CN102653556B - Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application - Google Patents
Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application Download PDFInfo
- Publication number
- CN102653556B CN102653556B CN2011100530837A CN201110053083A CN102653556B CN 102653556 B CN102653556 B CN 102653556B CN 2011100530837 A CN2011100530837 A CN 2011100530837A CN 201110053083 A CN201110053083 A CN 201110053083A CN 102653556 B CN102653556 B CN 102653556B
- Authority
- CN
- China
- Prior art keywords
- gene
- plant
- gmwrky78
- sequence
- tolerance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 123
- 108091023040 Transcription factor Proteins 0.000 title abstract description 12
- 102000040945 Transcription factor Human genes 0.000 title abstract description 12
- 241000196324 Embryophyta Species 0.000 claims abstract description 94
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 24
- 230000024346 drought recovery Effects 0.000 claims abstract description 11
- 230000015784 hyperosmotic salinity response Effects 0.000 claims abstract description 9
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 3
- 239000013598 vector Substances 0.000 claims description 65
- 230000009261 transgenic effect Effects 0.000 claims description 59
- 230000014509 gene expression Effects 0.000 claims description 39
- 244000068988 Glycine max Species 0.000 claims description 32
- 235000010469 Glycine max Nutrition 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 17
- 108020004414 DNA Proteins 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 4
- 238000009396 hybridization Methods 0.000 claims description 3
- 235000018102 proteins Nutrition 0.000 claims 3
- 239000000969 carrier Substances 0.000 claims 2
- 230000002411 adverse Effects 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 230000008521 reorganization Effects 0.000 claims 1
- 230000035882 stress Effects 0.000 abstract description 38
- 125000000539 amino acid group Chemical group 0.000 abstract description 7
- 230000036579 abiotic stress Effects 0.000 abstract description 5
- 238000012217 deletion Methods 0.000 abstract description 5
- 230000037430 deletion Effects 0.000 abstract description 5
- 238000006467 substitution reaction Methods 0.000 abstract description 5
- 241001465754 Metazoa Species 0.000 abstract description 2
- 241000209504 Poaceae Species 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 39
- 241000219194 Arabidopsis Species 0.000 description 26
- 230000012010 growth Effects 0.000 description 26
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 239000013612 plasmid Substances 0.000 description 17
- 239000013604 expression vector Substances 0.000 description 16
- 241000589158 Agrobacterium Species 0.000 description 15
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- 241000219195 Arabidopsis thaliana Species 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 10
- 239000002299 complementary DNA Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 239000012634 fragment Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 8
- 229930027917 kanamycin Natural products 0.000 description 8
- 229960000318 kanamycin Drugs 0.000 description 8
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 8
- 229930182823 kanamycin A Natural products 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 229940093429 polyethylene glycol 6000 Drugs 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 6
- 101150054900 gus gene Proteins 0.000 description 6
- 101150073246 AGL1 gene Proteins 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 5
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- 241001460678 Napo <wasp> Species 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 5
- 241001233957 eudicotyledons Species 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 241000209510 Liliopsida Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000010455 vermiculite Substances 0.000 description 3
- 229910052902 vermiculite Inorganic materials 0.000 description 3
- 235000019354 vermiculite Nutrition 0.000 description 3
- JLIDBLDQVAYHNE-LXGGSRJLSA-N 2-cis-abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\C1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-LXGGSRJLSA-N 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 108010028230 Trp-Ser- His-Pro-Gln-Phe-Glu-Lys Proteins 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000006870 ms-medium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008723 osmotic stress Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- JXCKZXHCJOVIAV-UHFFFAOYSA-N 6-[(5-bromo-4-chloro-1h-indol-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid;cyclohexanamine Chemical compound [NH3+]C1CCCCC1.O1C(C([O-])=O)C(O)C(O)C(O)C1OC1=CNC2=CC=C(Br)C(Cl)=C12 JXCKZXHCJOVIAV-UHFFFAOYSA-N 0.000 description 1
- 235000007320 Avena fatua Nutrition 0.000 description 1
- 241001647031 Avena sterilis Species 0.000 description 1
- 235000004535 Avena sterilis Nutrition 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 1
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 101150005851 NOS gene Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000009164 Petroselinum crispum Species 0.000 description 1
- 235000002770 Petroselinum crispum Nutrition 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 108020005543 Satellite RNA Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 235000007264 Triticum durum Nutrition 0.000 description 1
- 240000002805 Triticum turgidum Species 0.000 description 1
- 235000007247 Triticum turgidum Nutrition 0.000 description 1
- 241000209143 Triticum turgidum subsp. durum Species 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 235000010716 Vigna mungo Nutrition 0.000 description 1
- 240000001417 Vigna umbellata Species 0.000 description 1
- 235000011453 Vigna umbellata Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229940027138 cambia Drugs 0.000 description 1
- KGGGHKDUVKEQJF-UHFFFAOYSA-N carbamimidoyl(sulfido)azanium Chemical compound NC(=N)[NH2+][S-] KGGGHKDUVKEQJF-UHFFFAOYSA-N 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000004665 defense response Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005712 elicitor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 101150029559 hph gene Proteins 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/13—Abiotic stress
- Y02A40/135—Plants tolerant to salinity
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种植物耐逆性相关转录因子GmWRKY78及其编码基因与应用。本发明提供的蛋白质,是如下(a)或(b):(a)由序列表中序列1所示的氨基酸序列组成的蛋白质;(b)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与植物耐逆性相关的由序列1衍生的蛋白质。本发明对于培育耐逆植物品种,特别是培育耐非生物胁迫(耐盐、耐旱和耐低温)的作物、林草等新品种具有重要价值,可用于农牧业和生态环境治理所需的耐逆性植物品种的培育和鉴定,对提高农作物产量具有重要意义。The invention discloses a plant stress tolerance-related transcription factor GmWRKY78, its coding gene and application. The protein provided by the present invention is the following (a) or (b): (a) a protein composed of the amino acid sequence shown in Sequence 1 in the Sequence Listing; (b) the amino acid sequence shown in Sequence 1 in the Sequence Listing after a A protein derived from Sequence 1 that has substitution and/or deletion and/or addition of several amino acid residues and is related to plant stress tolerance. The present invention is of great value for cultivating stress-tolerant plant varieties, especially for cultivating new varieties of crops and forest grasses resistant to abiotic stress (salt tolerance, drought tolerance and low temperature tolerance), and can be used for agriculture, animal husbandry and ecological environment management. The cultivation and identification of stress-tolerant plant varieties is of great significance for improving crop yield.
Description
技术领域 technical field
本发明涉及生物技术领域,尤其涉及一种植物耐逆性相关转录因子GmWRKY78及其编码基因与应用。The invention relates to the field of biotechnology, in particular to a transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application.
背景技术 Background technique
环境中物理化学因素的变化,例如干旱、盐碱、低温等胁迫因素对植物的生长发育有重要影响,严重时会造成农作物大规模减产,培育耐逆性作物是种植业的主要目标之一。目前,基因工程育种已经成为增强作物耐逆性的重要方法之一。高等植物细胞有多种途径应答环境中的各种逆境胁迫,其中转录因子起着调控耐逆相关效应基因表达的作用。植物中已经发现了多类转录因子与植物耐逆性相关,例如:EREBP/AP2中的DREB类,bZIP,MYB,WRKY等等。Changes in physical and chemical factors in the environment, such as drought, salinity, low temperature and other stress factors, have an important impact on the growth and development of plants. In severe cases, they will cause large-scale crop yield reduction. Cultivating stress-tolerant crops is one of the main goals of planting. At present, genetic engineering breeding has become one of the important methods to enhance crop stress tolerance. Higher plant cells have multiple pathways to respond to various stresses in the environment, and transcription factors play a role in regulating the expression of stress tolerance-related effector genes. Many types of transcription factors have been found in plants related to plant stress tolerance, for example: DREB in EREBP/AP2, bZIP, MYB, WRKY and so on.
WRKY类转录因子是一种植物特有的转录调控因子,该家族的cDNA最初从甜马铃薯、野燕麦、欧芹和拟南芥中克隆获得。这类转录因子名称来源于每个蛋白均含有1-2个WRKY结构域。WRKY结构域是一个含60个氨基酸的序列,N端包含了极为保守的氨基酸序列WRKYGQK和一个锌指结构域。几乎所有的WRKY蛋白对W-box[(T)TGAC(C/T)]都有结合特性,能与自身启动子中的W-box结合来参与表达调控。W-box存在于许多与植物防御反应相关的基因启动子中,介导了病原物来源的激发子诱导的转录反应。在拟南芥中,WRKY家族有74个成员;水稻和大豆中均有100余个成员。WRKY类转录因子主要与植物的抗病反应、衰老以及生长和发育相关,21世纪以来发现也与耐逆性相关。已从拟南芥、烟草、马铃薯及水稻中克隆得到在逆境下起作用的WRKY转录因子。The WRKY transcription factor is a plant-specific transcriptional regulator, and the cDNA of this family was originally cloned from sweet potato, wild oat, parsley and Arabidopsis. The name of this type of transcription factor comes from the fact that each protein contains 1-2 WRKY domains. The WRKY domain is a sequence of 60 amino acids, and the N-terminal contains the extremely conserved amino acid sequence WRKYGQK and a zinc finger domain. Almost all WRKY proteins have binding properties to W-box[(T)TGAC(C/T)], and can bind to W-box in their own promoters to participate in expression regulation. W-boxes exist in the promoters of many genes related to plant defense responses and mediate transcriptional responses induced by pathogen-derived elicitors. In Arabidopsis, the WRKY family has 74 members; in rice and soybean, there are more than 100 members. WRKY transcription factors are mainly related to plant disease resistance response, senescence, growth and development, and have been found to be related to stress tolerance since the 21st century. WRKY transcription factors that function under stress have been cloned from Arabidopsis, tobacco, potato and rice.
大豆是世界上提供可食性植物油的主要来源,并且为畜牧业提供高蛋白饲料和为人类提供高品质蛋白,它们的生长和产量时常受到非生物环境胁迫的影响。阐明其耐逆机理,进而改善其耐逆性,对大豆生产有重要意义。Soybean is the world's main source of edible vegetable oil, and provides high-protein feed for livestock and high-quality protein for humans. Their growth and yield are often affected by abiotic environmental stress. It is of great significance for soybean production to elucidate its stress tolerance mechanism and improve its stress tolerance.
发明内容 Contents of the invention
本发明的一个目的是提供一种植物耐逆性相关转录因子GmWRKY78及其编码基因。One object of the present invention is to provide a plant stress tolerance-related transcription factor GmWRKY78 and its coding gene.
本发明提供的与植物耐逆性相关的蛋白质,名称为GmWRKY78,是一种转录因子,来源于大豆属大豆(Glycine max(L.)Merrill),是如下(a)或(b):The protein related to plant stress tolerance provided by the present invention is called GmWRKY78, which is a transcription factor derived from soybean (Glycine max (L.) Merrill), and is as follows (a) or (b):
(a)由序列表中序列1所示的氨基酸序列组成的蛋白质;(a) a protein consisting of the amino acid sequence shown in
(b)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与植物耐逆性相关的由序列1衍生的蛋白质。(b) The amino acid sequence shown in
序列表中的序列1由306个氨基酸残基组成,是大豆中的WRKY类转录因子。
所述一个或几个氨基酸残基的取代和/或缺失和/或添加是指不超过10个氨基酸残基的取代和/或缺失和/或添加。The substitution and/or deletion and/or addition of one or several amino acid residues refers to the substitution and/or deletion and/or addition of no more than 10 amino acid residues.
为了使(a)中的蛋白便于纯化,可在由序列表中序列1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to make the protein in (a) easy to purify, the amino-terminal or carboxy-terminal of the protein consisting of the amino acid sequence shown in
表1标签的序列Table 1 Sequence of tags
上述(b)中的取代和/或缺失和/或添加,可由自然变异或人工诱变引起。The substitution and/or deletion and/or addition in (b) above may be caused by natural variation or artificial mutagenesis.
上述(a)或(b)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达得到。上述(b)中的蛋白的编码基因可通过将序列表中序列2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。The protein in (a) or (b) above can be synthesized artificially, or its coding gene can be synthesized first, and then biologically expressed. The protein-encoding gene in (b) above can be deleted by deleting one or several amino acid residue codons in the DNA sequence shown in
编码所述蛋白GmWRKY的基因GmWRKY78也属于本发明的保护范围。The gene GmWRKY78 encoding the protein GmWRKY also belongs to the protection scope of the present invention.
所述基因可为如下(1)或(2)或(3)的DNA分子:The gene can be a DNA molecule of (1) or (2) or (3) as follows:
(1)序列表中序列2所示的DNA分子;(1) DNA molecules shown in
(2)在严格条件下与(1)限定的DNA序列杂交且编码植物耐逆性相关蛋白的DNA分子;(2) A DNA molecule that hybridizes to the DNA sequence defined in (1) under stringent conditions and encodes a plant stress tolerance-related protein;
(3)与(1)限定的DNA序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码植物耐逆性相关蛋白的DNA分子。(3) at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% of the DNA sequence defined in (1) , a DNA molecule having at least 98% or at least 99% homology and encoding a plant stress tolerance-related protein.
所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。Described stringent condition can be as follows: 50 ℃, hybridize in the mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4 and 1mM EDTA, wash in 50 ℃, 2×SSC, 0.1% SDS ; Can also be: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse at 50°C, 1×SSC, 0.1% SDS; can also be: 50°C, in 7% Hybridize in a mixed solution of SDS, 0.5M NaPO 4 and 1mM EDTA, rinse at 50°C in 0.5×SSC, 0.1% SDS; also: 50°C, in a mixture of 7% SDS, 0.5M NaPO 4 and 1mM EDTA Hybridization in solution, rinse at 50°C, 0.1×SSC, 0.1% SDS; also: 50°C, hybridization in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, at 65°C, 0.1×SSC , 0.1% SDS; alternatively: in 6×SSC, 0.5% SDS solution, hybridize at 65°C, then wash the membrane once with 2×SSC, 0.1% SDS and 1×SSC, 0.1% SDS .
序列表中的序列2由921个核苷酸组成,全部为GmWRKY78蛋白的编码序列,自5’端的第1至3位脱氧核糖核苷酸为起始密码子ATG,第919至921位脱氧核糖核苷酸为终止密码子TAA。
含有所述基因的重组载体、表达盒、转基因细胞系或重组菌均属于本发明的保护范围。Recombinant vectors, expression cassettes, transgenic cell lines or recombinant bacteria containing the genes all belong to the protection scope of the present invention.
可用现有的植物表达载体构建含有所述基因的重组表达载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pROKII、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa或pCAMBIA1391-Xb(CAMBIA公司)等。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂合成酶Nos基因)、植物基因(如大豆贮存蛋白基因)3’端转录的非翻译区均具有类似功能。使用所述基因构建重组植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子(如花椰菜花叶病毒(CAMV)35S启动子、玉米的泛素启动子(Ubiquitin))、组成型启动子或组织特异表达启动子(如种子特异表达的启动子),它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因等(如抗除莠剂基因)。如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对methatrexate抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。An existing plant expression vector can be used to construct a recombinant expression vector containing the gene. The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment and the like. Such as pROKII, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa or pCAMBIA1391-Xb (CAMBIA Company), etc. The plant expression vector can also include the 3' untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression. The polyadenylic acid signal can guide polyadenylic acid to be added to the 3' end of the mRNA precursor, such as Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopain synthase Nos gene), plant gene (such as soybean storage The untranslated region transcribed at the 3' end of protein gene) has similar functions. When using said gene to construct a recombinant plant expression vector, any enhanced promoter (such as cauliflower mosaic virus (CAMV) 35S promoter, corn ubiquitin promoter ( Ubiquitin)), constitutive promoters or tissue-specific expression promoters (such as seed-specific expression promoters), they can be used alone or in combination with other plant promoters; in addition, when using the gene of the present invention to construct plant expression vectors , can also use enhancers, including translation enhancers or transcription enhancers, these enhancer regions can be ATG start codons or adjacent region start codons, etc., but must be in the same reading frame as the coding sequence to ensure that the entire sequence correct translation of . The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding genes (GUS gene, luciferase gene, etc.) Genes, etc.), antibiotic resistance markers (gentamicin markers, kanamycin markers, etc.) or chemical resistance marker genes (such as herbicide resistance genes). Such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, the hph gene that confers resistance to the antibiotic hygromycin, and the dhfr gene that confers resistance to metharexate gene, the EPSPS gene that confers resistance to glyphosate) the mannose-6-phosphate isomerase gene that confers the ability to metabolize mannose.
所述重组载体为如下1)或2):The recombinant vector is as follows 1) or 2):
1)将权利要求2或3所述基因插入pROK II载体的XbaI和KpnI识别位点间得到的重组载体;1) insert the gene described in
2)将权利要求2或3所述基因插入pBin438载体的BamHI和KpnI识别位点间得到的重组载体。2) The recombinant vector obtained between the BamHI and KpnI recognition sites of the pBin438 vector by inserting the gene described in
扩增所述基因全长或其任意片段的引物对也属于本发明的保护范围。A pair of primers for amplifying the full length of the gene or any fragment thereof also falls within the protection scope of the present invention.
所述引物对具体可为如下(I)或(II):The primer pair can specifically be as follows (I) or (II):
(I)由序列表的序列3所示DNA和序列表的序列4所示DNA组成的引物对;(1) a primer pair consisting of DNA shown in
(II)由序列表的序列5所示DNA和序列表的序列6所示DNA组成的引物对。(II) A primer pair consisting of the DNA shown in Sequence 5 of the Sequence Listing and the DNA shown in
所述蛋白或其编码基因在培育耐逆植物中的应用也是本发明保护的范围。The application of the protein or its coding gene in cultivating stress-tolerant plants is also within the protection scope of the present invention.
所述应用为所述基因通过所述重组载体中的所述重组载体1)导入所述目的植物中,得到转基因毛状根;所述转基因毛状根的增长率大于与转空载体毛状根,转空载体毛状根为将pROK II转入目的植物得到的转空载体毛状根;The application is that the gene is introduced into the target plant through the recombinant vector 1) in the recombinant vector to obtain the transgenic hairy root; the growth rate of the transgenic hairy root is greater than that of the empty vector hairy root The empty vector hairy root is the empty vector hairy root obtained by transferring pROK II into the target plant;
所述耐逆性为耐旱性、耐盐性和/或耐低温;The stress tolerance is drought tolerance, salt tolerance and/or low temperature tolerance;
所述植物为双子叶或单子叶植物;所述双子叶植物具体为大豆。The plant is a dicotyledon or a monocotyledonous plant; the specific cotyledonous plant is soybean.
本发明的第二个目的是提供一种培育转基因植物的方法。The second object of the present invention is to provide a method for breeding transgenic plants.
本发明提供的方法是将所述基因导入目的植物中,得到耐逆性高于所述目的植物的转基因植物。The method provided by the invention is to introduce the gene into the target plant to obtain a transgenic plant with higher stress tolerance than the target plant.
所述基因通过上述重组载体中的所述重组载体2)导入所述目的植物中;The gene is introduced into the target plant through the recombinant vector 2) in the above-mentioned recombinant vector;
所述耐逆性为耐旱性;The stress tolerance is drought tolerance;
所述耐逆性体现在主茎伸长比例;The stress resistance is reflected in the elongation ratio of the main stem;
所述目的植物为双子叶或单子叶植物;所述双子叶植物具体为拟南芥。The target plant is a dicotyledon or a monocotyledonous plant; the specific dicotyledonous plant is Arabidopsis thaliana.
所述转基因植物理解为不仅包含将所述基因转化目的植物得到的第一代转基因植物,也包括其子代。对于转基因植物,可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。将所述基因导入目的植物,会使所述蛋白质目的植物中合成,进而是目的植物的耐逆性性状得到改良。The transgenic plant is understood to include not only the first-generation transgenic plant obtained by transforming the target plant with the gene, but also its progeny. For transgenic plants, the gene can be propagated in that species, or transferred into other varieties of the same species, particularly including commercial varieties, using conventional breeding techniques. The introduction of the gene into the target plant will result in the synthesis of the protein in the target plant, and then the stress tolerance traits of the target plant will be improved.
所述基因可先进行进行如下修饰,再导入宿主中,以达到更好的表达效果:The gene can be modified as follows first, and then introduced into the host to achieve better expression effect:
1)根据实际需要进行修饰和优化,以使基因高效表达;例如,可根据受体植物所偏爱的密码子,在保持本发明所述核苷酸序列编码的氨基酸的同时改变其密码子以符合植物偏爱性;优化过程中,最好能使优化后的编码序列中保持一定的GC含量,以最好地实现植物中导入基因的高水平表达,其中GC含量可为35%,优选为多于45%,更优选为多于50%,最优选多于约60%;1) Modify and optimize according to actual needs, so that the gene can be expressed efficiently; for example, according to the codon preferred by the recipient plant, the codon can be changed while maintaining the amino acid encoded by the nucleotide sequence of the present invention to conform to Plant preference; in the optimization process, it is best to keep a certain GC content in the optimized coding sequence, so as to best realize the high-level expression of the introduced gene in the plant, wherein the GC content can be 35%, preferably more than 45%, more preferably greater than 50%, most preferably greater than about 60%;
2)修饰邻近起始甲硫氨酸的基因序列,以使翻译有效起始;例如,利用在植物中已知的有效的序列进行修饰;2) modifying the gene sequence adjacent to the starting methionine to allow efficient initiation of translation; for example, using sequences known to be effective in plants for modification;
3)与各种植物表达的启动子连接,以利于其在植物中的表达;所述启动子可包括组成型、诱导型、时序调节、发育调节、化学调节、组织优选和组织特异性启动子;启动子的选择将随着表达时间和空间需要而变化,而且也取决于靶物种;例如组织或器官的特异性表达启动子,根据需要受体在发育的什么时期而定;尽管证明了来源于双子叶植物的许多启动子在单子叶植物中是可起作用的,反之亦然,但是理想地,选择双子叶植物启动子用于双子叶植物中的表达,单子叶植物的启动子用于单子叶植物中的表达;3) Linking with various plant-expressed promoters to facilitate its expression in plants; said promoters may include constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, tissue-preferred and tissue-specific promoters ; the choice of promoter will vary with the temporal and spatial requirements of expression, and also depends on the target species; e.g. a tissue or organ-specific expression promoter, depending on what stage of development the recipient is desired; although proven source Many promoters for dicots are functional in monocots and vice versa, but ideally, dicot promoters are chosen for expression in dicots and monocot promoters are used for Expression in monocots;
4)与适合的转录终止子连接,也可以提高本发明基因的表达效率;例如来源于CaMV的tml,来源于rbcS的E9;任何已知在植物中起作用的可得到的终止子都可以与本发明基因进行连接。4) Linking with suitable transcription terminators can also improve the expression efficiency of the gene of the present invention; for example, tml derived from CaMV, E9 derived from rbcS; any available terminators known to work in plants can be combined with The gene of the present invention is linked.
5)引入增强子序列,如内含子序列(例如来源于Adhl和bronzel)和病毒前导序列(例如来源于TMV,MCMV和AMV)。5) Introduce enhancer sequences, such as intron sequences (eg derived from Adhl and bronze) and viral leader sequences (eg derived from TMV, MCMV and AMV).
在实际操作中,也可以将本发明基因进行细胞靶向定位。可利用本领域现有的技术实现。例如,将来源于靶向细胞器的靶基因序列与本发明基因序列融合,再导入植物细胞中,就可定位了。In practice, the gene of the present invention can also be targeted to cells. It can be realized by utilizing existing technologies in the art. For example, the target gene sequence derived from the target organelle is fused with the gene sequence of the present invention, and then introduced into the plant cell to achieve localization.
携带有所述基因的表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。The expression vector carrying the gene can transform plant cells or tissues by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, electrical conduction, Agrobacterium-mediated, and transform the transformed The plant tissue is grown into a plant.
本发明的实验证明,鉴定了GmWRKY78基因在大豆中的表达受到高盐、干旱、低温及植物激素ABA处理的诱导。之后将GmWRKY78基因经发根农杆菌的介导,导入大豆科丰一号根中,获得了转GmWRKY78基因的根系,分别在盐和干旱胁迫后,转GmWRKY78基因的根系其生长状态均明显好于转空载体根系,说明GmWRKY78基因能够显著提高植物的耐盐性。本发明对于培育耐逆植物品种,特别是培育耐非生物胁迫(耐盐)的作物、林草等新品种具有重要价值,可用于农牧业和生态环境治理所需的耐逆性植物品种的培育和鉴定,对提高农作物产量具有重要意义。The experiment of the present invention proves that the expression of GmWRKY78 gene in soybean is induced by the treatment of high salt, drought, low temperature and plant hormone ABA. Afterwards, the GmWRKY78 gene was introduced into the root of Soybeaceae Feng No. 1 through the mediation of Agrobacterium rhizogenes, and the root system of GmWRKY78 gene was obtained. After salt and drought stress respectively, the growth state of the root system of GmWRKY78 gene was significantly better than that of The root system of the empty vector was transformed, indicating that the GmWRKY78 gene can significantly improve the salt tolerance of the plant. The present invention is of great value for cultivating stress-tolerant plant varieties, especially for cultivating new varieties such as crops and forest grasses resistant to abiotic stress (salt tolerance), and can be used for the development of stress-tolerant plant varieties required for agriculture, animal husbandry and ecological environment management. Cultivation and identification are of great significance to improving crop yield.
附图说明 Description of drawings
图1为定量PCR分析GmWRKY78在各种处理下的表达特征Figure 1 is the quantitative PCR analysis of the expression characteristics of GmWRKY78 under various treatments
图2为植物表达载体pROKII-GmWRKY78的示意图Figure 2 is a schematic diagram of the plant expression vector pROKII-GmWRKY78
图3为发根农杆菌介导转基因根系系统的建立Figure 3 is the establishment of the transgenic root system mediated by Agrobacterium rhizogenes
图4为定量PC7检测GmWRKY78基因在转基因根系中的表达量Figure 4 is the quantitative PC7 detection of the expression level of GmWRKY78 gene in the transgenic root system
图5为过量表达GmWRKY78根系的耐旱性鉴定Figure 5 is the drought tolerance identification of overexpressed GmWRKY78 roots
图6为转GmWRKY78基因根系的耐盐性鉴定Fig. 6 is the salt tolerance identification of transgenic GmWRKY78 gene root system
图7为转GmWRKY78基因根系的耐低温鉴定Fig. 7 is the low temperature tolerance identification of transgenic GmWRKY78 gene root system
图8为GmWRKY78转基因拟南芥的耐旱性分析Figure 8 is the drought tolerance analysis of GmWRKY78 transgenic Arabidopsis
具体实施方式 Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
下述实施例中的%,如无特殊说明,均为质量百分含量。以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。% in the following examples, unless otherwise specified, are mass percentages. In the quantitative experiments in the following examples, three repeated experiments were set up, and the data were the mean value or mean ± standard deviation of the three repeated experiments.
大豆科丰1号(Glycine max L.Merr.Kefeng 1)记载在W.K.Zhang,Y.J.Wang,G.Z.Luo,J.S.Zhang,C.Y.He,X.L.Wu,J.Y.Gai,S.Y.Chen,QTL mapping of tenagronomic traits on the soybean(Glycine max L.Merr.)genetic map and theirassociation with EST markers,Theor.Appl.Genet,2004,108:1131-1139中,公众可以从中国科学院遗传与发育生物学研究所获得;Glycine max L.Merr.Kefeng 1 (Glycine max L.Merr.Kefeng 1) was recorded in W.K.Zhang, Y.J.Wang, G.Z.Luo, J.S.Zhang, C.Y.He, X.L.Wu, J.Y.Gai, S.Y.Chen, QTL mapping of tenagronomic traits on the soybean( Glycine max L.Merr.) genetic map and theirassociation with EST markers, Theor.Appl.Genet, 2004, 108:1131-1139, the public can obtain from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
pROKII载体(双元表达载体)记载在D.C.Baulcombe,G.R.Saunders,M.W.Bevan,M.A.Mayo and B.D.Harrison,Expression of biologically active viral satelliteRNA from the nuclear genome of transformed plants.Nature 321(1986),pp.446-449中,公众可以从中国科学院遗传与发育生物学研究所获得;pROKII vector (binary expression vector) is described in D.C.Baulcombe, G.R.Saunders, M.W.Bevan, M.A.Mayo and B.D.Harrison, Expression of biologically active viral satelliteRNA from the nuclear genome of transformed plants.Nature 321(1986), pp.446-449 The public can obtain it from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
发根农杆菌K599记载在Attila Kereszt,et al.,Agrobacteriumrhizogenes-mediaded transformation of soybean to study of root biology.NatureProtocols,2007,2(4),549-552)中,公众可从Peter M Gressnon教授,The Universityof Queensland,St Lucia,Queensland 4072,Australia,获得,或经Peter M Gressnon教授同意(书面同意书)后由中科院遗传与发育生物学研究所获得。Agrobacterium rhizogenes K599 is recorded in Attila Kereszt, et al., Agrobacterium rhizogenes-mediated transformation of soybean to study of root biology. Nature Protocols, 2007, 2 (4), 549-552), the public can get from Professor Peter M Gressnon, The Obtained from the University of Queensland, St Lucia, Queensland 4072, Australia, or from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences with the consent of Prof. Peter M Gressnon (written consent).
植物双元表达载体pBin438记载在李太元,田颖川,秦晓峰,等.高效抗虫转基因烟草的研究[J].中国科学(B辑),1994,24(3):276-282中,公众可从中国科学院遗传与发育生物学研究所获得。The plant binary expression vector pBin438 is recorded in Li Taiyuan, Tian Yingchuan, Qin Xiaofeng, etc. Research on highly efficient insect-resistant transgenic tobacco [J]. Chinese Science (Series B), 1994, 24(3): 276-282, the public can download from China Institute of Genetics and Developmental Biology, Academy of Sciences.
根癌农杆菌AGL1记载在He Y,Jones HD,Chen S,Chen XM,Wang DW,Li KX,WangDS,Xia LQ,Agrobacterium-mediated transformation of durum wheat(Triticumturgidum L.var.durum cv Stewart)with improved efficiency,J Exp Bot.2010,61(6):1567-81中,公众可从中国科学院遗传与发育生物学研究所获得。Agrobacterium tumefaciens AGL1 was described in He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ, Agrobacterium-mediated transformation of durum wheat(Triticumturgidum L.var.durum cv Stewart) with improved efficiency , J Exp Bot. 2010, 61(6): 1567-81, publicly available from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.
野生型哥伦比亚生态型拟南芥(Arabidopsis thaliana)(Col-0)(以下简称野生型拟南芥)购自拟南芥中心Arabidopsis Biological Resource Center。Wild-type Colombian ecotype Arabidopsis thaliana (Col-0) (hereinafter referred to as wild-type Arabidopsis) was purchased from Arabidopsis Biological Resource Center.
实施例1、大豆耐逆性相关蛋白及其编码基因GmWRKY78获得Example 1. Acquisition of soybean stress tolerance-related protein and its coding gene GmWRKY78
1、GmWRKY78基因的发现1. Discovery of the GmWRKY78 gene
大豆科丰1号3周龄幼苗经200mM NaCl分别处理1、3、6和12小时,每种处理样本取1-2克新鲜叶片,在液氮中研碎,悬于4mol/L硫氢酸胍水溶液中,混合物用酸性苯酚、氯仿抽提,上清液中加入无水乙醇沉淀得到总RNA(GmWRKY78基因在盐胁迫下的表达量比正常条件下增加许多,因此要克隆该基因,用盐胁迫处理大豆苗)。提取的总RNA,反转录为cDNA。以cDNA为模板,用Primer-F和Primer-R进行PCR扩增,得到PCR扩增产物。PCR扩增产物进行1%琼脂糖凝胶电泳检测,得到分子量约为900bp的条带,用琼脂糖凝胶回收试剂盒(TIANGEN)回收该片段。The 3-week-old seedlings of
Primer-F:5’-CCCTCTAGA ATGGATTATTCATCATGGATTA-3’(下划线标注Xba I酶切识别位点)(序列3);Primer-F: 5'-CCC TCTAGA ATGGATTATTCATCATGGATTA-3' (Xba I enzyme digestion recognition site is underlined) (SEQ ID NO: 3);
Primer-R:5’-CCCGGTACC TTAATTATTATTGTGCAACATTTTTC-3’(下划线标注KpnI酶切识别位点)(序列4)。Primer-R: 5'-CCC GGTACC TTAATTATTTATTGTGCAACATTTTTC-3' (KpnI restriction recognition site is underlined) (SEQ ID NO: 4).
PCR扩增体系(50μl):cDNA1μl,10×buffer5μl,dNTP(10mM)1μl,Primer-F1μl,Primer-R1μl,Pfu DNA Polymerase(TaKaRa)1μl,ddH2O 40μl。扩增条件为:94℃3min;94℃30s,50℃30s,72℃30s,30个循环;72℃10m。PCR amplification system (50 μl):
将该回收片段(PCR产物)与pGEM-T Easy(Promega)连接,将连接产物转化大肠杆菌DH5α感受态细胞,根据pGEM-T Easy载体上的羧卞青霉素抗性标记筛选阳性克隆,得到含有回收片段的重组质粒。以该重组质粒载体上的T7和SP6启动子序列为引物对其进行核苷酸序列测定,测序结果表明该PCR产物具有序列表中序列2所示的核苷酸,该PCR产物的基因命名为GmWRKY78,该基因的编码区为序列表中序列2自5’末端第1-921位核苷酸,该基因编码的蛋白命名为GmWRKY78,该蛋白的氨基酸序列为序列表中的序列1所示。序列表中序列2由921个核苷酸组成,序列表中序列1由306个氨基酸残基组成。The recovered fragment (PCR product) was connected with pGEM-T Easy (Promega), the connected product was transformed into Escherichia coli DH5α competent cells, and positive clones were screened according to the carbenicillin resistance marker on the pGEM-T Easy vector to obtain the recovered Fragments of recombinant plasmids. Using the T7 and SP6 promoter sequences on the recombinant plasmid vector as primers to determine its nucleotide sequence, the sequencing results show that the PCR product has the nucleotides shown in
也可人工合成序列表中序列2。
2、逆境胁迫处理下大豆GmWRKY78基因的表达特征2. Expression characteristics of soybean GmWRKY78 gene under adversity stress treatment
将大豆科丰1号3周龄幼苗作如下胁迫处理:The 3-week-old seedlings of Soybean Kefeng No. 1 were subjected to the following stress treatments:
1)盐胁迫处理(NaCl):将幼苗移入200mM NaCl水溶液中,室温,约25C;1) Salt stress treatment (NaCl): move the seedlings into 200mM NaCl aqueous solution, room temperature, about 25°C;
2)渗透胁迫处理(Dfought):将幼苗根部小心的吸去水分,置于滤纸上暴露于室温空气(25℃)中;2) Osmotic stress treatment (Dfought): The roots of the seedlings were carefully absorbed to remove water, placed on filter paper and exposed to air at room temperature (25°C);
3)低温胁迫处理(Cold):将幼苗浸入预冷的水中,置于4℃冰箱;3) Low temperature stress treatment (Cold): immerse the seedlings in pre-cooled water and place them in a refrigerator at 4°C;
4)脱落酸(ABA)处理,将幼苗根浸入100μM ABA水溶液中,室温,约25℃。4) Abscisic acid (ABA) treatment, immerse the seedling roots in 100 μM ABA aqueous solution at room temperature, about 25°C.
5)CK处理:幼苗未经任何处理记作CK;5) CK treatment: Seedlings without any treatment are recorded as CK;
6)水处理:将幼苗浸入蒸馏水中,处理温度为约25℃;6) Water treatment: immerse the seedlings in distilled water, and the treatment temperature is about 25°C;
每种处理在1、3、6、12小时分别收集新鲜叶片1g在液氮中研碎(CK组直接收集叶片),悬于4mol/L硫氢酸胍水溶液中,混合物用酸性苯酚、氯仿抽提,上清液中加入无水乙醇沉淀得到总RNA。对GmWRKY78基因在上述处理时的表达特征进行定量PCR分析,引物为Primer-F和Primer-R。实验重复三次,结果取平均值±标准差。Collect 1 g of fresh leaves at 1, 3, 6, and 12 hours for each treatment, grind them in liquid nitrogen (collect the leaves directly in the CK group), suspend them in 4 mol/L guanidine thiohydrogen aqueous solution, and extract the mixture with acidic phenol and chloroform , adding absolute ethanol to the supernatant to obtain total RNA. Quantitative PCR analysis was performed on the expression characteristics of GmWRKY78 gene under the above treatments, and the primers were Primer-F and Primer-R. The experiment was repeated three times, and the results were average ± standard deviation.
结果如图1所示,The result is shown in Figure 1,
CK处理的GmWRKY78基因相对表达量为0.03±0.005;The relative expression level of GmWRKY78 gene treated with CK was 0.03±0.005;
水处理1、3、6、12h GmWRKY78基因相对表达量为0.03±0.002、0.02±0.001、0.02±0.001、0.02±0.001;The relative expression of GmWRKY78 gene in
渗透胁迫处理1、3、6、12h GmWRKY78基因相对表达量为0.07±0.015、0.075±0.015、0.15±0.04、0.17±0.05;The relative expression levels of GmWRKY78 gene were 0.07±0.015, 0.075±0.015, 0.15±0.04, 0.17±0.05 at 1, 3, 6 and 12h of osmotic stress treatment;
低温胁迫处理1、3、6、12h GmWRKY78基因相对表达量为0.025±0.002、0.11±0.03、0.23±0.09、0.34±0.08;The relative expression levels of GmWRKY78 gene were 0.025±0.002, 0.11±0.03, 0.23±0.09, 0.34±0.08 at 1, 3, 6 and 12h of low temperature stress treatment;
盐胁迫处理1、3、6、12h GmWRKY78基因相对表达量为0.11±0.03、0.26±0.10、0.095±0.03、0.24±0.07;The relative expression levels of GmWRKY78 gene were 0.11±0.03, 0.26±0.10, 0.095±0.03, 0.24±0.07 at 1, 3, 6 and 12h of salt stress treatment;
脱落酸(ABA)处理1、3、6、12h GmWRKY78基因相对表达量为0.1±0.06、0.04±0.005、0.01±0.001、0.008±0.001;Abscisic acid (ABA)
从图中看出,GmWRKY78基因对低温、干旱、高盐和ABA处理均有应答反应,除了ABA处理外,其表达明显受低温、干旱和高盐处理诱导,在ABA处理时,GmWRKY78的转录在1小时时急速升高,之后下降,至6小时降至对照水平。当水处理时GmWRKY78表达没有明显变化,GmWRKY78基因的表达受非生物胁迫诱导得到确认。It can be seen from the figure that the GmWRKY78 gene responds to low temperature, drought, high salt and ABA treatment, and its expression is obviously induced by low temperature, drought and high salt treatment except for ABA treatment. It increased sharply at 1 hour, then decreased, and dropped to the control level by 6 hours. GmWRKY78 expression did not change significantly when water was treated, and it was confirmed that the expression of GmWRKY78 gene was induced by abiotic stress.
实施例2、GmWRKY78基因的过量表达可提高受体植物的耐逆性
1、发根农杆菌介导转基因根系方法的建立1. Establishment of Agrobacterium rhizogenes-mediated transgenic root system method
发根农杆菌侵染法根据Attila Kereszt等方法(Attila Kereszt,et al.,Agrobacterium rhizogenes-mediaded transformation of soybean to study of rootbiology,Nature Protocols,2007,2(4),549-552)进行。The Agrobacterium rhizogenes infection method was carried out according to the method of Attila Kereszt et al. (Attila Kereszt, et al., Agrobacterium rhizogenes-mediaded transformation of soybean to study of root biology, Nature Protocols, 2007, 2(4), 549-552).
具体操作如下:The specific operation is as follows:
1)首先将含有GUS基因的pBI121(Datla RS,Hammerlindl JK,Panchuk B,PelcherLE,Keller W,Modified binary plant transformation vectors with the wild-typegene encoding NPTII,Gene.1992Dec 15;122(2):383-4,公众可从中国科学院遗传与发育生物学研究所获得),通过电击法导入发根农杆菌K599中,得到重组农杆菌。提取重组农杆菌的质粒,用PCR方法鉴定重组农杆菌中所含目的基因,所用引物为正向:5‘-ATGTTACGTCCTGTAGAAAC-3’反向:5‘-AGCGGGTAGATATCACACTC-3’1) First, pBI121 containing the GUS gene (Datla RS, Hammerlindl JK, Panchuk B, PelcherLE, Keller W, Modified binary plant transformation vectors with the wild-typegene encoding NPTII, Gene.1992Dec 15; 122(2): 383-4 , the public can obtain from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences), and introduced into Agrobacterium rhizogenes K599 by electric shock method to obtain recombinant Agrobacterium. Extract the plasmid of recombinant Agrobacterium, and use PCR method to identify the target gene contained in the recombinant Agrobacterium. The primers used are forward: 5'-ATGTTACGTCCTGTAGAAAC-3'reverse: 5'-AGCGGGTAGATATCACACTC-3'
扩增的片段为GUS基因的5‘端800bP区段,证明该质粒为pBI121,含有GUS基因,含有该质粒的重组农杆菌为阳性重组农杆菌,命名为K599/pBI121。The amplified fragment is the 5' end 800bP segment of the GUS gene, which proves that the plasmid is pBI121, which contains the GUS gene, and the recombinant Agrobacterium containing the plasmid is a positive recombinant Agrobacterium, named K599/pBI121.
2)大豆科丰1号种子播种于蛭石中,待长出2片真叶待用。2) Seeds of Soybean Kefeng No. 1 were sown in vermiculite, and waited to grow 2 true leaves for later use.
3)在含有50mg/L卡那霉素的LB固体培养基中划线活化K599/pBI121,挑单菌落在含有50mg/L卡那霉素的LB液体培养基中摇菌过夜,得到K599/pBI121发根农杆菌菌液。3) Streak activation of K599/pBI121 in LB solid medium containing 50 mg/L kanamycin, pick a single colony and shake overnight in LB liquid medium containing 50 mg/L kanamycin to obtain K599/pBI121 Agrobacterium rhizogenes.
4)用步骤3)得到的发根农杆菌菌液,用注射器接种6天含两片真叶的步骤2)获得的大豆幼苗(见图3A,6天苗龄,在距离蛭石表面1-2cm处注射。),保湿生长:光照16小时,温度25℃,湿度50%。2周后,长出毛状根(图3B),可以用于转基因鉴定和胁迫实验。4) Use the Agrobacterium rhizogenes bacteria liquid obtained in step 3) to inoculate with a syringe the soybean seedlings obtained in step 2) containing two true leaves for 6 days (see Figure 3A, 6 days seedling age, at a distance of 1-2 from the vermiculite surface. Inject at 2cm.), moisturizing growth: light for 16 hours, temperature 25°C, humidity 50%. After 2 weeks, hairy roots grow (Fig. 3B), which can be used for transgene identification and stress experiments.
当毛状根长度为5-10厘米时,剪去老根,新的毛状根即为转化的根,可进一步用于转基因鉴定。When the length of the hairy root is 5-10 cm, the old root is cut off, and the new hairy root is the transformed root, which can be further used for transgenic identification.
将4根新的毛状根进行GUS染色,将毛状根直接放在下列染色液:50mM NaP04,pH7.2,2mM X-gluc,0.5mM K3Fe(CN)6,and 0.5mMK4Fe(CN)6中,37℃过夜,毛状根经系列浓度70、50、30%乙醇洗(脱色),之后放在重蒸水中,观察,结果如图3C所示,可以看出,经GUS染色表明外源基因基因GUS已经在新长出的毛状根中表达,说明上述方法可将外源基因转化至毛状根中(含有pBI121)。上述新的毛状根为转基因毛状根。Four new hairy roots were subjected to GUS staining, and the hairy roots were directly placed in the following staining solution: 50mM NaP04, pH7.2, 2mM X-gluc, 0.5mM K3Fe(CN)6, and 0.5mM K4Fe(CN)6 In 37°C overnight, the hairy roots were washed (decolorized) with a series of ethanol concentrations of 70, 50, and 30%, and then placed in distilled water for observation. The results are shown in Figure 3C. It can be seen that GUS staining indicates that exogenous The gene GUS has been expressed in newly grown hairy roots, indicating that the above method can transform exogenous genes into hairy roots (containing pBI121). The above-mentioned new hairy roots are transgenic hairy roots.
因为pBI121载体中带有GUS基因,在建立毛状根的转化系统时,应用GUS基因的表达有蓝色,容易检测,因此用的是pBI121载体。而在正式试验中,用NPTII标记较好,因此换成pROK II载体。Because the pBI121 vector contains the GUS gene, when establishing the hairy root transformation system, the expression of the GUS gene is blue and easy to detect, so the pBI121 vector is used. In the formal experiment, it is better to use NPTII labeling, so it is replaced by pROK II vector.
2、重组表达载体pROK II-GmWRKY78的构建2. Construction of recombinant expression vector pROK II-GmWRKY78
用限制性内切酶XbaI和Kpn I双酶切由实施例1Primer-F和Primer-R作为引物获得的PCR产物,回收酶切产物,将该酶切产物与经过同样酶切植物表达载体pROKII得到的载体骨架连接,得到连接产物。将连接产物转入大肠杆菌中,得到转化子。提取转化子的质粒,送去测序,该质粒为将序列表中的序列2插入pROKII的XbaI和KpnI酶切位点之间得到的载体,将该载体命名为pROK II-GmWRKY78,且序列表中的序列2位于CaMV 35S启动子之后。重组表达载体pROKII-GmWRKY78结构示意图如图2所示。Use restriction endonuclease XbaI and KpnI to double digest the PCR product obtained by embodiment 1Primer-F and Primer-R as primers, reclaim the digested product, and obtain the digested product with the plant expression vector pROKII through the same restriction enzyme digestion The vector backbone is ligated to obtain the ligated product. The ligation product was transformed into Escherichia coli to obtain a transformant. Extract the plasmid of the transformant and send it for sequencing. This plasmid is the carrier obtained by inserting the
3、过量表达GmWRKY78基因根系的获得3. Obtaining root system with overexpression of GmWRKY78 gene
1)将上述2得到的重组表达载体pROK II-GmWRKY78,通过电击法导入转化发根农杆菌K599,得到重组农杆菌。1) The recombinant expression vector pROK II-GmWRKY78 obtained in the above 2 was introduced and transformed into Agrobacterium rhizogenes K599 by electric shock method to obtain recombinant Agrobacterium.
提取重组农杆菌的质粒,送去测序,结果为该质粒为pROKII-GmWRKY78,将含有该质粒的重组农杆菌命名为K599/pROK II-GmWRKY78。The plasmid of the recombinant Agrobacterium was extracted and sent for sequencing. The result was that the plasmid was pROKII-GmWRKY78, and the recombinant Agrobacterium containing the plasmid was named K599/pROKII-GmWRKY78.
2)用注射器将重组农杆菌K599/pROK II-GmWRKY78接种生长6天含两片真叶的大豆科丰1号幼苗,具体方法见上述1的步骤4),图3A,保湿生长:光照16小时,温度25℃,湿度50%。2周后,长出毛状根即为转化的毛状根。共获得26个转GmWRKY78毛状根根系,可进一步作转基因鉴定和耐逆性检测。2) Use a syringe to inoculate the recombinant Agrobacterium K599/pROK II-GmWRKY78 into soybean Kefeng No. 1 seedlings that have grown for 6 days and contain two true leaves. For the specific method, see step 4) of the above 1, Figure 3A, moisture growth: 16 hours of light , temperature 25°C, humidity 50%. After 2 weeks, hairy roots grow and become transformed hairy roots. A total of 26 transgenic GmWRKY78 hairy root systems were obtained, which can be further used for transgenic identification and stress tolerance testing.
以相同的方法将空载体pROK II转入大豆科丰1号幼苗,得到26个转空载体毛状根根系,以作为实验对照。In the same way, the empty vector pROK II was transferred into
3)分别提取转GmWRKY78毛状根和转空载体毛状根的总RNA,将其反转录为cDNA。以cDNA为模板,用Primer-78F和Primer-78R进行GmWRKY78基因表达量分析。Real-Time PCR反应使用TOYOBO公司的RealTime PCR Master Mix试剂盒,并按照说明进行操作。GmWRKY78基因表达量检测所用引物为Primer-78F和Primer-78R;大豆GmTubulin基因为内标,所用引物为Primer-TF和Primer-TR。实验重复三次,结果取平均值±标准差。3) Total RNA was extracted from hairy roots transfected with GmWRKY78 and hairy roots transformed with empty vector, and reverse transcribed into cDNA. Using cDNA as a template, the expression of GmWRKY78 gene was analyzed with Primer-78F and Primer-78R. The Real-Time PCR reaction uses TOYOBO's RealTime PCR Master Mix kit and operates according to the instructions. Primer-78F and Primer-78R were used to detect the expression level of GmWRKY78 gene; the soybean GmTubulin gene was used as internal standard, and the primers used were Primer-TF and Primer-TR. The experiment was repeated three times, and the results were average ± standard deviation.
Primer-78F:5’-GTAACAACAGGTTCCAACCGTTC-3’(序列5)Primer-78F: 5'-GTAACAACAGGTTCCAACCGTTC-3' (SEQ ID NO: 5)
Primer-78R:5’-CTTCTGGTGATTCAGTTTTGGGATT-3’(序列6)Primer-78R: 5'-CTTCTGGTGATTCAGTTTTGGGATT-3' (SEQ ID NO: 6)
Primer-TF:5’-AACTCCATTTCGTCCATTCCTTC-3’Primer-TF: 5'-AACTCCATTTCGTCCATTCCTTC-3'
Primer-TR:5’-TTGAGTGGATTCCCAACAACG-3’Primer-TR: 5'-TTGAGTGGATTCCCAACAACG-3'
结果如图4所示,其中,pROKII-GmWRKY78为转GmWRKY78毛状根,pROKII为转空载体毛状根,从图中看出,转GmWRKY78毛状根中GmWRKY78的相对表达量为4.25±0.2;转空载体毛状根中检测出的GmWRKY78的相对表达量是大豆原有的GmWRKY78的表达,为0.75±0.1;转GmWRKY78基因根系中,GmWRKY78的表达量远高于转空载体根系中GmWRKY78的表达量。The results are shown in Figure 4, wherein, pROKII-GmWRKY78 is the hairy root transformed with GmWRKY78, and pROKII is the hairy root transformed with empty vector. It can be seen from the figure that the relative expression level of GmWRKY78 in the hairy root transformed with GmWRKY78 is 4.25±0.2; The relative expression level of GmWRKY78 detected in the hairy roots of the empty vector was the expression of the original GmWRKY78 in soybean, which was 0.75±0.1; quantity.
4、转GmWRKY78基因根系的耐旱、耐盐和耐低温鉴定4. Identification of drought tolerance, salt tolerance and low temperature tolerance of transgenic GmWRKY78 root system
实验样本为转空载体根系和转GmWRKY78根系。The experimental samples were the root system of empty vector and the root system of GmWRKY78.
两种转基因根系不经处理的各为2个。There were 2 untreated root systems of the two transgenic plants.
1)耐旱性鉴定:1) Drought tolerance identification:
将转GmWRKY78基因毛状根和转空载体毛状根分别浸入1%(体积百分含量)和2.5%PEG(聚乙二醇6000)处理3天,25℃,以转GmWRKY78毛状根和转空载体毛状根在水中生长为对照。两种浓度PEG处理的根系各为8个。实验重复三次,结果取平均值。The hairy roots of the transgenic GmWRKY78 gene and the transgenic vector hairy roots were respectively immersed in 1% (volume percentage) and 2.5% PEG (polyethylene glycol 6000) for 3 days at 25°C to transform the hairy roots of GmWRKY78 and the transgenic Empty vector hairy roots were grown in water as a control. There were 8 root systems treated with two concentrations of PEG. The experiment was repeated three times, and the results were averaged.
处理3天后,拍照观察,结果如图5A所示,可以看出,在水处理时,转GmWRKY78基因毛状根(GmWRKY78)和转空载体毛状根(pROKII)的生长无明显差异,而经1%PEG和2.5%PEG处理后,转GmWRKY78毛状根与转空载体毛状根间根的增长率有显著差别。After 3 days of treatment, take photos and observe, the results are shown in Figure 5A. It can be seen that, during water treatment, there was no significant difference in the growth of the hairy roots of the transgenic GmWRKY78 gene (GmWRKY78) and the transgenic vector hairy roots (pROKII). After treatment with 1% PEG and 2.5% PEG, there was a significant difference in the growth rate of hairy roots between transgenic GmWRKY78 and transgenic vector hairy roots.
具体测量各组根系,先计算每一根毛状根的增长率=(处理后根长-处理前根长)/处理前根长,然后取平均值±标准差;Specifically measure each group of root systems, first calculate the growth rate of each hairy root=(root length after processing-handling front root length)/handling front root length, then get mean ± standard deviation;
将增长率作图如图5B所示,PEG浓度为1%时,转空载体毛状根(pROKII)增长率约为48±7%,而转GmWRKY78毛状根(GmWRKY78)的增长率约为70±8%。转GmWRKY78基因毛状根的增长率与转空载体毛状根的增长率有明细差异。当PEG浓度升至2.5%时,转空载体毛状根增长率降至25%,而转GmWRKY78毛状根的增长率降至30%,仍略高于对照。The growth rate is plotted as shown in Figure 5B. When the PEG concentration is 1%, the growth rate of the hairy root of the empty vector (pROKII) is about 48 ± 7%, while the growth rate of the hairy root of the GmWRKY78 (GmWRKY78) is about 70±8%. The growth rate of the hairy root of the transgenic GmWRKY78 gene was slightly different from that of the empty vector. When the concentration of PEG increased to 2.5%, the growth rate of the hairy root of the empty vector decreased to 25%, while that of the transgenic GmWRKY78 hairy root decreased to 30%, which was still slightly higher than that of the control.
2)耐盐性鉴定:2) Identification of salt tolerance:
将转GmWRKY78毛状根和转空载体毛状根各取10个经100mM NaCl水溶液处理3天,即浸入100mM NaCl溶液中,25℃。实验重复三次,结果取平均值±标准差。Ten of the hairy roots of transgenic GmWRKY78 and transgenic vectors were treated with 100mM NaCl aqueous solution for 3 days, then immersed in 100mM NaCl solution at 25°C. The experiment was repeated three times, and the results were average ± standard deviation.
处理3天后,拍照观察,结果如图6A所示,经100mM NaCl处理3天的转空载体(pROK II)毛状根和转GmWRKY78毛状根(GmWRKY78)的表型,可以看出,水处理(正常条件)转空载体毛状根和转GmWRKY78毛状根无显著差异,在100mM NaCl处理下,二者有显著差异。After 3 days of treatment, take pictures and observe the results, as shown in Figure 6A, the phenotypes of the hairy roots of the empty vector (pROK II) and the hairy roots of GmWRKY78 (GmWRKY78) that were treated with 100mM NaCl for 3 days, as can be seen, water treatment (Normal condition) There is no significant difference between the hairy roots of the empty vector and the hairy roots of the GmWRKY78, but there is a significant difference between the two under the treatment of 100mM NaCl.
测量具体如下:The measurements are as follows:
计算毛状根长度增长率的公式同上。The formula for calculating the growth rate of hairy root length is the same as above.
将增长率作图如图6B所示,经100mM NaCl水溶液处理转GmWRKY78基因毛状根(请核实是说毛状根还是说根系合适)的长度增长率为23±8%。而经100mM NaCl水溶液处理转空载体毛状根的长度增长率为7±6%,两者有显著差异。The growth rate is plotted as shown in Figure 6B, the length growth rate of the transgenic hairy root of GmWRKY78 gene (please check whether the hairy root or the root system is suitable) is 23 ± 8% after being treated with 100mM NaCl aqueous solution. However, the growth rate of the hairy root length of the empty carrier treated by 100mM NaCl aqueous solution was 7±6%, and there was a significant difference between the two.
3)耐低温鉴定:3) Identification of low temperature resistance:
将转GmWRKY78基因根系和转空载体根系各取10个经4℃处理3天。实验重复三次,结果取平均值。Take 10 transgenic GmWRKY78 gene root systems and 10 transgenic root systems and treat them at 4°C for 3 days. The experiment was repeated three times, and the results were averaged.
处理3天后,拍照观察,结果如图7A所示,经4℃处理3天的转空载体(pROKII)毛状根和转GmWRKY78毛状根(GmWRKY78)的表型,可以看出,水处理(正常条件)转空载体和转GmWRKY78根系无显著差异,在4℃处理下,二者有显著差异。After 3 days of treatment, take pictures and observe the results, as shown in Figure 7A, the phenotypes of the hairy roots of the empty vector (pROKII) and the hairy roots of GmWRKY78 (GmWRKY78) treated at 4°C for 3 days, it can be seen that the water treatment ( Under normal conditions) there was no significant difference between the empty vector and the GmWRKY78-transferred root system, but there was a significant difference between the two under the 4°C treatment.
测量具体如下:The measurements are as follows:
计算毛状根长度增长率的公式同上。The formula for calculating the growth rate of hairy root length is the same as above.
将增长率作图如图7B,经4℃处理转GmWRKY78毛状根的长度增长率为7.5±2%而经4℃处理转空载体毛状根的长度增长率为0。两者有极显著差异。The growth rate is plotted in Figure 7B, the growth rate of hairy roots transformed into GmWRKY78 treated at 4°C was 7.5±2%, and the growth rate of hairy roots transformed into empty vector was 0 after treated at 4°C. There is a very significant difference between the two.
上述转空载体毛状根和转GmWRKY78毛状根的耐逆性鉴定表明,GmWRKY78与植物耐非生物胁迫相关,GmWRKY78在大豆中的过量表达增加了转基因大豆的耐盐、耐旱和耐低温性状。GmWRKY78基因可作为提高植物耐非生物胁迫基因工程的目的基因。The identification of the stress tolerance of the above-mentioned empty vector hairy root and the transgenic GmWRKY78 hairy root showed that GmWRKY78 was related to plant tolerance to abiotic stress, and the overexpression of GmWRKY78 in soybean increased the salt tolerance, drought tolerance and low temperature tolerance of transgenic soybean . The GmWRKY78 gene can be used as the target gene of genetic engineering for improving plant resistance to abiotic stress.
实施例3、转GmWRKY78拟南芥的功能鉴定Example 3, Functional identification of transgenic GmWRKY78 Arabidopsis
1、重组载体pBin438-GmWRKY781. Recombinant vector pBin438-GmWRKY78
以实施例1得到的cDNA(由于盐处理后目的基因的表达量增加,因此需用盐处理)为模板,以引物1和Primer-R作为引物,进行PCR扩增。Using the cDNA obtained in Example 1 (salt treatment is required because the expression level of the target gene increases after salt treatment) as a template,
引物1:5’-CCCTTTCGGATGGATTATTCATCATGGATTA-3’(序列7)Primer 1: 5'-CCCTTTCGGATGGATTATTCATCATGGATTA-3' (SEQ ID NO: 7)
Primer-R:5’-CCCGGTACCTTAATTATTATTGTGCAACATTTTTC-3’(序列4)Primer-R: 5'-CCCGGTACCTTAATTTATTATTGTGCAACATTTTTC-3' (SEQ ID NO: 4)
用BamHI和KpnI双酶切上述PCR产物,回收,与经过同样酶切的植物双元表达载体pBin438得到的载体大片段进行连接,得到连接产物,转入大肠杆菌中,得到转化子,提取转化子的质粒,送去测序,该质粒为将序列表中的序列2插入pBin438的CaMV35S启动子之后的BamHI和KpnI酶切位点之间得到的载体,将该质粒命名为pBin438-GmWRKY78,即为重组载体,该重组载体的结构示意图如图8A所示。Digest the above PCR product with BamHI and KpnI, recover it, and ligate it with the large fragment of the vector obtained from the plant binary expression vector pBin438 after the same digestion to obtain the ligated product, transfer it into Escherichia coli, obtain a transformant, and extract the transformant The plasmid was sent for sequencing. This plasmid is the vector obtained by inserting
2、重组根癌农杆菌AGL1/pBin438-GmWRKY782. Recombinant Agrobacterium tumefaciens AGL1/pBin438-GmWRKY78
将重组载体pBin438-GmWRKY78用电击法导入根癌农杆菌AGL1中,得到重组菌。PCR鉴定,以引物1和Primer-R作为引物,得到约900bp片段,因此为阳性重组菌,将该阳性重组菌提取质粒,送去测序,结果为该质粒为pBin438-GmWRKY78,进一步证明该菌为阳性菌株,命名为AGL1/pBin438-GmWRKY78。The recombinant vector pBin438-GmWRKY78 was introduced into Agrobacterium tumefaciens AGL1 by electric shock method to obtain recombinant bacteria. PCR identification, with
3、转GmWRKY78拟南芥的获得及鉴定3. Obtaining and identification of transgenic Arabidopsis thaliana
通过用抽真空法(Clough-SJ,Bent-AF.Floral dip:a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana.Plant-Journal.1998,16:6,735-743)将重组农杆菌AGL1/pBin438-GmWRKY78转入哥伦比亚生态型拟南芥(Arabidopsis thaliana)(Col-0),具体操作为:将野生型拟南芥Col-0的花浸泡于转化液(MS 0.011g,Sucrose 0.25g,Silwet 0.5μl,重蒸水稀释至5ml,pH5.8)中10秒,取出后放入MS培养基中避光培养8小时,获得T0代转化种子,将其播于含卡那霉素(50mg/L)的MS培养基上,获得T0代转GmWRKY78拟南芥。收获种子T1代种子,播于含卡那霉素(50mg/L)的MS筛选培养基上,获得18株T1代转GmWRKY78拟南芥。待T1代转GmWRKY78拟南芥长至4-6叶时移到蛭石上生长。The recombinant Agrobacterium AGL1/pBin438- GmWRKY78 was transferred into Colombian ecotype Arabidopsis thaliana (Col-0), and the specific operation was as follows: the flower of wild-type Arabidopsis Col-0 was soaked in the transformation solution (MS 0.011g, Sucrose 0.25g, Silwet 0.5μl , diluted to 5ml with distilled water, pH 5.8) for 10 seconds, took it out and put it into MS medium for dark cultivation for 8 hours to obtain T 0 generation transformed seeds, which were sown in the seed containing kanamycin (50mg/L ) on the MS medium, and the T 0 generation was transferred to GmWRKY78 Arabidopsis. Harvest seeds T 1 generation seeds, sow on the MS selection medium containing kanamycin (50mg/L), obtain 18 strains T 1 generation transgenic GmWRKY78 Arabidopsis thaliana. When the T 1 generation transgenic GmWRKY78 Arabidopsis grows to 4-6 leaves, move them to vermiculite for growth.
按照上述方法将空载体pBin438转入野生型哥伦比亚生态型拟南芥(Arabidopsisthaliana)(Col-0)中,得到10株T0代转空载体拟南芥,经过PCR鉴定,引物为引物1和Primer-R,未得到目的片段,得到T0代转空载体拟南芥。According to the above method, the empty vector pBin438 was transferred into the wild-type Colombian ecotype Arabidopsis thaliana (Arabidopsisthaliana) (Col-0), and 10 strains of T 0 generation empty vector Arabidopsis were obtained. After PCR identification, the primers were
提取野生型拟南芥、T1代转GmWRKY78拟南芥的总RNA进行RT-PCR鉴定分析,所用引物为引物1和Primer-R。The total RNA of wild-type Arabidopsis thaliana and T1 generation transgenic Arabidopsis GmWRKY78 was extracted for RT-PCR analysis, and the primers used were
结果表明,在18株T0代转GmWRKY78拟南芥中,有10株检测出GmWRKY78基因的表达。将分子鉴定阳性的植株单株收种子,各单株种子分别播种,用卡那霉素继续筛选以观察T1代的分离情况,如此重复直至T3代获得遗传稳定的转基因株系。共获得10个稳定遗传的T3代转GmWRKY78拟南芥株系,编号为78-1、7-11和78-24。The results showed that 10 of the 18 Arabidopsis thaliana transgenic to GmWRKY78 in the T 0 generation expressed the GmWRKY78 gene. The seeds of the plants with positive molecular identification were harvested, and the seeds of each individual plant were sown separately, and the screening was continued with kanamycin to observe the segregation of the T1 generation, and so on until the T3 generation obtained genetically stable transgenic lines. A total of 10 stably inherited Arabidopsis lines of the T 3 generation transgenic to GmWRKY78 were obtained, numbered 78-1, 7-11 and 78-24.
从T0代转空载体拟南芥单株收种子,各单株种子分别播种,用卡那霉素继续筛选以观察T1代的分离情况,如此重复直至T3代转空载体拟南芥。Harvest seeds from the single plant of Arabidopsis thaliana transformed into the empty vector in the T 0 generation, sow the seeds of each individual plant separately, and continue to screen with kanamycin to observe the segregation of the T 1 generation, and repeat until the T 3 generation is transformed into the empty vector Arabidopsis thaliana .
T1代表示T0代自交产生的种子及由它所长成的植株,T2代表示T1代自交产生的种子及由它所长成的植株,T3代表示T2代自交产生的种子及由它所长成的植株。T 1 generation represents the seeds produced by T 0 generation self-crossing and the plants grown from it, T 2 generation represents the seeds produced by T 1 generation self-crossing and the plants grown from it, T 3 generation represents the T 2 generation self-crossing The seed produced by intercourse and the plant that grows from it.
提取10个稳定遗传的T3代转GmWRKY78拟南芥株系的RNA,反转录得到cDNA为模板,所用引物为引物1和Primer-R,以野生型拟南芥和T3代转空载体拟南芥为对照,结果如图8B所示,其中,cDNA为野生型拟南芥的cDNA,CK为不加任何模板,W78-1、W78-11和W78-24分别为筛选到目的基因表达高的3个T3代转GmWRKY78拟南芥株系,可以看出,该三个株系为阳性株系。Extract the RNA of 10 stably inherited T 3 generation Arabidopsis lines transformed into GmWRKY78 thaliana, and reverse transcribe to obtain cDNA as a template. The primers used are primer 1 and Primer-R. Arabidopsis was used as the control, and the results are shown in Figure 8B, wherein, cDNA is the cDNA of wild-type Arabidopsis, CK is without any template, and W78-1, W78-11 and W78-24 are the target gene expression screened respectively. The three high T 3 generations were transferred to the GmWRKY78 Arabidopsis line, and it can be seen that the three lines are positive lines.
野生型拟南芥和T3代转空载体拟南芥结果无显著差异。There was no significant difference in the results between wild type Arabidopsis and T3 generation empty vector Arabidopsis.
4、转GmWRKY78拟南芥的功能鉴定4. Functional identification of transgenic Arabidopsis thaliana
将3个T3代转GmWRKY78拟南芥株系(W78-1、W78-11和W78-24)3周龄苗置于26-28℃、相对湿度为15-20%、连续光照下,以300mM甘露醇处理14天,然后观察表型同时进行主茎长度统计,以野生型拟南芥和T3代转空载体拟南芥为对照,同样将上述植株均不进行300mM甘露醇处理。实验共设三次重复,每次重复中,所测试的各株系植株均分别为15株。The 3-week-old seedlings of three T 3 generation transgenic GmWRKY78 Arabidopsis lines (W78-1, W78-11 and W78-24) were placed under continuous light at 26-28°C, relative humidity 15-20%, and 300mM mannitol was treated for 14 days, and then the phenotype was observed and the length of the main stem was counted. The wild-type Arabidopsis and the T3 generation empty vector Arabidopsis were used as controls, and the above plants were also not treated with 300mM mannitol. The experiment was repeated three times in total, and in each repetition, 15 plants of each strain were tested.
拍照观察如图8C所示,8C上图为转基因各株系经300mM甘露醇处理14天后的表型,下图为未经处理的对照;可以看出,未经处理的野生型对照与转基因植株表型没有显著差异,而甘露醇处理14天的对照生长明显受到抑制,而3个转基因株系其生长显著优于对照。Photographic observation is shown in Figure 8C. The upper picture of 8C shows the phenotypes of the transgenic lines after 14 days of treatment with 300mM mannitol, and the lower picture shows the untreated control; it can be seen that the untreated wild-type control and the transgenic plants There was no significant difference in phenotype, while the growth of the control treated with mannitol for 14 days was significantly inhibited, while the growth of the three transgenic lines was significantly better than that of the control.
结果如图8D所示,为经上述甘露醇处理后对照及转基因植株的主茎伸长比例统计,其中,CK为野生型拟南芥,W78-1、W78-11和W78-24分别为3个T3代转GmWRKY78拟南芥株系;The results are shown in Figure 8D, which is the statistics of the main stem elongation ratio of the control and transgenic plants after the above-mentioned mannitol treatment, wherein, CK is wild-type Arabidopsis, and W78-1, W78-11 and W78-24 are 3 Three T 3 generations were transferred to the GmWRKY78 Arabidopsis line;
CK主茎伸长比例(处理后主茎长-处理前主茎长)/处理前主茎长)为0.5;CK main stem elongation ratio (main stem length after treatment-main stem length before treatment)/main stem length before treatment) is 0.5;
W78-1主茎伸长比例为1.3;The main stem elongation ratio of W78-1 is 1.3;
W78-11主茎伸长比例为1.5;The main stem elongation ratio of W78-11 is 1.5;
W78-24主茎伸长比例为1.4;The main stem elongation ratio of W78-24 is 1.4;
从上述可以看出,转基因转系78-1、78-11和78-24主茎伸长比例优于野生型拟南芥。It can be seen from the above that the elongation ratio of the main stem of the transgenic lines 78-1, 78-11 and 78-24 is better than that of the wild type Arabidopsis.
上述实验不仅表明,GmWRKY78的过量表达提高了转基因植株的耐旱性,同时也表明转基因大豆根系这一系统可以作为目的基因与耐逆性相关性的检测系统。转基因大豆根系的耐逆性可说明目的基因与植物耐逆性的相关性。The above experiments not only show that the overexpression of GmWRKY78 improves the drought tolerance of transgenic plants, but also show that the transgenic soybean root system can be used as a detection system for the correlation between target genes and stress tolerance. The stress tolerance of transgenic soybean roots can illustrate the correlation between the target gene and plant stress tolerance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100530837A CN102653556B (en) | 2011-03-04 | 2011-03-04 | Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100530837A CN102653556B (en) | 2011-03-04 | 2011-03-04 | Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102653556A CN102653556A (en) | 2012-09-05 |
CN102653556B true CN102653556B (en) | 2013-10-09 |
Family
ID=46729301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100530837A Expired - Fee Related CN102653556B (en) | 2011-03-04 | 2011-03-04 | Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102653556B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105524925B (en) * | 2016-01-11 | 2019-03-08 | 北京市农林科学院 | Plant-inducible promoters and their applications |
CN107501397B (en) * | 2016-06-14 | 2021-06-15 | 中国科学院遗传与发育生物学研究所 | Soybean GmBZF238 protein and its encoding gene and application |
CN110938119B (en) * | 2018-09-20 | 2021-05-18 | 中国农业科学院作物科学研究所 | Application of soybean stress resistance-related protein GmBES and its encoding gene |
CN111826390B (en) * | 2019-03-29 | 2022-05-31 | 中国科学院微生物研究所 | Application of protein WRKY78 in regulation of plant biotic stress resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101003808A (en) * | 2006-12-05 | 2007-07-25 | 中国科学院西双版纳热带植物园 | WRKY45 gene of paddy rice, preparation method and application |
CN101130785A (en) * | 2007-07-30 | 2008-02-27 | 北京未名凯拓农业生物技术有限公司 | Clone of rice WRKY gene relative to drought resistance and application thereof |
CN101173002A (en) * | 2007-10-29 | 2008-05-07 | 中国科学院遗传与发育生物学研究所 | Transcription factor GmWRKY54 related to plant stress tolerance and its coding gene and application |
-
2011
- 2011-03-04 CN CN2011100530837A patent/CN102653556B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101003808A (en) * | 2006-12-05 | 2007-07-25 | 中国科学院西双版纳热带植物园 | WRKY45 gene of paddy rice, preparation method and application |
CN101130785A (en) * | 2007-07-30 | 2008-02-27 | 北京未名凯拓农业生物技术有限公司 | Clone of rice WRKY gene relative to drought resistance and application thereof |
CN101173002A (en) * | 2007-10-29 | 2008-05-07 | 中国科学院遗传与发育生物学研究所 | Transcription factor GmWRKY54 related to plant stress tolerance and its coding gene and application |
Also Published As
Publication number | Publication date |
---|---|
CN102653556A (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109369790B (en) | Rice Bacterial Blight Resistance-Related Protein OsBBR1 and Its Encoding Gene and Application | |
CN103667314B (en) | Derive from protein OsMKK4 and the application of relevant biological material in regulating plant seed size thereof of paddy rice | |
CN109111514B (en) | Method for cultivating transgenic wheat with resistance to sheath blight and root rot and related biological material thereof | |
CN114276429B (en) | Breeding method of TaLRK-R transgenic wheat with resistance to sheath blight and stem rot and related biological materials | |
CN105037521A (en) | Plant stress resistance related protein TaWrky48 and coding gene and application thereof | |
CN110713526A (en) | Wheat stress resistant protein TaBZR2D and its encoding gene and application | |
CN103130885B (en) | Malus sieversii (Ledeb.) Roem-derived plant growth-related protein, and coding gene and application thereof | |
CN104059137B (en) | GsNAC74 and encoding gene application in cultivating resistance of reverse plant thereof | |
CN102399268B (en) | Plant stress tolerance-related transcription factor GmNAC11, coding gene and application thereof | |
CN102653556B (en) | Transcription factor GmWRKY78 related to plant stress tolerance and its coding gene and application | |
CN103275202B (en) | Disease resistance-related protein RCR1 derived from wheat, related biomaterials thereof, and application for same | |
CN104004073B (en) | Derive from disease resistance associated protein TaCPK7-R of Semen Tritici aestivi and relevant biological material thereof and application | |
CN105585623A (en) | Cultivating method for disease-resistant TaMYB-KW gene-transferred wheat, related biomaterials and application | |
CN103923196B (en) | Derive from the disease resistance associated protein TaPK-R1 of Semen Tritici aestivi and relevant biological material thereof and application | |
CN103588867B (en) | Soybean transcription factor GmMYB174a, and coding gene and applications thereof | |
CN111574606A (en) | Wheat disease resistance and heading regulatory gene TaCOK and its related biomaterials and applications | |
CN114805508B (en) | Rice heading stage gene DHD3 function and application | |
CN104945492A (en) | Plant stress tolerance associated protein TaAREB3 as well as encoding gene and application thereof | |
CN104120134B (en) | The application in cultivating resistance of reverse transgenic plant of the GsHSFB2b albumen | |
CN110684114B (en) | Application of plant stress tolerance-related protein TaBAKL in regulating plant stress tolerance | |
CN107022011A (en) | A kind of soybean transcription factor GmDISS1 and its encoding gene and application | |
CN110684089A (en) | Application of plant stress tolerance-related protein GmMYB118 in regulating plant stress tolerance | |
CN104152454A (en) | Soybean derived drought induced type promoter GmMYB363P and application thereof | |
CN114644691B (en) | EIP1 protein and its coding gene and drought resistance application | |
CN113563443B (en) | Salt tolerance related protein IbWRKY32, and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131009 Termination date: 20200304 |