CN116454184A - High-light-efficiency LED epitaxial wafer, preparation method thereof and LED - Google Patents
High-light-efficiency LED epitaxial wafer, preparation method thereof and LED Download PDFInfo
- Publication number
- CN116454184A CN116454184A CN202310713677.9A CN202310713677A CN116454184A CN 116454184 A CN116454184 A CN 116454184A CN 202310713677 A CN202310713677 A CN 202310713677A CN 116454184 A CN116454184 A CN 116454184A
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- sublayer
- epitaxial wafer
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制备技术领域,特别涉及一种高光效LED外延片及其制备方法、LED。The invention relates to the technical field of semiconductor preparation, in particular to a high-light-efficiency LED epitaxial wafer, a preparation method thereof, and an LED.
背景技术Background technique
氮化镓材料作为第三代半导体的典型代表,其具有禁带宽度大,电子迁移率高等特点。尤其是氮化镓基器件在微波、毫米波频段广泛应用于无线通信、雷达等电子系统,在光电子和微电子领域具有十分广阔的发展前景。As a typical representative of the third-generation semiconductor, gallium nitride material has the characteristics of large band gap and high electron mobility. In particular, gallium nitride-based devices are widely used in electronic systems such as wireless communication and radar in the microwave and millimeter wave frequency bands, and have very broad development prospects in the fields of optoelectronics and microelectronics.
目前,传统的氮化镓二极管通常包括衬底、缓冲层、n型GaN、有源层、电子阻挡层、P型GaN,主要发光来源为有源层。对于外延结构来说,所需空穴来源于P型GaN的Mg电离,而电子阻挡层为Al组分AlGaN层作用阻挡电子溢流,但同时也阻挡了空穴注入,高效p型GaN面临的最主要的难点是在满足高Mg并入的热力学前提的同时,还要有效克服非常高的Mg受主激活能,AL组分会降低Mg的激活能,导致的极低热激活效率。由于氮化镓二极管一般是由金属有机物化学气相沉积(MOCVD)系统制备,因而由MOCVD方法实现p型GaN极为重要,基于MOCVD方法实现P型GaN中Mg原子高并入效率及Mg原子有效离化激活两大核心难点的有效途径是急待突破的关键技术。At present, traditional gallium nitride diodes usually include a substrate, a buffer layer, n-type GaN, an active layer, an electron blocking layer, and a p-type GaN, and the main source of light emission is the active layer. For the epitaxial structure, the required holes come from the Mg ionization of p-type GaN, and the electron blocking layer is Al component. The AlGaN layer acts to block electron overflow, but also blocks hole injection. The main difficulty is to effectively overcome the very high Mg acceptor activation energy while satisfying the thermodynamic premise of high Mg incorporation. The AL component will reduce the activation energy of Mg, resulting in extremely low thermal activation efficiency. Since gallium nitride diodes are generally prepared by metal-organic chemical vapor deposition (MOCVD) systems, it is extremely important to realize p-type GaN by MOCVD methods. Based on MOCVD methods, high incorporation efficiency of Mg atoms in p-type GaN and effective ionization of Mg atoms can be achieved. An effective way to activate the two core difficulties is a key technology that urgently needs to be broken through.
发明内容Contents of the invention
基于此,本发明的目的是提供一种高光效LED外延片及其制备方法、LED,以解决现有技术中的不足。Based on this, the object of the present invention is to provide a high-efficiency LED epitaxial wafer, its preparation method, and LED, so as to solve the deficiencies in the prior art.
为实现上述目的,本发明提供了高光效LED外延片,包括依次叠置的衬底、缓冲层、N型层、有源层、电子阻挡层和P型层,所述电子阻挡层包括层叠于所述有源层上的第一子层、第二子层和第三子层;In order to achieve the above object, the present invention provides a high-efficiency LED epitaxial wafer, including a substrate, a buffer layer, an N-type layer, an active layer, an electron blocking layer and a P-type layer stacked in sequence, and the electron blocking layer includes a stacked a first sublayer, a second sublayer, and a third sublayer on the active layer;
所述第一子层为AlN层,所述第二子层为DGaN/DAlGaN超晶格层,所述第三子层包括P型AlxGa1-xN/DyGa1-yN超晶格层、P型AlxGa1-xN减薄层及DyGa1-yN减薄层;The first sublayer is an AlN layer, the second sublayer is a DGaN/DAlGaN superlattice layer, and the third sublayer includes a P-type Al x Ga 1-x N/D y Ga 1-y N superlattice layer. lattice layer, P-type Al x Ga 1-x N thinned layer and D y Ga 1-y N thinned layer;
所述DGaN/DAlGaN超晶格层包括周期性交替层叠的DGaN层和DAlGaN层,所述P型AlxGa1-xN/DyGa1-yN超晶格层包括周期性交替层叠的P型AlxGa1-xN层和DyGa1-yN层,所述P型AlxGa1-xN减薄层的厚度小于所述P型AlxGa1-xN层的厚度,所述DyGa1-yN减薄层的厚度小于所述DyGa1-yN层的厚度;The DGaN/DAlGaN superlattice layer includes periodically alternately stacked DGaN layers and DAlGaN layers, and the P-type Al x Ga 1-x N/D y Ga 1-y N superlattice layer includes periodically alternately stacked P-type Al x Ga 1-x N layer and D y Ga 1-y N layer, the thickness of the P-type Al x Ga 1-x N thinned layer is less than that of the P-type Al x Ga 1-x N layer thickness, the thickness of the D y Ga 1-y N thinned layer is less than the thickness of the D y Ga 1-y N layer;
其中,D为硼、铟或碳中的至少一种。Wherein, D is at least one of boron, indium or carbon.
优选的,所述第一子层的厚度为4nm-6nm,所述DGaN层和所述DAlGaN层的厚度皆为4nm-6nm,所述P型AlxGa1-xN层和所述DyGa1-yN层的厚度皆为3nm-4nm。Preferably, the thickness of the first sublayer is 4nm-6nm, the thickness of the DGaN layer and the DAlGaN layer are both 4nm-6nm, the P-type AlxGa1 -xN layer and the Dy The Ga 1-y N layers all have a thickness of 3nm-4nm.
优选的,所述P型AlxGa1-xN层中Al元素随着周期逐渐递减,所述DyGa1-yN层的厚度随着周期逐渐递增,所述P型AlxGa1-xN层中Mg元素的掺杂度为1E+16 atoms/cm3~2E+17 atoms/cm3。Preferably, the Al element in the P-type Al x Ga 1-x N layer gradually decreases with the period, the thickness of the D y Ga 1-y N layer gradually increases with the period, and the P-type Al x Ga 1 The doping degree of Mg element in the -x N layer is 1E+16 atoms/cm 3 ~2E+17 atoms/cm 3 .
优选的,所述P型AlxGa1-xN层和所述DyGa1-yN层中x和y的取值范围分别为:0≤x≤1,0≤y≤1,且x<y。Preferably, the value ranges of x and y in the P-type Al x Ga 1-x N layer and the D y Ga 1-y N layer are respectively: 0≤x≤1, 0≤y≤1, and x<y.
优选的,所述DGaN层和所述DAlGaN层交替堆叠的周期为2-3,所述组合结构中的P型AlxGa1-xN层和所述DyGa1-yN层交替堆叠的周期为3-4。Preferably, the DGaN layer and the DAlGaN layer are alternately stacked at a period of 2-3, and the P-type Al x Ga 1-x N layer and the D y Ga 1-y N layer in the combined structure are alternately stacked The cycle is 3-4.
优选的,所述P型AlxGa1-xN减薄层和所述DyGa1-yN减薄层中的镓组分的浓度分别低于所述P型AlxGa1-xN层和所述DyGa1-yN层中的镓组分的浓度。Preferably, the concentrations of gallium components in the P-type Al x Ga 1-x N thinned layer and the D y Ga 1-y N thinned layer are respectively lower than those of the P-type Al x Ga 1-x The concentration of the gallium component in the N layer and the D y Ga 1-y N layer.
优选的,所述衬底为蓝宝石衬底、SiC衬底和SiO2衬底中的其中一种。Preferably, the substrate is one of a sapphire substrate, a SiC substrate and a SiO 2 substrate.
为实现上述目的,本发明还提供了一种制备上述中所述的高光效LED外延片的制备方法,所述方法包括:In order to achieve the above object, the present invention also provides a method for preparing the above-mentioned high-luminous-efficiency LED epitaxial wafer, the method comprising:
获取一衬底;acquire a substrate;
在第一环境温度下通入氮气和氢气,以对所述衬底进行高温处理,并向MOCVD反应室中通入氮源和铝源,以在高温处理后的所述衬底上沉积得到缓冲层;Nitrogen gas and hydrogen gas are fed into the first ambient temperature to perform high temperature treatment on the substrate, and a nitrogen source and an aluminum source are fed into the MOCVD reaction chamber to obtain buffer deposits on the substrate after the high temperature treatment layer;
在第二环境温度下,掺入第一掺杂浓度的硅元素,以在所述缓冲层上生成N型层;Doping silicon with a first doping concentration at a second ambient temperature to form an N-type layer on the buffer layer;
在第三环境温度和第一环境压力下,掺入第二掺杂浓度的铝元素,以在所述N型层生成有源层;Doping aluminum elements with a second doping concentration at a third ambient temperature and a first ambient pressure to form an active layer in the N-type layer;
在第四环境温度和第二环境压力下,通过气相沉积法在有源层上沉积电子阻挡层;Depositing an electron blocking layer on the active layer by vapor deposition at a fourth ambient temperature and a second ambient pressure;
在第五环境温度和第三环境压力下,掺入第三掺杂浓度的镁元素,以在所述电子阻挡层上沉积P型层。Under the fifth ambient temperature and the third ambient pressure, magnesium element with a third doping concentration is doped to deposit a P-type layer on the electron blocking layer.
优选的,所述通过气相沉积法在有源层上沉积电子阻挡层的步骤包括:Preferably, the step of depositing an electron blocking layer on the active layer by vapor deposition comprises:
向MOCVD反应室通入所述氮源、所述铝源、硼源和镓源,通过气相沉积法于所述有源层上依次生成第一子层、第二子层和第三子层,接着停止通入所述铝源和所述镓源,对所述第三子层的表层进行脱附减薄,以得到P型AlxGa1-xN减薄层及DyGa1-yN减薄层。The nitrogen source, the aluminum source, the boron source and the gallium source are passed into the MOCVD reaction chamber, and the first sublayer, the second sublayer and the third sublayer are sequentially formed on the active layer by vapor deposition, Then stop feeding the aluminum source and the gallium source, and desorb and thin the surface layer of the third sublayer to obtain a P-type AlxGa1 -xN thinned layer and DyGa1 -y N thinned layer.
为实现上述目的,本发明还提供了一种LED,包括上述中所述的高光效LED外延片。To achieve the above object, the present invention also provides an LED, comprising the high-efficiency LED epitaxial wafer described above.
本发明的有益效果是:通过第一子层提供势垒能级,阻挡电子的迁移,利用第二子层中D元素能够插入或填充位错造成的空白位置,不但抑制线缺陷产生的位错延伸,在减小缺陷产生的几率的同时,还能保证晶格之间的适配应力和相应产生的应力场较小,以提高空穴的有效注入效率,然后利用第三子层的表面效应实现镁原子高效并入,即利用对第三子层的表层进行脱附减薄的过程,以此完成脱附减薄操作的表层结构为势垒层,实现沿生长方向Al组分周期变化的调制,从而有效解决镁原子离化激活的核心难点,提高镁原子的有效激活和并入,提高空穴的产生,从而提高发光效率。The beneficial effects of the present invention are: the barrier energy level is provided by the first sublayer to block the migration of electrons, and the D element in the second sublayer can be used to insert or fill the vacant positions caused by dislocations, which not only suppresses the dislocations generated by line defects Extension, while reducing the probability of defect generation, it can also ensure that the fitting stress between the lattices and the corresponding stress field are small, so as to improve the effective injection efficiency of holes, and then use the surface effect of the third sublayer To realize the efficient incorporation of magnesium atoms, that is, to use the process of desorption and thinning of the surface layer of the third sublayer, so that the surface structure of the desorption and thinning operation is used as a barrier layer, and the periodic change of Al composition along the growth direction is realized. Modulation, so as to effectively solve the core difficulty of ionization and activation of magnesium atoms, improve the effective activation and incorporation of magnesium atoms, increase the generation of holes, and thus improve the luminous efficiency.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
图1为本发明第一实施例提供的高光效LED外延片的结构简图;Fig. 1 is a schematic structural diagram of a high-efficiency LED epitaxial wafer provided by the first embodiment of the present invention;
图2为本发明第二实施例提供的高光效LED外延片的制备方法的流程图。FIG. 2 is a flow chart of a method for manufacturing a high-efficiency LED epitaxial wafer provided by the second embodiment of the present invention.
主要元件符号说明:Description of main component symbols:
如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Several embodiments of the invention are shown in the drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that the disclosure of the present invention will be thorough and complete.
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when an element is referred to as being “fixed on” another element, it may be directly on the other element or there may be an intervening element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or intervening elements may also be present. The terms "vertical," "horizontal," "left," "right," and similar expressions are used herein for purposes of illustration only.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
请参阅图1,所示为本发明的第一实施例中的高光效LED外延片,包括依次叠置的衬底10、缓冲层20、N型层30、有源层40、电子阻挡层和P型层80。Please refer to FIG. 1 , which shows a high-efficiency LED epitaxial wafer in the first embodiment of the present invention, including a substrate 10, a buffer layer 20, an N-type layer 30, an active layer 40, an electron blocking layer and P-type layer 80 .
其中:电子阻挡层包括层叠于所述有源层40上的第一子层50、第二子层60和第三子层70;Wherein: the electron blocking layer includes a first sublayer 50, a second sublayer 60 and a third sublayer 70 stacked on the active layer 40;
第一子层50为AlN层,第一子层50用于提供较好的势垒能级;The first sublayer 50 is an AlN layer, and the first sublayer 50 is used to provide a better energy barrier level;
所述第二子层60为DGaN/DAlGaN超晶格层, DGaN/DAlGaN超晶格层包括周期性交替层叠的DGaN层61和DAlGaN层62,DGaN层61和DAlGaN层62皆为超晶格结构;The second sub-layer 60 is a DGaN/DAlGaN superlattice layer, and the DGaN/DAlGaN superlattice layer includes periodically alternately stacked DGaN layers 61 and DAIGaN layers 62, both of which are superlattice structures ;
所述第三子层70包括依次叠置的P型AlxGa1-xN/DyGa1-yN超晶格层71、P型AlxGa1-xN减薄层72及DyGa1-yN减薄层73,P型AlxGa1-xN/DyGa1-yN超晶格层71包括周期性交替层叠的P型AlxGa1-xN层711和DyGa1-yN层712,可以理解的,通过对预先生成的第三子层70的表层进行脱附减薄,以得到P型AlxGa1-xN减薄层72及DyGa1-yN减薄层73,具体为,对第三子层70的表层进行脱附减薄,由于用AlGaN体系中Ga原子比Al原子更易脱附的特点,该第三子层的表层自发转化形成亚纳米厚度的P型AlxGa1-xN减薄层72和DyGa1-yN减薄层73,第三子层70中未进行脱附减薄的剩余结构为P型AlxGa1-xN/DyGa1-yN超晶格层71,从而P型AlxGa1-xN减薄层72和DyGa1-yN减薄层73中的镓组分的浓度分别低于P型AlxGa1-xN层711和DyGa1-yN层712中的镓组分的浓度,以及P型AlxGa1-xN减薄层72的厚度小于P型AlxGa1-xN层711的厚度,DyGa1-yN减薄层73的厚度小于DyGa1-yN层712的厚度,需要说明的是,D为硼、铟或碳中的至少一种。The third sublayer 70 includes a P-type AlxGa1 -xN / DyGa1 -yN superlattice layer 71, a P-type AlxGa1 -xN thinned layer 72 and a D y Ga 1-y N thinned layer 73, P-type Al x Ga 1-x N/D y Ga 1-y N superlattice layer 71 includes periodically alternately stacked P-type Al x Ga 1-x N layers 711 and D y Ga 1-y N layer 712, it can be understood that by desorbing and thinning the surface layer of the pre-generated third sub-layer 70, the P-type Al x Ga 1-x N thinned layer 72 and D The y Ga 1-y N thinning layer 73 is specifically to perform desorption and thinning on the surface layer of the third sublayer 70. Since Ga atoms are easier to desorb than Al atoms in the AlGaN system, the third sublayer The surface layer is spontaneously converted to form a P-type AlxGa1 -xN thinned layer 72 and a DyGa1 -yN thinned layer 73 with a sub-nanometer thickness, and the remaining structure in the third sublayer 70 that has not been desorbed and thinned is P-type Al x Ga 1-x N/D y Ga 1-y N superlattice layer 71, so that in P-type Al x Ga 1-x N thinned layer 72 and D y Ga 1-y N thinned layer 73 The concentration of the gallium component is lower than the concentration of the gallium component in the P-type AlxGa1 -xN layer 711 and the DyGa1 -yN layer 712, respectively, and the P-type AlxGa1 -xN thinned The thickness of the layer 72 is less than the thickness of the P-type AlxGa1 -xN layer 711, and the thickness of the DyGa1 -yN thinned layer 73 is less than the thickness of the DyGa1 -yN layer 712. It should be noted that, D is at least one of boron, indium or carbon.
在其中一些实施例中,第一子层50的厚度为4nm-6nm,DGaN层61和DAlGaN层62的厚度皆为4nm-6nm,P型AlxGa1-xN层711和DyGa1-yN层712的厚度皆为3nm-4nm。需要说明的是,第一子层50的最佳厚度为5nm,DGaN层61和DAlGaN层62的最佳厚度皆为5nm,P型AlxGa1-xN层711和DyGa1-yN层712的最佳厚度皆为3.5nm。In some of these embodiments, the thickness of the first sublayer 50 is 4nm-6nm, the thicknesses of the DGaN layer 61 and the DAlGaN layer 62 are both 4nm-6nm, and the P-type AlxGa1 -xN layer 711 and DyGa1 The thickness of the -y N layer 712 is 3nm-4nm. It should be noted that the optimal thickness of the first sublayer 50 is 5 nm, the optimal thickness of the DGaN layer 61 and the DAlGaN layer 62 are both 5 nm, and the P-type Al x Ga 1-x N layer 711 and D y Ga 1-y The optimal thickness of the N layer 712 is 3.5nm.
可以理解的,由于第二子层60中的DGaN层61和DAlGaN层62的厚度比较薄,可以不断扭曲界面产生的应力,从而减少缺陷的产生。It can be understood that since the DGaN layer 61 and the DAlGaN layer 62 in the second sub-layer 60 are relatively thin, the stress generated by the interface can be continuously distorted, thereby reducing the occurrence of defects.
在其中一些实施例中,DGaN层61和DAlGaN层62交替堆叠的周期为2-3,组合结构中的P型AlxGa1-xN层711和DyGa1-yN层712交替堆叠的周期为3-4。In some of these embodiments, the DGaN layer 61 and the DAlGaN layer 62 are alternately stacked at a period of 2-3, and the P-type AlxGa1 -xN layer 711 and the DyGa1 -yN layer 712 in the combined structure are alternately stacked The cycle is 3-4.
在其中一些实施例中,P型AlxGa1-xN层711中Al元素随着周期逐渐递减,DyGa1-yN层712的厚度随着周期逐渐递增,P型AlxGa1-xN层711中Mg元素的掺杂度为1E+16 atoms/cm3~2E+17 atoms/cm3。In some of these embodiments, the Al element in the P-type Al x Ga 1-x N layer 711 gradually decreases with the period, the thickness of the Dy Ga 1-y N layer 712 gradually increases with the period, and the P-type Al x Ga 1 The doping degree of the Mg element in the -x N layer 711 is 1E+16 atoms/cm 3 -2E+17 atoms/cm 3 .
在其中一些实施例中,P型AlxGa1-xN层711和DyGa1-yN层712中x和y的取值范围分别为:0≤x≤1,0≤y≤1,且x<y。In some of these embodiments, the value ranges of x and y in the P-type Al x Ga 1-x N layer 711 and Dy Ga 1-y N layer 712 are: 0≤x≤1, 0≤y≤1 , and x<y.
在其中一些实施例中,衬底10为蓝宝石衬底、SiC衬底和SiO2衬底中的其中一种。In some of the embodiments, the substrate 10 is one of a sapphire substrate, a SiC substrate and a SiO 2 substrate.
在具体实施时,通过第一子层50提供势垒能级,阻挡电子的迁移,利用第二子层60中D元素能够插入或填充位错造成的空白位置,不但抑制线缺陷产生的位错延伸,在减小缺陷产生的几率的同时,还能保证晶格之间的适配应力和相应产生的应力场较小,以提高空穴的有效注入效率,然后利用第三子层70的表面效应实现镁原子高效并入,即利用对第三子层70的表层进行脱附减薄的过程,以此完成脱附减薄操作的表层结构为势垒层,实现沿生长方向Al组分周期变化的调制,从而有效解决镁原子离化激活的核心难点,提高镁原子的有效激活和并入,提高空穴的产生,从而提高发光效率。In specific implementation, the barrier energy level is provided by the first sublayer 50 to block the migration of electrons, and the D element in the second sublayer 60 can be used to insert or fill the vacant positions caused by dislocations, which not only suppresses the dislocations generated by line defects Extending, while reducing the probability of defect generation, it can also ensure that the fitting stress between the crystal lattices and the corresponding stress field are small, so as to improve the effective injection efficiency of holes, and then use the surface of the third sub-layer 70 effect to realize the efficient incorporation of magnesium atoms, that is, to use the desorption and thinning process of the surface layer of the third sublayer 70 to complete the desorption and thinning operation. The modulation of changes can effectively solve the core difficulty of ionization and activation of magnesium atoms, improve the effective activation and incorporation of magnesium atoms, and increase the generation of holes, thereby improving the luminous efficiency.
需要说明的是,上述的实施过程只是为了说明本申请的可实施性,但这并不代表本申请的高光效LED外延片只有上述唯一一种实施流程,相反的,只要能够将本申请的高光效LED外延片实施起来,都可以被纳入本申请的可行实施方案。It should be noted that the above-mentioned implementation process is only to illustrate the practicability of the application, but this does not mean that the high-luminous-efficiency LED epitaxial wafer of the application has only the above-mentioned only one implementation process. On the contrary, as long as the application can be implemented The implementation of high-efficiency LED epitaxial wafers can all be included in the feasible implementation solutions of this application.
请参阅图2,为本发明第二实施例中的高光效LED外延片的制备方法,用于制备第一实施例中高光效LED外延片,所述方法包括以下步骤:Please refer to FIG. 2, which is a method for preparing a high-efficiency LED epitaxial wafer in the second embodiment of the present invention, which is used to prepare a high-luminous-efficiency LED epitaxial wafer in the first embodiment. The method includes the following steps:
步骤S101,获取一衬底10;Step S101, obtaining a substrate 10;
其中,该衬底10可以为蓝宝石衬底、SiC衬底和SiO2衬底中的其中一种。Wherein, the substrate 10 may be one of a sapphire substrate, a SiC substrate and a SiO 2 substrate.
步骤S102,在第一环境温度下通入氮气和氢气,以对所述衬底10进行高温处理,并向MOCVD反应室中通入氮源和铝源,以在高温处理后的所述衬底10上沉积得到缓冲层20;Step S102, injecting nitrogen and hydrogen gas at the first ambient temperature to perform high temperature treatment on the substrate 10, and injecting a nitrogen source and an aluminum source into the MOCVD reaction chamber to process the substrate 10 after the high temperature treatment. 10 is deposited to obtain a buffer layer 20;
其中,对所述衬底10进行高温处理,能够避免所述衬底10表面发生氧化或者沾污,可以理解的,所述第一环境温度为1000℃-1150℃,且所述高温处理具体为,将所述衬底10放置于MOCVD (Metal-organicChemicalVaporDeposition,金属有机化合物化学气相沉淀)反应室里,接着在所述第一环境温度下,向所述MOCVD反应室内通入高纯度的氨气和氮气,高温处理所述衬底10min-15min。Wherein, performing high-temperature treatment on the substrate 10 can avoid oxidation or contamination on the surface of the substrate 10. It can be understood that the first ambient temperature is 1000°C-1150°C, and the high-temperature treatment is specifically , the substrate 10 is placed in a MOCVD (Metal-organic Chemical Vapor Deposition, metal-organic chemical vapor deposition) reaction chamber, and then at the first ambient temperature, high-purity ammonia gas and Nitrogen, and treat the substrate at high temperature for 10 minutes to 15 minutes.
补充说明的是,将高温处理后的所述衬底10转移至PVD(Physical VaporDeposition,物理气相沉积)反应室内,向所述PVD反应室内通入氨气,利用三甲基铝作为靶材,并采用直流电在所述衬底上进行磁控溅射,以生成厚度为10nm-30nm的所述缓冲层20,即以三甲基铝和氨气分别作为铝源和氮源,所述缓冲层20的材质为氮化铝。需要说明的是,在本实施例中,所述缓冲层20的最适厚度为15nm。It is supplemented that the substrate 10 after the high temperature treatment is transferred to a PVD (Physical Vapor Deposition, physical vapor deposition) reaction chamber, ammonia gas is introduced into the PVD reaction chamber, trimethylaluminum is used as a target material, and Using direct current to carry out magnetron sputtering on the substrate, to generate the buffer layer 20 with a thickness of 10nm-30nm, that is, using trimethylaluminum and ammonia as the aluminum source and nitrogen source respectively, the buffer layer 20 The material is aluminum nitride. It should be noted that, in this embodiment, the optimum thickness of the buffer layer 20 is 15 nm.
步骤S103,在第二环境温度下,掺入第一掺杂浓度的硅元素,以在所述缓冲层20上生成N型层30;Step S103, at a second ambient temperature, doping silicon with a first doping concentration to form an N-type layer 30 on the buffer layer 20;
其中,所述第二环境温度为1000℃-1150℃,硅元素的第一掺杂浓度为1.5+E18atoms/cm3,所述N型层30为GaN层,所述N型层30的厚度为2nm-3nm,具体为,将附有所述缓冲层20的衬底10转移至所述MOCVD反应室内,在1000℃以及硅元素的第一掺杂浓度为1.5+E18atoms/cm3的环境条件下,在所述缓冲层20上生成厚度为2.5nm的所述N型层30,即所述N型层30的最适厚度为2.5nm。Wherein, the second ambient temperature is 1000°C-1150°C, the first doping concentration of silicon is 1.5+E18 atoms/cm 3 , the N-type layer 30 is a GaN layer, and the thickness of the N-type layer 30 is 2nm-3nm, specifically, transfer the substrate 10 with the buffer layer 20 into the MOCVD reaction chamber, under the environmental conditions of 1000°C and the first doping concentration of silicon element is 1.5+E18atoms/cm 3 , forming the N-type layer 30 with a thickness of 2.5 nm on the buffer layer 20, that is, the optimum thickness of the N-type layer 30 is 2.5 nm.
步骤S104,在第三环境温度和第一环境压力下,掺入第二掺杂浓度的铝元素,以在所述N型层30生成有源层40;Step S104, under the third ambient temperature and the first ambient pressure, doping the aluminum element with the second doping concentration to form the active layer 40 in the N-type layer 30;
其中,所述第三环境温度为800℃-900℃,所述有源层40的厚度为3nm-3.5nm,所述有源层40包括交替堆叠的InGaN量子阱层和AlGaN量子垒层,所述有源层40的堆叠周期为6-15,所述有源层40中的InGaN量子阱层生长温度为800℃~900℃,且所述InGaN量子阱层的厚度为3 nm ~3.5nm,所述AlGaN量子垒层生长温度为850℃~900℃以及生长压力为200 torr~250torr,且所述AlGaN量子垒层厚度为9 nm ~12nm,Al组分为0.1。Wherein, the third ambient temperature is 800°C-900°C, the thickness of the active layer 40 is 3nm-3.5nm, and the active layer 40 includes alternately stacked InGaN quantum well layers and AlGaN quantum barrier layers, so The stacking period of the active layer 40 is 6-15, the growth temperature of the InGaN quantum well layer in the active layer 40 is 800° C. to 900° C., and the thickness of the InGaN quantum well layer is 3 nm to 3.5 nm, The growth temperature of the AlGaN quantum barrier layer is 850° C. to 900° C. and the growth pressure is 200 torr to 250 torr, and the thickness of the AlGaN quantum barrier layer is 9 nm to 12 nm, and the Al composition is 0.1.
为了能够顺利生长所述有源层40,具体为,将所述MOCVD反应室内的环境温度为900℃,以高纯NH3作为N源,TMIn提供In源,三甲基镓(TMGa)及三乙基镓(TEGa)作为镓源,以及三甲基铝(TMAl)作为铝源,通过气相沉积法在所述N型层30上生成交替堆叠的InGaN量子阱层和AlGaN量子垒层,即得到所需的所述有源层40。In order to grow the active layer 40 smoothly, specifically, the ambient temperature in the MOCVD reaction chamber is 900° C., high-purity NH 3 is used as the N source, TMIn provides the In source, and trimethylgallium (TMGa) and trimethylgallium (TMGa) Ethyl gallium (TEGa) is used as the source of gallium, and trimethylaluminum (TMAl) is used as the source of aluminum, and alternately stacked InGaN quantum well layers and AlGaN quantum barrier layers are formed on the N-type layer 30 by a vapor deposition method to obtain The active layer 40 is required.
步骤S105,在第四环境温度和第二环境压力下,通过气相沉积法在有源层40上沉积电子阻挡层;Step S105, depositing an electron blocking layer on the active layer 40 by vapor deposition at a fourth ambient temperature and a second ambient pressure;
其中,所述第四环境温度为900℃-1000℃,所述第二环境压力为100torr-200torr,所述电子阻挡层包括层叠于所述有源层上的第一子层50、第二子层60和第三子层70。Wherein, the fourth ambient temperature is 900°C-1000°C, the second ambient pressure is 100torr-200torr, and the electron blocking layer includes a first sublayer 50 and a second sublayer stacked on the active layer. layer 60 and a third sublayer 70 .
步骤S106,在第五环境温度和第三环境压力下,掺入第三掺杂浓度的镁元素,以在所述电子阻挡层上沉积P型层80。Step S106 , under the fifth ambient temperature and the third ambient pressure, doping magnesium with a third doping concentration to deposit a P-type layer 80 on the electron blocking layer.
其中,所述P型层80为GaN层,所述P型层80的生长条件为:生长温度为1000℃-1100℃,生长压力为100torr-600torr,以及镁元素的掺杂浓度为1E+19 atoms/cm3~5E+20atoms/cm3。在以上生长条件下,能够在所述电子阻挡层上生长厚度为20nm-200nm的所述P型层80,也就是说,该第五环境温度为1000℃-1100℃,所述第三环境压力为100torr-600torr,所述第三掺杂浓度为1E+19 atoms/cm3~5E+20 atoms/cm3,其中,该第五环境温度的最适值为1050℃,所述第三环境压力的最适值为200torr,所述第三掺杂浓度的最适值为5E+19 atoms/cm3。Wherein, the P-type layer 80 is a GaN layer, and the growth conditions of the P-type layer 80 are: the growth temperature is 1000°C-1100°C, the growth pressure is 100torr-600torr, and the doping concentration of magnesium is 1E+19 atoms/cm 3 ~5E+20 atoms/cm 3 . Under the above growth conditions, the P-type layer 80 with a thickness of 20nm-200nm can be grown on the electron blocking layer, that is, the fifth ambient temperature is 1000°C-1100°C, and the third ambient pressure is 100torr-600torr, the third doping concentration is 1E+19 atoms/cm 3 ~5E+20 atoms/cm 3 , wherein the optimum value of the fifth ambient temperature is 1050°C, and the third ambient pressure The optimum value is 200 torr, and the optimum value of the third doping concentration is 5E+19 atoms/cm 3 .
具体为,在生长温度为1050℃、生长压力为200torr,以及镁元素的掺杂浓度为5E+19 atoms/cm3的生长条件下,在所述电子阻挡层上生长厚度为100nm的所述P型层80,可以理解的,镁的掺杂浓度过高会破坏晶体质量,而掺杂浓度较低则会影响空穴浓度。Specifically, under the growth conditions of a growth temperature of 1050° C., a growth pressure of 200 torr, and a magnesium doping concentration of 5E+19 atoms/cm 3 , the P with a thickness of 100 nm is grown on the electron blocking layer. Type layer 80, it can be understood that if the doping concentration of magnesium is too high, the crystal quality will be damaged, while if the doping concentration is low, the hole concentration will be affected.
通过上述步骤,利用第一子层50提供势垒能级,阻挡电子的迁移,利用第二子层60中D元素能够插入或填充位错造成的空白位置,不但抑制线缺陷产生的位错延伸,在减小缺陷产生的几率的同时,还能保证晶格之间的适配应力和相应产生的应力场较小,以提高空穴的有效注入效率,然后利用第三子层70的表面效应实现镁原子高效并入,即利用对第三子层70的表层进行脱附减薄的过程,以此完成脱附减薄操作的表层结构为势垒层,实现沿生长方向Al组分周期变化的调制,从而有效解决镁原子离化激活的核心难点,提高镁原子的有效激活和并入,提高空穴的产生,从而提高发光效率。Through the above steps, the first sublayer 50 is used to provide a potential barrier energy level to block the migration of electrons, and the D element in the second sublayer 60 can be used to insert or fill the vacant positions caused by dislocations, which not only suppresses the extension of dislocations caused by line defects , while reducing the probability of defect generation, it can also ensure that the fitting stress between the lattices and the corresponding stress field are small, so as to improve the effective injection efficiency of holes, and then use the surface effect of the third sublayer 70 To achieve efficient incorporation of magnesium atoms, that is, to use the process of desorption and thinning of the surface layer of the third sublayer 70, so that the surface structure of the desorption and thinning operation is used as a barrier layer, and the periodic change of Al composition along the growth direction is realized Modulation, so as to effectively solve the core difficulty of ionization and activation of magnesium atoms, improve the effective activation and incorporation of magnesium atoms, increase the generation of holes, and thus improve the luminous efficiency.
在其中一些实施例中,所述通过气相沉积法在有源层40上沉积电子阻挡层的步骤包括:In some of these embodiments, the step of depositing an electron blocking layer on the active layer 40 by vapor deposition method includes:
向MOCVD反应室通入所述氮源、所述铝源、硼源和镓源,通过气相沉积法于所述有源层40上依次生成第一子层50、第二子层60和第三子层70,接着停止通入所述铝源和所述镓源,对所述第三子层70的表层进行脱附减薄,以得到P型AlxGa1-xN减薄层72及DyGa1-yN减薄层73。The nitrogen source, the aluminum source, the boron source and the gallium source are passed into the MOCVD reaction chamber, and the first sub-layer 50, the second sub-layer 60 and the third sub-layer are sequentially formed on the active layer 40 by vapor deposition. Sub-layer 70, then stop feeding the aluminum source and the gallium source, and desorb and thin the surface layer of the third sub-layer 70, so as to obtain the P-type AlxGa1 -xN thinned layer 72 and D y Ga 1-y N thinned layer 73 .
其中,所述第一子层50为AlN层,所述第一子层50用于提供较好的势垒能级;所述第二子层60为DGaN/DAlGaN超晶格层, DGaN/DAlGaN超晶格层包括周期性交替层叠的DGaN层61和DAlGaN层62,DGaN层61和DAlGaN层62皆为超晶格结构;所述第三子层70包括依次叠置的P型AlxGa1-xN/DyGa1-yN超晶格层71、P型AlxGa1-xN减薄层72及DyGa1-yN减薄层73,P型AlxGa1-xN/DyGa1-yN超晶格层71包括周期性交替层叠的P型AlxGa1-xN层711和DyGa1-yN层712。Wherein, the first sublayer 50 is an AlN layer, and the first sublayer 50 is used to provide a better barrier level; the second sublayer 60 is a DGaN/DAlGaN superlattice layer, and the DGaN/DAlGaN The superlattice layer includes DGaN layers 61 and DAlGaN layers 62 stacked alternately periodically, both of which are superlattice structures; the third sublayer 70 includes P-type AlxGa1 stacked in sequence -x N/D y Ga 1-y N superlattice layer 71, P-type Al x Ga 1-x N thinned layer 72 and D y Ga 1-y N thinned layer 73, P-type Al x Ga 1- The x N/D y Ga 1-y N superlattice layer 71 includes P-type Al x Ga 1-x N layers 711 and D y Ga 1-y N layers 712 that are periodically and alternately stacked.
可以理解的,通过对预先生成的第三子层70的表层进行脱附减薄,以得到P型AlxGa1-xN减薄层72及DyGa1-yN减薄层73,具体为,对第三子层70的表层进行脱附减薄,由于用AlGaN体系中Ga原子比Al原子更易脱附的特点,该第三子层的表层自发转化形成亚纳米厚度的P型AlxGa1-xN减薄层72和DyGa1-yN减薄层73,第三子层70中未进行脱附减薄的剩余结构为P型AlxGa1-xN/DyGa1-yN超晶格层71,从而P型AlxGa1-xN减薄层72和DyGa1-yN减薄层73中的镓组分的浓度分别低于P型AlxGa1-xN层711和DyGa1-yN层712中的镓组分的浓度,以及P型AlxGa1-xN减薄层72的厚度小于P型AlxGa1-xN层711的厚度,DyGa1-yN减薄层73的厚度小于DyGa1-yN层712的厚度,需要说明的是,D为硼、铟或碳中的至少一种。It can be understood that the P-type AlxGa1 -xN thinned layer 72 and the DyGa1 -yN thinned layer 73 are obtained by desorbing and thinning the surface layer of the pre-formed third sublayer 70, Specifically, the surface layer of the third sublayer 70 is desorbed and thinned. Due to the fact that Ga atoms in the AlGaN system are more easily desorbed than Al atoms, the surface layer of the third sublayer spontaneously transforms into sub-nanometer-thick P-type Al. x Ga 1-x N thinned layer 72 and D y Ga 1-y N thinned layer 73, the remaining structure in the third sublayer 70 that has not been desorbed and thinned is P-type Al x Ga 1-x N/D y Ga 1-y N superlattice layer 71, thereby the concentration of the gallium component in P-type Al x Ga 1-x N thinned layer 72 and D y Ga 1-y N thinned layer 73 is respectively lower than that of P-type The concentration of the gallium component in the AlxGa1 -xN layer 711 and the DyGa1 -yN layer 712, and the thickness of the P-type AlxGa1 -xN thinned layer 72 is smaller than that of the P-type AlxGa1 -xN layer 712. - the thickness of the x N layer 711, the thickness of the D y Ga 1-y N thinned layer 73 is less than the thickness of the D y Ga 1-y N layer 712, it should be noted that D is at least one of boron, indium or carbon kind.
在其中一些实施例中,第一子层50的厚度为4nm-6nm,若其厚度<4nm,难以阻挡电子的迁移,且无法保证势能调控出较由晶体质量,容易产生缺陷,从而无法有效提高空穴的有效注入效率,若其厚度大于6nm,会提升产品的工作电压,不利于提升发光效率,举例说明为,该第一子层50的厚度为4nm、5nm或6nm。In some of these embodiments, the thickness of the first sublayer 50 is 4nm-6nm. If the thickness is less than 4nm, it is difficult to prevent the migration of electrons, and it is impossible to ensure that the potential energy can be regulated by the quality of the crystal, and defects are likely to occur, so that it cannot be effectively improved. The effective hole injection efficiency, if the thickness is greater than 6nm, will increase the operating voltage of the product, which is not conducive to improving the luminous efficiency. For example, the thickness of the first sub-layer 50 is 4nm, 5nm or 6nm.
在其中一些实施例中,DGaN层61和DAlGaN层62的厚度皆为4nm-6nm,P型AlxGa1-xN层711和DyGa1-yN层712的厚度皆为3nm-4nm。In some of these embodiments, the thicknesses of the DGaN layer 61 and the DAlGaN layer 62 are both 4nm-6nm, and the thicknesses of the P-type AlxGa1 -xN layer 711 and the DyGa1 -yN layer 712 are both 3nm-4nm .
其中,当DGaN层61和DAlGaN层62的厚度皆小于4nm时,由于过薄,在扭曲界面产生的应力过程中D的数量可能不够,难以填充大部分位错造成的空白位置,达不到所需要的要求;当DGaN层61和DAlGaN层62的厚度皆大于6nm时,则相对来说太厚,则不便于扭曲界面产生的应力;以及,当P型AlxGa1-xN层711和DyGa1-yN层712的厚度皆小于3nm时,不利于提高镁的有效激活和并入,不利于提高空穴的产生,当P型AlxGa1-xN层711和DyGa1-yN层712的厚度皆大于4nm时,难以调控晶体质量,不利于提高发光效率。Wherein, when the thicknesses of the DGaN layer 61 and the DAlGaN layer 62 are both less than 4nm, due to being too thin, the amount of D may not be enough during the stress process generated by the twisted interface, and it is difficult to fill most of the vacant positions caused by dislocations, and the required Needed requirements; when the thickness of the DGaN layer 61 and the DAlGaN layer 62 are greater than 6nm, then relatively too thick, it is not easy to twist the stress generated by the interface; and, when the P-type Al x Ga 1-x N layer 711 and When the thickness of the D y Ga 1-y N layer 712 is less than 3nm, it is not conducive to improving the effective activation and incorporation of magnesium, and it is not conducive to improving the generation of holes. When the P-type Al x Ga 1-x N layer 711 and D y When the thickness of the Ga 1-y N layer 712 is greater than 4 nm, it is difficult to control the crystal quality, which is not conducive to improving the luminous efficiency.
需要说明的是,第一子层50的最佳厚度为5nm,DGaN层61和DAlGaN层62的最佳厚度皆为5nm,P型AlxGa1-xN层711和DyGa1-yN层712的最佳厚度皆为3.5nm。经试验表明,当第一子层、DGaN层61、DAlGaN层62、P型AlxGa1-xN层711和DyGa1-yN层712皆处于最佳厚度时,其产生的光效最优。It should be noted that the optimal thickness of the first sublayer 50 is 5 nm, the optimal thickness of the DGaN layer 61 and the DAlGaN layer 62 are both 5 nm, and the P-type Al x Ga 1-x N layer 711 and D y Ga 1-y The optimal thickness of the N layer 712 is 3.5nm. Experiments have shown that when the first sublayer, the DGaN layer 61, the DAlGaN layer 62, the P-type AlxGa1 -xN layer 711 and the DyGa1 -yN layer 712 are all at the optimum thickness, the light produced by them Efficiency is optimal.
可以理解的,由于第二子层60中的DGaN层61和DAlGaN层62的厚度比较薄,可以不断扭曲界面产生的应力,从而减少缺陷的产生。It can be understood that since the DGaN layer 61 and the DAlGaN layer 62 in the second sub-layer 60 are relatively thin, the stress generated by the interface can be continuously distorted, thereby reducing the occurrence of defects.
在其中一些实施例中,DGaN层61和DAlGaN层62交替堆叠的周期为2-3,组合结构中的P型AlxGa1-xN层711和DyGa1-yN层712交替堆叠的周期为3-4。In some of these embodiments, the DGaN layer 61 and the DAlGaN layer 62 are alternately stacked at a period of 2-3, and the P-type Al x Ga 1-x N layer 711 and the D y Ga 1-y N layer 712 in the combined structure are alternately stacked The cycle is 3-4.
在其中一些实施例中,P型AlxGa1-xN层711中Al元素随着周期逐渐递减,DyGa1-yN层712的厚度随着周期逐渐递增,P型AlxGa1-xN层711中Mg元素的掺杂度为1E+16 atoms/cm3~2E+17 atoms/cm3。In some of these embodiments, the Al element in the P-type Al x Ga 1-x N layer 711 gradually decreases with the period, the thickness of the Dy Ga 1-y N layer 712 gradually increases with the period, and the P-type Al x Ga 1 The doping degree of the Mg element in the -x N layer 711 is 1E+16 atoms/cm 3 -2E+17 atoms/cm 3 .
在其中一些实施例中,P型AlxGa1-xN层711和DyGa1-yN层712中x和y的取值范围分别为:0≤x≤1,0≤y≤1,且x<y。In some of these embodiments, the value ranges of x and y in the P-type Al x Ga 1-x N layer 711 and Dy Ga 1-y N layer 712 are: 0≤x≤1, 0≤y≤1 , and x<y.
在一个具体实施例中,给出了一下测试例进行说明:In a specific embodiment, the following test examples are given for illustration:
本次测试中使用传统的LED外延片作为对照组,该传统的LED外延片的结构与本申请的高光效LED外延片的结构基本一致,不同之处在于,该电子阻挡层为传统结构,且其厚度为50nm。In this test, a traditional LED epitaxial wafer was used as the control group. The structure of the traditional LED epitaxial wafer is basically the same as that of the high-efficiency LED epitaxial wafer of the present application. The difference is that the electron blocking layer is a traditional structure, and Its thickness is 50 nm.
设立6组测试组,分别为测试组1、测试组2、测试组3、测试组4、测试组5和测试组6。Set up 6 test groups, namely test group 1, test group 2, test group 3, test group 4, test group 5 and test group 6.
其中,测试组1中的结构与本申请中的的结构基本一致,不同之处在于,电子阻挡层中的第一子层50的厚度为5nm,DGaN层61和DAlGaN层62的厚度皆为4nm,且DGaN层61和DAlGaN层62交替堆叠的周期为3,P型AlxGa1-xN层711和DyGa1-yN层712的厚度皆为3nm,且P型AlxGa1-xN层711和DyGa1-yN层712交替堆叠的周期为3,且D为硼;Wherein, the structure in the test group 1 is basically the same as the structure in the present application, the difference is that the thickness of the first sub-layer 50 in the electron blocking layer is 5nm, and the thickness of the DGaN layer 61 and the DAlGaN layer 62 are both 4nm , and the DGaN layer 61 and the DAlGaN layer 62 are alternately stacked at a period of 3, the thickness of the P-type Al x Ga 1-x N layer 711 and the D y Ga 1-y N layer 712 are both 3nm, and the P-type Al x Ga 1 -x N layers 711 and D y Ga 1-y N layers 712 are alternately stacked at a period of 3, and D is boron;
测试组2中的结构与测试组1中的结构基本一致,不同之处在于,DyGa1-yN层712中的D为铟;The structure in the test group 2 is basically the same as the structure in the test group 1, the difference is that D in the D y Ga 1-y N layer 712 is indium;
测试组3中的结构与测试组1中的结构基本一致,不同之处在于,P型AlxGa1-xN层711和P型DyGa1-yN层712的厚度皆为3.5nm,且P型AlxGa1-xN层711和P型DyGa1-yN层712交替堆叠的周期为4;The structure in test group 3 is basically the same as that in test group 1, except that the thickness of the P-type AlxGa1 -xN layer 711 and the P-type DyGa1 -yN layer 712 is 3.5nm , and the alternate stacking period of the P-type Al x Ga 1-x N layer 711 and the P-type D y Ga 1-y N layer 712 is 4;
测试组4的结构与测试组3中的结构基本一致,不同之处在于,DyGa1-yN层712中的D为铟;The structure of the test group 4 is basically the same as that in the test group 3, except that D in the D y Ga 1-y N layer 712 is indium;
测试组5的结构与测试组3中的结构基本一致,不同之处在于,DGaN层61和DAlGaN层62的厚度皆为5nm。The structure of the test group 5 is basically the same as that in the test group 3, except that the thicknesses of the DGaN layer 61 and the DAlGaN layer 62 are both 5 nm.
