical solution 1 is a Ga 2 O 3 metal oxide field effect transistor. A low-resistance source-drain contact is formed through heavy n-type doped Ga 2 O 3 contact with the metal, and a part of the Ga 2 O 3 trench is etched in the area below the gate. channel to increase the gate control capability, and then use Al 2 O 3 dielectric to isolate the gate metal from the channel, reduce the reverse gate leakage of the device, and improve the switching ratio of the device.
但是,通过现有技术1制备得到的晶体管器件电子迁移率低,受限于Ga2O3材料的本身特性,目前此类场效应晶体管的迁移率低,报道中的大部分器件在100cm2/V·s左右。However, the electron mobility of the transistor device prepared by the prior art 1 is low, which is limited by the inherent characteristics of the Ga 2 O 3 material. At present, the mobility of this type of field effect transistor is low, and most of the reported devices are under 100 cm 2 / About V·s.
现有技术方案2通过AlGaO/Ga2O3异质结,形成二维电子气,并于AlGaO势垒层delta掺杂的方法相结合,增加了场效应管的电子迁移率。The existing technical solution 2 uses the AlGaO/Ga 2 O 3 heterojunction to form a two-dimensional electron gas, and combines it with the delta doping method of the AlGaO barrier layer to increase the electron mobility of the field effect transistor.
但是,通过现有技术方案2制备得到的晶体管器件迁移率相较于氧化镓MOSFET,电子迁移率有了很大的改善,但最高也仅达到180cm2/V·s,仍然很低。However, compared with the gallium oxide MOSFET, the electron mobility of the transistor device prepared through the existing technical solution 2 has been greatly improved, but the highest only reaches 180 cm 2 /V·s, which is still very low.
发明内容Contents of the invention
基于上述表述,本申请提供了一种高电子迁移率,以解决场效应管的电子迁移率不高的技术问题。Based on the above statement, this application provides a high electron mobility to solve the technical problem of low electron mobility of field effect transistors.
本申请解决上述技术问题的技术方案如下:The technical solutions of this application to solve the above technical problems are as follows:
一种高电子迁移率氧化镓场效应晶体管制备方法,包括如下步骤:A method for preparing a high electron mobility gallium oxide field effect transistor, including the following steps:
步骤S1、以氧化镓高阻同质衬底,具体地以Fe-dope Ga2O3为衬底,在衬底上依次由下至上外延生长缓冲层、沟道层和势垒层,所述势垒层为n型掺杂的AlGaO势垒层与非故意掺杂的AlGaO势垒层,所述沟道层为非故意掺杂的高电子迁移率半导体沟道层,其中,所述AlGaO的具体组成为(AlxGa1-x)2O3,0<x≤0.3;Step S1: Using a gallium oxide high-resistance homogeneous substrate, specifically Fe-dope Ga 2 O 3 as the substrate, epitaxially grow a buffer layer, a channel layer and a barrier layer on the substrate from bottom to top, as described The barrier layer is an n-type doped AlGaO barrier layer and an unintentionally doped AlGaO barrier layer, and the channel layer is an unintentionally doped high electron mobility semiconductor channel layer, wherein the AlGaO The specific composition is (Al x Ga 1-x ) 2 O 3 , 0<x≤0.3;
步骤S2、在沟道层上沉积再生长掩膜层;Step S2: deposit a regrowth mask layer on the channel layer;
步骤S3、蚀刻再生长区域;Step S3, etching the re-growth area;
步骤S4、在再生长区域再生长源漏区域,并去除掩膜;Step S4: Re-grow the source and drain regions in the re-growth region, and remove the mask;
步骤S5、在源漏区域制作源漏欧姆电极;Step S5: Make source and drain ohmic electrodes in the source and drain regions;
步骤S6、隔离有源区域和无源区域;Step S6, isolate the active area and the passive area;
步骤S7、沉积栅金属电极,制得AlGaO/高电子迁移率半导体/Ga2O3场效应晶体管。Step S7: Deposit a gate metal electrode to prepare an AlGaO/high electron mobility semiconductor/Ga 2 O 3 field effect transistor.
在上述技术方案的基础上,本申请还可以做如下改进。On the basis of the above technical solution, this application can also make the following improvements.
一些实施例中,所述衬底的厚度为375um-675um。In some embodiments, the thickness of the substrate is 375um-675um.
一些实施例中,采用MOCVD(金属有机化学气相沉积)、MBE(分子束外延)或HVPE(氢化物气相外延)方式在所述衬底上由下至上依次外延生长缓冲层、沟道层和势垒层。In some embodiments, MOCVD (Metal Organic Chemical Vapor Deposition), MBE (Molecular Beam Epitaxy) or HVPE (Hydride Vapor Phase Epitaxy) are used to sequentially epitaxially grow a buffer layer, a channel layer and a potential layer on the substrate from bottom to top. barrier layer.
一些实施例中,所述缓冲层为非故意掺杂的Ga2O3缓冲层,所述高电子迁移率半导体为GaN、GaAs、AlN、InP、金刚石、Si、石墨烯等。优选地,所述缓冲层厚度范围为300nm-600nm,所述沟道层厚度范围为20nm-300nm,所述势垒层厚度范围为12nm-40nm,其中包括n型掺杂的势垒层2nm~10nm,非故意掺杂的势垒层10nm~30nm。更优选地,所述缓冲层厚度范围为400nm-500nm,所述沟道层厚度范围为20nm-300nm,所述势垒层厚度范围为12nm-25nm,其中包括n型掺杂的势垒层2nm~5nm,非故意掺杂的势垒层10nm~20nm。In some embodiments, the buffer layer is an unintentionally doped Ga 2 O 3 buffer layer, and the high electron mobility semiconductor is GaN, GaAs, AlN, InP, diamond, Si, graphene, etc. Preferably, the thickness of the buffer layer ranges from 300nm to 600nm, the thickness of the channel layer ranges from 20nm to 300nm, and the thickness of the barrier layer ranges from 12nm to 40nm, including an n-type doped barrier layer ranging from 2nm to 2nm. 10nm, unintentionally doped barrier layer 10nm~30nm. More preferably, the thickness of the buffer layer ranges from 400nm to 500nm, the thickness of the channel layer ranges from 20nm to 300nm, and the thickness of the barrier layer ranges from 12nm to 25nm, including an n-type doped barrier layer of 2nm. ~5nm, unintentionally doped barrier layer 10nm ~ 20nm.
一些实施例中,所述衬底的厚度范围为375um-675um。 In some embodiments , the thickness of the substrate ranges from 375um to 675um.
一些实施例中,为保证各沟道与源漏电极良好接触,采用选区刻蚀和再生长的方式制作源漏电极。具体地,首先在晶圆上生长掩膜层,然后通过光刻方式刻蚀出源漏区域,随后刻蚀再生长掩膜,将光刻胶的图形转移到再生长掩膜上,待刻蚀完成后再去除光刻胶。优选地,所述掩膜层包括但不限于各种种SiO2、SiNx、Al2O3介质或由其多种组合形成的复合介质等。In some embodiments, in order to ensure good contact between each channel and the source and drain electrodes, selective etching and regrowth are used to form the source and drain electrodes. Specifically, a mask layer is first grown on the wafer, and then the source and drain regions are etched by photolithography. The mask is then etched and regrown, and the pattern of the photoresist is transferred to the regrown mask to be etched. Remove the photoresist when finished. Preferably, the mask layer includes but is not limited to various SiO 2 , SiNx, Al 2 O 3 media or composite media formed from various combinations thereof, etc.
优选的,所述步骤S3、蚀刻再生长区域步骤中,使用Cl基气体,在ICP、RIE等设备里由上至下刻蚀势垒层和沟道层。Preferably, in step S3 and the step of etching the regrowth area, Cl-based gas is used to etch the barrier layer and channel layer from top to bottom in ICP, RIE and other equipment.
一些实施例中,所述步骤S4、在再生长区域再生长源漏区域,并去除掩膜中,利用MOCVD、MBE再生长刻蚀区,生长出重掺杂n型Ga2O3或GaN再生长层,如图6(a)所示,随后采用湿法去除再生长掩膜层,如图6(b)所示;In some embodiments, the step S4 is to re-grow the source and drain regions in the re-growth region, remove the mask, and use MOCVD and MBE to re-grow the etching region to grow heavily doped n-type Ga 2 O 3 or GaN. The growth layer, as shown in Figure 6(a), is then removed by wet method, as shown in Figure 6(b);
一些实施例中,完成二次外延后,在源漏区域制作源漏欧姆电极,具体地,进行光刻定义源漏电极图形,随后沉积金属,最后进行金属剥离,制作源漏电极;优选地,该步骤中,沉积金属的金属体系以常用的的Ti/Pt/Au为例;优选地,该步骤中,如果再生长掺杂浓度不够高,不能直接形成良好的欧姆接触,还可以通过退火来进行改善,形成欧姆接触,退火温度的温度范围为400℃-600℃,退火氛围为氮气,退火时间30s-1min;电极制备的结构截面图如图7所示。在本申请变换的实施例中,源漏区域的欧姆接触采用n型离子注入,如Si、Sn、Se等离子,随后进行高温激活,最后沉积Ti/Pt/Au金属,进行400℃-600℃、30s-60s的退火,形成欧姆接触。In some embodiments, after completing the secondary epitaxy, source and drain ohmic electrodes are produced in the source and drain regions. Specifically, photolithography is performed to define the source and drain electrode patterns, followed by metal deposition, and finally metal stripping is performed to produce the source and drain electrodes; preferably, In this step, the metal system for depositing metal is commonly used Ti/Pt/Au as an example; preferably, in this step, if the regrowth doping concentration is not high enough to directly form a good ohmic contact, annealing can also be used. Improve to form ohmic contact, the annealing temperature range is 400℃-600℃, the annealing atmosphere is nitrogen, the annealing time is 30s-1min; the structural cross-section of the electrode preparation is shown in Figure 7. In an alternative embodiment of the present application, n-type ion implantation, such as Si, Sn, and Se plasma, is used for the ohmic contact in the source and drain regions, followed by high-temperature activation, and finally Ti/Pt/Au metal is deposited at 400°C-600°C. Annealing for 30s-60s forms ohmic contact.
一些实施例中,所述步骤S6、隔离有源区域和无源区域步骤中,通过离子注入的方法,隔离有源区域和无源区域。优选的,所述离子为B、N、Fe或Ar。In some embodiments, in the step S6 of isolating the active area and the passive area, the active area and the passive area are isolated by ion implantation. Preferably, the ion is B, N, Fe or Ar.
一些实施例中,所述步骤S6、隔离有源区域和无源区域步骤中,通过刻蚀方法隔离有源区和无源区。In some embodiments, in the step S6 of isolating the active area and the passive area, the active area and the passive area are isolated by etching.
使用光刻胶、介质、金属等作为刻蚀掩膜,保护有源区域,并使用Cl基气体,在ICP、RIE等刻蚀设备例,刻蚀未被保护的区域,刻蚀完成后湿法去除刻蚀掩膜,隔离有源区和无源区。Use photoresist, dielectric, metal, etc. as an etching mask to protect the active area, and use Cl-based gas to etch the unprotected area in etching equipment such as ICP and RIE. After the etching is completed, wet Remove the etching mask and isolate the active and passive areas.
一些实施例中,所述步骤S7、沉积栅金属电极中,金属为Ni/Au,栅电极沉积完成后进行剥离,最终完成场效应晶体管的制作,如图7所示;优选地,所述第一层金属Ni也可以替换成其他高功函数金属;更优选地,所述高功函数金属包括但不限于Pt、W、Ir、WN、TiW、Pd等。In some embodiments, in the step S7 of depositing the gate metal electrode, the metal is Ni/Au. After the gate electrode is deposited, it is peeled off to finally complete the production of the field effect transistor, as shown in Figure 7; preferably, the third step A layer of metal Ni can also be replaced with other high work function metals; more preferably, the high work function metals include but are not limited to Pt, W, Ir, WN, TiW, Pd, etc.
与现有技术相比,本申请的技术方案具有以下有益技术效果:Compared with the existing technology, the technical solution of this application has the following beneficial technical effects:
本申请提供的高电子迁移率氧化镓场效应晶体管制备方法,通过在Ga2O3场效应晶体管中加入高电子迁移率半导体材料,有效提高Ga2O3晶体管电子迁移率,制得高迁移率、高耐压、低漏电的场效应晶体管器件。The method for preparing a high electron mobility gallium oxide field effect transistor provided by this application effectively improves the electron mobility of the Ga 2 O 3 transistor by adding a high electron mobility semiconductor material to the Ga 2 O 3 field effect transistor, thereby producing a high mobility transistor. , high withstand voltage, low leakage field effect transistor devices.
附图说明Description of drawings
图1为现有技术中Ga2O3金属氧化物场效应晶体管截面示意图;Figure 1 is a schematic cross-sectional view of a Ga 2 O 3 metal oxide field effect transistor in the prior art;
图2为现有技术中AlGaO/Ga2O3异质结场效应晶体管截面示意图;Figure 2 is a schematic cross-sectional view of an AlGaO/Ga 2 O 3 heterojunction field effect transistor in the prior art;
图3为本申请实施例提供的氧化镓场效应晶体管外延结构示意图;Figure 3 is a schematic diagram of the epitaxial structure of a gallium oxide field effect transistor provided by an embodiment of the present application;
图4为本申请实施例提供的源漏区域再生长掩膜与图形化示意图;Figure 4 is a schematic diagram of the regrowth mask and patterning of the source and drain regions provided by the embodiment of the present application;
图5为本申请实施例提供的源漏刻蚀再生长区域示意图;Figure 5 is a schematic diagram of the source-drain etching re-growth area provided by the embodiment of the present application;
图6(a)-图6(b)为本申请实施例提供的源漏区域再生长和硬掩膜去除示意图;Figure 6(a)-Figure 6(b) are schematic diagrams of source and drain region regrowth and hard mask removal provided by embodiments of the present application;
图7为本申请实施例提供的源漏区域欧姆电极光刻、沉积与剥离示意图;Figure 7 is a schematic diagram of photolithography, deposition and stripping of ohmic electrodes in the source and drain regions provided by an embodiment of the present application;
图8为本申请实施例提供的离子注入隔离示意图;Figure 8 is a schematic diagram of ion implantation isolation provided by an embodiment of the present application;
图9为本申请实施例提供的栅金属电极制作示意图。FIG. 9 is a schematic diagram of gate metal electrode production according to an embodiment of the present application.
图中:1、AlGO势垒层;2、Si掺杂的AlGaO势垒层;3、非故意掺杂的GaN沟道层;4、非故意掺杂的Ga2O3缓冲层;5、Ga2O3衬底层;6、再生长掩膜层;7、重掺杂n型Ga2O3或GaN再生长层;8、源极;9、漏极;10、栅电极。In the picture: 1. AlGO barrier layer; 2. Si-doped AlGaO barrier layer; 3. Unintentionally doped GaN channel layer; 4. Unintentionally doped Ga 2 O 3 buffer layer; 5. Ga 2 O 3 substrate layer; 6. Regrowth mask layer; 7. Heavy doped n-type Ga 2 O 3 or GaN regrowth layer; 8. Source electrode; 9. Drain electrode; 10. Gate electrode.
具体实施方式Detailed ways
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. Embodiments of the present application are given in the accompanying drawings. However, the present application may be implemented in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terminology used herein in the description of the application is for the purpose of describing specific embodiments only and is not intended to limit the application.
实施例一:高电子迁移率半导体为GaN。 Embodiment 1: The high electron mobility semiconductor is GaN.
步骤1、准备外延衬底,如图3所示:Step 1. Prepare the epitaxial substrate, as shown in Figure 3:
选用Fe-dope Ga2O3衬底层5作为示例,厚度为375um;随后通过MOCVD方式生长非故意掺杂的Ga2O3缓冲层4厚度为300-600nm;非故意掺杂的GaN沟道层3,厚度为20nm;delta掺杂的AlGaO势垒层,具体为Si掺杂的AlGaO势垒层2,厚度为2nm,此处以掺Si为例,以及非故意掺杂的AlGaO势垒层1,厚度为10nm,其中,AlGaO的具体组成为(AlxGa1-x)2O3,0<x≤0.3。Fe-dope Ga 2 O 3 substrate layer 5 is selected as an example, with a thickness of 375um; then an unintentionally doped Ga 2 O 3 buffer layer 4 is grown by MOCVD to a thickness of 300-600 nm; an unintentionally doped GaN channel layer 3. The thickness is 20nm; the delta-doped AlGaO barrier layer, specifically the Si-doped AlGaO barrier layer 2, has a thickness of 2nm. Here, Si doping is used as an example, and the unintentionally doped AlGaO barrier layer 1, The thickness is 10 nm, and the specific composition of AlGaO is (Al x Ga 1-x ) 2 O 3 , 0<x≤0.3.
步骤2、在势垒层上沉积再生长掩膜层6,如图4所示:Step 2: Deposit the regrowth mask layer 6 on the barrier layer, as shown in Figure 4:
为保证各沟道与源漏电极良好接触,采用选区刻蚀和再生长的方式制作源漏电极。首先先在晶圆上生长300nm的SiO2掩膜层,然后通过光刻暴露源漏区域,随后刻蚀再生长掩膜,将光刻胶的图形转移到再生长掩膜上,待刻蚀完成后再去除光刻胶。In order to ensure good contact between each channel and the source and drain electrodes, the source and drain electrodes are made by selective etching and regrowth. First, grow a 300nm SiO2 mask layer on the wafer, then expose the source and drain areas through photolithography, then etch and re-grow the mask, transfer the photoresist pattern to the re-growth mask, and wait for the etching to be completed. Then remove the photoresist.
步骤3、刻蚀再生长区域,如图5所示:Step 3. Etch the regrowth area, as shown in Figure 5:
使用再生长掩膜作为AlGaO、GaN的刻蚀掩膜,使用Cl基气体,在ICP设备里刻蚀再生长区域。Use a regrowth mask as an etching mask for AlGaO and GaN, and use Cl-based gas to etch the regrowth area in the ICP equipment.
步骤4、源漏区域再生长,如图6所示:Step 4. Re-grow the source and drain areas, as shown in Figure 6:
随后利用MOCVD再生长刻蚀区,生长出重掺杂n型Ga2O3或GaN再生长层7,随后采用湿法去除再生长掩膜。Then, MOCVD is used to re-grow the etched area to grow a heavily doped n-type Ga 2 O 3 or GaN re-growth layer 7, and then the re-growth mask is removed using a wet method.
步骤5、在源漏区域制作源漏欧姆电极,如图7所示:Step 5. Make source and drain ohmic electrodes in the source and drain areas, as shown in Figure 7:
完成二次外延后,光刻定义源漏电极图形,随后沉积金属,金属体系以常用的Ti/Pt/Au为例,最后进行金属剥离,完成源极8和漏极9的制作。After completing the secondary epitaxy, photolithography defines the source and drain electrode patterns, and then deposits metal. The metal system takes the commonly used Ti/Pt/Au as an example. Finally, metal stripping is performed to complete the production of source electrode 8 and drain electrode 9.
步骤6、离子注入隔离,如图8所示:Step 6. Ion implantation isolation, as shown in Figure 8:
完成欧姆接触后,使用离子注入的方法,隔离有源区域和无源区域,注入离子为B。After completing the ohmic contact, use the ion implantation method to isolate the active area and the passive area, and the implanted ions are B.
步骤7、栅电极制作,如图9所示:Step 7. Gate electrode production, as shown in Figure 9:
完成离子注入隔离后,沉积栅金属电极,金属为Ni/Au,第一层金属Ni。栅电极10沉积完成后进行剥离,最终完成场效应晶体管器件的制作。After completing the ion implantation isolation, the gate metal electrode is deposited, the metal is Ni/Au, and the first layer of metal Ni is deposited. After the gate electrode 10 is deposited, it is peeled off to finally complete the production of the field effect transistor device.
实施例二:高电子迁移率半导体为GaAs。 Embodiment 2: The high electron mobility semiconductor is GaAs.
步骤1、准备外延衬底Step 1. Prepare epitaxial substrate
选用Fe-dope Ga2O3衬底作为示例,厚度为375um;随后通过MOCVD方式生长非故意掺杂的Ga2O3缓冲层,厚度为300-600nm;非故意掺杂的高电子迁移率半导体沟道层,厚度为20nm,此处以GaAs;delta掺杂的AlGaO势垒层,厚度为2nm,此处以掺Si为例,以及非故意掺杂的AlGaO势垒层,厚度为10nm,其中AlGaO的具体组成为(AlxGa1-x)2O3,0<x≤0.3。Fe-dope Ga 2 O 3 substrate is selected as an example, with a thickness of 375um; then an unintentionally doped Ga 2 O 3 buffer layer is grown by MOCVD, with a thickness of 300-600nm; an unintentionally doped high electron mobility semiconductor The channel layer, with a thickness of 20nm, is GaAs here; the delta-doped AlGaO barrier layer, with a thickness of 2nm, taking Si doping as an example here, and the unintentionally doped AlGaO barrier layer, with a thickness of 10nm, in which AlGaO The specific composition is (Al x Ga 1-x ) 2 O 3 , 0<x≤0.3.
步骤2、在势垒层上沉积再生长掩膜层Step 2: Deposit a re-growth mask layer on the barrier layer
为保证各沟道与源漏电极良好接触,采用选区刻蚀和再生长的方式制作源漏电极,首先先在晶圆上生长300nm的SiO2掩膜层,然后通过光刻将源漏区域暴露出来,随后进行再生长掩膜的刻蚀,将光刻胶的图形转移到再生长掩膜上,待刻蚀完成后再去除光刻胶。In order to ensure good contact between each channel and the source and drain electrodes, the source and drain electrodes are made by selective etching and regrowth. First, a 300nm SiO 2 mask layer is grown on the wafer, and then the source and drain regions are exposed through photolithography. Then, the regrowth mask is etched, the photoresist pattern is transferred to the regrowth mask, and the photoresist is removed after the etching is completed.
步骤3、刻蚀再生长区域Step 3. Etch the regrowth area
使用再生长掩膜作为AlGaO、GaN的刻蚀掩膜,使用Cl基气体,在ICP设备里刻蚀再生长区域。Use a regrowth mask as an etching mask for AlGaO and GaN, and use Cl-based gas to etch the regrowth area in the ICP equipment.
步骤4、源漏区域再生长Step 4. Regrowth of source and drain areas
随后利用MOCVD再生长刻蚀区,生长出重掺杂n型Ga2O3或GaN再生长层,随后采用湿法去除再生长掩膜。MOCVD is then used to re-grow the etched area to grow a heavily doped n-type Ga 2 O 3 or GaN re-growth layer, and then the re-growth mask is removed using a wet method.
步骤5、在源漏区域制作源漏欧姆电极Step 5. Make source and drain ohmic electrodes in the source and drain areas.
完成二次外延后,光刻定义源漏电极图形,随后沉积金属,金属体系以常用的Ti/Pt/Au为例,最后进行金属剥离,完成源漏电极的制作。如果再生长掺杂浓度不够高,不能直接形成良好的欧姆接触,还可以通过退火来进行改善,退火温度可采用400℃-600℃,退火氛围为氮气,退火时间30s-1min。电极制备的结构截面图。After completing the secondary epitaxy, photolithography defines the source and drain electrode patterns, and then deposits metal. The metal system takes the commonly used Ti/Pt/Au as an example. Finally, metal stripping is performed to complete the production of the source and drain electrodes. If the regrowth doping concentration is not high enough to directly form a good ohmic contact, it can also be improved through annealing. The annealing temperature can be 400℃-600℃, the annealing atmosphere is nitrogen, and the annealing time is 30s-1min. Structural cross-section of electrode preparation.
步骤6、离子注入隔离Step 6. Ion implantation isolation
完成欧姆接触后,使用离子注入的方法,隔离有源区域和无源区域,注入离子为B。After completing the ohmic contact, use the ion implantation method to isolate the active area and the passive area, and the implanted ions are B.
步骤7、栅电极制作Step 7. Gate electrode production
完成离子注入隔离后,沉积栅金属电极,金属为Ni/Au,第一层金属Ni。栅电极沉积完成后进行剥离,最终完成场效应晶体管器件的制作。After completing the ion implantation isolation, the gate metal electrode is deposited, the metal is Ni/Au, and the first layer of metal Ni is deposited. After the gate electrode is deposited, it is peeled off to finally complete the production of the field effect transistor device.
实施例三:高电子迁移率半导体为InP。 Embodiment 3: The high electron mobility semiconductor is InP.
步骤1、准备外延衬底Step 1. Prepare epitaxial substrate
选用Fe-dope Ga2O3衬底作为示例,厚度为375um;随后通过MOCVD方式生长非故意掺杂的Ga2O3缓冲层厚度为300-600nm;非故意掺杂的高电子迁移率半导体沟道层,厚度为20nm,此处以GaAs;delta掺杂的AlGaO势垒层,厚度为2nm,此处以掺Si为例,以及非故意掺杂的AlGaO势垒层,厚度为10nm,其中AlGaO的具体组成为(AlxGa1-x)2O3,0<x≤0.3。Fe-dope Ga 2 O 3 substrate is selected as an example, with a thickness of 375um; then an unintentionally doped Ga 2 O 3 buffer layer is grown by MOCVD to a thickness of 300-600nm; an unintentionally doped high electron mobility semiconductor trench Channel layer, with a thickness of 20nm, GaAs is used here; delta-doped AlGaO barrier layer, with a thickness of 2nm, taking Si doping as an example here, and unintentionally doped AlGaO barrier layer, with a thickness of 10nm, where the specific details of AlGaO The composition is (Al x Ga 1-x ) 2 O 3 , 0<x≤0.3.
步骤2、在势垒层上沉积再生长掩膜层Step 2: Deposit a re-growth mask layer on the barrier layer
为保证各沟道与源漏电极良好接触,采用选区刻蚀和再生长的方式制作源漏电极。首先先在晶圆上生长300nm的SiO2掩膜层,然后通过光刻将源漏区域暴露出来,随后进行再生长掩膜的刻蚀,将光刻胶的图形转移到再生长掩膜上,待刻蚀完成后再去除光刻胶。In order to ensure good contact between each channel and the source and drain electrodes, the source and drain electrodes are made by selective etching and regrowth. First, a 300nm SiO2 mask layer is grown on the wafer, then the source and drain areas are exposed through photolithography, and then the regrowth mask is etched to transfer the photoresist pattern to the regrowth mask. Remove the photoresist after etching is complete.
步骤3、刻蚀再生长区域Step 3. Etch the regrowth area
使用再生长掩膜作为AlGaO、GaN的刻蚀掩膜,使用Cl基气体,在ICP设备里刻蚀再生长区域。Use a regrowth mask as an etching mask for AlGaO and GaN, and use Cl-based gas to etch the regrowth area in the ICP equipment.
步骤4、源漏区域再生长Step 4. Regrowth of source and drain areas
随后利用MOCVD再生长刻蚀区,生长出重掺杂n型Ga2O3或GaN再生长层,随后采用湿法去除再生长掩膜。MOCVD is then used to re-grow the etched area to grow a heavily doped n-type Ga 2 O 3 or GaN re-growth layer, and then the re-growth mask is removed using a wet method.
步骤5、在源漏区域制作源漏欧姆电极Step 5. Make source and drain ohmic electrodes in the source and drain areas.
完成二次外延后,光刻定义源漏电极图形,随后沉积金属,金属体系以常用的Ti/Pt/Au为例,最后进行金属剥离,完成源漏电极的制作。如果再生长掺杂浓度不够高,不能直接形成良好的欧姆接触,还可以通过退火来进行改善,退火温度可采用400℃-600℃,退火氛围为氮气,退火时间30s-1min。电极制备的结构截面图。After completing the secondary epitaxy, photolithography defines the source and drain electrode patterns, and then deposits metal. The metal system takes the commonly used Ti/Pt/Au as an example. Finally, metal stripping is performed to complete the production of the source and drain electrodes. If the regrowth doping concentration is not high enough to directly form a good ohmic contact, it can also be improved through annealing. The annealing temperature can be 400℃-600℃, the annealing atmosphere is nitrogen, and the annealing time is 30s-1min. Structural cross-section of electrode preparation.
步骤6、离子注入隔离Step 6. Ion implantation isolation
完成欧姆接触后,使用离子注入的方法,隔离有源区域和无源区域,注入离子为B。After completing the ohmic contact, use the ion implantation method to isolate the active area and the passive area, and the implanted ions are B.
步骤7、栅电极制作Step 7. Gate electrode production
完成离子注入隔离后,沉积栅金属电极,金属为Ni/Au,第一层金属Ni。栅电极沉积完成后进行剥离,最终完成场效应晶体管器件的制作。After completing the ion implantation isolation, the gate metal electrode is deposited, the metal is Ni/Au, and the first layer of metal Ni is deposited. After the gate electrode is deposited, it is peeled off to finally complete the production of the field effect transistor device.
实施例四:与实施例一相比,该实施例的区别是使用刻蚀方法隔离有源区与无源区 Embodiment 4 : Compared with Embodiment 1, the difference of this embodiment is that the etching method is used to isolate the active area and the passive area.
步骤1、准备外延衬底Step 1. Prepare epitaxial substrate
选用Fe-dope Ga2O3衬底作为示例,厚度为375um;随后通过MOCVD方式生长非故意掺杂的Ga2O3缓冲层厚度为300-600nm;非故意掺杂的高电子迁移率半导体沟道层,厚度为20nm,此处以GaN;delta掺杂的AlGaO势垒层,厚度为2nm,此处以掺Si为例,其还可以是Sn、Ge等,以及非故意掺杂的AlGaO势垒层,厚度为10nm,其中AlGaO的具体组成为(AlxGa1-x)2O3,0<x≤0.3。Fe-dope Ga 2 O 3 substrate is selected as an example, with a thickness of 375um; then an unintentionally doped Ga 2 O 3 buffer layer is grown by MOCVD to a thickness of 300-600nm; an unintentionally doped high electron mobility semiconductor trench Channel layer, the thickness is 20nm, GaN is used here; delta-doped AlGaO barrier layer, the thickness is 2nm, Si-doped is used as an example here, it can also be Sn, Ge, etc., as well as unintentionally doped AlGaO barrier layer , the thickness is 10nm, and the specific composition of AlGaO is (Al x Ga 1-x ) 2 O 3 , 0<x≤0.3.
步骤2、在势垒层上沉积再生长掩膜层Step 2: Deposit a re-growth mask layer on the barrier layer
为保证各沟道与源漏电极良好接触,采用选区刻蚀和再生长的方式制作源漏电极。首先先在晶圆上生长掩膜层,然后通过光刻将源漏区域暴露出来,随后进行再生长掩膜的刻蚀,将光刻胶的图形转移到再生长掩膜上,待刻蚀完成后再去除光刻胶。In order to ensure good contact between each channel and the source and drain electrodes, the source and drain electrodes are made by selective etching and regrowth. First, a mask layer is grown on the wafer, then the source and drain areas are exposed through photolithography, and then the re-growth mask is etched, and the pattern of the photoresist is transferred to the re-growth mask, and the etching is completed. Then remove the photoresist.
步骤3、刻蚀再生长区域Step 3. Etch the regrowth area
使用再生长掩膜作为AlGaO、GaN的刻蚀掩膜,使用Cl基气体,在ICP设备里刻蚀再生长区域。Use a regrowth mask as an etching mask for AlGaO and GaN, and use Cl-based gas to etch the regrowth area in the ICP equipment.
步骤4、源漏区域再生长Step 4. Regrowth of source and drain areas
随后利用MOCVD再生长刻蚀区,生长出重掺杂n型Ga2O3或GaN再生长层,随后采用湿法去除再生长掩膜。MOCVD is then used to re-grow the etched area to grow a heavily doped n-type Ga 2 O 3 or GaN re-growth layer, and then the re-growth mask is removed using a wet method.
步骤5、在源漏区域制作源漏欧姆电极Step 5. Make source and drain ohmic electrodes in the source and drain areas.
完成二次外延后,光刻定义源漏电极图形,随后沉积金属,金属体系为常用的Ti为例,最后进行金属剥离,完成源漏电极的制作。After completing the secondary epitaxy, the source and drain electrode patterns are defined by photolithography, and then metal is deposited. The metal system is commonly used Ti as an example. Finally, metal stripping is performed to complete the production of the source and drain electrodes.
步骤6、使用刻蚀方法完成有源区和无源区的隔离;Step 6. Use etching method to complete the isolation of active area and passive area;
步骤7、栅电极制作。Step 7. Gate electrode production.
完成离子注入隔离后,沉积栅金属电极,金属为Ni/Au,第一层金属Ni。栅电极沉积完成后进行剥离,最终完成场效应晶体管器件的制作。After completing the ion implantation isolation, the gate metal electrode is deposited, the metal is Ni/Au, and the first layer of metal Ni is deposited. After the gate electrode is deposited, it is peeled off to finally complete the production of the field effect transistor device.
对比例一Comparative Example 1
通过重n型掺杂的Ga2O3与金属接触形成低阻的源漏接触,栅下区域刻蚀部分Ga2O3沟道,制得Ga2O3金属氧化物场效应晶体管。A Ga 2 O 3 metal oxide field effect transistor is produced by contacting heavily n-type doped Ga 2 O 3 with metal to form a low-resistance source-drain contact, and etching part of the Ga 2 O 3 channel in the area below the gate.
对比例二Comparative Example 2
通过AlGaO/Ga2O3异质结,形成二维电子气,并于AlGaO势垒层delta掺杂的方法相结合,制得AlGaO/Ga2O3异质结场效应晶体管。A two-dimensional electron gas is formed through the AlGaO/Ga 2 O 3 heterojunction, and combined with the delta doping method of the AlGaO barrier layer, an AlGaO/Ga 2 O 3 heterojunction field effect transistor is produced.
表1各实施例和对比例制得的场效应晶体管器件的电子迁移率对照表Table 1 Comparison table of electron mobility of field effect transistor devices prepared in various embodiments and comparative examples
本申请提供的高电子迁移率氧化镓场效应晶体管制备方法,基于Ga2O3材料体系,提出AlGaO/高电子迁移率半导体/Ga2O3场效应晶体管方案,采用具有高电子迁移率的半导体作为Ga2O3场效应晶体管的沟道层,制备的Ga2O3场效应晶体管具有以下技术效果:The method for preparing a high electron mobility gallium oxide field effect transistor provided in this application is based on the Ga 2 O 3 material system and proposes an AlGaO/high electron mobility semiconductor/Ga 2 O 3 field effect transistor scheme, using a semiconductor with high electron mobility As the channel layer of the Ga 2 O 3 field effect transistor, the prepared Ga 2 O 3 field effect transistor has the following technical effects:
(1)高迁移率:采用具有高电子迁移率的半导体作为Ga2O3场效应晶体管的沟道层,解决了Ga2O3材料电子迁移率低的问题,提高器件的输出功率和频率特性。(1) High mobility: Using semiconductors with high electron mobility as the channel layer of Ga 2 O 3 field effect transistors solves the problem of low electron mobility of Ga 2 O 3 materials and improves the output power and frequency characteristics of the device. .
(2)高耐压:Ga2O3的具有高达5eV的禁带宽度和高达8MV/cm临界击穿场强,将其作为势垒层,可以有效提升器件的耐压特性;(2) High withstand voltage: Ga 2 O 3 has a bandgap width of up to 5eV and a critical breakdown field strength of up to 8MV/cm. Using it as a barrier layer can effectively improve the withstand voltage characteristics of the device;
(3)低漏电:以GaN的3.4eV禁带宽度为例,由于其禁带宽度小于Ga2O3,可以进一步增加AlGaO/Ga2O3异质结的带阶差,增加2DEG的限域性,降低场效应管的漏电,提高器件的开关比,降低器件的工作损耗,提高器件的功率效率。(3) Low leakage: Taking the 3.4eV bandgap width of GaN as an example, since its bandgap width is smaller than Ga 2 O 3 , the band step difference of the AlGaO/Ga 2 O 3 heterojunction can be further increased and the confinement of 2DEG can be increased properties, reduce the leakage of field effect transistors, improve the switching ratio of the device, reduce the operating loss of the device, and improve the power efficiency of the device.
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application shall be included in the protection of the present application. within the range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311580701.2A CN117497414B (en) | 2023-11-23 | 2023-11-23 | Preparation method of gallium oxide field effect transistor with high electron mobility and transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311580701.2A CN117497414B (en) | 2023-11-23 | 2023-11-23 | Preparation method of gallium oxide field effect transistor with high electron mobility and transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117497414A true CN117497414A (en) | 2024-02-02 |
CN117497414B CN117497414B (en) | 2025-03-11 |
Family
ID=89670757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311580701.2A Active CN117497414B (en) | 2023-11-23 | 2023-11-23 | Preparation method of gallium oxide field effect transistor with high electron mobility and transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117497414B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118888596A (en) * | 2024-09-29 | 2024-11-01 | 深圳市港祥辉电子有限公司 | An enhanced lateral trench gate gallium oxide MOS device and its preparation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107464844A (en) * | 2017-07-20 | 2017-12-12 | 中国电子科技集团公司第十三研究所 | The preparation method of gallium oxide field-effect transistor |
US20210098628A1 (en) * | 2018-12-06 | 2021-04-01 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Normally-off gallium oxide field-effect transistor structure and preparation method therefor |
CN116884999A (en) * | 2023-06-29 | 2023-10-13 | 湖北九峰山实验室 | Polar gallium oxide polarized heterojunction HEMT device and preparation method thereof |
CN117012811A (en) * | 2023-07-20 | 2023-11-07 | 湖北九峰山实验室 | Gallium oxide non-polarized heterojunction multichannel Fin-HEMT device and preparation method thereof |
CN117012818A (en) * | 2023-07-18 | 2023-11-07 | 西安电子科技大学杭州研究院 | Heterojunction field effect transistor and preparation method thereof |
-
2023
- 2023-11-23 CN CN202311580701.2A patent/CN117497414B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107464844A (en) * | 2017-07-20 | 2017-12-12 | 中国电子科技集团公司第十三研究所 | The preparation method of gallium oxide field-effect transistor |
US20210098628A1 (en) * | 2018-12-06 | 2021-04-01 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Normally-off gallium oxide field-effect transistor structure and preparation method therefor |
CN116884999A (en) * | 2023-06-29 | 2023-10-13 | 湖北九峰山实验室 | Polar gallium oxide polarized heterojunction HEMT device and preparation method thereof |
CN117012818A (en) * | 2023-07-18 | 2023-11-07 | 西安电子科技大学杭州研究院 | Heterojunction field effect transistor and preparation method thereof |
CN117012811A (en) * | 2023-07-20 | 2023-11-07 | 湖北九峰山实验室 | Gallium oxide non-polarized heterojunction multichannel Fin-HEMT device and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118888596A (en) * | 2024-09-29 | 2024-11-01 | 深圳市港祥辉电子有限公司 | An enhanced lateral trench gate gallium oxide MOS device and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN117497414B (en) | 2025-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110190116B (en) | High-threshold-voltage normally-off high-electron-mobility transistor and preparation method thereof | |
US7456443B2 (en) | Transistors having buried n-type and p-type regions beneath the source region | |
US6982204B2 (en) | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses | |
CN101252088B (en) | A Realization Method of Enhanced AlGaN/GaN HEMT Device | |
WO2020228352A1 (en) | Semiconductor device and manufacturing method therefor | |
CN107680998A (en) | A kind of GaN base p-type grid HFET devices and preparation method thereof | |
WO2016141762A1 (en) | Iii-nitride enhancement hemt and preparation method therefor | |
CN109873034B (en) | Normally-off HEMT power device for depositing polycrystalline AlN and preparation method thereof | |
CN113380623A (en) | Method for realizing enhanced HEMT (high Electron mobility transistor) through p-type passivation | |
JP2011003808A (en) | Field effect transistor and method of manufacturing the same | |
CN109037326B (en) | Enhanced HEMT device with P-type buried layer structure and preparation method thereof | |
CN111223777B (en) | GaN-based HEMT device and manufacturing method thereof | |
CN107742644A (en) | A high-performance normally-off GaN field-effect transistor and its preparation method | |
JP3449116B2 (en) | Semiconductor device | |
JP6880406B2 (en) | Compound semiconductor device and its manufacturing method | |
CN113745333A (en) | Normally-off gallium oxide based MIS-HEMT device containing delta doped barrier layer and preparation method thereof | |
CN109950324A (en) | Group III nitride diode device with p-type anode and method of making the same | |
CN109950323B (en) | Polarized superjunction III-nitride diode device and method of making the same | |
CN111446296B (en) | Structure and fabrication method of p-type gate enhancement type GaN-based high mobility transistor | |
CN116884999A (en) | Polar gallium oxide polarized heterojunction HEMT device and preparation method thereof | |
CN117497414B (en) | Preparation method of gallium oxide field effect transistor with high electron mobility and transistor | |
CN117199124A (en) | Epitaxial structure of power device, preparation method of epitaxial structure and power device | |
CN114883407B (en) | HEMT based on Fin-FET gate structure and its fabrication method | |
CN117012811A (en) | Gallium oxide non-polarized heterojunction multichannel Fin-HEMT device and preparation method thereof | |
CN207664047U (en) | A kind of GaN field-effect transistors of high-performance normally-off |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 430000, No. 9 Jiulonghu Street, Donghu New Technology Development Zone, Wuhan City, Hubei Province Applicant after: Hubei Jiufengshan Laboratory Address before: 430000 Floor 19, No. 18, Huaguang Avenue, Guandong Science and Technology Industrial Park, Donghu Development Zone, Wuhan, Hubei Province Applicant before: Hubei Jiufengshan Laboratory Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |