[go: up one dir, main page]

CN117478548B - Fault tolerance capability test system and method for I2C slave equipment - Google Patents

Fault tolerance capability test system and method for I2C slave equipment Download PDF

Info

Publication number
CN117478548B
CN117478548B CN202311825407.3A CN202311825407A CN117478548B CN 117478548 B CN117478548 B CN 117478548B CN 202311825407 A CN202311825407 A CN 202311825407A CN 117478548 B CN117478548 B CN 117478548B
Authority
CN
China
Prior art keywords
slave device
waveform
unstable
level
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311825407.3A
Other languages
Chinese (zh)
Other versions
CN117478548A (en
Inventor
傅青云
彭一弘
徐聪
董超然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Xingtuo Microelectronics Technology Co ltd
Original Assignee
Chengdu Cetc Xingtuo Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Cetc Xingtuo Technology Co ltd filed Critical Chengdu Cetc Xingtuo Technology Co ltd
Priority to CN202311825407.3A priority Critical patent/CN117478548B/en
Publication of CN117478548A publication Critical patent/CN117478548A/en
Application granted granted Critical
Publication of CN117478548B publication Critical patent/CN117478548B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明提供一种I2C从机设备的容错能力测试系统及方法,属于I2C总线通信技术领域,填补了现有技术对于从机容错能力检验的空缺;包括I2C总线、从机设备、不稳定波形电平模拟模块和波形斜率变化模拟模块;从机设备通过I2C总线与不稳定波形电平模拟模块相连接,不稳定波形电平模拟模块用于代替I2C通信过程中的主机设备,并向从机设备输出不稳定波形电平;I2C总线通过波形斜率变化模拟模块与外部电源相连接,波形斜率变化模拟模块用于改变I2C总线中的电平信号斜率;从机设备对不稳定波形电平及信号沿斜率变化做出响应,依据响应结果可评估其容错能力;本发明能统一高效地测试从机设备容错能力,保证从机设备的应用质量。

The invention provides a system and method for testing the fault tolerance of I2C slave equipment, which belongs to the field of I2C bus communication technology and fills the gap in the existing technology for testing the fault tolerance of the slave; including I2C bus, slave equipment, unstable waveform circuit flat simulation module and waveform slope change simulation module; the slave device is connected to the unstable waveform level simulation module through the I2C bus. The unstable waveform level simulation module is used to replace the host device in the I2C communication process and provide feedback to the slave device. Output unstable waveform level; the I2C bus is connected to the external power supply through the waveform slope change simulation module. The waveform slope change simulation module is used to change the level signal slope in the I2C bus; the slave device detects unstable waveform levels and signal edges. It responds to the slope change, and its fault tolerance can be evaluated based on the response results; the invention can uniformly and efficiently test the fault tolerance of the slave equipment and ensure the application quality of the slave equipment.

Description

一种I2C从机设备的容错能力测试系统及方法A fault-tolerance testing system and method for I2C slave devices

技术领域Technical field

本发明属于I2C总线通信技术领域,应用于从机设备测试过程中,具体为一种I2C从机设备的容错能力测试系统及方法。The invention belongs to the technical field of I2C bus communication and is used in the testing process of slave equipment. Specifically, it is a fault-tolerance testing system and method for I2C slave equipment.

背景技术Background technique

集成电路总线(Inter-Integrated Circuit, IIC)是一种简单可靠、半双工和同步串行的控制总线,通常被称作I2C总线。I2C测试则是一种用于评估和验证I2C从机设备的功能与性能的测试方法;其包括发送和接收数据、检测通信错误、验证时序与电平要求等方面的测试内容。通过I2C测试,可以确保从机设备在不同信号环境下正确识别和处理主机设备发送的数据,并保证数据的准确传输和通信的可靠。The integrated circuit bus (Inter-Integrated Circuit, IIC) is a simple, reliable, half-duplex and synchronous serial control bus, often called the I2C bus. I2C testing is a testing method used to evaluate and verify the function and performance of I2C slave devices; it includes testing content such as sending and receiving data, detecting communication errors, and verifying timing and level requirements. Through I2C testing, it can be ensured that the slave device correctly identifies and processes the data sent by the host device under different signal environments, and ensures accurate data transmission and reliable communication.

在I2C总线技术中,时钟线(Serial Clock, SCL)和数据线(Serial Data, SDA)是其中的两个基本信号线。时钟线SCL用于同步主机设备与从机设备的数据传输,主机设备通过控制SCL上的时钟脉冲,来指示数据传输的时序;数据线SDA用于传输主机设备和从机设备之间的数据,数据在SDA上通过电平的高低来表示,通过控制SDA上的电平,主机设备和从机设备间可以发送和接收数据。In I2C bus technology, the clock line (Serial Clock, SCL) and the data line (Serial Data, SDA) are the two basic signal lines. The clock line SCL is used to synchronize the data transmission between the host device and the slave device. The host device controls the clock pulse on SCL to indicate the timing of data transmission; the data line SDA is used to transmit data between the host device and the slave device. Data is represented by the level on SDA. By controlling the level on SDA, data can be sent and received between the host device and the slave device.

现有技术中,当进行I2C通信时,可能会面临如下问题:In the existing technology, when performing I2C communication, you may face the following problems:

1、时钟线SCL和数据线SDA的电平不稳定:这一问题会导致起始信号或停止信号被误触发,从而使得通信无法正常进行或无法退出,导致数据传输错误或通信处于死锁状态。1. The levels of the clock line SCL and data line SDA are unstable: This problem will cause the start signal or stop signal to be mistakenly triggered, causing the communication to fail to proceed normally or to exit, resulting in data transmission errors or communication in a deadlock state. .

2、时钟频率不匹配:这一问题会使主机设备与从机设备之间的通信时序出现错误,如果时钟频率不同,数据无法正确传输,通信过程由此失败。2. Clock frequency mismatch: This problem will cause errors in the communication timing between the host device and the slave device. If the clock frequencies are different, the data cannot be transmitted correctly, and the communication process will fail.

此外,在I2C通信中,数据的传输是在时钟线SCL的上升沿和下降沿之间进行的;数据传输过程中,SCL为高电平,此时SDA表示的数据有效;当SCL为低电平时,SDA的数据无效。当主机设备发送数据时,从机设备需要在时钟线SCL产生上升沿时读取数据线SDA上的数据。In addition, in I2C communication, data transmission is performed between the rising edge and falling edge of the clock line SCL; during data transmission, SCL is high level, and the data represented by SDA is valid at this time; when SCL is low power Normally, SDA data is invalid. When the master device sends data, the slave device needs to read the data on the data line SDA when the clock line SCL generates a rising edge.

上升沿的时间长短会影响从机设备读取数据的正确时机。如果上升沿的时间过短,从机设备可能无法及时读取数据线上的数据,导致数据传输错误或丢失;如果上升沿的时间过长,从机设备可能会在错误的时机读取数据,导致数据解析出错。The length of the rising edge affects the correct timing for the slave device to read data. If the rising edge time is too short, the slave device may not be able to read the data on the data line in time, resulting in data transmission errors or loss; if the rising edge time is too long, the slave device may read data at the wrong time. Cause data parsing errors.

综上,为了确保I2C通信过程的正确进行,从机设备需要对主机设备发送的时钟线SCL和数据线SDA的电平具备一定的容错能力。即使主机设备发送的时钟线SCL电平不稳定,从机设备仍然应正确识别时钟信号的上升沿和下降沿,以确保数据的同步。即使主机设备发送的数据线SDA电平不稳定,从机设备仍应该正确识别信号状态,以确保数据的准确读写。In summary, in order to ensure the correct progress of the I2C communication process, the slave device needs to have a certain fault tolerance for the levels of the clock line SCL and data line SDA sent by the host device. Even if the clock line SCL level sent by the master device is unstable, the slave device should still correctly identify the rising and falling edges of the clock signal to ensure data synchronization. Even if the data line SDA level sent by the host device is unstable, the slave device should still correctly identify the signal status to ensure accurate reading and writing of data.

通过识别I2C总线数据信号的状态变化,从机设备应准确判断主机设备发送的数据为0或是为1,进行对应的操作;否则可能因通信初期的电平不稳定因素,导致信号误触,通信过程无法退出,I2C总线始终忙碌。目前缺少针对从机设备容错能力的系统性测试技术,因此有必要及时填补此空缺,统一高效地测试从机设备容错能力,保证从机设备的实际应用质量。By identifying the state changes of the I2C bus data signal, the slave device should accurately determine whether the data sent by the host device is 0 or 1, and perform corresponding operations; otherwise, the signal may be accidentally triggered due to level instability in the early stage of communication. The communication process cannot be exited, and the I2C bus is always busy. There is currently a lack of systematic testing technology for the fault tolerance of slave equipment. Therefore, it is necessary to fill this gap in time, test the fault tolerance of slave equipment uniformly and efficiently, and ensure the actual application quality of slave equipment.

发明内容Contents of the invention

针对背景技术中的现状,本发明在I2C从机设备测试过程中,引入FPGA及DAC器件,模拟出不稳定波形电平和波形斜率变化效果,产生I2C通信电平信号不稳定的场景,从而观察并测试从机设备对于时钟线SCL和数据线SDA电平不稳定的容错能力。本发明可以高效、全面地测试从机设备的数据传输稳定性和I2C通信可靠性,可把控从机设备的通信质量。In view of the current situation in the background technology, the present invention introduces FPGA and DAC devices during the test process of I2C slave equipment to simulate the effect of unstable waveform level and waveform slope change, resulting in a scene in which the I2C communication level signal is unstable, thereby observing and Test the fault tolerance of the slave device to unstable levels of the clock line SCL and data line SDA. The invention can efficiently and comprehensively test the data transmission stability and I2C communication reliability of the slave device, and control the communication quality of the slave device.

本发明采用了以下技术方案来实现目的:The present invention adopts the following technical solutions to achieve the purpose:

一种I2C从机设备的容错能力测试系统,所述测试系统包括I2C总线、从机设备、不稳定波形电平模拟模块和波形斜率变化模拟模块;所述从机设备通过所述I2C总线与所述不稳定波形电平模拟模块相连接,所述不稳定波形电平模拟模块用于代替常规I2C通信过程中的主机设备,并向所述从机设备输出不稳定波形电平;所述I2C总线通过所述波形斜率变化模拟模块与外部电源相连接,所述外部电源用于提供所述测试系统的电能供应,所述波形斜率变化模拟模块用于改变所述I2C总线中的电平信号斜率。A fault-tolerant test system for I2C slave equipment. The test system includes an I2C bus, a slave equipment, an unstable waveform level simulation module and a waveform slope change simulation module; the slave equipment communicates with all the I2C slave equipment through the I2C bus. The unstable waveform level simulation module is connected to the unstable waveform level simulation module, which is used to replace the host device in the conventional I2C communication process and output the unstable waveform level to the slave device; the I2C bus The waveform slope change simulation module is connected to an external power supply. The external power supply is used to provide power supply for the test system. The waveform slope change simulation module is used to change the slope of the level signal in the I2C bus.

进一步的,所述不稳定波形电平模拟模块由第一FPGA单元、第一DAC单元和第二DAC单元组成;所述第一FPGA单元装载有预设的不稳定波形电平模拟程序,所述不稳定波形电平模拟程序用于驱动所述第一DAC单元和所述第二DAC单元,分别产生对应于所述时钟线SCL和所述数据线SDA的不稳定波形电平,并发送至所述从机设备中;所述从机设备用于接收不稳定波形电平,并做出响应;测试人员依据响应结果,评估所述从机设备的容错能力。Further, the unstable waveform level simulation module is composed of a first FPGA unit, a first DAC unit and a second DAC unit; the first FPGA unit is loaded with a preset unstable waveform level simulation program, and the The unstable waveform level simulation program is used to drive the first DAC unit and the second DAC unit, respectively generate unstable waveform levels corresponding to the clock line SCL and the data line SDA, and send them to In the slave device, the slave device is used to receive unstable waveform levels and respond; testers evaluate the fault tolerance of the slave device based on the response results.

进一步的,所述波形斜率变化模拟模块包括上拉电阻、数字电位器和第二FPGA单元;所述第二FPGA单元装载有预设的波形斜率变化模拟程序,所述上拉电阻的阻值在所述数字电位器的作用下呈现为可变阻值状态;所述波形斜率变化模拟程序用于通过控制所述数字电位器,改变所述上拉电阻的阻值大小,进而改变在所述时钟线SCL或所述数据线SDA上传输的预设波形电平信号沿斜率;所述从机设备用于接收不同信号沿斜率的预设波形电平,并做出响应;测试人员依据响应结果,评估所述从机设备的容错能力。Further, the waveform slope change simulation module includes a pull-up resistor, a digital potentiometer and a second FPGA unit; the second FPGA unit is loaded with a preset waveform slope change simulation program, and the resistance of the pull-up resistor is The digital potentiometer presents a variable resistance state; the waveform slope change simulation program is used to change the resistance of the pull-up resistor by controlling the digital potentiometer, thereby changing the value of the clock. The preset waveform level signal edge slope transmitted on the line SCL or the data line SDA; the slave device is used to receive the preset waveform level of different signal edge slopes and make a response; the tester based on the response result, Evaluate the fault tolerance of the slave device.

本发明同时提供一种I2C从机设备的容错能力测试方法,所述测试方法的硬件基础为如前述的测试系统,所述测试方法包括不稳定波形电平测试过程和波形斜率变化测试过程;依据从机设备的规格与I2C通信协议,使从机设备先后接收不稳定波形电平和不同信号沿斜率的预设波形电平,得到从机设备的响应结果和实际接收到的数据内容;再依据响应结果和数据内容准确度,评估从机设备的容错能力。The present invention also provides a fault-tolerance testing method for I2C slave equipment. The hardware basis of the testing method is the aforementioned testing system. The testing method includes an unstable waveform level testing process and a waveform slope change testing process; based on The specifications of the slave device and the I2C communication protocol enable the slave device to receive unstable waveform levels and preset waveform levels with different signal edge slopes successively, and obtain the response result of the slave device and the actual received data content; and then based on the response Results and data content accuracy evaluate the fault tolerance of the slave device.

综上所述,由于采用了本技术方案,本发明的有益效果如下:To sum up, due to the adoption of this technical solution, the beneficial effects of the present invention are as follows:

本发明基于FPGA与DAC器件的组合,可以模拟出主机设备发送的不稳定电平,重现真实的I2C通信过程中可能存在的电平抖动或噪声场景。这种测试方案能够更真实地模拟主机设备的电平变化,从而评估从机设备对于不稳定电平的容错和识别能力。经过不稳定电平测试的从机设备,能更好的保证其数据传输稳定性和I2C通信可靠性,在实际应用时的效益更好。Based on the combination of FPGA and DAC devices, the present invention can simulate the unstable level sent by the host device and reproduce the level jitter or noise scenario that may exist in the real I2C communication process. This test solution can more realistically simulate the level changes of the host device, thereby evaluating the slave device's fault tolerance and recognition ability for unstable levels. Slave devices that have passed the unstable level test can better ensure the stability of their data transmission and the reliability of I2C communication, and have better benefits in practical applications.

本发明基于FPGA与数字电位器的组合,可动态模拟I2C总线通信过程中上拉电阻的大小,从而调整时钟线SCL和数据线SDA的上升沿与下降沿斜率。这种测试方案可以评估从机设备对于不同斜率的信号沿识别能力,进而检验出从机在不同信号环境下的稳定性与可靠性;斜率的调整能直接模拟出不同信号传输环境条件,全面测试从机对不同信号环境的适应情况。Based on the combination of FPGA and digital potentiometer, the present invention can dynamically simulate the size of the pull-up resistor during the I2C bus communication process, thereby adjusting the rising and falling edge slopes of the clock line SCL and the data line SDA. This test solution can evaluate the slave device's ability to identify signal edges with different slopes, and then test the stability and reliability of the slave device in different signal environments; the adjustment of the slope can directly simulate different signal transmission environmental conditions and comprehensively test The adaptability of the slave machine to different signal environments.

附图说明Description of the drawings

图1为本发明测试系统的结构连接框架示意图;Figure 1 is a schematic diagram of the structural connection frame of the test system of the present invention;

图2为本发明不稳定波形电平模拟模块的架构示意图;Figure 2 is a schematic diagram of the architecture of the unstable waveform level simulation module of the present invention;

图3为本发明波形斜率变化模拟模块的架构示意图;Figure 3 is a schematic structural diagram of the waveform slope change simulation module of the present invention;

图4为本发明测试方法的整体流程示意图。Figure 4 is a schematic diagram of the overall flow of the testing method of the present invention.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以按各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, rather than all embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Therefore, the following detailed description of the embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.

实施例1Example 1

一种I2C从机设备的容错能力测试系统,图1示出了该系统的结构连接关系,包括I2C总线、从机设备、不稳定波形电平模拟模块和波形斜率变化模拟模块;从机设备通过I2C总线与不稳定波形电平模拟模块相连接,不稳定波形电平模拟模块用于代替常规I2C通信过程中的主机设备,并向从机设备输出不稳定波形电平;I2C总线通过波形斜率变化模拟模块与外部电源相连接,外部电源用于提供测试系统的电能供应,波形斜率变化模拟模块用于改变I2C总线中的电平信号斜率。A fault-tolerance test system for I2C slave devices. Figure 1 shows the structural connection relationship of the system, including I2C bus, slave device, unstable waveform level simulation module and waveform slope change simulation module; the slave device passes The I2C bus is connected to the unstable waveform level simulation module. The unstable waveform level simulation module is used to replace the host device in the conventional I2C communication process and output unstable waveform levels to the slave devices; the I2C bus changes through the waveform slope The analog module is connected to an external power supply. The external power supply is used to provide power supply for the test system. The waveform slope change simulation module is used to change the slope of the level signal in the I2C bus.

本实施例中,如图2所示,不稳定波形电平模拟模块由第一FPGA单元、第一DAC单元和第二DAC单元组成,第一FPGA单元同时连接第一DAC单元和第二DAC单元;第一DAC单元与时钟线SCL相连接,第二DAC单元与数据线SDA相连接。In this embodiment, as shown in Figure 2, the unstable waveform level simulation module is composed of a first FPGA unit, a first DAC unit and a second DAC unit. The first FPGA unit is connected to the first DAC unit and the second DAC unit at the same time. ; The first DAC unit is connected to the clock line SCL, and the second DAC unit is connected to the data line SDA.

第一FPGA单元装载有预设的不稳定波形电平模拟程序,不稳定波形电平模拟程序,通过FPGA编程方式,使不稳定波形电平具有自定义的波形形状、频率和幅度参数,从而模拟不稳定的时钟线和数据线电平。The first FPGA unit is loaded with a preset unstable waveform level simulation program. The unstable waveform level simulation program uses FPGA programming to make the unstable waveform level have customized waveform shape, frequency and amplitude parameters, thereby simulating Unstable clock and data line levels.

不稳定波形电平模拟程序用于驱动第一DAC单元和第二DAC单元,分别产生对应于时钟线SCL和数据线SDA的不稳定波形电平,并发送至从机设备中;从机设备用于接收不稳定波形电平,并做出响应;测试人员依据响应结果,观察从机设备的通信行为,判断其数据信息是否正确读取,从而评估从机设备的容错能力。The unstable waveform level simulation program is used to drive the first DAC unit and the second DAC unit to generate unstable waveform levels corresponding to the clock line SCL and data line SDA respectively, and send them to the slave device; the slave device uses To receive unstable waveform levels and respond; based on the response results, testers observe the communication behavior of the slave device and determine whether its data information is read correctly, thereby evaluating the fault tolerance of the slave device.

实施例2Example 2

在实施例1的基础上,本实施例具体介绍波形斜率变化模拟模块的相关内容,可参看图1与图3。Based on Embodiment 1, this embodiment specifically introduces the relevant content of the waveform slope change simulation module. Please refer to Figure 1 and Figure 3.

如图3所示,波形斜率变化模拟模块共有2个,分别连接于I2C总线的时钟线SCL和数据线SDA上;每个波形斜率变化模拟模块均包括上拉电阻、数字电位器和第二FPGA单元。其中,数字电位器与上拉电阻的组合可采用外部可编程电阻器的方式实现。As shown in Figure 3, there are two waveform slope change simulation modules, which are respectively connected to the clock line SCL and data line SDA of the I2C bus; each waveform slope change simulation module includes a pull-up resistor, a digital potentiometer and a second FPGA unit. Among them, the combination of digital potentiometer and pull-up resistor can be implemented by using an external programmable resistor.

时钟线SCL或数据线SDA通过上拉电阻与外部电源相连接,上拉电阻则通过数字电位器与第二FPGA单元相连接。The clock line SCL or the data line SDA is connected to the external power supply through a pull-up resistor, and the pull-up resistor is connected to the second FPGA unit through a digital potentiometer.

第二FPGA单元装载有预设的波形斜率变化模拟程序,波形斜率变化模拟程序,通过FPGA编程方式,使电平波形的上升沿和/或下降沿的持续时间及长短发生改变。此处通过测试从机设备是否能够正确识别对应电平的上升沿和下降沿,来确保数据的准确传输和I2C通信的可靠。The second FPGA unit is loaded with a preset waveform slope change simulation program. The waveform slope change simulation program changes the duration and length of the rising edge and/or falling edge of the level waveform through FPGA programming. Here, it is tested whether the slave device can correctly identify the rising edge and falling edge of the corresponding level to ensure the accurate transmission of data and the reliability of I2C communication.

上拉电阻的阻值在数字电位器的作用下呈现为可变阻值状态;波形斜率变化模拟程序用于通过控制数字电位器,改变上拉电阻的阻值大小,进而改变在时钟线SCL或数据线SDA上传输的预设波形电平信号沿斜率;从机设备用于接收不同信号沿斜率的预设波形电平,并做出响应;测试人员依据响应结果,判断从机设备在实际的使用过程中能否与主机设备保持同步、正确解析数据、满足协议时序要求,从而评估从机设备的容错能力。The resistance of the pull-up resistor becomes a variable resistance state under the action of the digital potentiometer; the waveform slope change simulation program is used to change the resistance of the pull-up resistor by controlling the digital potentiometer, thereby changing the value of the clock line SCL or The preset waveform level signal edge slope transmitted on the data line SDA; the slave device is used to receive the preset waveform level with different signal edge slopes and respond; the tester determines the actual condition of the slave device based on the response results. During use, whether it can maintain synchronization with the host device, correctly parse data, and meet protocol timing requirements can evaluate the fault tolerance of the slave device.

实施例3Example 3

在实施例1或2的基础上,本实施例提供一种I2C从机设备的容错能力测试方法,该测试方法的硬件基础为实施例1或2中的测试系统,测试方法包括不稳定波形电平测试过程和波形斜率变化测试过程;依据从机设备的规格与I2C通信协议,使从机设备先后接收不稳定波形电平和不同信号沿斜率的预设波形电平,得到从机设备的响应结果和实际接收到的数据内容;再依据响应结果和数据内容准确度,评估从机设备的容错能力。On the basis of Embodiment 1 or 2, this embodiment provides a method for testing the fault tolerance of an I2C slave device. The hardware basis of the test method is the test system in Embodiment 1 or 2. The test method includes unstable waveform circuits. The flat test process and the waveform slope change test process; according to the specifications of the slave device and the I2C communication protocol, the slave device successively receives unstable waveform levels and preset waveform levels with different signal edge slopes, and obtains the response results of the slave device. and the actual received data content; and then evaluate the fault tolerance of the slave device based on the response results and the accuracy of the data content.

本实施例中,不稳定波形电平测试过程,整体流程可参看图4的示意,具体包括如下步骤:In this embodiment, the overall flow of the unstable waveform level testing process can be seen in Figure 4, which specifically includes the following steps:

S11、硬件连接:将第一FPGA单元通过第一DAC单元和第二DAC单元分别连接至I2C总线的时钟线SCL和数据线SDA;S11. Hardware connection: Connect the first FPGA unit to the clock line SCL and data line SDA of the I2C bus through the first DAC unit and the second DAC unit respectively;

S12、FPGA编程:使用FPGA开发工具(如Vivado工具),编写不稳定波形电平模拟程序,控制第一DAC单元和/或第二DAC单元的输出端产生不稳定波形电平;程序中可以通过对计数器、状态机或其他逻辑电路的调用模拟过程实现,本领域技术人员按实际需求情况设置即可;S12. FPGA programming: Use FPGA development tools (such as Vivado tools) to write an unstable waveform level simulation program to control the output of the first DAC unit and/or the second DAC unit to generate unstable waveform levels; in the program, you can pass To implement the simulation process of calling counters, state machines or other logic circuits, those skilled in the art can set it according to actual needs;

S13、配置从机设备:将从机设备接入I2C总线,依据从机设备的规格,配置从机设备的地址和时钟频率等相关的配置参数;S13. Configure the slave device: Connect the slave device to the I2C bus, and configure related configuration parameters such as the address and clock frequency of the slave device according to the specifications of the slave device;

S14、测试数据发送:将产生的不稳定波形电平通过时钟线SCL和/或数据线SDA发送至从机设备;可以依据具体的测试项目类别,发送不同的数据模式和数据值,模拟实际通信中可能出现的不同情况;S14. Test data transmission: Send the generated unstable waveform level to the slave device through the clock line SCL and/or data line SDA; different data modes and data values can be sent according to the specific test item category to simulate actual communication. different situations that may arise;

S15、从机设备响应监测:使用监测工具监测从机设备对不稳定波形电平的响应情况,呈现从机设备接收到的数据内容;监测工具可以使用示波器、逻辑分析仪或其他工具来观察I2C总线上的电平变化以及从机设备的接收数据情况;S15. Slave device response monitoring: Use monitoring tools to monitor the response of the slave device to unstable waveform levels and present the data content received by the slave device; the monitoring tool can use an oscilloscope, logic analyzer or other tools to observe I2C Level changes on the bus and data received by the slave device;

S16、评估容错能力:依据从机设备的响应情况和数据内容准确度,判断从机设备是否正确识别不稳定波形电平,得出从机设备容错能力评估结果。S16. Evaluate fault tolerance: Based on the response of the slave device and the accuracy of the data content, determine whether the slave device correctly recognizes the unstable waveform level, and obtain the fault tolerance evaluation result of the slave device.

实施例4Example 4

在实施例2和3的基础上,本实施例介绍波形斜率变化测试过程,整体流程同样为图4的示意,具体包括如下步骤:On the basis of Embodiments 2 and 3, this embodiment introduces the waveform slope change test process. The overall process is also as shown in Figure 4, and specifically includes the following steps:

S21、硬件连接:将每个波形斜率变化模拟模块中的第二FPGA单元通过数字电位器连接至对应的上拉电阻,对应于时钟线SCL和数据线SDA分别进行设置;S21. Hardware connection: Connect the second FPGA unit in each waveform slope change simulation module to the corresponding pull-up resistor through a digital potentiometer, and set the clock line SCL and data line SDA respectively;

S22、FPGA编程:使用FPGA开发工具,编写波形斜率变化模拟程序,控制数字电位器,使时钟线SCL和/或数据线SDA上传输的预设波形电平信号沿斜率发生改变;S22. FPGA programming: Use FPGA development tools to write a waveform slope change simulation program and control the digital potentiometer to change the slope of the preset waveform level signal transmitted on the clock line SCL and/or data line SDA;

S23、配置从机设备:将从机设备接入I2C总线,依据从机设备的规格,配置从机设备的地址和时钟频率;S23. Configure the slave device: Connect the slave device to the I2C bus, and configure the address and clock frequency of the slave device according to the specifications of the slave device;

S24、测试数据发送:将不稳定波形电平模拟程序产生的不稳定波形电平固定为预设波形电平,通过波形斜率变化模拟程序,将改变了信号沿斜率的预设波形电平通过时钟线SCL和/或数据线SDA发送至从机设备;S24. Test data transmission: Fix the unstable waveform level generated by the unstable waveform level simulation program to the preset waveform level. Through the waveform slope change simulation program, the preset waveform level with changed signal edge slope is passed through the clock. Line SCL and/or data line SDA is sent to the slave device;

S25、从机设备响应监测:使用监测工具监测从机设备对不同信号沿斜率的预设波形电平的响应情况,呈现从机设备接收到的数据内容;监测工具可以使用示波器、逻辑分析仪或其他工具来观察I2C总线上的电平变化以及从机设备的接收数据情况;S25. Slave device response monitoring: Use monitoring tools to monitor the response of the slave device to the preset waveform levels of different signal edge slopes, and present the data content received by the slave device; the monitoring tool can use an oscilloscope, logic analyzer or Other tools to observe the level changes on the I2C bus and the data received by the slave device;

S26、评估容错能力:依据从机设备的响应情况和数据内容准确度,判断从机设备是否正确识别不同信号沿斜率的预设波形电平,得出从机设备容错能力评估结果。S26. Evaluate fault tolerance: Based on the response of the slave device and the accuracy of the data content, determine whether the slave device correctly recognizes the preset waveform levels of different signal edge slopes, and obtain the fault tolerance evaluation result of the slave device.

实施例5Example 5

本实施例介绍一具体的测试场景,基于实施例3的不稳定波形电平测试过程,场景步骤如下所示:This embodiment introduces a specific test scenario based on the unstable waveform level test process of Embodiment 3. The scenario steps are as follows:

Step1:选用Xilinx Spartan-6 FPGA开发板;从机设备为EEPROM芯片;DAC芯片为AD5621;时钟频率设为100kHz;从机设备地址为0x50;FPGA时钟频率为50MHz;Step1: Select the Xilinx Spartan-6 FPGA development board; the slave device is an EEPROM chip; the DAC chip is AD5621; the clock frequency is set to 100kHz; the slave device address is 0x50; the FPGA clock frequency is 50MHz;

Step2:将FPGA开发板和DAC芯片组合连接,再将其与从机设备的时钟线SCL和数据线SDA连接,用于模拟主机设备发送不稳定的电平;Step2: Connect the FPGA development board and DAC chip combination, and then connect it to the clock line SCL and data line SDA of the slave device to simulate the host device sending unstable levels;

Step3:使用Xilinx ISE软件,编写VHDL代码来控制DAC芯片的输出电压;根据需要,通过修改DAC芯片的输入数据,模拟主机设备发送不稳定的电平;Step3: Use Xilinx ISE software to write VHDL code to control the output voltage of the DAC chip; as needed, simulate the host device to send unstable levels by modifying the input data of the DAC chip;

Step4:FPGA开发板控制DAC芯片输出不稳定的电平,例如产生噪声、干扰等;FPGA开发板发送数据信息到从机设备,例如写入一组数据到EEPROM芯片;Step4: The FPGA development board controls the DAC chip to output unstable levels, such as generating noise, interference, etc.; the FPGA development board sends data information to the slave device, such as writing a set of data to the EEPROM chip;

Step5:监测I2C总线上的电平变化和从机设备的响应,可以使用示波器或逻辑分析仪等工具;检查从机设备是否能够准确识别主机设备发送的数据信息,并与预期结果进行比较;Step5: Monitor the level changes on the I2C bus and the response of the slave device. You can use tools such as an oscilloscope or a logic analyzer; check whether the slave device can accurately identify the data information sent by the host device and compare it with the expected results;

Step6:结果评估:根据从机设备的响应情况,判断其对于不稳定电平的识别能力;如果从机设备能够准确识别主机设备发送的数据信息,即使在电平不稳定的情况下,说明从机设备具有较好的数据传输和通信可靠性。Step6: Result evaluation: Based on the response of the slave device, judge its ability to identify unstable levels; if the slave device can accurately identify the data information sent by the host device, even when the level is unstable, it means that the slave device The machine equipment has good data transmission and communication reliability.

实施例6Example 6

本实施例介绍一具体的测试场景,基于实施例4的波形斜率变化测试过程,场景步骤如下所示:This embodiment introduces a specific test scenario based on the waveform slope change test process of Embodiment 4. The scenario steps are as follows:

Step1:选用Xilinx Spartan-6 FPGA开发板;从机设备为温度传感器;上拉电阻的初始设置为10千欧;时钟频率为100kHz;从机设备地址为0x48;FPGA的时钟频率为50MHz;Step1: Select the Xilinx Spartan-6 FPGA development board; the slave device is a temperature sensor; the initial setting of the pull-up resistor is 10 kiloohms; the clock frequency is 100kHz; the slave device address is 0x48; the FPGA clock frequency is 50MHz;

Step2:连接FPGA开发板和数字电位器以及上拉电阻。在时钟线SCL和数据线SDA上添加上拉电阻,初始设置为10千欧;编写Verilog代码来控制I2C主机通信;根据需要,修改代码参数,实现上拉电阻大小的控制;Step2: Connect the FPGA development board, digital potentiometer and pull-up resistor. Add pull-up resistors on the clock line SCL and data line SDA, initially set to 10 kiloohms; write Verilog code to control I2C host communication; modify the code parameters as needed to control the size of the pull-up resistor;

Step3:改变上拉电阻的大小,例如将其改为20千欧或5千欧,记录下每次改变的数值;监测I2C总线上的电平变化和从机设备的响应,可以使用示波器或逻辑分析仪等工具;检查从机设备是否能够正确识别主机设备发送的数据信息,并与预期结果进行比较;Step3: Change the size of the pull-up resistor, for example, change it to 20 kΩ or 5 kΩ, and record the value of each change; monitor the level changes on the I2C bus and the response of the slave device, you can use an oscilloscope or logic Tools such as analyzers; check whether the slave device can correctly identify the data information sent by the host device and compare it with the expected results;

Step4:根据从机设备的响应情况,判断其对于上升沿和下降沿时间长短变化的识别能力;如果从机设备能够准确识别主机设备发送的数据信息,即使是在上升沿和下降沿时间长短变化的情况下,说明从机设备具有较好的数据传输和通信可靠性。Step4: Based on the response of the slave device, determine its ability to recognize changes in the rising and falling edge times; if the slave device can accurately identify the data information sent by the host device, even if the rising edge and falling edge times change, In this case, it shows that the slave device has better data transmission and communication reliability.

Claims (6)

1.一种I2C从机设备的容错能力测试系统,其特征在于:所述测试系统包括I2C总线、从机设备、不稳定波形电平模拟模块和波形斜率变化模拟模块;所述从机设备通过所述I2C总线与所述不稳定波形电平模拟模块相连接,所述不稳定波形电平模拟模块用于代替常规I2C通信过程中的主机设备,并向所述从机设备输出不稳定波形电平;所述I2C总线通过所述波形斜率变化模拟模块与外部电源相连接,所述外部电源用于提供所述测试系统的电能供应,所述波形斜率变化模拟模块用于改变所述I2C总线中的电平信号斜率;1. A fault-tolerant test system for I2C slave devices, characterized in that: the test system includes an I2C bus, a slave device, an unstable waveform level simulation module and a waveform slope change simulation module; the slave device passes The I2C bus is connected to the unstable waveform level simulation module. The unstable waveform level simulation module is used to replace the host device in the conventional I2C communication process and output unstable waveform voltage to the slave device. flat; the I2C bus is connected to an external power supply through the waveform slope change simulation module, the external power supply is used to provide power supply for the test system, and the waveform slope change simulation module is used to change the I2C bus The level signal slope; 所述波形斜率变化模拟模块共有2个,分别连接于所述I2C总线的时钟线SCL和数据线SDA上;每个所述波形斜率变化模拟模块均包括上拉电阻、数字电位器和第二FPGA单元;其中,所述时钟线SCL或所述数据线SDA通过所述上拉电阻与所述外部电源相连接,所述上拉电阻则通过所述数字电位器与所述第二FPGA单元相连接;There are two waveform slope change simulation modules, which are respectively connected to the clock line SCL and data line SDA of the I2C bus; each of the waveform slope change simulation modules includes a pull-up resistor, a digital potentiometer and a second FPGA Unit; wherein, the clock line SCL or the data line SDA is connected to the external power supply through the pull-up resistor, and the pull-up resistor is connected to the second FPGA unit through the digital potentiometer. ; 所述第二FPGA单元装载有预设的波形斜率变化模拟程序,所述上拉电阻的阻值在所述数字电位器的作用下呈现为可变阻值状态;所述波形斜率变化模拟程序用于通过控制所述数字电位器,改变所述上拉电阻的阻值大小,进而改变在所述时钟线SCL或所述数据线SDA上传输的预设波形电平信号沿斜率;所述从机设备用于接收不同信号沿斜率的预设波形电平,并做出响应;测试人员依据响应结果,评估所述从机设备的容错能力;The second FPGA unit is loaded with a preset waveform slope change simulation program, and the resistance of the pull-up resistor becomes a variable resistance state under the action of the digital potentiometer; the waveform slope change simulation program is By controlling the digital potentiometer, the resistance of the pull-up resistor is changed, thereby changing the edge slope of the preset waveform level signal transmitted on the clock line SCL or the data line SDA; the slave The device is used to receive preset waveform levels with different signal edge slopes and respond; the tester evaluates the fault tolerance of the slave device based on the response results; 所述波形斜率变化模拟程序,通过FPGA编程方式,使电平波形的上升沿和下降沿的持续时间及长短发生改变。The waveform slope change simulation program changes the duration and length of the rising edge and falling edge of the level waveform through FPGA programming. 2.根据权利要求1所述的一种I2C从机设备的容错能力测试系统,其特征在于:所述不稳定波形电平模拟模块由第一FPGA单元、第一DAC单元和第二DAC单元组成,所述第一FPGA单元同时连接所述第一DAC单元和所述第二DAC单元;所述第一DAC单元与时钟线SCL相连接,所述第二DAC单元与数据线SDA相连接。2. A fault-tolerant testing system for I2C slave devices according to claim 1, characterized in that: the unstable waveform level simulation module is composed of a first FPGA unit, a first DAC unit and a second DAC unit. , the first FPGA unit is connected to the first DAC unit and the second DAC unit at the same time; the first DAC unit is connected to the clock line SCL, and the second DAC unit is connected to the data line SDA. 3.根据权利要求2所述的一种I2C从机设备的容错能力测试系统,其特征在于:所述第一FPGA单元装载有预设的不稳定波形电平模拟程序,所述不稳定波形电平模拟程序用于驱动所述第一DAC单元和所述第二DAC单元,分别产生对应于所述时钟线SCL和所述数据线SDA的不稳定波形电平,并发送至所述从机设备中;所述从机设备用于接收不稳定波形电平,并做出响应;测试人员依据响应结果,评估所述从机设备的容错能力。3. A fault-tolerant testing system for an I2C slave device according to claim 2, characterized in that: the first FPGA unit is loaded with a preset unstable waveform level simulation program, and the unstable waveform level simulation program The flat simulation program is used to drive the first DAC unit and the second DAC unit, respectively generate unstable waveform levels corresponding to the clock line SCL and the data line SDA, and send them to the slave device In; the slave device is used to receive unstable waveform levels and respond; testers evaluate the fault tolerance of the slave device based on the response results. 4.根据权利要求3所述的一种I2C从机设备的容错能力测试系统,其特征在于:所述不稳定波形电平模拟程序,通过FPGA编程方式,使不稳定波形电平具有自定义的波形形状、频率和幅度参数。4. A fault-tolerant testing system for I2C slave equipment according to claim 3, characterized in that: the unstable waveform level simulation program makes the unstable waveform level have a customized value through FPGA programming. Waveform shape, frequency and amplitude parameters. 5.一种I2C从机设备的容错能力测试方法,其特征在于:所述测试方法的硬件基础为如权利要求1至4任一项所述的测试系统,所述测试方法包括不稳定波形电平测试过程和波形斜率变化测试过程;依据从机设备的规格与I2C通信协议,使从机设备先后接收不稳定波形电平和不同信号沿斜率的预设波形电平,得到从机设备的响应结果和实际接收到的数据内容;再依据响应结果和数据内容准确度,评估从机设备的容错能力;5. A fault-tolerant testing method for I2C slave equipment, characterized in that: the hardware basis of the testing method is the testing system as described in any one of claims 1 to 4, and the testing method includes unstable waveform electrical The flat test process and the waveform slope change test process; according to the specifications of the slave device and the I2C communication protocol, the slave device successively receives unstable waveform levels and preset waveform levels with different signal edge slopes, and obtains the response results of the slave device. and the actual received data content; then evaluate the fault tolerance of the slave device based on the response results and the accuracy of the data content; 所述波形斜率变化测试过程,具体包括如下步骤:The waveform slope change testing process specifically includes the following steps: S21、硬件连接:将每个波形斜率变化模拟模块中的第二FPGA单元通过数字电位器连接至对应的上拉电阻,对应于时钟线SCL和数据线SDA分别进行设置;S21. Hardware connection: Connect the second FPGA unit in each waveform slope change simulation module to the corresponding pull-up resistor through a digital potentiometer, and set the clock line SCL and data line SDA respectively; S22、FPGA编程:使用FPGA开发工具,编写波形斜率变化模拟程序,控制数字电位器,使时钟线SCL和/或数据线SDA上传输的预设波形电平信号沿斜率发生改变;S22. FPGA programming: Use FPGA development tools to write a waveform slope change simulation program and control the digital potentiometer to change the slope of the preset waveform level signal transmitted on the clock line SCL and/or data line SDA; S23、配置从机设备:将从机设备接入I2C总线,依据从机设备的规格,配置从机设备的地址和时钟频率;S23. Configure the slave device: Connect the slave device to the I2C bus, and configure the address and clock frequency of the slave device according to the specifications of the slave device; S24、测试数据发送:将不稳定波形电平模拟程序产生的不稳定波形电平固定为预设波形电平,通过波形斜率变化模拟程序,将改变了信号沿斜率的预设波形电平通过时钟线SCL和/或数据线SDA发送至从机设备;S24. Test data transmission: Fix the unstable waveform level generated by the unstable waveform level simulation program to the preset waveform level. Through the waveform slope change simulation program, the preset waveform level with changed signal edge slope is passed through the clock. Line SCL and/or data line SDA is sent to the slave device; S25、从机设备响应监测:使用监测工具监测从机设备对不同信号沿斜率的预设波形电平的响应情况,呈现从机设备接收到的数据内容;S25. Slave device response monitoring: Use monitoring tools to monitor the response of the slave device to the preset waveform levels of different signal edge slopes, and present the data content received by the slave device; S26、评估容错能力:依据从机设备的响应情况和数据内容准确度,判断从机设备是否正确识别不同信号沿斜率的预设波形电平,得出从机设备容错能力评估结果。S26. Evaluate fault tolerance: Based on the response of the slave device and the accuracy of the data content, determine whether the slave device correctly recognizes the preset waveform levels of different signal edge slopes, and obtain the fault tolerance evaluation result of the slave device. 6.根据权利要求5所述的一种I2C从机设备的容错能力测试方法,其特征在于:所述不稳定波形电平测试过程,具体包括如下步骤:6. A fault-tolerance testing method for an I2C slave device according to claim 5, characterized in that: the unstable waveform level testing process specifically includes the following steps: S11、硬件连接:将第一FPGA单元通过第一DAC单元和第二DAC单元分别连接至I2C总线的时钟线SCL和数据线SDA;S11. Hardware connection: Connect the first FPGA unit to the clock line SCL and data line SDA of the I2C bus through the first DAC unit and the second DAC unit respectively; S12、FPGA编程:使用FPGA开发工具,编写不稳定波形电平模拟程序,控制第一DAC单元和/或第二DAC单元的输出端产生不稳定波形电平;S12. FPGA programming: Use FPGA development tools to write an unstable waveform level simulation program to control the output end of the first DAC unit and/or the second DAC unit to generate unstable waveform levels; S13、配置从机设备:将从机设备接入I2C总线,依据从机设备的规格,配置从机设备的地址和时钟频率;S13. Configure the slave device: Connect the slave device to the I2C bus, and configure the address and clock frequency of the slave device according to the specifications of the slave device; S14、测试数据发送:将产生的不稳定波形电平通过时钟线SCL和/或数据线SDA发送至从机设备;S14. Test data transmission: Send the generated unstable waveform level to the slave device through the clock line SCL and/or the data line SDA; S15、从机设备响应监测:使用监测工具监测从机设备对不稳定波形电平的响应情况,呈现从机设备接收到的数据内容;S15. Slave device response monitoring: Use monitoring tools to monitor the response of the slave device to unstable waveform levels and present the data content received by the slave device; S16、评估容错能力:依据从机设备的响应情况和数据内容准确度,判断从机设备是否正确识别不稳定波形电平,得出从机设备容错能力评估结果。S16. Evaluate fault tolerance: Based on the response of the slave device and the accuracy of the data content, determine whether the slave device correctly recognizes the unstable waveform level, and obtain the fault tolerance evaluation result of the slave device.
CN202311825407.3A 2023-12-28 2023-12-28 Fault tolerance capability test system and method for I2C slave equipment Active CN117478548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311825407.3A CN117478548B (en) 2023-12-28 2023-12-28 Fault tolerance capability test system and method for I2C slave equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311825407.3A CN117478548B (en) 2023-12-28 2023-12-28 Fault tolerance capability test system and method for I2C slave equipment

Publications (2)

Publication Number Publication Date
CN117478548A CN117478548A (en) 2024-01-30
CN117478548B true CN117478548B (en) 2024-03-12

Family

ID=89640107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311825407.3A Active CN117478548B (en) 2023-12-28 2023-12-28 Fault tolerance capability test system and method for I2C slave equipment

Country Status (1)

Country Link
CN (1) CN117478548B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173350B1 (en) * 1997-10-17 2001-01-09 Eveready Battery Company Inc. System and method for writing data to a serial bus from a smart battery
CN101782885A (en) * 2009-12-29 2010-07-21 福建星网锐捷网络有限公司 Method and device for adjusting pull-up resistor of IIC bus and IIC bus device
CN101931393A (en) * 2009-06-24 2010-12-29 龙迅半导体科技(合肥)有限公司 I2C output level circuit integrated with gradient control
CN103377105A (en) * 2013-07-04 2013-10-30 曙光信息产业(北京)有限公司 Serial bus test method
CN103558574A (en) * 2013-10-24 2014-02-05 国家电网公司 Method for testing software fault-tolerant capability of intelligent ammeter based on EEPROM data reading and writing
CN104901749A (en) * 2015-06-09 2015-09-09 北京浩正泰吉科技有限公司 Compact peripheral component interconnect (CPCI) interface based 1553B bus electric layer fault injection communication module
CN208335177U (en) * 2018-05-25 2019-01-04 深圳市度信科技有限公司 A kind of signal slope control system
CN109189619A (en) * 2018-08-13 2019-01-11 光梓信息科技(上海)有限公司 I2C bus compatible test method, system, storage medium and equipment
CN109522263A (en) * 2018-11-16 2019-03-26 郑州云海信息技术有限公司 A kind of I2C link monitoring system
CN111258828A (en) * 2020-01-15 2020-06-09 深圳宝龙达信创科技股份有限公司 I2C bus test method, test device and computer readable storage medium
CN111464375A (en) * 2020-02-28 2020-07-28 湖北文理学院 A CAN bus signal testing system and testing method thereof
CN116668265A (en) * 2023-06-21 2023-08-29 兰州大学 Method and system for monitoring I2C bus communication abnormality
CN117238187A (en) * 2023-10-07 2023-12-15 中国人民解放军96921部队 1553B bus teaching training system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210333326A1 (en) * 2020-04-24 2021-10-28 Peter Shun Shen Wang Switch-Mode Based Interposer Enabling Self-Testing Of An MCM Without Known Good Die

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173350B1 (en) * 1997-10-17 2001-01-09 Eveready Battery Company Inc. System and method for writing data to a serial bus from a smart battery
CN101931393A (en) * 2009-06-24 2010-12-29 龙迅半导体科技(合肥)有限公司 I2C output level circuit integrated with gradient control
CN101782885A (en) * 2009-12-29 2010-07-21 福建星网锐捷网络有限公司 Method and device for adjusting pull-up resistor of IIC bus and IIC bus device
CN103377105A (en) * 2013-07-04 2013-10-30 曙光信息产业(北京)有限公司 Serial bus test method
CN103558574A (en) * 2013-10-24 2014-02-05 国家电网公司 Method for testing software fault-tolerant capability of intelligent ammeter based on EEPROM data reading and writing
CN104901749A (en) * 2015-06-09 2015-09-09 北京浩正泰吉科技有限公司 Compact peripheral component interconnect (CPCI) interface based 1553B bus electric layer fault injection communication module
CN208335177U (en) * 2018-05-25 2019-01-04 深圳市度信科技有限公司 A kind of signal slope control system
CN109189619A (en) * 2018-08-13 2019-01-11 光梓信息科技(上海)有限公司 I2C bus compatible test method, system, storage medium and equipment
CN109522263A (en) * 2018-11-16 2019-03-26 郑州云海信息技术有限公司 A kind of I2C link monitoring system
CN111258828A (en) * 2020-01-15 2020-06-09 深圳宝龙达信创科技股份有限公司 I2C bus test method, test device and computer readable storage medium
CN111464375A (en) * 2020-02-28 2020-07-28 湖北文理学院 A CAN bus signal testing system and testing method thereof
CN116668265A (en) * 2023-06-21 2023-08-29 兰州大学 Method and system for monitoring I2C bus communication abnormality
CN117238187A (en) * 2023-10-07 2023-12-15 中国人民解放军96921部队 1553B bus teaching training system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I~2C总线板卡热插拔电路设计;蒋婷;蔡洁明;印琴;;电子与封装;20200820(08);全文 *
NISP: An NFC to I2C Sensing Platform With Supply Interference Reduction for Flexible RFID Sensor Applications;Jun Tan等;IEEE Journal of Radio Frequency Identification;20200122;全文 *

Also Published As

Publication number Publication date
CN117478548A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US6546507B1 (en) Method and apparatus for operational envelope testing of busses to identify halt limits
US6502212B1 (en) Method and apparatus for bus parameter optimization using probes of system configurations
US6473871B1 (en) Method and apparatus for HASS testing of busses under programmable control
TWI424176B (en) Systems and methods for testing integrated circuit devices
CN110268277B (en) Functional tester for printed circuit boards, and related systems and methods
CN103531247B (en) test device
US5682337A (en) High speed three-state sampling
CN103149526B (en) PCBA board test macro and method
US11940483B2 (en) Systems, methods and devices for high-speed input/output margin testing
US20090158093A1 (en) Motherboard tester
CN101932943B (en) Semiconductor device test system
JP2023550645A (en) Systems, methods and devices for high-speed input/output margin testing
CN110412976B (en) A functional test system and test method for a motor controller PCBA board
JP2006003361A (en) Semiconductor test device for simultaneously testing plural semiconductor elements
CN104572382A (en) I2C (inter-integrated circuit) bus test jig
JP2022076479A (en) Systems, methods and equipment for high speed I / O margin testing
TWI739154B (en) Slew rate programming in automatic test equipment (ate)
US20150293828A1 (en) Testing apparatus, testing system and testing method thereof
CN117478548B (en) Fault tolerance capability test system and method for I2C slave equipment
US7721260B2 (en) Embedded Test I/O Engine
TWM458558U (en) Control interface for testing system
KR100794147B1 (en) Semiconductor device tester control device
CN216209527U (en) GPIO interface state testing device
KR20230009628A (en) Evaluation System for Test Equipment and Emulator Therefor
CN118393326B (en) Reliability testing device and method for FPGA device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 610096 Sichuan Province, Chengdu City, No. 399, West Section of Fucheng Avenue, Chengdu High-tech Development Zone, China (Sichuan) Free Trade Pilot Zone, Building 7, Unit 3, 14th Floor, Room 1409

Patentee after: Chengdu Xingtuo Microelectronics Technology Co.,Ltd.

Country or region after: China

Address before: No. 1409, 14th Floor, Unit 3, Building 7, No. 399 Fucheng Avenue West Section, High tech Zone, Chengdu City, Sichuan Province

Patentee before: Chengdu CETC Xingtuo Technology Co.,Ltd.

Country or region before: China