测试组6的结构与测试组5中的结构基本一致,不同之处在于,第一子层50的厚度为4nm。The structure of test group 6 is basically the same as that in test group 5, except that the thickness of the first sublayer 50 is 4 nm.
分别对对照组、测试组1、测试组2、测试组3、测试组4、测试组5和测试组6进行光学测试,得到的测试结果,LED外延片的光效有所提升,如下表所示:Optical tests were carried out on the control group, test group 1, test group 2, test group 3, test group 4, test group 5 and test group 6 respectively. According to the test results, the light efficiency of the LED epitaxial wafers has improved, as shown in the table below Show:
本发明第三实施例中的LED,包括上述的高光效LED外延片。The LED in the third embodiment of the present invention includes the high-efficiency LED epitaxial wafer described above.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310713677.9A CN116454184B (en) | 2023-06-16 | 2023-06-16 | A high-light-efficiency LED epitaxial wafer and its preparation method, LED |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310713677.9A CN116454184B (en) | 2023-06-16 | 2023-06-16 | A high-light-efficiency LED epitaxial wafer and its preparation method, LED |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116454184A true CN116454184A (en) | 2023-07-18 |
CN116454184B CN116454184B (en) | 2023-09-29 |
Family
ID=87124102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310713677.9A Active CN116454184B (en) | 2023-06-16 | 2023-06-16 | A high-light-efficiency LED epitaxial wafer and its preparation method, LED |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116454184B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117976786A (en) * | 2024-03-28 | 2024-05-03 | 江西兆驰半导体有限公司 | Epitaxial structure of a light emitting diode and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006313890A (en) * | 2005-04-05 | 2006-11-16 | Toshiba Corp | Gallium nitride based semiconductor device and method of manufacturing the same |
CN108461592A (en) * | 2018-02-26 | 2018-08-28 | 华灿光电(苏州)有限公司 | A kind of LED epitaxial slice and its manufacturing method |
US20180248071A1 (en) * | 2013-09-03 | 2018-08-30 | Sensor Electronic Technology, Inc. | Optoelectronic Device with Modulation Doping |
CN108767055A (en) * | 2018-04-24 | 2018-11-06 | 北京大学 | A kind of p-type AlGaN epitaxial films and its preparation method and application |
CN109103303A (en) * | 2018-06-29 | 2018-12-28 | 华灿光电(浙江)有限公司 | A kind of preparation method and LED epitaxial slice of LED epitaxial slice |
CN109786529A (en) * | 2018-12-28 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of gallium nitride based LED epitaxial slice and preparation method thereof |
CN112242463A (en) * | 2020-09-29 | 2021-01-19 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with pulse doped electron blocking layer and preparation method thereof |
CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN115588723A (en) * | 2022-12-10 | 2023-01-10 | 埃特曼(苏州)半导体技术有限公司 | Epitaxial wafer of light emitting diode and manufacturing method thereof |
CN116169218A (en) * | 2023-04-25 | 2023-05-26 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
-
2023
- 2023-06-16 CN CN202310713677.9A patent/CN116454184B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006313890A (en) * | 2005-04-05 | 2006-11-16 | Toshiba Corp | Gallium nitride based semiconductor device and method of manufacturing the same |
US20180248071A1 (en) * | 2013-09-03 | 2018-08-30 | Sensor Electronic Technology, Inc. | Optoelectronic Device with Modulation Doping |
CN108461592A (en) * | 2018-02-26 | 2018-08-28 | 华灿光电(苏州)有限公司 | A kind of LED epitaxial slice and its manufacturing method |
CN108767055A (en) * | 2018-04-24 | 2018-11-06 | 北京大学 | A kind of p-type AlGaN epitaxial films and its preparation method and application |
CN109103303A (en) * | 2018-06-29 | 2018-12-28 | 华灿光电(浙江)有限公司 | A kind of preparation method and LED epitaxial slice of LED epitaxial slice |
CN109786529A (en) * | 2018-12-28 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of gallium nitride based LED epitaxial slice and preparation method thereof |
CN112242463A (en) * | 2020-09-29 | 2021-01-19 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with pulse doped electron blocking layer and preparation method thereof |
CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN115588723A (en) * | 2022-12-10 | 2023-01-10 | 埃特曼(苏州)半导体技术有限公司 | Epitaxial wafer of light emitting diode and manufacturing method thereof |
CN116169218A (en) * | 2023-04-25 | 2023-05-26 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
Non-Patent Citations (1)
Title |
---|
贾浩林;杨文献;陆书龙;丁孙安;: "高Al组分AlGaN的MBE生长及表面活性机理", 半导体技术, vol. 45, no. 09 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117976786A (en) * | 2024-03-28 | 2024-05-03 | 江西兆驰半导体有限公司 | Epitaxial structure of a light emitting diode and preparation method thereof |
CN117976786B (en) * | 2024-03-28 | 2024-06-04 | 江西兆驰半导体有限公司 | Epitaxial structure of light-emitting diode and preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN116454184B (en) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108346725B (en) | GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN118522833B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN110718612A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN117393667B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN117894897B (en) | LED epitaxial wafer and preparation method thereof, LED chip | |
CN113410353B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN116845153A (en) | High-light-efficiency light-emitting diode epitaxial wafer, preparation method and LED | |
CN112510124B (en) | Light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN112366256B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN116364825A (en) | Composite buffer layer, preparation method thereof, epitaxial wafer and light-emitting diode | |
CN116454184B (en) | A high-light-efficiency LED epitaxial wafer and its preparation method, LED | |
CN117894898B (en) | Deep ultraviolet LED epitaxial wafer and preparation method thereof, deep ultraviolet LED | |
CN116344684B (en) | A kind of light-emitting diode preparation method and diode | |
CN116682909B (en) | LED epitaxial wafer, preparation method and LED chip | |
CN116364819B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN107658374A (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN117913191A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN116864587A (en) | Gallium nitride light-emitting diode epitaxial structure, LED and preparation method thereof | |
CN113113515B (en) | Growth method of light emitting diode epitaxial wafer | |
CN115377260A (en) | LED epitaxial wafer, preparation method and electronic equipment | |
CN114464709A (en) | LED epitaxial wafer, epitaxial growth method and LED chip | |
CN118231541B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN117712253B (en) | A deep ultraviolet light emitting diode and preparation method thereof | |
CN118016774B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN117727849B (en) | Light-emitting diode epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |