[go: up one dir, main page]

CN116789775A - Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants - Google Patents

Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants Download PDF

Info

Publication number
CN116789775A
CN116789775A CN202210249178.4A CN202210249178A CN116789775A CN 116789775 A CN116789775 A CN 116789775A CN 202210249178 A CN202210249178 A CN 202210249178A CN 116789775 A CN116789775 A CN 116789775A
Authority
CN
China
Prior art keywords
plant
protein
gmgras487
salt tolerance
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210249178.4A
Other languages
Chinese (zh)
Inventor
张劲松
陶建军
张万科
韦伟
阴翠翠
陈受宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN202210249178.4A priority Critical patent/CN116789775A/en
Publication of CN116789775A publication Critical patent/CN116789775A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The application discloses an application of a soybean transcription factor GmGRAS487 in regulation and control of plant salt tolerance. The soybean transcription factor GmGRAS487 disclosed by the application is a protein with an amino acid sequence of sequence 2. The application transfers the coding gene of the transcription factor GmGRAS487 into the hairy root of the acceptor soybean to obtain the transgenic hairy root and the transgenic chimera, and compared with the transgenic empty vector soybean hairy root, the salt tolerance of the transgenic soybean hairy root is obviously improved. The transcription factor GmGRAS487 and the coding gene thereof can regulate and control the salt tolerance of plants, and have important theoretical and practical significance for cultivating high salt tolerance varieties of plants.

Description

大豆转录因子GmGRAS487在植物耐盐性调控中的应用Application of soybean transcription factor GmGRAS487 in regulating plant salt tolerance

技术领域Technical field

本发明涉及生物技术领域中,大豆转录因子GmGRAS487在植物耐盐性调控中的应用。The present invention relates to the application of soybean transcription factor GmGRAS487 in the regulation of plant salt tolerance in the field of biotechnology.

背景技术Background technique

环境中物理、化学因素的变化,例如干旱、盐碱、冷害、冻害、水涝等胁迫因素是造成农作物严重减产的原因之一。美国在1939年-1978年的40年间,保险业对作物减产的赔付统计数据表明,由于盐害及干旱引起减产的赔付比例约占40.8%,高于涝(16.4%)、低温(13.8%)、冰雹(11.3%)和风(7.0%),更是远高于虫灾(4.5%)、病害(2.7%)和其他因素。因此,培育耐盐/旱性作物是种植业的主要目标之一。提高作物的耐盐/旱性,除了利用传统的育种方法,目前,分子遗传育种已经成为科技工作者所关注的领域之一。Changes in physical and chemical factors in the environment, such as drought, salinity, cold damage, freezing damage, waterlogging and other stress factors are one of the reasons for severe crop yield reduction. In the 40 years from 1939 to 1978 in the United States, the insurance industry’s compensation statistics for crop production losses show that the proportion of compensation for crop production losses due to salt damage and drought accounted for approximately 40.8%, which was higher than waterlogging (16.4%) and low temperature (13.8%). , hail (11.3%) and wind (7.0%), which are much higher than insect disasters (4.5%), diseases (2.7%) and other factors. Therefore, developing salt/drought tolerant crops is one of the main goals of the crop industry. To improve the salt/drought tolerance of crops, in addition to using traditional breeding methods, molecular genetic breeding has become one of the areas of concern for scientific and technological workers.

GRAS结构域蛋白是植物特有的一类蛋白,一般包含400-700个氨基酸残基,至少可以分为13个亚家族。作为植物转录因子,该家族蛋白参与许多生物学过程,例如,赤霉素信号传导、根和茎的发育等等。GRAS domain proteins are a type of protein unique to plants. They generally contain 400-700 amino acid residues and can be divided into at least 13 subfamilies. As plant transcription factors, this family of proteins is involved in many biological processes, such as gibberellin signaling, root and shoot development, etc.

发明内容Contents of the invention

本发明所要解决的技术问题是如何提高植物的耐盐性。The technical problem to be solved by the present invention is how to improve the salt tolerance of plants.

为解决上述技术问题,本发明首先提供了蛋白质或调控所述蛋白质活性或含量的物质的下述任一应用:In order to solve the above technical problems, the present invention first provides any of the following applications of proteins or substances that regulate the activity or content of the proteins:

D1)调控植物耐盐性;D1) Regulating plant salt tolerance;

D2)制备调控植物耐盐性产品;D2) Prepare products for regulating plant salt tolerance;

D3)培育耐盐性增强植物;D3) Cultivate plants with enhanced salt tolerance;

D4)制备培育耐盐性增强植物产品;D4) Prepare and cultivate plant products with enhanced salt tolerance;

D5)植物育种;D5)Plant breeding;

所述蛋白质来源于大豆,其名称为GmGRAS487,为如下A1)、A2)或A3):The protein is derived from soybeans, and its name is GmGRAS487, which is as follows A1), A2) or A3):

A1)氨基酸序列是序列2的蛋白质;A1) The amino acid sequence is a protein of sequence 2;

A2)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A2) A protein that has the same function by substituting and/or deleting and/or adding one or several amino acid residues to the amino acid sequence shown in Sequence 2 in the sequence listing;

A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。A3) A fusion protein obtained by connecting a tag to the N-terminus or/and C-terminus of A1) or A2).

为了使A1)中的蛋白质便于纯化,可在由序列表中序列2所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如下表所示的标签。In order to facilitate the purification of the protein in A1), a tag as shown in the table below can be connected to the amino terminus or carboxyl terminus of the protein consisting of the amino acid sequence shown in Sequence 2 in the sequence listing.

表:标签的序列Table: Sequence of tags

标签Label 残基Residues 序列sequence Poly-ArgPoly-Arg 5-6(通常为5个)5-6 (usually 5) RRRRRRRRRR Poly-HisPoly-His 2-10(通常为6个)2-10 (usually 6) HHHHHHHHHHHH FLAGFLAG 88 DYKDDDDKDYKDDDDK Strep-tag IIStrep-tag II 88 WSHPQFEKWSHPQFEK c-mycc-myc 1010 EQKLISEEDLEQKLISEEDL

上述A2)中的GmGRAS487蛋白质,为与序列2所示蛋白质的氨基酸序列具有75%或75%以上同一性且具有相同功能的蛋白质。所述具有75%或75%以上同一性为具有75%、具有80%、具有85%、具有90%、具有95%、具有96%、具有97%、具有98%或具有99%的同一性。The GmGRAS487 protein in A2) above is a protein that has 75% or more identity with the amino acid sequence of the protein shown in Sequence 2 and has the same function. The said having 75% or more identity means having 75%, having 80%, having 85%, having 90%, having 95%, having 96%, having 97%, having 98% or having 99% identity. .

上述A2)中的GmGRAS487蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The GmGRAS487 protein in A2) above can be synthesized artificially, or its encoding gene can be synthesized first and then biologically expressed.

上述A2)中的GmGRAS487蛋白质的编码基因可通过将序列1所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上上表所示的标签的编码序列得到。其中,序列1所示的DNA分子编码序列2所示的GmGRAS487蛋白质。The gene encoding the GmGRAS487 protein in the above A2) can be obtained by deleting the codon of one or several amino acid residues in the DNA sequence shown in Sequence 1, and/or performing a missense mutation of one or several base pairs, and /Or obtained by connecting the coding sequence of the tag shown in the above table to its 5' end and/or 3' end. Among them, the DNA molecule shown in sequence 1 encodes the GmGRAS487 protein shown in sequence 2.

上述应用中,所述物质可为下述B1)至B9)中的任一种:In the above application, the substance can be any one of the following B1) to B9):

B1)编码GmGRAS487的核酸分子;B1) Nucleic acid molecules encoding GmGRAS487;

B2)含有B1)所述核酸分子的表达盒;B2) An expression cassette containing the nucleic acid molecule described in B1);

B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B3) A recombinant vector containing the nucleic acid molecule described in B1), or a recombinant vector containing the expression cassette described in B2);

B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;B4) A recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3);

B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;B5) A transgenic plant cell line containing the nucleic acid molecule described in B1), or a transgenic plant cell line containing the expression cassette described in B2);

B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;B6) Transgenic plant tissue containing the nucleic acid molecule described in B1), or transgenic plant tissue containing the expression cassette described in B2);

B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官;B7) Transgenic plant organs containing the nucleic acid molecule described in B1), or transgenic plant organs containing the expression cassette described in B2);

B8)降低GmGRAS487表达量的核酸分子;B8) Nucleic acid molecules that reduce the expression of GmGRAS487;

B9)含有B8)所述核酸分子的表达盒、重组载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。B9) Expression cassette, recombinant vector, recombinant microorganism, transgenic plant cell line, transgenic plant tissue or transgenic plant organ containing the nucleic acid molecule described in B8).

上述应用中,B1)所述核酸分子可为如下b11)或b12)或b13)或b14):In the above application, the nucleic acid molecule described in B1) can be the following b11) or b12) or b13) or b14):

b11)编码序列是序列表中序列1的cDNA分子或DNA分子;b11) The coding sequence is the cDNA molecule or DNA molecule of sequence 1 in the sequence listing;

b12)序列表中序列1的cDNA分子或DNA分子;b12) cDNA molecule or DNA molecule of sequence 1 in the sequence listing;

b13)与b11)或b12)限定的核苷酸序列具有75%或75%以上同一性,且编码GmGRAS487的cDNA分子或DNA分子;b13) A cDNA molecule or DNA molecule that has 75% or more identity with the nucleotide sequence defined by b11) or b12) and encodes GmGRAS487;

b14)在严格条件下与b11)或b12)或b13)限定的核苷酸序列杂交,且编码GmGRAS487的cDNA分子或DNA分子。b14) A cDNA molecule or DNA molecule that hybridizes to the nucleotide sequence defined by b11) or b12) or b13) under stringent conditions and encodes GmGRAS487.

其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA, etc.

本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码GmGRAS487蛋白质的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的GmGRAS487蛋白质的核苷酸序列75%或者更高同一性的核苷酸,只要编码GmGRAS487蛋白质且具有GmGRAS487蛋白质功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those of ordinary skill in the art can easily mutate the nucleotide sequence encoding the GmGRAS487 protein of the present invention using known methods, such as directed evolution and point mutation. Those nucleotides that have been artificially modified and have 75% or higher identity with the nucleotide sequence of the GmGRAS487 protein isolated in the present invention, as long as they encode the GmGRAS487 protein and have the function of the GmGRAS487 protein, are derived from the nucleic acid of the present invention. The nucleotide sequence is equivalent to the sequence of the present invention.

这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码序列2所示的氨基酸序列组成的蛋白质的核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes 75% or higher, or 85% or higher, or 90% or higher, or 95% or Nucleotide sequences of higher identity. Identity can be assessed with the naked eye or with computer software. Using computer software, the identity between two or more sequences can be expressed as a percentage (%), which can be used to evaluate the identity between related sequences.

上述应用中,所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5MNaPO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次;也可为:2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;也可为:0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。In the above application, the stringent conditions can be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5MNaPO 4 and 1mM EDTA, 2×SSC, 0.1% at 50°C Rinse in SDS; also: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse in 50°C, 1×SSC, 0.1% SDS; also: 50°C, Hybridize in a mixed solution of 7% SDS, 0.5M NaPO and 1mM EDTA , rinse in 0.5×SSC, 0.1% SDS at 50°C; also: 50°C, in 7% SDS, 0.5M NaPO and 1mM Hybridization in a mixed solution of EDTA, rinsed in 0.1×SSC, 0.1% SDS at 50°C; alternatively: hybridization at 50°C, in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, at 65°C. Rinse in 0.1×SSC, 0.1% SDS; also: hybridize in 6×SSC, 0.5% SDS solution at 65°C, and then use 2×SSC, 0.1% SDS and 1×SSC, 0.1% SDS. Wash the membrane once; it can also be: hybridize and wash the membrane twice in a solution of 2×SSC, 0.1% SDS at 68°C, 5 min each time, and then in a solution of 0.5×SSC, 0.1% SDS, at 68°C. Hybridize and wash the membrane twice, 15 minutes each time; it can also be: hybridize and wash the membrane in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS at 65°C.

上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。The above-mentioned 75% or above identity may be 80%, 85%, 90% or 95% or above identity.

上述应用中,B2)所述的含有编码GmGRAS487蛋白质的核酸分子的表达盒(GmGRAS487基因表达盒),是指能够在宿主细胞中表达GmGRAS487蛋白质的DNA,该DNA不但可包括启动GmGRAS487基因转录的启动子,还可包括终止GmGRAS487基因转录的终止子。进一步,所述表达盒还可包括增强子序列。可用于本发明的启动子包括但不限于:组成型启动子,组织、器官和发育特异的启动子,和诱导型启动子。启动子的例子包括但不限于:花椰菜花叶病毒的组成型启动子35S;来自西红柿的创伤诱导型启动子,亮氨酸氨基肽酶("LAP",Chao等人(1999)Plant Physiol 120:979-992);来自烟草的化学诱导型启动子,发病机理相关1(PR1)(由水杨酸和BTH(苯并噻二唑-7-硫代羟酸S-甲酯)诱导);西红柿蛋白酶抑制剂II启动子(PIN2)或LAP启动子(均可用茉莉酮酸甲酯诱导);热休克启动子(美国专利5,187,267);四环素诱导型启动子(美国专利5,057,422);种子特异性启动子,如谷子种子特异性启动子pF128(CN101063139B(中国专利200710099169.7)),种子贮存蛋白质特异的启动子(例如,菜豆球蛋白、napin,oleosin和大豆beta conglycin的启动子(Beachy等人(1985)EMBO J.4:3047-3053))。它们可单独使用或与其它的植物启动子结合使用。此处引用的所有参考文献均全文引用。合适的转录终止子包括但不限于:农杆菌胭脂碱合成酶终止子(NOS终止子)、花椰菜花叶病毒CaMV 35S终止子、tml终止子、豌豆rbcS E9终止子和胭脂氨酸和章鱼氨酸合酶终止子(参见,例如:Odell等人(I985)Nature 313:810;Rosenberg等人(1987)Gene,56:125;Guerineau等人(1991)Mol.Gen.Genet,262:141;Proudfoot(1991)Cell,64:671;Sanfacon等人Genes Dev.,5:141;Mogen等人(1990)Plant Cell,2:1261;Munroe等人(1990)Gene,91:151;Ballad等人(1989)Nucleic Acids Res.17:7891;Joshi等人(1987)Nucleic Acid Res.,15:9627)。In the above application, the expression cassette containing the nucleic acid molecule encoding the GmGRAS487 protein (GmGRAS487 gene expression cassette) described in B2) refers to the DNA that can express the GmGRAS487 protein in the host cell. The DNA can not only include the promoter for initiating the transcription of the GmGRAS487 gene. The terminator may also include a terminator that terminates the transcription of the GmGRAS487 gene. Furthermore, the expression cassette may also include an enhancer sequence. Promoters useful in the present invention include, but are not limited to, constitutive promoters, tissue, organ and development specific promoters, and inducible promoters. Examples of promoters include, but are not limited to: the constitutive promoter 35S from cauliflower mosaic virus; the wound-inducible promoter from tomato, leucine aminopeptidase ("LAP", Chao et al. (1999) Plant Physiol 120: 979-992); chemically inducible promoter, pathogenesis-related 1 (PR1) from tobacco (induced by salicylic acid and BTH (benzothiadiazole-7-thiocarboxylic acid S-methyl ester)); tomatoes Protease inhibitor II promoter (PIN2) or LAP promoter (both can be induced by methyl jasmonate); heat shock promoter (U.S. Patent 5,187,267); tetracycline inducible promoter (U.S. Patent 5,057,422) ; Seed-specific promoters, such as millet seed-specific promoter pF128 (CN101063139B (Chinese Patent 200710099169.7)), seed storage protein-specific promoters (for example, promoters of phaseolin, napin, oleosin and soybean beta conglycin (Beachy et al. (1985) EMBO J.4:3047-3053)). They can be used alone or in combination with other plant promoters. All references cited herein are cited in their entirety. Suitable transcription terminators include, but are not limited to: Agrobacterium nopaline synthase terminator (NOS terminator), cauliflower mosaic virus CaMV 35S terminator, tml terminator, pea rbcS E9 terminator and nopaline and octopine Synthase terminator (see, for example: Odell et al. ( 1985 ) Nature 313:810; Rosenberg et al. (1987) Gene, 56:125; Guerineau et al. (1991) Mol. Gen. Genet, 262:141; Proudfoot (1991) Cell, 64:671; Sanfacon et al. Genes Dev., 5:141; Mogen et al. (1990) Plant Cell, 2:1261; Munroe et al. (1990) Gene, 91:151; Ballad et al. (1989) ) Nucleic Acids Res. 17:7891; Joshi et al. (1987) Nucleic Acid Res., 15:9627).

可用现有的表达载体构建含有所述GmGRAS487基因表达盒的重组载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pAHC25、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa、PSN1301或pCAMBIA1391-Xb(CAMBIA公司)等。所述植物表达载体还可包含外源基因的3′端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3′端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂碱合成酶基因Nos)、植物基因(如大豆贮存蛋白基因)3′端转录的非翻译区均具有类似功能。使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对氨甲喋呤抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。Existing expression vectors can be used to construct a recombinant vector containing the GmGRAS487 gene expression cassette. The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment, etc. Such as pAHC25, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa, PSN1301 or pCAMBIA1391-Xb (CAMBIA Company), etc. The plant expression vector may also contain the 3' untranslated region of the foreign gene, that is, containing the poly(A) signal and any other DNA fragments involved in mRNA processing or gene expression. The poly(A) signal can guide poly(A) to be added to the 3′ end of the mRNA precursor, such as the Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopaline synthase gene Nos), plant genes (such as soybean The untranslated regions transcribed at the 3' end of storage protein genes all have similar functions. When using the gene of the present invention to construct a plant expression vector, enhancers can also be used, including translation enhancers or transcription enhancers. These enhancer regions can be ATG start codons or adjacent region start codons, etc., but they must be the same as the coding The reading frames of the sequences are identical to ensure correct translation of the entire sequence. The translation control signals and initiation codons come from a wide range of sources, and may be natural or synthetic. The translation initiation region can be derived from the transcription initiation region or from a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding genes encoding enzymes or luminescent compounds that can produce color changes (GUS genes, luciferase genes) that can be expressed in plants. genes, etc.), antibiotic marker genes (such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, and the hph gene that confers resistance to the antibiotic hygromycin , and the dhfr gene that confers resistance to methotrexate, the EPSPS gene that confers resistance to glyphosate) or resistance to chemical reagent marker genes (such as herbicide resistance genes), mannose-6- that provides the ability to metabolize mannose Phosphate isomerase gene. Considering the safety of transgenic plants, the transformed plants can be directly screened by stress without adding any selective marker genes.

上述应用中,所述载体可为质粒、黏粒、噬菌体或病毒载体。所述质粒具体可为pROKII载体或pZH01载体。In the above applications, the vector can be a plasmid, cosmid, phage or viral vector. The plasmid may specifically be pROKII vector or pZH01 vector.

B3)所述重组载体具体可为pROKII-GmGRAS487。所述pROKII-GmGRAS487为将pROKII载体的BamHI和KpnI识别序列间的DNA片段替换为序列表中序列1所示的GmGRAS487基因得到的重组载体,能表达序列表中序列2所示的GmGRAS487与NPTⅡ所形成的融合蛋白质。B3) The recombinant vector may specifically be pROKII-GmGRAS487. The pROKII-GmGRAS487 is a recombinant vector obtained by replacing the DNA fragment between the BamHI and KpnI recognition sequences of the pROKII vector with the GmGRAS487 gene shown in Sequence 1 in the Sequence Listing, and can express GmGRAS487 shown in Sequence 2 in the Sequence Listing and NPTⅡ. The fusion protein formed.

B9)所述重组载体具体可为pZH01-GmGRAS487-RNAi,pZH01-GmGRAS487-RNAi为将序列1的第1077位至1363位所示的DNA片段两次插入pZH01的多克隆位点间得到的重组载体,两次的插入片段方向相反。B9) The recombinant vector can specifically be pZH01-GmGRAS487-RNAi. pZH01-GmGRAS487-RNAi is a recombinant vector obtained by inserting the DNA fragment shown at positions 1077 to 1363 of Sequence 1 twice into the multiple cloning site of pZH01. , the two inserted fragments are in opposite directions.

上述应用中,所述微生物可为酵母、细菌、藻或真菌。其中,细菌可为农杆菌,如发根农杆菌K599。In the above applications, the microorganism can be yeast, bacteria, algae or fungi. Among them, the bacteria can be Agrobacterium, such as Agrobacterium rhizogenes K599.

上述应用中,所述转基因植物细胞系、转基因植物组织和转基因植物器官均不包括繁殖材料。In the above applications, the transgenic plant cell lines, transgenic plant tissues and transgenic plant organs do not include propagation materials.

上述应用中,所述植物可为M1)或M2)或M3):In the above application, the plant can be M1) or M2) or M3):

M1)双子叶植物或单子叶植物;M1) Dicotyledonous plants or monocotyledonous plants;

M2)豆科植物;M2) Legumes;

M3)大豆。M3) Soybeans.

本发明还提供给了下述任一方法:The present invention also provides any of the following methods:

X1)培育耐盐性增强植物的方法,包括敲除受体植物中表达GmGRAS487的编码基因,或抑制受体植物中GmGRAS487编码基因的表达,或降低受体植物中GmGRAS487的含量,或降低受体植物中GmGRAS487的活性,得到耐盐性增强的目的植物;X1) Methods for cultivating plants with enhanced salt tolerance, including knocking out the coding gene expressing GmGRAS487 in the recipient plant, or inhibiting the expression of the GmGRAS487 coding gene in the recipient plant, or reducing the content of GmGRAS487 in the recipient plant, or reducing the receptor The activity of GmGRAS487 in plants can lead to target plants with enhanced salt tolerance;

X2)增强植物耐盐性的方法,包括敲除受体植物中表达GmGRAS487的编码基因,或抑制受体植物中GmGRAS487编码基因的表达,或降低受体植物中GmGRAS487的含量,或降低受体植物中GmGRAS487的活性,得到耐盐性增强的目的植物,实现植物耐盐性的增强。X2) Methods for enhancing plant salt tolerance, including knocking out the gene encoding GmGRAS487 in the recipient plant, or inhibiting the expression of the gene encoding GmGRAS487 in the recipient plant, or reducing the content of GmGRAS487 in the recipient plant, or reducing the amount of GmGRAS487 in the recipient plant. The activity of GmGRAS487 can be used to obtain target plants with enhanced salt tolerance, thus achieving the enhancement of plant salt tolerance.

上述方法中,X1)和X2)中抑制受体植物中GmGRAS487编码基因的表达可通过向所述受体植物导入抑制GmGRAS487编码基因的表达的核酸分子或表达所述核酸分子的重组载体实现。In the above method, in X1) and X2), inhibiting the expression of the gene encoding GmGRAS487 in the recipient plant can be achieved by introducing into the recipient plant a nucleic acid molecule that inhibits the expression of the gene encoding GmGRAS487 or a recombinant vector expressing the nucleic acid molecule.

上述方法中,所述编码基因可为B1)所述核酸分子。In the above method, the encoding gene may be the nucleic acid molecule described in B1).

上述方法中,其中所述GmGRAS487的编码基因可先进行如下修饰,再导入受体植物中,以达到更好的表达效果:In the above method, the encoding gene of GmGRAS487 can be modified as follows first, and then introduced into the recipient plant to achieve better expression effect:

1)根据实际需要进行修饰和优化,以使基因高效表达;例如,可根据受体植物所偏爱的密码子,在保持本发明所述GmGRAS487的编码基因的氨基酸序列的同时改变其密码子以符合植物偏爱性;优化过程中,最好能使优化后的编码序列中保持一定的GC含量,以最好地实现植物中导入基因的高水平表达,其中GC含量可为35%、多于45%、多于50%或多于约60%;1) Modify and optimize according to actual needs to enable efficient expression of the gene; for example, according to the codons preferred by the recipient plant, the codons of the GmGRAS487 encoding gene of the present invention can be changed while maintaining the amino acid sequence to conform to the codons preferred by the recipient plant. Plant preference; during the optimization process, it is best to maintain a certain GC content in the optimized coding sequence to best achieve high-level expression of the introduced genes in plants, where the GC content can be 35% or more than 45% , more than 50% or more than about 60%;

2)修饰邻近起始甲硫氨酸的基因序列,以使翻译有效起始;例如,利用在植物中已知的有效的序列进行修饰;2) Modify the gene sequence adjacent to the starting methionine to enable efficient initiation of translation; for example, use a known effective sequence in plants for modification;

3)与各种植物表达的启动子连接,以利于其在植物中的表达;所述启动子可包括组成型、诱导型、时序调节、发育调节、化学调节、组织优选和组织特异性启动子;启动子的选择将随着表达时间和空间需要而变化,而且也取决于靶物种;例如组织或器官的特异性表达启动子,根据需要受体在发育的什么时期而定;尽管证明了来源于双子叶植物的许多启动子在单子叶植物中是可起作用的,反之亦然,但是理想地,选择双子叶植物启动子用于双子叶植物中的表达,单子叶植物的启动子用于单子叶植物中的表达;3) Connect to promoters expressed in various plants to facilitate their expression in plants; the promoters may include constitutive, inducible, temporal regulation, developmental regulation, chemical regulation, tissue-preferred and tissue-specific promoters ;The choice of promoter will vary with the temporal and spatial requirements for expression, and will also depend on the target species; e.g. tissue or organ specific expression promoters, depending on at what stage of development the receptor is required; although proven sources Many promoters for dicots will work in monocots and vice versa, but ideally, a dicot promoter is selected for expression in dicots and a monocot promoter for Expression in monocots;

4)与适合的转录终止子连接,也可以提高本发明基因的表达效率;例如来源于CaMV的tml,来源于rbcS的E9;任何已知在植物中起作用的可得到的终止子都可以与本发明基因进行连接;4) Connecting with a suitable transcription terminator can also improve the expression efficiency of the gene of the invention; for example, tml derived from CaMV, E9 derived from rbcS; any available terminator known to work in plants can be combined with The genes of the present invention are connected;

5)引入增强子序列,如内含子序列(例如来源于Adhl和bronzel)和病毒前导序列(例如来源于TMV,MCMV和AMV)。5) Introducing enhancer sequences such as intron sequences (eg derived from Adhl and bronzel) and viral leader sequences (eg derived from TMV, MCMV and AMV).

所述GmGRAS487的编码基因可利用含有所述GmGRAS487的编码基因的重组载体导入受体植物。所述重组载体具体可为所述pCAMBIA1301-GmGRAS487。The GmGRAS487 encoding gene can be introduced into the recipient plant using a recombinant vector containing the GmGRAS487 encoding gene. The recombinant vector may specifically be the pCAMBIA1301-GmGRAS487.

所述重组载体可通过使用Ti质粒,Ri质粒,植物病毒载体,直接DNA转化,显微注射,电穿孔,农杆菌介导等常规生物方法导入植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是单子叶植物,也可以是双子叶植物。The recombinant vector can be introduced into plant cells or tissues by using Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, electroporation, Agrobacterium-mediated and other conventional biological methods, and the transformed plant tissue can be cultivated into plant. The transformed plant host can be either a monocot or a dicot.

为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除莠剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以干旱处理筛选转化植株。In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding genes encoding enzymes or luminescent compounds that can be expressed in plants to produce color changes (GUS genes, luciferase genes etc.), resistance antibiotic markers (gentamicin markers, kanamycin markers, etc.) or resistance to chemical reagent marker genes (such as herbicide resistance genes), etc. Considering the safety of transgenic plants, the transformed plants can be screened directly by drought treatment without adding any selective marker genes.

所述目的植物理解为不仅包含GmGRAS487蛋白或其编码基因被改变的第一代植物,也包括其子代。对于所述目的植物,可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。所述目的植物包括种子、愈伤组织、完整植株和细胞。The target plant is understood to include not only the first generation plants in which the GmGRAS487 protein or its encoding gene has been altered, but also its progeny. For the plant of interest, the gene can be propagated in the species, or the gene can be transferred into other varieties of the same species, especially commercial varieties, using conventional breeding techniques. The target plants include seeds, calli, intact plants and cells.

上述方法中,所述受体植物可为M1)或M2)或M3):In the above method, the recipient plant can be M1) or M2) or M3):

M1)双子叶植物或单子叶植物;M1) Dicotyledonous plants or monocotyledonous plants;

M2)豆科植物;M2) Legumes;

M3)大豆。M3) Soybeans.

本发明还提供了增强植物耐盐性产品,所述产品含有GmGRAS487或所述调控所述蛋白质活性或含量的物质。The present invention also provides products for enhancing plant salt tolerance, which products contain GmGRAS487 or the substance that regulates the activity or content of the protein.

所述产品可以GmGRAS487或所述调控所述蛋白质活性或含量的物质为其活性成分,还可将GmGRAS487或所述调控所述蛋白质活性或含量的物质与具有相同功能的物质组合在一起作为其活性成分。The product may have GmGRAS487 or the substance that regulates the activity or content of the protein as its active ingredient. GmGRAS487 or the substance that regulates the activity or content of the protein may also be combined with a substance with the same function as its active ingredient. Element.

GmGRAS487或所述调控所述蛋白质活性或含量的物质,也属于本发明的保护范围。GmGRAS487 or the substances that regulate the activity or content of the protein also belong to the protection scope of the present invention.

本发明中,所述耐盐性具体可为植物对NaCl模拟的高盐环境的耐性。所述NaCl模拟的高盐环境可为NaCl浓度为50mM-300mM(如100mM)的环境。In the present invention, the salt tolerance may specifically be the plant's tolerance to a high-salt environment simulated by NaCl. The high-salt environment simulated by NaCl can be an environment with a NaCl concentration of 50mM-300mM (such as 100mM).

植物的耐盐性可通过植物的存活率、叶片萎蔫程度和/或叶片相对离子渗透率来体现。The salt tolerance of plants can be reflected by plant survival rate, leaf wilting degree and/or leaf relative ion permeability.

本发明将转录因子GmGRAS487的编码基因转入受体大豆的毛状根中,得到转基因毛状根及转基因嵌合体,该转基因大豆毛状根与转空载体大豆毛状根相比,其耐盐性有显著提高。说明转录因子GmGRAS487及其编码基因可以调控植物耐盐性,对培育植物高耐盐性品种具有重要的理论和现实意义。The present invention transfers the coding gene of transcription factor GmGRAS487 into the hairy roots of recipient soybeans to obtain transgenic hairy roots and transgenic chimeras. Compared with the hairy roots of soybeans transformed into empty vectors, the transgenic soybean hairy roots are more salt-tolerant. Sex has improved significantly. This shows that the transcription factor GmGRAS487 and its encoding gene can regulate plant salt tolerance and have important theoretical and practical significance for cultivating plant varieties with high salt tolerance.

附图说明Description of the drawings

图1为GmGRAS487在120mMNaCl处理下的转录模式。Figure 1 shows the transcription pattern of GmGRAS487 under 120mM NaCl treatment.

图2为植物表达载体pROKII-GmGRAS487和pZH01-GmGRAS487-RNAi示意图。Figure 2 is a schematic diagram of the plant expression vectors pROKII-GmGRAS487 and pZH01-GmGRAS487-RNAi.

图3为过表达GmGRAS487和GmGRAS487-RNAi大豆毛状根的分子鉴定。Figure 3 shows the molecular identification of overexpressed GmGRAS487 and GmGRAS487-RNAi soybean hairy roots.

图4为转GmGRAS487毛状根及嵌合体的耐盐表型。Figure 4 shows the salt-tolerant phenotype of GmGRAS487 hairy roots and chimeras.

图5为GmGRAS487转基因毛状根嵌合体盐胁迫下生理指标统计。*,p<0.05;**,p<0.01。Figure 5 shows the statistics of physiological indicators of GmGRAS487 transgenic hairy root chimeras under salt stress. *, p<0.05; **, p<0.01.

具体实施方式Detailed ways

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be described in further detail below in conjunction with specific embodiments. The examples given are only for illustrating the present invention and are not intended to limit the scope of the present invention. The examples provided below can serve as a guide for those of ordinary skill in the art to make further improvements, and do not limit the present invention in any way.

下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA/RNA的5′末端核苷酸,末位均为相应DNA/RNA的3′末端核苷酸。The experimental methods in the following examples, unless otherwise specified, are all conventional methods and are carried out in accordance with the techniques or conditions described in literature in the field or in accordance with product instructions. The materials, reagents, instruments, etc. used in the following examples can all be obtained from commercial sources unless otherwise specified. The quantitative experiments in the following examples were repeated three times, and the results were averaged. In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence list is the 5' terminal nucleotide of the corresponding DNA/RNA, and the last position is the 3' terminal core of the corresponding DNA/RNA. glycosides.

下述实施例中的大豆科丰1号(Glycine max L.Merr.Kefeng 1)记载在W.K.Zhang,Y.J.Wang,G.Z.Luo,J.S.Zhang,C.Y.He,X.L.Wu,J.Y.Gai,S.Y.Chen,QTLmapping of ten agronomic traits on the soybean(Glycine max L.Merr.)geneticmap and their association with EST markers,Theor.Appl.Genet,2004,108:1131-1139中,公众可以从中国科学院遗传与发育生物学研究所获得,The soybean Glycine max L.Merr.Kefeng 1 in the following examples is described in W.K.Zhang, Y.J.Wang, G.Z.Luo, J.S.Zhang, C.Y.He, X.L.Wu, J.Y.Gai, S.Y.Chen, QTLmapping of ten agronomic traits on the soybean(Glycine max L.Merr.) geneticmap and their association with EST markers,Theor.Appl.Genet,2004,108:1131-1139, which is available to the public from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,

大豆[Glycine max(L.)Merr]南农1138-2:南京农业大学国家大豆改良中心种质库,由南京农业大学国家大豆改良中心提供。Soybean [Glycine max (L.) Merr] Nannong 1138-2: Germplasm bank of the National Soybean Improvement Center of Nanjing Agricultural University, provided by the National Soybean Improvement Center of Nanjing Agricultural University.

下述实施例中的表达载体pROKII载体(双元表达载体)记载在D.C.Baulcombe,G.R.Saunders,M.W.Bevan,M.A.Mayo and B.D.Harrison,Expression of biologicallyactive viral satellite RNA from the nuclear genome of transformedplants.Nature321(1986),pp.446–449中,公众可以从中国科学院遗传与发育生物学研究所获得;The expression vector pROKII vector (binary expression vector) in the following examples is described in D.C. Baulcombe, G.R. Saunders, M.W. Bevan, M.A. Mayo and B.D. Harrison, Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321 (1986) , pp.446–449, available to the public from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;

pZH01载体,Stratagene公司,记载在Han Xiao,et al.Functional analysis ofthe rice AP3 homologue OsMADS16 by RNA interference,Plant Molecular Biology,2003,52,957-966中,公众也可以从中国科学院遗传与发育生物学研究所获得。pZH01 vector, Stratagene Company, documented in Han Xiao, et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference, Plant Molecular Biology, 2003, 52, 957-966, and is also available to the public from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences .

发根农杆菌K599记载在Attila Kereszt,et al.,Agrobacterium rhizogenes-mediaded transformation of soybean to study of root biology,Nature Protocols,2007,2(4),549-552)中,公众可从Peter M Gressnon教授,The University ofQueensland,St Lucia,Queensland 4072,Australia,获得,或经Peter M Gressnon教授同意(书面同意书)后由中科院遗传与发育生物学研究所获得。Agrobacterium rhizogenes K599 is described in Attila Kereszt, et al., Agrobacterium rhizogenes-mediaded transformation of soybean to study of root biology, Nature Protocols, 2007, 2(4), 549-552), which can be obtained from Professor Peter M Gressnon , The University of Queensland, St Lucia, Queensland 4072, Australia, or obtained from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences with the consent of Professor Peter M Gressnon (written consent).

实施例1、大豆转录因子GmGRAS487编码基因的筛选及其cDNA克隆Example 1. Screening of the gene encoding soybean transcription factor GmGRAS487 and its cDNA cloning

发明人大豆科丰1号(盐敏)和南农1138-2(耐盐)在正常和高盐胁迫下的转录组分析中,筛选到位点名为Glyma08g15530(Locus name:Glyma.08G146900)的基因。Glyma08g15530在120mM NaCl处理时,其转录量急剧下降,考虑其可能在植物中负调控耐盐性。将大豆耐盐品种南农1138-2光照培养,生长2个星期后取幼苗分别提取RNA。将新鲜幼苗1g在液氮中研碎,悬于4mol/L硫氢酸胍中,混合物用酸性苯酚、氯仿抽提,上清中加入无水乙醇沉淀总RNA,之后,溶于水,得到总RNA,用逆转录酶反转录合成cDNA。引物为:In the transcriptome analysis of soybeans Kefeng 1 (salt-sensitive) and Nannong 1138-2 (salt-tolerant) under normal and high-salt stress, the inventor screened a gene with the locus name Glyma08g15530 (Locus name: Glyma.08G146900) . When Glyma08g15530 was treated with 120mM NaCl, its transcription amount decreased sharply, considering that it may negatively regulate salt tolerance in plants. The salt-tolerant soybean variety Nannong 1138-2 was cultured under light, and after 2 weeks of growth, the seedlings were taken to extract RNA. Grind 1g of fresh seedlings in liquid nitrogen and suspend in 4mol/L guanidine sulfate. The mixture is extracted with acidic phenol and chloroform. Absolute ethanol is added to the supernatant to precipitate total RNA. Then, it is dissolved in water to obtain total RNA. , use reverse transcriptase to reverse transcribe to synthesize cDNA. The primers are:

Gm15530-F1:ATGAAAACGATGGATTTTGA和Gm15530-F1: ATGAAAACGATGGATTTTGA and

Gm15530-R1:CTATTTGACCTTGTCATCCAGATAA。Gm15530-R1: CTATTTGACCTTGTCATCCAGATAA.

进行Real Time-PCR鉴定。Real-Time PCR反应使用TOYOBO公司的RealTime PCRMaster Mix试剂盒,并按照说明进行操作。大豆Tublin基因为内标,所用引物为Primer-TF:5’-AACCTCCTCCTCATCGTACT,和Primer-TR:5’-GACAGCATCAGCCATGTTCA。Perform Real Time-PCR identification. Real-Time PCR reaction uses TOYOBO's RealTime PCRMaster Mix kit and operates according to the instructions. The soybean Tublin gene is the internal standard, and the primers used are Primer-TF: 5’-AACCTCCTCCTCATCGTACT, and Primer-TR: 5’-GACAGCATCAGCCATGTTCA.

图1示出Glyma08g15530在120mM NaCl处理1小时时即大幅度下降,继续至3小时至最低点。测序表明,Glyma08g15530包含1464bp,编码487个氨基酸残基,将该蛋白命名为GmGRAS487。在南农1138-2中,GmGRAS487的氨基酸序列为序列表中序列2,DNA编码序列为序列1。Figure 1 shows that Glyma08g15530 decreased significantly when treated with 120mM NaCl for 1 hour, and continued to reach the lowest point at 3 hours. Sequencing showed that Glyma08g15530 contains 1464 bp, encoding 487 amino acid residues, and the protein was named GmGRAS487. In Nannong 1138-2, the amino acid sequence of GmGRAS487 is sequence 2 in the sequence listing, and the DNA coding sequence is sequence 1.

实施例2、大豆转录因子GmGRAS487的植物表达载体的构建Example 2. Construction of plant expression vector for soybean transcription factor GmGRAS487

一、GmGRAS487超表达载体pROKII-GmGRAS487的构建1. Construction of GmGRAS487 overexpression vector pROKII-GmGRAS487

以南农1138-2的cDNA为模板,采用Gm15530-pROKII-F2和Gm15530-pROKII-R2进行PCR扩增,获得PCR产物。Using the cDNA of Nannong 1138-2 as the template, Gm15530-pROKII-F2 and Gm15530-pROKII-R2 were used for PCR amplification to obtain PCR products.

Gm15530-pROKII-F2:AGAACACGGGGGACTCTAGAATGAAAACGATGGATTTTGA;Gm15530-pROKII-F2: AGAACACGGGGGACTCTAGAATGAAAACGATGGATTTTGA;

Gm15530-pROKII-R2:GATCGGGGAAATTCGAGCTCCTATTTGACCTTGTCATCCAGATAA。Gm15530-pROKII-R2:GATCGGGGAAATTCGAGCTCCTATTTGACCTTGTCATCCAGATAA.

用限制性内切酶BamHI和KpnI对pROKII载体进行双酶切,采用同源重组法将PCR回收片段连入pROKII载体,得到重组载体pROKII-GmGRAS487(部分载体示意图如图2)。pROKII-GmGRAS487为将pROKII载体的BamHI和KpnI识别序列间的DNA片段替换为序列表中序列1所示的GmGRAS487基因得到的重组载体,能表达序列表中序列2所示的GmGRAS487与NPTⅡ所形成的融合蛋白质。The pROKII vector was double-digested with restriction endonucleases BamHI and KpnI, and the PCR recovery fragment was ligated into the pROKII vector using homologous recombination to obtain the recombinant vector pROKII-GmGRAS487 (part of the vector schematic is shown in Figure 2). pROKII-GmGRAS487 is a recombinant vector obtained by replacing the DNA fragment between the BamHI and KpnI recognition sequences of the pROKII vector with the GmGRAS487 gene shown in Sequence 1 in the Sequence Listing. It can express the gene formed by GmGRAS487 shown in Sequence 2 in the Sequence Listing and NPTⅡ. Fusion proteins.

二、GmGRAS487 RNAi表达载体pZH01-GmGRAS487-RNAi的构建2. Construction of GmGRAS487 RNAi expression vector pZH01-GmGRAS487-RNAi

首先用Trizol法提取南农1138-2大豆总RNA,以反转录得到的cDNA为模板,用载体构建引物扩增GmGRAS487基因CDS区第1077位至1363位287bp的DNA片段用于构建RNAi载体。First, the total RNA of Nannong 1138-2 soybean was extracted using the Trizol method. The cDNA obtained by reverse transcription was used as a template, and the vector construction primer was used to amplify the 287 bp DNA fragment from positions 1077 to 1363 of the CDS region of the GmGRAS487 gene, which was used to construct the RNAi vector.

所用RNAi载体为pZH01,引物如下:The RNAi vector used was pZH01, and the primers were as follows:

GmGRAS487Ri-F1:(单下划线为Xba I的识别序列,双下划线为Sac I的识别序列);GmGRAS487Ri-F1: (Single underline is the recognition sequence of Xba I, double underline is the recognition sequence of Sac I);

GmGRAS487Ri-R1:(单下划线为Sal I的识别序列,双下划线为Kpn I的识别序列)。GmGRAS487Ri-R1: (Single underline is the recognition sequence of Sal I, double underline is the recognition sequence of Kpn I).

先用Sac I与Kpn I分别对PCR产物与pZH01载体进行双酶切,将得到的PCR产物酶切大片段与载体骨架连接,将得到的序列正确的重组载体与PCR产物利用Xba I与Sal I进行双酶切,将得到的PCR产物酶切大片段与载体骨架连接,将得到的序列正确的重组载体记为pZH01-GmGRAS487-RNAi(图2)。First, double-digest the PCR product and the pZH01 vector with Sac I and Kpn I respectively, connect the resulting large fragment of the PCR product to the vector backbone, and use Xba I and Sal I to recombine the vector and PCR product with the correct sequence. Double-enzyme digestion was performed, and the large fragment of the obtained PCR product was connected to the vector backbone, and the recombinant vector with correct sequence was recorded as pZH01-GmGRAS487-RNAi (Figure 2).

上述所构建的载体均经过测序,验证序列无误后进行下一步实验。The vectors constructed above have been sequenced, and the next step of the experiment is carried out after verifying that the sequence is correct.

实施例3、转GmGRAS487基因大豆毛状根的获得Example 3. Obtaining hairy roots of soybeans transgenic with GmGRAS487 gene

发根农杆菌侵染法根据Attila Kereszt等方法(Attila Kereszt,et al.,Agrobacterium rhizogenes-mediaded transformation of soybean to study of rootbiology,Nature Protocols,2007,2(4),549-552)略加改进,按照文献“Wang,Fang;Chen,Hao-Wei;Li,Qing-Tian;Wei,Wei;Li,Wei;Zhang,Wan-Ke;Ma,Biao;Bi,Ying-Dong;Lai,Yong-Cai;Liu,xin-Lei;Man,Wei-Qun;Zhang,Jin-Song;Chen,Shou-Yi,GmWRKY27interacts with GmMYB174to reduce expression of GmNAC29 for stress tolerancein soybean plants,2015,The Plant Journal,83,224–236”,或专利“陈受宜等,植物耐逆性相关转录因子GmWRKY78及其编码基因与应用,专利号:ZL2011 1 0053083.7,授权日2013.10.09”中的发根农杆菌介导转基因根系方法进行。The Agrobacterium rhizogenes infection method is slightly modified based on the method of Attila Kereszt and others (Attila Kereszt, et al., Agrobacterium rhizogenes-mediaded transformation of soybean to study of rootbiology, Nature Protocols, 2007, 2(4), 549-552). According to the literature "Wang, Fang; Chen, Hao-Wei; Li, Qing-Tian; Wei, Wei; Li, Wei; Zhang, Wan-Ke; Ma, Biao; Bi, Ying-Dong; Lai, Yong-Cai; Liu ,xin-Lei; Man, Wei-Qun; Zhang, Jin-Song; Chen, Shou-Yi, GmWRKY27interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants, 2015, The Plant Journal, 83, 224–236", or patent " Chen Shouyi et al., Plant stress tolerance-related transcription factor GmWRKY78 and its encoding gene and application, patent number: ZL2011 1 0053083.7, grant date 2013.10.09" were carried out using Agrobacterium rhizogenes-mediated transgenic root method.

过量表达GmGRAS487及GmGRAS487-RNAi毛状根的制备:Preparation of hairy roots overexpressing GmGRAS487 and GmGRAS487-RNAi:

1)重组农杆菌的获得1) Obtaining recombinant Agrobacterium

将实施例2得到的重组表达载体pROKⅡ-GmGRAS487和pZH01-GmGRAS487-RNAi分别通过电击法导入发根农杆菌K599,得到重组农杆菌。将含有上述质粒的重组农杆菌分别命名为K599/pROKⅡ-GmGRAS487和K599/pZH01-GmGRAS487-RNAi。The recombinant expression vectors pROKⅡ-GmGRAS487 and pZH01-GmGRAS487-RNAi obtained in Example 2 were introduced into Agrobacterium rhizogenes K599 by electroporation method to obtain recombinant Agrobacterium. The recombinant Agrobacterium containing the above plasmids were named K599/pROKⅡ-GmGRAS487 and K599/pZH01-GmGRAS487-RNAi respectively.

2)毛状根转化2) Hairy root transformation

用注射器分别将上述重组农杆菌K599/pROKⅡ-GmGRAS487和K599/pZH01-GmGRAS487-RNAi接种生长6天含两片真叶的大豆科丰1号幼苗,具体方法见上述引文,保湿生长:光照16小时,温度25℃,湿度50%。2周后,长出的毛状根即为转基因毛状根。分别获得121转K599/pROKⅡ-GmGRAS487的过表达嵌合体(GmGRAS487-OE)和120个K599/pZH01-GmGRAS487-RNAi嵌合体植株(GmGRAS487-RNAi),可进一步作转基因鉴定和耐盐性检测。Use a syringe to inoculate the above-mentioned recombinant Agrobacterium K599/pROKⅡ-GmGRAS487 and K599/pZH01-GmGRAS487-RNAi into soybean Kefeng No. 1 seedlings containing two true leaves that have grown for 6 days. For specific methods, see the above citation. Growth under moisturizing conditions: 16 hours of light. , temperature 25℃, humidity 50%. After 2 weeks, the hairy roots that grow are transgenic hairy roots. 121 K599/pROKII-GmGRAS487 overexpression chimeras (GmGRAS487-OE) and 120 K599/pZH01-GmGRAS487-RNAi chimera plants (GmGRAS487-RNAi) were obtained respectively, which can be used for further transgene identification and salt tolerance testing.

以相同的方法将含空载体pROKⅡ的发根农杆菌K599/pROKⅡ转入大豆科丰1号,得到124个转空载体毛状根根系,以作为空载体对照。Agrobacterium rhizogenes K599/pROKII containing the empty vector pROKⅡ was transferred into soybean Kefeng No. 1 using the same method, and 124 hairy root systems transformed into the empty vector were obtained, which were used as empty vector controls.

3)转基因毛状根的分子鉴定3) Molecular identification of transgenic hairy roots

提取转基因毛状根和空载体对照的总RNA,将其反转录为cDNA。以cDNA为模板,用Gm15530-F1:GGTGTGGGAGGAAGGGTTTT和Gm15530-R1:GCCATTGGTTCCCAGATTGAAG进行GmGRAS487基因表达量分析。大豆GmTubulin基因为内标,所用引物为Primer-TF:5’-AACCTCCTCCTCATCGTACT,和Primer-TR:5’-GACAGCATCAGCCATGTTCA。实验重复三次,结果取平均值±标准差。Total RNA from transgenic hairy roots and empty vector control was extracted and reverse transcribed into cDNA. Using cDNA as a template, GmGRAS487 gene expression was analyzed using Gm15530-F1: GGTGTGGGAGGAAGGGTTTT and Gm15530-R1: GCCATTGGTTCCCAGATTGAAG. The soybean GmTubulin gene is the internal standard, and the primers used are Primer-TF: 5’-AACCTCCTCCTCATCGTACT, and Primer-TR: 5’-GACAGCATCAGCCATGTTCA. The experiment was repeated three times, and the results were averaged ± standard deviation.

图3显示,GmGRAS487在空载体对照、GmGRAS487-OE和GmGRAS487-RNAi毛状根中的表达量分别约为0.024、2.35和0.013,GmGRAS487-OE中GmGRAS487的表达量极显著高于空载体对照,而GmGRAS487-RNAi毛状根中GmGRAS487的表达量则显著低于对照(图3)。Figure 3 shows that the expression levels of GmGRAS487 in the empty vector control, GmGRAS487-OE and GmGRAS487-RNAi hairy roots are approximately 0.024, 2.35 and 0.013 respectively. The expression level of GmGRAS487 in GmGRAS487-OE is extremely significantly higher than the empty vector control, while The expression of GmGRAS487 in GmGRAS487-RNAi hairy roots was significantly lower than the control (Figure 3).

实施例4、转GmGRAS487和GmGRAS487-RNAi毛状根的耐盐性鉴定Example 4. Identification of salt tolerance of GmGRAS487 and GmGRAS487-RNAi hairy roots

实验样本为实施例3得到的转空载体对照和GmGRAS487-OE、GmGRAS487-RNAi毛状根及植株。The experimental samples were the empty vector control, GmGRAS487-OE, GmGRAS487-RNAi hairy roots and plants obtained in Example 3.

将上述3种实验样本分成2组,各取约12个,一组经100mM NaCl水溶液处理3天,即浸入100mM NaCl溶液中,25℃处理3天;第二组浸入水中作为对照。实验重复三次,结果取平均值±标准差。Divide the above three experimental samples into 2 groups, with about 12 samples each. One group is treated with 100mM NaCl aqueous solution for 3 days, that is, immersed in 100mM NaCl solution and treated at 25°C for 3 days; the second group is immersed in water as a control. The experiment was repeated three times, and the results were averaged ± standard deviation.

100mM NaCl水溶液处理3天后,拍照观察。图4显示,转空载体毛状根和2个转基因毛状根的植株及叶表型可以看出,水处理(正常条件)转空载体(pROKⅡ)毛状根和转GmGRAS487基因及GmGRAS487-RNAi毛状根嵌合体生长无显著差异,100mM NaCl处理3天,转GmGRAS487-RNAi的毛状根嵌合体和叶(GmGRAS-RNAi)萎蔫程度显著低于对照嵌合体和叶,而过表达GmGRAS487毛状根嵌合体(GmGRAS-OE)和叶则萎蔫程度明显高于对照。After treatment with 100mM NaCl aqueous solution for 3 days, take pictures and observe. Figure 4 shows the plant and leaf phenotypes of the hairy roots transformed into the empty vector and two transgenic hairy roots. It can be seen that the hairy roots transformed into the empty vector (pROKⅡ) and the GmGRAS487 gene and GmGRAS487-RNAi were transformed under water treatment (normal conditions). There was no significant difference in the growth of hairy root chimeras. After 100mM NaCl treatment for 3 days, the degree of wilting of hairy root chimeras and leaves (GmGRAS-RNAi) transfected with GmGRAS487-RNAi was significantly lower than that of control chimeras and leaves, while overexpression of GmGRAS487 hairy root chimeras The wilting degree of root chimera (GmGRAS-OE) and leaves was significantly higher than that of the control.

存活率检测:Survival rate test:

图5右显示,在水培情况下,所有植株存活率均为100%,100mM NaCl处理3天后,对照、GmGRAS-RNAi和GmGRAS-OE嵌合体的存活率分别约为40%、63%和18%,过表达嵌合体和RNAi嵌合体与对照的差异呈显著和极显著。表明,GmGRAS487的过表达降低了植株的耐盐性,而其降低表达量则植株的耐盐性增加。The right side of Figure 5 shows that under hydroponic conditions, the survival rate of all plants was 100%. After 100mM NaCl treatment for 3 days, the survival rates of the control, GmGRAS-RNAi and GmGRAS-OE chimeras were approximately 40%, 63% and 18, respectively. %, the differences between the overexpression chimera and RNAi chimera and the control were significant and extremely significant. It shows that overexpression of GmGRAS487 reduces the salt tolerance of plants, while reducing its expression increases the salt tolerance of plants.

NaCl处理离子渗透率检测:NaCl treatment ion permeability detection:

当植物组织受到逆境胁迫伤害时,细胞膜功能受损或结构破坏,透性增大,从而使细胞内各种水溶性物质包括电解质外渗。将植物组织浸入无离子水中,水的电导会因电解质的外渗而变大。伤害越重,细胞膜破坏越严重,外渗就越厉害,而水的电导率就越大。所以可以用电导仪测定外渗液电导率的变化情况,间接反映出植物组织受到的伤害程度。因此电导率的检测可计算相对离子渗透率,相对离子渗透率表示植物细胞膜受损伤的程度。When plant tissue is damaged by adverse stress, the function of the cell membrane is damaged or the structure is destroyed, and the permeability increases, causing various water-soluble substances in the cell, including electrolytes, to leak out. When plant tissue is immersed in ion-free water, the conductance of the water increases due to extravasation of electrolytes. The more serious the injury, the more severe the damage to the cell membrane, the greater the extravasation, and the greater the conductivity of water. Therefore, a conductivity meter can be used to measure changes in the conductivity of the exudate, which indirectly reflects the degree of damage to plant tissues. Therefore, the detection of electrical conductivity can calculate the relative ion permeability, which indicates the degree of damage to the plant cell membrane.

测定方法为,将大豆的叶片剪下,放置到干净的螺口玻璃瓶中,用去离子水漂洗3遍。之后加80mL去离子水将叶片完全浸泡,抽真空45min。室温静置30min后用电导仪(DDC-308A型,上海博取仪器有限公司)测定电导率E1。将叶片煮沸15min,待温度降到室温后,混匀用电导仪测定电导率E2。The measurement method is to cut off the soybean leaves, place them in a clean screw-top glass bottle, and rinse them three times with deionized water. Then add 80 mL of deionized water to completely soak the leaves, and vacuum for 45 minutes. After standing at room temperature for 30 minutes, conductivity E1 was measured with a conductivity meter (DDC-308A model, Shanghai Bochu Instrument Co., Ltd.). Boil the leaves for 15 minutes. After the temperature drops to room temperature, mix well and measure the conductivity E2 with a conductivity meter.

相对离子渗透率EL(%)=E1/E2 X 100,其中E1和E2为电导率。Relative ion permeability EL (%) = E1/E2 X 100, where E1 and E2 are conductivities.

图5左图显示,在水培情况下,所有植株离子渗透率均很低,约为6%,100mM NaCl处理3天后,对照、GmGRAS-RNAi和GmGRAS-OE嵌合体的存活率分别约为47%、62%和17%,表明,GmGRAS487过表达嵌合体在盐胁迫下叶细胞膜受损伤最厉害,对照次之,而降低GmGRAS487的表达,在盐胁迫下极显著保护细胞膜不受损伤。The left picture of Figure 5 shows that under hydroponics, the ion permeability of all plants is very low, about 6%. After 100mM NaCl treatment for 3 days, the survival rates of the control, GmGRAS-RNAi and GmGRAS-OE chimeras were about 47, respectively. %, 62% and 17%, indicating that the GmGRAS487 overexpression chimera suffered the most serious damage to the leaf cell membrane under salt stress, followed by the control, while reducing the expression of GmGRAS487 significantly protected the cell membrane from damage under salt stress.

上述结果表明,在植物中,GmGRAS487负调控耐盐性,降低GmGRAS487的表达,显著提高了植株的耐盐性。The above results show that in plants, GmGRAS487 negatively regulates salt tolerance, reduces the expression of GmGRAS487, and significantly improves the salt tolerance of plants.

以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, the present invention can be implemented in a wider range under equivalent parameters, concentrations and conditions without departing from the spirit and scope of the invention and without performing unnecessary experiments. Although specific embodiments of the present invention have been shown, it should be understood that further modifications can be made to the invention. In short, based on the principles of the present invention, this application is intended to include any changes, uses, or improvements to the present invention, including changes that depart from the scope disclosed in this application and are made using conventional techniques known in the art. Some essential features may be applied within the scope of the appended claims below.

序列表sequence list

<110> 中国科学院遗传与发育生物学研究所<110> Institute of Genetics and Developmental Biology, Chinese Academy of Sciences

<120> 大豆转录因子GmGRAS487在植物耐盐性调控中的应用<120> Application of soybean transcription factor GmGRAS487 in the regulation of plant salt tolerance

<160> 2<160> 2

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1464<211> 1464

<212> DNA<212> DNA

<213> 大豆属大豆(Glycine max (L.) Merrill)<213> Glycine max (L.) Merrill

<400> 1<400> 1

atgaaaacga tggattttga gcaattttat tactcatttg gccctcctta catgaatcaa 60atgaaaacga tggattttga gcaattttat tactcatttg gccctcctta catgaatcaa 60

ctccatgagt gtatctcaga aaatgcattt ccatttcaaa cagaaaatct cttatctcca 120ctccatgagt gtatctcaga aaatgcattt ccatttcaaa cagaaaatct cttatctcca 120

aatactttcc tagatgaaat gtttgatcaa gagtactcca tggaaggatt gctgcagcaa 180aatactttcc tagatgaaat gtttgatcaa gagtactcca tggaaggatt gctgcagcaa 180

catgcaaaca accaggagga ctttggtttc ttgaagcatg atgatccact agagactgaa 240catgcaaaca accagggagga ctttggtttc ttgaagcatg atgatccact agagactgaa 240

ttttgtcatg gatttagccc tagtgctgag gaaaatatgc atgtttcaat ggaagaaggg 300ttttgtcatg gatttagccc tagtgctgag gaaaatatgc atgtttcaat ggaagaaggg 300

gattcttgtt tgaagggaat ccaagcagag ctaatggaag agactagttt agctgatctg 360gattcttgtt tgaagggaat ccaagcagag ctaatggaag agactagttt agctgatctg 360

ttgctaacag gagctgaagc tgttgaagca caaaactggc cccttgcttc agatataatt 420ttgctaacag gagctgaagc tgttgaagca caaaactggc cccttgcttc agatataatt 420

gagaaactta acaatgcctc atctttagaa aatggtgatg gtttattgaa caggttggct 480gagaaactta acaatgcctc atctttagaa aatggtgatg gtttatattgaa caggttggct 480

cttttcttta ctcagagtct ctattataaa agcacaaatg cccctgaatt gctacagtgt 540cttttcttta ctcagagtct ctattataaa agcacaaatg cccctgaatt gctacagtgt 540

ggtgctgttt ctacgcacac aaatgctttc tgtgtgtttc aggttctcca agaactctct 600ggtgctgttt ctacgcacac aaatgctttc tgtgtgtttc aggttctcca agaactctct 600

ccctatgtaa aatttgctca tttcactgca aaccaagcaa tcttagaggc cacagaaggt 660ccctatgtaa aatttgctca tttcactgca aaccaagcaa tcttagaggc cacagaaggt 660

gctgaagatc ttcacatcat tgattttgat atcatggagg ggattcagtg gccacccttg 720gctgaagatc ttcacatcat tgattttgat atcatggagg ggattcagtg gccacccttg 720

atggttgacc ttgcaatgaa gaaaagtgtt aattccctta gagtaacagc catcacagtg 780atggttgacc ttgcaatgaa gaaaagtgtt aattccctta gagtaacagc catcacagtg 780

aaccaaagag gtgcagattc tgttcaacaa acaggaagaa ggctcaaaga gtttgcagct 840aaccaaagag gtgcagattc tgttcaacaa acaggaagaa ggctcaaaga gtttgcagct 840

tctatcaact ttccattcat gtttgaccag ttaatgatgg aaagggaaga agattttcaa 900tctatcaact ttccattcat gtttgaccag ttaatgatgg aaagggaaga agattttcaa 900

ggaattgaac ttggtcaaac actcatagtc aactgcatga tacaccagtg gatgcctaat 960ggaattgaac ttggtcaaac actcatagtc aactgcatga tacaccagtg gatgcctaat 960

aggagcttct cattggtcaa aacattcttg gatggtgtga ccaaattgtc cccaaggctt 1020aggagcttct cattggtcaa aacattcttg gatggtgtga ccaaattgtc cccaaggctt 1020

gttgttttag tggaagaaga actatttaat tttcctaggc tcaagtccat gtcctttgtg 1080gttgttttag tggaagaaga actatttaat tttcctaggc tcaagtccat gtcctttgtg 1080

gagttcttct gtgaggcttt gcatcactac actgcacttt gtgattcact tgctagtaat 1140gagttcttct gtgaggcttt gcatcactac actgcacttt gtgattcact tgctagtaat 1140

ctatggggta gccacaagat ggagttgagc ctgatagaaa aagaggttat tgggctcaga 1200ctatggggta gccacaagat ggagttgagc ctgatagaaa aagaggttat tgggctcaga 1200

atattggaca gtgtgaggca gtttccttgt gagagaaagg agagaatggt gtgggaggaa 1260atattggaca gtgtgaggca gtttccttgt gagagaaagg agagaatggt gtgggaggaa 1260

gggttttatt ccttgaaagg gtttaaacgt gtacctatga gtacatgtaa catttcacaa 1320gggttttattccttgaaagg gtttaaacgt gtacctatga gtacatgtaa catttcacaa 1320

gccaaattct tggtaagcct ctttggtgga gggtattggg tccaatacga gaagggtagg 1380gccaaattct tggtaagcct ctttggtgga gggtattggg tccaatacga gaagggtagg 1380

ttggccttgt gttggaagtc aaggcctttg actgtggctt caatctggga accaatggct 1440ttggccttgt gttggaagtc aaggcctttg actgtggctt caatctggga accaatggct 1440

tatctggatg acaaggtcaa atag 1464tatctggatg acaaggtcaa atag 1464

<210> 2<210> 2

<211> 487<211> 487

<212> PRT<212> PRT

<213> 大豆属大豆(Glycine max (L.) Merrill)<213> Glycine max (L.) Merrill

<400> 2<400> 2

Met Lys Thr Met Asp Phe Glu Gln Phe Tyr Tyr Ser Phe Gly Pro ProMet Lys Thr Met Asp Phe Glu Gln Phe Tyr Tyr Ser Phe Gly Pro Pro

1 5 10 151 5 10 15

Tyr Met Asn Gln Leu His Glu Cys Ile Ser Glu Asn Ala Phe Pro PheTyr Met Asn Gln Leu His Glu Cys Ile Ser Glu Asn Ala Phe Pro Phe

20 25 30 20 25 30

Gln Thr Glu Asn Leu Leu Ser Pro Asn Thr Phe Leu Asp Glu Met PheGln Thr Glu Asn Leu Leu Ser Pro Asn Thr Phe Leu Asp Glu Met Phe

35 40 45 35 40 45

Asp Gln Glu Tyr Ser Met Glu Gly Leu Leu Gln Gln His Ala Asn AsnAsp Gln Glu Tyr Ser Met Glu Gly Leu Leu Gln Gln His Ala Asn Asn

50 55 60 50 55 60

Gln Glu Asp Phe Gly Phe Leu Lys His Asp Asp Pro Leu Glu Thr GluGln Glu Asp Phe Gly Phe Leu Lys His Asp Asp Pro Leu Glu Thr Glu

65 70 75 8065 70 75 80

Phe Cys His Gly Phe Ser Pro Ser Ala Glu Glu Asn Met His Val SerPhe Cys His Gly Phe Ser Pro Ser Ala Glu Glu Asn Met His Val Ser

85 90 95 85 90 95

Met Glu Glu Gly Asp Ser Cys Leu Lys Gly Ile Gln Ala Glu Leu MetMet Glu Glu Gly Asp Ser Cys Leu Lys Gly Ile Gln Ala Glu Leu Met

100 105 110 100 105 110

Glu Glu Thr Ser Leu Ala Asp Leu Leu Leu Thr Gly Ala Glu Ala ValGlu Glu Thr Ser Leu Ala Asp Leu Leu Leu Thr Gly Ala Glu Ala Val

115 120 125 115 120 125

Glu Ala Gln Asn Trp Pro Leu Ala Ser Asp Ile Ile Glu Lys Leu AsnGlu Ala Gln Asn Trp Pro Leu Ala Ser Asp Ile Ile Glu Lys Leu Asn

130 135 140 130 135 140

Asn Ala Ser Ser Leu Glu Asn Gly Asp Gly Leu Leu Asn Arg Leu AlaAsn Ala Ser Ser Leu Glu Asn Gly Asp Gly Leu Leu Asn Arg Leu Ala

145 150 155 160145 150 155 160

Leu Phe Phe Thr Gln Ser Leu Tyr Tyr Lys Ser Thr Asn Ala Pro GluLeu Phe Phe Thr Gln Ser Leu Tyr Tyr Lys Ser Thr Asn Ala Pro Glu

165 170 175 165 170 175

Leu Leu Gln Cys Gly Ala Val Ser Thr His Thr Asn Ala Phe Cys ValLeu Leu Gln Cys Gly Ala Val Ser Thr His Thr Asn Ala Phe Cys Val

180 185 190 180 185 190

Phe Gln Val Leu Gln Glu Leu Ser Pro Tyr Val Lys Phe Ala His PhePhe Gln Val Leu Gln Glu Leu Ser Pro Tyr Val Lys Phe Ala His Phe

195 200 205 195 200 205

Thr Ala Asn Gln Ala Ile Leu Glu Ala Thr Glu Gly Ala Glu Asp LeuThr Ala Asn Gln Ala Ile Leu Glu Ala Thr Glu Gly Ala Glu Asp Leu

210 215 220 210 215 220

His Ile Ile Asp Phe Asp Ile Met Glu Gly Ile Gln Trp Pro Pro LeuHis Ile Ile Asp Phe Asp Ile Met Glu Gly Ile Gln Trp Pro Pro Leu

225 230 235 240225 230 235 240

Met Val Asp Leu Ala Met Lys Lys Ser Val Asn Ser Leu Arg Val ThrMet Val Asp Leu Ala Met Lys Lys Ser Val Asn Ser Leu Arg Val Thr

245 250 255 245 250 255

Ala Ile Thr Val Asn Gln Arg Gly Ala Asp Ser Val Gln Gln Thr GlyAla Ile Thr Val Asn Gln Arg Gly Ala Asp Ser Val Gln Gln Thr Gly

260 265 270 260 265 270

Arg Arg Leu Lys Glu Phe Ala Ala Ser Ile Asn Phe Pro Phe Met PheArg Arg Leu Lys Glu Phe Ala Ala Ser Ile Asn Phe Pro Phe Met Phe

275 280 285 275 280 285

Asp Gln Leu Met Met Glu Arg Glu Glu Asp Phe Gln Gly Ile Glu LeuAsp Gln Leu Met Met Glu Arg Glu Glu Asp Phe Gln Gly Ile Glu Leu

290 295 300 290 295 300

Gly Gln Thr Leu Ile Val Asn Cys Met Ile His Gln Trp Met Pro AsnGly Gln Thr Leu Ile Val Asn Cys Met Ile His Gln Trp Met Pro Asn

305 310 315 320305 310 315 320

Arg Ser Phe Ser Leu Val Lys Thr Phe Leu Asp Gly Val Thr Lys LeuArg Ser Phe Ser Leu Val Lys Thr Phe Leu Asp Gly Val Thr Lys Leu

325 330 335 325 330 335

Ser Pro Arg Leu Val Val Leu Val Glu Glu Glu Leu Phe Asn Phe ProSer Pro Arg Leu Val Val Leu Val Glu Glu Glu Leu Phe Asn Phe Pro

340 345 350 340 345 350

Arg Leu Lys Ser Met Ser Phe Val Glu Phe Phe Cys Glu Ala Leu HisArg Leu Lys Ser Met Ser Phe Val Glu Phe Phe Cys Glu Ala Leu His

355 360 365 355 360 365

His Tyr Thr Ala Leu Cys Asp Ser Leu Ala Ser Asn Leu Trp Gly SerHis Tyr Thr Ala Leu Cys Asp Ser Leu Ala Ser Asn Leu Trp Gly Ser

370 375 380 370 375 380

His Lys Met Glu Leu Ser Leu Ile Glu Lys Glu Val Ile Gly Leu ArgHis Lys Met Glu Leu Ser Leu Ile Glu Lys Glu Val Ile Gly Leu Arg

385 390 395 400385 390 395 400

Ile Leu Asp Ser Val Arg Gln Phe Pro Cys Glu Arg Lys Glu Arg MetIle Leu Asp Ser Val Arg Gln Phe Pro Cys Glu Arg Lys Glu Arg Met

405 410 415 405 410 415

Val Trp Glu Glu Gly Phe Tyr Ser Leu Lys Gly Phe Lys Arg Val ProVal Trp Glu Glu Gly Phe Tyr Ser Leu Lys Gly Phe Lys Arg Val Pro

420 425 430 420 425 430

Met Ser Thr Cys Asn Ile Ser Gln Ala Lys Phe Leu Val Ser Leu PheMet Ser Thr Cys Asn Ile Ser Gln Ala Lys Phe Leu Val Ser Leu Phe

435 440 445 435 440 445

Gly Gly Gly Tyr Trp Val Gln Tyr Glu Lys Gly Arg Leu Ala Leu CysGly Gly Gly Tyr Trp Val Gln Tyr Glu Lys Gly Arg Leu Ala Leu Cys

450 455 460 450 455 460

Trp Lys Ser Arg Pro Leu Thr Val Ala Ser Ile Trp Glu Pro Met AlaTrp Lys Ser Arg Pro Leu Thr Val Ala Ser Ile Trp Glu Pro Met Ala

465 470 475 480465 470 475 480

Tyr Leu Asp Asp Lys Val LysTyr Leu Asp Asp Lys Val Lys

485 485

Claims (10)

1.蛋白质或调控所述蛋白质活性或含量的物质的下述任一应用:1. Any of the following applications of proteins or substances that regulate the activity or content of said proteins: D1)调控植物耐盐性;D1) Regulating plant salt tolerance; D2)制备调控植物耐盐性产品;D2) Prepare products for regulating plant salt tolerance; D3)培育耐盐性增强植物;D3) Cultivate plants with enhanced salt tolerance; D4)制备培育耐盐性增强植物产品;D4) Prepare and cultivate plant products with enhanced salt tolerance; D5)植物育种;D5)Plant breeding; 所述蛋白质为如下A1)、A2)或A3):The protein is the following A1), A2) or A3): A1)氨基酸序列是序列2的蛋白质;A1) The amino acid sequence is a protein of sequence 2; A2)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A2) A protein that has the same function by substituting and/or deleting and/or adding one or several amino acid residues to the amino acid sequence shown in Sequence 2 in the sequence listing; A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。A3) A fusion protein obtained by connecting a tag to the N-terminus or/and C-terminus of A1) or A2). 2.根据权利要求1所述的应用,其特征在于:所述物质为下述B1)至B9)中的任一种:2. Application according to claim 1, characterized in that: the substance is any one of the following B1) to B9): B1)编码权利要求1中所述蛋白质的核酸分子;B1) Nucleic acid molecule encoding the protein described in claim 1; B2)含有B1)所述核酸分子的表达盒;B2) An expression cassette containing the nucleic acid molecule described in B1); B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B3) A recombinant vector containing the nucleic acid molecule described in B1), or a recombinant vector containing the expression cassette described in B2); B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;B4) A recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3); B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;B5) A transgenic plant cell line containing the nucleic acid molecule described in B1), or a transgenic plant cell line containing the expression cassette described in B2); B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;B6) Transgenic plant tissue containing the nucleic acid molecule described in B1), or transgenic plant tissue containing the expression cassette described in B2); B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官;B7) Transgenic plant organs containing the nucleic acid molecule described in B1), or transgenic plant organs containing the expression cassette described in B2); B8)降低权利要求1中所述蛋白质表达量的核酸分子;B8) Nucleic acid molecules that reduce the expression level of the protein described in claim 1; B9)含有B8)所述核酸分子的表达盒、重组载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。B9) Expression cassette, recombinant vector, recombinant microorganism, transgenic plant cell line, transgenic plant tissue or transgenic plant organ containing the nucleic acid molecule described in B8). 3.根据权利要求2所述的应用,其特征在于:B1)所述核酸分子为如下b11)或b12)或b13)或b14):3. The application according to claim 2, characterized in that: B1) the nucleic acid molecule is as follows b11) or b12) or b13) or b14): b11)编码序列是序列表中序列1的cDNA分子或DNA分子;b11) The coding sequence is the cDNA molecule or DNA molecule of sequence 1 in the sequence listing; b12)序列表中序列1的cDNA分子或DNA分子;b12) cDNA molecule or DNA molecule of sequence 1 in the sequence listing; b13)与b11)或b12)限定的核苷酸序列具有75%或75%以上同一性,且编码权利要求1中所述蛋白质的cDNA分子或DNA分子;b13) A cDNA molecule or DNA molecule that has 75% or more identity with the nucleotide sequence defined by b11) or b12) and encodes the protein described in claim 1; b14)在严格条件下与b11)或b12)或b13)限定的核苷酸序列杂交,且编码权利要求1中所述蛋白质的cDNA分子或DNA分子。b14) A cDNA molecule or DNA molecule that hybridizes to the nucleotide sequence defined by b11) or b12) or b13) under stringent conditions and encodes the protein of claim 1. 4.根据权利要求1-3中任一所述的应用,其特征在于:所述植物为M1)或M2)或M3):4. The application according to any one of claims 1-3, characterized in that: the plant is M1) or M2) or M3): M1)双子叶植物或单子叶植物;M1) Dicotyledonous plants or monocotyledonous plants; M2)豆科植物;M2) Legumes; M3)大豆。M3) Soybeans. 5.下述任一方法:5. Any of the following methods: X1)培育耐盐性增强植物的方法,包括敲除受体植物中表达权利要求1中所述蛋白质的编码基因,或抑制受体植物中权利要求1中所述蛋白质编码基因的表达,或降低受体植物中权利要求1中所述蛋白质的含量,或降低受体植物中权利要求1中所述蛋白质的活性,得到耐盐性增强的目的植物;X1) A method for cultivating plants with enhanced salt tolerance, comprising knocking out the gene encoding the protein described in claim 1 in the recipient plant, or inhibiting the expression of the protein encoding gene described in claim 1 in the recipient plant, or reducing the The content of the protein described in claim 1 in the recipient plant, or reducing the activity of the protein described in claim 1 in the recipient plant, to obtain a target plant with enhanced salt tolerance; X2)增强植物耐盐性的方法,包括敲除受体植物中表达权利要求1中所述蛋白质的编码基因,或抑制受体植物中权利要求1中所述蛋白质编码基因的表达,或降低受体植物中权利要求1中所述蛋白质的含量,或降低受体植物中权利要求1中所述蛋白质的活性,得到耐盐性增强的目的植物,实现植物耐盐性的增强。X2) A method for enhancing plant salt tolerance, including knocking out the gene encoding the protein described in claim 1 in the recipient plant, or inhibiting the expression of the protein encoding gene described in claim 1 in the recipient plant, or reducing the expression of the protein encoding gene in the recipient plant. The content of the protein described in claim 1 in the body plant, or the activity of the protein described in claim 1 in the recipient plant is reduced, so as to obtain the target plant with enhanced salt tolerance and achieve the enhancement of the salt tolerance of the plant. 6.根据权利要求5所述的方法,其特征在于:X1)和X2)中抑制受体植物中权利要求1中所述蛋白质编码基因的表达通过向所述受体植物导入抑制权利要求1中所述蛋白质编码基因的表达的核酸分子或表达所述核酸分子的重组载体实现。6. The method according to claim 5, characterized in that: X1) and The expression of the protein coding gene is achieved by a nucleic acid molecule or a recombinant vector expressing the nucleic acid molecule. 7.根据权利要求6所述的方法,其特征在于:所述编码基因为权利要求2或3中B1)所述核酸分子。7. The method according to claim 6, characterized in that the encoding gene is the nucleic acid molecule described in B1) of claim 2 or 3. 8.根据权利要求5-7中任一所述的方法,其特征在于:所述受体植物为M1)或M2)或M3):8. The method according to any one of claims 5-7, characterized in that: the recipient plant is M1) or M2) or M3): M1)双子叶植物或单子叶植物;M1) Dicotyledonous plants or monocotyledonous plants; M2)豆科植物;M2) Legumes; M3)大豆。M3) Soybeans. 9.增强植物耐盐性产品,含有权利要求1-3中任一所述蛋白质或所述调控所述蛋白质活性或含量的物质。9. A product for enhancing plant salt tolerance, containing the protein of any one of claims 1-3 or the substance that regulates the activity or content of the protein. 10.权利要求1-3中任一所述蛋白质或所述调控所述蛋白质活性或含量的物质。10. The protein of any one of claims 1-3 or the substance that regulates the activity or content of the protein.
CN202210249178.4A 2022-03-14 2022-03-14 Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants Pending CN116789775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210249178.4A CN116789775A (en) 2022-03-14 2022-03-14 Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210249178.4A CN116789775A (en) 2022-03-14 2022-03-14 Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants

Publications (1)

Publication Number Publication Date
CN116789775A true CN116789775A (en) 2023-09-22

Family

ID=88038194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210249178.4A Pending CN116789775A (en) 2022-03-14 2022-03-14 Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants

Country Status (1)

Country Link
CN (1) CN116789775A (en)

Similar Documents

Publication Publication Date Title
CN109111514B (en) Method for cultivating transgenic wheat with resistance to sheath blight and root rot and related biological material thereof
CN113980106B (en) Small peptide for regulating and controlling sizes of plant seeds and organs, and coding gene and application thereof
CN105037521A (en) Plant stress resistance related protein TaWrky48 and coding gene and application thereof
CN110713526A (en) Wheat stress resistant protein TaBZR2D and its encoding gene and application
CN102399268B (en) Plant stress tolerance-related transcription factor GmNAC11, coding gene and application thereof
CN106749584B (en) A protein GsERF71 related to plant alkali tolerance and its encoding gene and application
CN105198976A (en) Protein GsERF6 related to plant stress resistance as well as coding gene and application of protein
CN104059137A (en) GsNAC74 and application of its encoding gene in cultivation of stress tolerance plant
CN110563827A (en) Protein related to corn kernel yield and coding gene thereof
CN106222148A (en) OsCIPK23 and encoding gene application in regulation and control plant ammonium content and regulating plant growth thereof
CN102653556B (en) Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application
CN105061569A (en) SiMYB107 protein related to plant adverse resistance, as well as related biomaterial and application of SiMYB107 protein
CN106047833B (en) Application of OsCIPK31 and its coding gene in regulating plant herbicide resistance
CN104744579A (en) Application of stress resistance related protein GmL16 in regulating stress resistance of plant
CN106243209A (en) A kind of with plant adversity resistance related protein GsNAC019 and encoding gene and application
CN107663230A (en) Application of the cold-resistant GAP-associated protein GAP in plant cold tolerance is regulated and controled
CN107022011B (en) A kind of soybean transcription factor GmDISS1 and its encoding gene and application
CN114276427B (en) Application of OsFTL1 and its coding gene in shortening the heading date of rice
CN116515887A (en) Application of Medicago MsSPL4 Gene in Improving Stress Resistance of Plants
CN111620933B (en) Application of protein GmNAC2 in regulating plant salt tolerance
CN110294795B (en) Application of soybean protein GmDISS2 and its encoding gene in regulating plant stress tolerance
CN114480324A (en) A protein GsMYST1 that can improve plant salt tolerance and its related biomaterials and applications
CN116789775A (en) Application of soybean transcription factor GmGRAS487 in regulation and control of salt tolerance of plants
CN116789774A (en) Application of soybean transcription factor GmBURP272 in regulation and control of salt tolerance of plants
CN106397559A (en) Vegetable carbonate stress tolerance related protein GsHA16, as well as coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination