CN116130443A - Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment - Google Patents
Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment Download PDFInfo
- Publication number
- CN116130443A CN116130443A CN202310124111.2A CN202310124111A CN116130443A CN 116130443 A CN116130443 A CN 116130443A CN 202310124111 A CN202310124111 A CN 202310124111A CN 116130443 A CN116130443 A CN 116130443A
- Authority
- CN
- China
- Prior art keywords
- metal
- metal layer
- ceramic substrate
- semiconductor device
- heat dissipation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 58
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 26
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 183
- 239000002184 metal Substances 0.000 claims abstract description 183
- 239000010410 layer Substances 0.000 claims abstract description 89
- 239000000919 ceramic Substances 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 239000004065 semiconductor Substances 0.000 claims abstract description 37
- 239000011229 interlayer Substances 0.000 claims abstract description 20
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 5
- 230000008646 thermal stress Effects 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49503—Lead-frames or other flat leads characterised by the die pad
- H01L23/49506—Lead-frames or other flat leads characterised by the die pad an insulative substrate being used as a diepad, e.g. ceramic, plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/291—Oxides or nitrides or carbides, e.g. ceramics, glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3677—Wire-like or pin-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49568—Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/562—Protection against mechanical damage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体散热领域,具体涉及一种用于高温环境的碳化硅功率模块双面散热封装结构。The present application relates to the field of semiconductor heat dissipation, in particular to a double-sided heat dissipation packaging structure of a silicon carbide power module used in a high temperature environment.
背景技术Background technique
最近,具有高开关频率、低开关损耗、高运行温度等优点的宽禁带半导体器件在功率模块行业大放异彩,逐渐成为航空航天、新能源汽车以及油气勘探领域所必须的关键部件。为了实现更高的功率密度,就要求电力电子设备的冷却系统体积尽量小,最简单、最直接的办法就是提高电力电子设备的工作温度。虽然,碳化硅功率芯片理论上是可以工作于600℃的高温,但功率模块却一直受封装材料的限制无法工作于高温环境。Recently, wide-bandgap semiconductor devices with advantages such as high switching frequency, low switching loss, and high operating temperature have shined in the power module industry, and have gradually become key components necessary for aerospace, new energy vehicles, and oil and gas exploration. In order to achieve higher power density, the cooling system of power electronic equipment is required to be as small as possible. The simplest and most direct way is to increase the working temperature of power electronic equipment. Although silicon carbide power chips can theoretically work at a high temperature of 600°C, power modules have always been limited by packaging materials and cannot work in high temperature environments.
传统的引线键合单面散热功率模块封装结构因散热性能和可靠性问题已经无法满足高温运行的要求,因此双面散热封装结构正逐渐占领市场。然而,由于金属垫片的引入,双面散热结构中会存在更多的连接点,因材料CTE不匹配而产生的可靠性问题仍然严峻;而且顶部基板约束了各个连接点的位移,会加剧基板应力问题,恶化整体可靠性。The traditional wire-bonded single-sided cooling power module packaging structure can no longer meet the requirements of high-temperature operation due to heat dissipation performance and reliability issues, so the double-sided cooling packaging structure is gradually occupying the market. However, due to the introduction of metal spacers, there will be more connection points in the double-sided heat dissipation structure, and the reliability problem caused by the mismatch of material CTE is still severe; and the top substrate constrains the displacement of each connection point, which will aggravate the Stress issues, deteriorating overall reliability.
为了缓解乃至解决上述问题,研发一种具备低寄生参数、强散热能力、高可靠性的碳化硅功率模块双面散热封装结构变得尤为关键。In order to alleviate or even solve the above problems, it is particularly critical to develop a silicon carbide power module double-sided heat dissipation package structure with low parasitic parameters, strong heat dissipation capability, and high reliability.
发明内容Contents of the invention
相比于传统引线键合单面散热封装结构,双面散热封装结构在电热性能上均有大幅改善,但为了更好的迎合高温应用场景对可靠性提出的苛刻要求。Compared with the traditional wire-bonded single-sided heat dissipation package structure, the double-sided heat dissipation package structure has greatly improved the electrothermal performance, but in order to better meet the stringent requirements for reliability in high-temperature application scenarios.
为达到上述目的,本申请提供了以下方案:In order to achieve the above object, the application provides the following solutions:
一种用于高温环境的碳化硅功率模块双面散热封装结构,包括:底层DC-陶瓷基板、DC-金属层、底层AC陶瓷基板、第一AC金属层、顶层DC+陶瓷基板、DC+金属层、顶层AC陶瓷基板、第二AC金属层、第一SiC功率半导体器件、第二SiC功率半导体器件、陶瓷夹层、第一阳极金属导电通孔、AC金属导电通孔、第二阳极金属导电通孔、DC-金属接线端子、DC+金属接线端子和AC金属接线端子。A silicon carbide power module double-sided heat dissipation package structure for high temperature environment, including: bottom DC-ceramic substrate, DC-metal layer, bottom AC ceramic substrate, first AC metal layer, top layer DC+ceramic substrate, DC+metal layer, Top layer AC ceramic substrate, second AC metal layer, first SiC power semiconductor device, second SiC power semiconductor device, ceramic interlayer, first anode metal conductive via, AC metal conductive via, second anode metal conductive via, DC-metal terminal block, DC+ metal terminal block and AC metal terminal block.
优选的,所述底层DC-陶瓷基板的顶部覆有所述DC-金属层;Preferably, the top of the underlying DC-ceramic substrate is covered with the DC-metal layer;
所述底层AC陶瓷基板的顶部覆有所述第一AC金属层;The top of the underlying AC ceramic substrate is covered with the first AC metal layer;
所述顶层AC陶瓷基板的底部覆有所述第二AC金属层;The bottom of the top AC ceramic substrate is covered with the second AC metal layer;
所述顶层DC+陶瓷基板的底部覆有所述DC+金属层。The bottom of the top DC+ ceramic substrate is covered with the DC+ metal layer.
优选的,所述陶瓷夹层内部集成有所述第一阳极金属导电通孔、所述AC金属导电通孔和所述第二阳极金属导电通孔。Preferably, the first anode metal conductive via, the AC metal conductive via and the second anode metal conductive via are integrated inside the ceramic interlayer.
优选的,所述第一SiC功率半导体器件的底部阴极金属焊盘与所述DC-金属层连接,所述第一SiC功率半导体器件的顶部阳极金属焊盘与所述第一阳极金属导电通孔的下表面连接;Preferably, the bottom cathode metal pad of the first SiC power semiconductor device is connected to the DC-metal layer, and the top anode metal pad of the first SiC power semiconductor device is connected to the first anode metal conductive via The lower surface connection;
所述第二SiC功率半导体器件的底部阴极金属焊盘与所述第一AC金属层连接,所述第二SiC功率半导体器件的顶部阳极金属焊盘与所述第二阳极金属导电通孔的下表面连接;The bottom cathode metal pad of the second SiC power semiconductor device is connected to the first AC metal layer, and the top anode metal pad of the second SiC power semiconductor device is connected to the bottom of the second anode metal conductive via. surface connection;
所述第一阳极金属导电通孔的上表面与所述第二AC金属层连接;The upper surface of the first anode metal conductive via is connected to the second AC metal layer;
所述第二阳极金属导电通孔的上表面与所述DC+金属层连接;The upper surface of the second anode metal conductive via is connected to the DC+ metal layer;
所述第一AC金属层和所述第二AC金属层通过所述AC金属导电通孔连接。The first AC metal layer and the second AC metal layer are connected through the AC metal conductive via.
优选的,所述DC-金属层与所述DC-金属接线端子连接;Preferably, the DC-metal layer is connected to the DC-metal connection terminal;
所述第一AC金属层与所述AC金属接线端子连接;The first AC metal layer is connected to the AC metal connection terminal;
所述DC+金属层与所述DC+金属接线端子连接。The DC+ metal layer is connected to the DC+ metal connection terminal.
优选的,所述DC-金属层与所述第一SiC功率半导体器件和所述DC-金属接线端子通过纳米银烧结;Preferably, the DC-metal layer is sintered with the first SiC power semiconductor device and the DC-metal connection terminal through nano-silver;
所述第一AC金属层与所述第二SiC功率半导体器件和所述AC金属接线端子通过纳米银烧结;The first AC metal layer is sintered with the second SiC power semiconductor device and the AC metal connection terminal through nano-silver;
所述第一阳极金属导电通孔与所述第一SiC功率半导体器件和所述第二AC金属层通过纳米银烧结;The first anode metal conductive via is sintered with the first SiC power semiconductor device and the second AC metal layer through nano-silver;
所述AC金属导电通孔与所述第一AC金属层和所述第二AC金属层通过纳米银烧结;The AC metal conductive vias are sintered with the first AC metal layer and the second AC metal layer through nano-silver;
所述第二阳极金属导电通孔与所述第二SiC功率半导体器件和所述DC+金属层通过纳米银烧结;The second anode metal conductive via hole is sintered with the second SiC power semiconductor device and the DC+ metal layer through nano-silver;
所述DC+金属层与所述DC+金属接线端子通过纳米银烧结。The DC+ metal layer and the DC+ metal connection terminal are sintered by nano-silver.
优选的,所述底层DC-陶瓷基板、所述底层AC陶瓷基板、所述顶层DC+陶瓷基板和所述顶层AC陶瓷基板选用AMB基板,所述基板的材料选用氮化硅。Preferably, the bottom DC-ceramic substrate, the bottom AC ceramic substrate, the top DC+ ceramic substrate and the top AC ceramic substrate are selected from AMB substrates, and the material of the substrates is selected from silicon nitride.
优选的,所述陶瓷夹层的材料选用氮化铝。Preferably, the material of the ceramic interlayer is aluminum nitride.
本申请的有益效果为:The beneficial effect of this application is:
(1)本申请的碳化硅功率模块双面散热封装结构,在两层陶瓷基板之间插入氮化铝多层陶瓷基板作为夹层,提供机械支撑,保证模块具备足够的机械强度;(1) In the silicon carbide power module double-sided heat dissipation packaging structure of this application, an aluminum nitride multilayer ceramic substrate is inserted between the two ceramic substrates as an interlayer to provide mechanical support and ensure that the module has sufficient mechanical strength;
(2)本申请的碳化硅功率模块双面散热封装结构,其陶瓷夹层起到和金属垫片相同的调节高度的作用,但热膨胀系数更接近碳化硅芯片,降低界面热应力,改善模块可靠性;(2) In the silicon carbide power module double-sided heat dissipation packaging structure of the present application, the ceramic interlayer plays the same role in height adjustment as the metal gasket, but the thermal expansion coefficient is closer to the silicon carbide chip, which reduces interface thermal stress and improves module reliability. ;
(3)本申请的碳化硅功率模块双面散热封装结构,用陶瓷夹层填充了两层陶瓷基板间空气所占的空间,既在一定程度上保护了芯片免受尘土、水汽的侵害,又可提升基板间的绝缘强度;(3) The silicon carbide power module double-sided heat dissipation packaging structure of the present application fills the space occupied by the air between the two ceramic substrates with a ceramic interlayer, which not only protects the chip from dust and water vapor to a certain extent, but also protects the chip from dust and water vapor. Improve the dielectric strength between substrates;
(4)本申请的碳化硅功率模块双面散热封装结构,陶瓷基板不再是一块,而是按照金属层的功能(如DC+、AC、DC-)将基板分块,基板尺寸更小,简化了各块基板的铜层形状,应力问题得到缓解,模块可靠性更高。(4) In the silicon carbide power module double-sided heat dissipation packaging structure of this application, the ceramic substrate is no longer one piece, but the substrate is divided into blocks according to the functions of the metal layer (such as DC+, AC, DC-), the size of the substrate is smaller, and the simplified The shape of the copper layer of each substrate is improved, the stress problem is alleviated, and the reliability of the module is higher.
附图说明Description of drawings
为了更清楚地说明本申请的技术方案,下面对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solution of the present application more clearly, the accompanying drawings used in the embodiments are briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present application. Technical personnel can also obtain other drawings based on these drawings without paying creative labor.
图1是本申请实施例的一种用于高温环境的碳化硅功率模块双面散热封装结构的拆解图;Fig. 1 is a disassembled view of a double-sided heat dissipation packaging structure of a silicon carbide power module used in a high temperature environment according to an embodiment of the present application;
图2是本申请实施例的封装结构的外部结构示意图;2 is a schematic diagram of the external structure of the packaging structure of the embodiment of the present application;
图3是本申请实施例的封装结构的截面图;FIG. 3 is a cross-sectional view of a package structure of an embodiment of the present application;
图4是本申请实施例的封装结构中陶瓷夹层的上下表面的示意图。FIG. 4 is a schematic diagram of the upper and lower surfaces of the ceramic interlayer in the packaging structure of the embodiment of the present application.
附图标记:Reference signs:
1、DC-陶瓷基板;2、DC-金属层;3、底层AC陶瓷基板;4、第一AC金属层;5、顶层AC陶瓷基板;6、第二AC金属层;7、顶层DC+陶瓷基板;8、DC+金属层;9、第一SiC功率半导体器件;10、第二SiC功率半导体器件;11、陶瓷夹层;12、第一阳极金属导电通孔;13、AC金属导电通孔;14、第二阳极金属导电通孔;15、DC-金属接线端子;16、AC金属接线端子;17、DC+金属接线端子。1. DC-ceramic substrate; 2. DC-metal layer; 3. Bottom AC ceramic substrate; 4. First AC metal layer; 5. Top AC ceramic substrate; 6. Second AC metal layer; 7. Top DC+ ceramic substrate ; 8. DC + metal layer; 9. The first SiC power semiconductor device; 10. The second SiC power semiconductor device; 11. Ceramic interlayer; 12. The first anode metal conductive via; 13. AC metal conductive via; 14. The second anode metal conductive through hole; 15. DC-metal connection terminal; 16. AC metal connection terminal; 17. DC+ metal connection terminal.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the application with reference to the drawings in the embodiments of the application. Apparently, the described embodiments are only some of the embodiments of the application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。In order to make the above objects, features and advantages of the present application more obvious and comprehensible, the present application will be further described in detail below in conjunction with the accompanying drawings and specific implementation methods.
在本实施例中,如图1-4所示,一种用于高温环境的碳化硅功率模块双面散热封装结构,包括:底层DC-陶瓷基板1、DC-金属层2、底层AC陶瓷基板3、第一AC金属层4、顶层DC+陶瓷基板7、DC+金属层8、顶层AC陶瓷基板5、第二AC金属层6、第一SiC功率半导体器件9、第二SiC功率半导体器件10、陶瓷夹层11、第一阳极金属导电通孔12、AC金属导电通孔13、第二阳极金属导电通孔14、DC-金属接线端子15、DC+金属接线端子17和AC金属接线端子16。In this embodiment, as shown in Figures 1-4, a silicon carbide power module double-sided heat dissipation packaging structure for high temperature environments includes: the bottom DC-
底层DC-陶瓷基板1的顶部覆有DC-金属层2,底层AC陶瓷基板3的顶部覆有第一AC金属层4,顶层AC陶瓷基板5的底部覆有第二AC金属层6,顶层DC+陶瓷基板7的底部覆有DC+金属层8。陶瓷夹层11内部集成有第一阳极金属导电通孔12、AC金属导电通孔13和第二阳极金属导电通孔14。The top of the bottom DC-
第一SiC功率半导体器件9的底部阴极金属焊盘与DC-金属层2连接,第一SiC功率半导体器件9的顶部阳极金属焊盘与第一阳极金属导电通孔12的下表面连接;The bottom cathode metal pad of the first SiC
第二SiC功率半导体器件10的底部阴极金属焊盘与第一AC金属层4连接,第二SiC功率半导体器件10的顶部阳极金属焊盘与第二阳极金属导电通孔14的下表面连接;The bottom cathode metal pad of the second SiC
第一阳极金属导电通孔12的上表面与第二AC金属层6连接,第二阳极金属导电通孔14的上表面与DC+金属层8连接,第一AC金属层4和第二AC金属层6通过AC金属导电通孔13连接。The upper surface of the first anode metal conductive via 12 is connected to the second
DC-金属层2与DC-金属接线端子15连接,第一AC金属层4与AC金属接线端子16连接,DC+金属层8与DC+金属接线端子17连接。The DC-
DC-金属层2与第一SiC功率半导体器件9和DC-金属接线端子15通过纳米银烧结,第一AC金属层4与第二SiC功率半导体器件10和AC金属接线端子16通过纳米银烧结,第一阳极金属导电通孔12与第一SiC功率半导体器件9和第二AC金属层6通过纳米银烧结,AC金属导电通孔13与第一AC金属层4和第二AC金属层6通过纳米银烧结,第二阳极金属导电通孔14与第二SiC功率半导体器件10和DC+金属层8通过纳米银烧结,DC+金属层8与DC+金属接线端子17通过纳米银烧结。在本实施例中,纳米银的具体烧结过程为:将纳米银膏涂至待烧结部件表面,再贴装至另一待烧结部件表面,在100℃环境下预加热10分钟,最后在空气或者氮气氛围中烧结20分钟,烧结温度为250℃,烧结压力为10~30MPa。The DC-
底层DC-陶瓷基板1、底层AC陶瓷基板3、顶层DC+陶瓷基板5和顶层AC陶瓷基板7选用AMB(活性金属钎焊)基板,基板的材料选用氮化硅(Si3N4),其中,氮化硅既可以满足机械强度和散热性能的要求,又可以更好地匹配碳化硅的热膨胀系数,降低基板和芯片上的热应力,改善模块可靠性,在氮化硅陶瓷材料上的相应区域采用AMB工艺进行金属化,并在金属层表面镀金,便于后续芯片、陶瓷夹层11金属化区域通过纳米银烧结实现电气连接;陶瓷夹层11的材料选用氮化铝(AlN),其中,氮化铝陶瓷的散热性能良好,且热膨胀系数与碳化硅相接近,可改善可靠性。在本实施例中,陶瓷夹层11内部的第一阳极金属导电通孔12、AC金属导电通孔13、第二阳极金属导电通孔14选用钨作为填充金属。The bottom DC-
以上所述的实施例仅是对本申请优选方式进行的描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案做出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。The above-mentioned embodiments are only a description of the preferred mode of the application, and are not intended to limit the scope of the application. Variations and improvements should fall within the scope of protection determined by the claims of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310124111.2A CN116130443A (en) | 2023-02-16 | 2023-02-16 | Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310124111.2A CN116130443A (en) | 2023-02-16 | 2023-02-16 | Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116130443A true CN116130443A (en) | 2023-05-16 |
Family
ID=86297239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310124111.2A Pending CN116130443A (en) | 2023-02-16 | 2023-02-16 | Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116130443A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109005669A (en) * | 2016-03-30 | 2018-12-14 | 日立汽车系统株式会社 | Semiconductor device |
CN115000041A (en) * | 2022-05-18 | 2022-09-02 | 西安交通大学 | Packaging structure of high-temperature high-frequency power device with direct chip voltage measurement |
-
2023
- 2023-02-16 CN CN202310124111.2A patent/CN116130443A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109005669A (en) * | 2016-03-30 | 2018-12-14 | 日立汽车系统株式会社 | Semiconductor device |
CN115000041A (en) * | 2022-05-18 | 2022-09-02 | 西安交通大学 | Packaging structure of high-temperature high-frequency power device with direct chip voltage measurement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102107901B1 (en) | Ceramic module for power semiconductor integrated packaging and preparation method thereof | |
US6812559B2 (en) | Power module with improved transient thermal impedance | |
US4827082A (en) | Ceramic package | |
KR20090005221A (en) | Power semiconductor module | |
JP3690278B2 (en) | Composite materials and their uses | |
CN1041668A (en) | Semiconductor components and computers using such components | |
US11114355B2 (en) | Power module and method for manufacturing power module | |
JPH05259328A (en) | Semiconductor module | |
JPH06296084A (en) | Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof | |
CN213071120U (en) | Copper-clad ceramic substrate matched with chip in thermal expansion | |
TWI654914B (en) | Method for improving adhesion of ceramic carrier board and thick film circuit | |
US20240203817A1 (en) | Semiconductor apparatus, and manufacturing method therefor | |
CN116130443A (en) | Double-sided heat dissipation packaging structure of silicon carbide power module for high-temperature environment | |
CN115360151A (en) | Package structure and power module using the package structure | |
US10362684B1 (en) | Method for improving adhesion between ceramic carrier and thick film circuit | |
JPH01151252A (en) | Ceramic package and its manufacture | |
JPH0529509A (en) | Board for semiconductor | |
CN221960961U (en) | High power density integrated circuit module packaging structure | |
CN216133861U (en) | Ceramic package substrate with multilayer circuit structure | |
Liu et al. | A High-reliability SiC-based Power Module with High-Temperature Co-fired Ceramic Interposer for High-temperature Applications | |
CN213242534U (en) | AlSiC heat dissipation and insulation integrated substrate for heat dissipation packaging of power device | |
JP3938113B2 (en) | Composite materials and their uses | |
Botter et al. | Design of Wire Bondless Double-Sided Cooled Power Module Using Ceramic Heat Sink and Multilayer Silver Sintering | |
KR20180005389A (en) | Insulating substrate using thick film printing | |
JPH0529507A (en) | Board for semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |