CN115282370A - Dialysate preparation system, dialysate preparation and degassing method thereof - Google Patents
Dialysate preparation system, dialysate preparation and degassing method thereof Download PDFInfo
- Publication number
- CN115282370A CN115282370A CN202210788516.1A CN202210788516A CN115282370A CN 115282370 A CN115282370 A CN 115282370A CN 202210788516 A CN202210788516 A CN 202210788516A CN 115282370 A CN115282370 A CN 115282370A
- Authority
- CN
- China
- Prior art keywords
- dialysate
- mixing tank
- degassing
- exhaust
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 129
- 238000007872 degassing Methods 0.000 title claims abstract description 119
- 238000002156 mixing Methods 0.000 claims abstract description 216
- 239000007788 liquid Substances 0.000 claims abstract description 168
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 95
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 90
- 239000012141 concentrate Substances 0.000 claims abstract description 34
- 238000000502 dialysis Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 80
- 238000001514 detection method Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims 1
- 238000001631 haemodialysis Methods 0.000 abstract description 5
- 230000000322 hemodialysis Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000032258 transport Effects 0.000 description 6
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 206010001526 Air embolism Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1654—Dialysates therefor
- A61M1/1656—Apparatus for preparing dialysates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1654—Dialysates therefor
- A61M1/1656—Apparatus for preparing dialysates
- A61M1/1658—Degasification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1654—Dialysates therefor
- A61M1/1656—Apparatus for preparing dialysates
- A61M1/1668—Details of containers
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
Abstract
本发明涉及血液透析治疗技术领域,具体涉及一种透析液配制系统、透析液配制及其除气方法,所述透析液配制系统包括分别用于输送第一浓缩液、第二浓缩液以及反渗水的第一浓缩液输入管线、第二浓缩液输入管线以及反渗水输入管线,通过将第一浓缩液、第二浓缩液以及反渗水在第二混合罐中进行混合,以使该第一浓缩液、第二浓缩液中的气泡在该第二混合罐中析出,然后通过设于该第二混合罐上的除气装置对该第二混合罐中的气体进行排除,通过该透析液配制系统、透析液配制及其除气方法,可极大地简化透析液配制系统的设备组成,但仍可以对A浓缩液和B浓缩液中可能存在的少量气体进行排除,以保证透析治疗的安全和效率。
The invention relates to the technical field of hemodialysis treatment, in particular to a dialysate preparation system, a dialysate preparation and a degassing method thereof. The first concentrated liquid input line, the second concentrated liquid input line and the reverse osmosis water input line, by mixing the first concentrated liquid, the second concentrated liquid and the reverse osmosis water in the second mixing tank, so that the first concentrated liquid , The air bubbles in the second concentrated solution are separated out in the second mixing tank, and then the gas in the second mixing tank is eliminated by the degassing device arranged on the second mixing tank, and the dialysate preparation system, The dialysate preparation and its degassing method can greatly simplify the equipment composition of the dialysate preparation system, but it can still remove a small amount of gas that may exist in the A concentrate and the B concentrate to ensure the safety and efficiency of dialysis treatment.
Description
技术领域technical field
本发明涉及血液透析治疗技术领域,尤其涉及一种透析液配制系统、透析液配制及其除气方法。The invention relates to the technical field of hemodialysis treatment, in particular to a dialysate preparation system, dialysate preparation and a degassing method thereof.
背景技术Background technique
血液透析治疗过程,是将患者体内血液引流至体外,经过一个由很多根空心纤维膜组成的透析器,血液与透析机生成的透析液在一根根空心纤维膜内外通过弥散/对流进行物质交换,清除患者血液中的代谢废物、维持电解质和酸碱平衡,同时清除体内过多的水分,再将净化后的血液输回人体。目前常用的透析机的透析液是由A浓缩液、B浓缩液和反渗水按照一定比例在线连续配置而成,A浓缩液中一般含有氯化钠、氯化钾、氯化钙、氯化镁、冰醋酸或枸橼酸、醋酸钠,B浓缩液一般含有碳酸氢钠或碳酸氢钠和氯化钠。在透析治疗过程中,需保证透析液的各种成分浓度持续稳定,否则透析液会在透析器中通过弥散作用改变血液中化学成分的浓度,危及病人安全。由此,只有保证A浓缩液、B浓缩液以及平衡系统控制的透析液输出流量恒定,才能保证连续配置的透析液中各成分浓度稳定,并且还应要求A浓缩液、B浓缩液和反渗水不能有空气,以避免空气带来的透析液浓度波动以及透析液中混杂空气可能产生的空气栓塞现象。The process of hemodialysis treatment is to drain the blood from the patient's body to the outside of the body, and pass through a dialyzer composed of many hollow fiber membranes. The blood and the dialysate generated by the dialysis machine exchange materials through diffusion/convection inside and outside the hollow fiber membranes. , remove metabolic waste in the patient's blood, maintain electrolyte and acid-base balance, remove excess water in the body at the same time, and then return the purified blood to the human body. The dialysate of the commonly used dialysis machine is composed of A concentrated solution, B concentrated solution and reverse osmosis water according to a certain proportion of online continuous configuration, A concentrated solution generally contains sodium chloride, potassium chloride, calcium chloride, magnesium chloride, ice Acetic or citric acid, sodium acetate, B concentrate generally contains sodium bicarbonate or sodium bicarbonate and sodium chloride. During the dialysis treatment, it is necessary to ensure that the concentration of various components of the dialysate is continuously stable, otherwise the dialysate will change the concentration of chemical components in the blood through diffusion in the dialyzer, endangering the safety of the patient. Therefore, only by ensuring a constant output flow rate of concentrated liquid A, concentrated liquid B, and the dialysate controlled by the balance system, can the concentration of each component in the continuously configured dialysate be stable, and it is also required that concentrated liquid A, concentrated liquid B, and reverse osmosis water There should be no air to avoid fluctuations in dialysate concentration caused by air and possible air embolism caused by air in the dialysate.
由于上述原因,目前的血液透析机一般都有负压除气系统,可以通过负压清除反渗水中的气体,但几乎没有透析设备专门设置有对A浓缩液和B浓缩液进行除气的装置。在实际治疗过程中,A浓缩液和B浓缩液中溶解的气体因温度变化也会析出少量气泡,从而导致透析液中存在少量气泡,降低了透析治疗的安全性。因此,为保证透析治疗的安全性,目前常用的透析液配制系统一般如图1所示,该系统中设置有第一电导传感器和第二电导传感器,采用该透析液配制系统配制透析液的过程一般如下:首先由B浓缩液泵吸入B浓缩液与反渗水汇合后进入第一混合罐进行混合以形成第一混合液,将第一混合液通过第一级电导传感器并输送至第二混合罐,然后再由A浓缩液泵吸入A浓缩液至该第二混合罐内,并在该第二混合罐中实现第一混合液和A浓缩液的再次混合,从而形成透析液,该透析液再经过第二电导传感器检测后送入平衡系统,最终送入至透析器中使用。在此过程中,A浓缩液或B浓缩液的气泡在经过第一电导传感器活动第二电导传感器时,会导致该第一电导传感器活动第二电导传感器的电导值降低从而触发系统报警,为保证治疗的安全性,此时,在治疗过程中的血液透析设备一般会进入旁路状态并暂停治疗,该种方式虽然通过两级电导传感器在透析液配制过程中透析液配制过程中的电导率和对气泡进行了实时监测,能够有效地保证透析治疗的安全性,但是,该透析液配制系统对于透析液中存在的气泡并不能直接进行处理,且第一电导传感器和第二电导传感器会频繁地发生报警,并导致治疗过程的暂停,极大地降低了治疗效率。Due to the above reasons, the current hemodialysis machines generally have a negative pressure degassing system, which can remove the gas in the reverse osmosis water through negative pressure, but almost no dialysis equipment is specially equipped with a device for degassing the A concentrate and the B concentrate . During the actual treatment process, the dissolved gas in the concentrated solution A and the concentrated solution B will also produce a small amount of air bubbles due to temperature changes, resulting in a small amount of air bubbles in the dialysate, which reduces the safety of dialysis treatment. Therefore, in order to ensure the safety of dialysis treatment, the currently commonly used dialysate preparation system is generally shown in Figure 1. The system is provided with a first conductivity sensor and a second conductivity sensor. The process of preparing dialysate by using the dialysate preparation system Generally as follows: Firstly, the B concentrate pump sucks the B concentrate and reverse osmosis water, and then enters the first mixing tank for mixing to form the first mixed liquid, and then passes the first mixed liquid through the first-stage conductivity sensor and transports it to the second mixing tank , and then the A concentrate pump sucks the A concentrate into the second mixing tank, and realizes the remixing of the first mix and the A concentrate in the second mixing tank, thereby forming a dialysate, which is again After being detected by the second conductivity sensor, it is sent to the balance system, and finally sent to the dialyzer for use. During this process, when the bubbles of concentrated liquid A or concentrated liquid B pass through the first conductivity sensor and the second conductivity sensor, the conductance value of the first conductivity sensor and the second conductivity sensor will decrease, thereby triggering a system alarm. The safety of the treatment, at this time, the hemodialysis equipment during the treatment will generally enter the bypass state and suspend the treatment. Real-time monitoring of the air bubbles can effectively ensure the safety of dialysis treatment. However, the dialysate preparation system cannot directly deal with the air bubbles in the dialysate, and the first conductivity sensor and the second conductivity sensor will frequently An alarm occurs and causes the suspension of the treatment process, which greatly reduces the treatment efficiency.
为解决上述透析液配制系统存在的缺陷,部分透析机在A浓缩液泵和B浓缩液泵前设计了单独的A浓缩液除气装置和B浓缩液除气装置,通过A浓缩液除气装置和B浓缩液除气装置分别去除A浓缩液和B浓缩液中的气体,以保证完全去除A浓缩液、B浓缩液中的气体,同时,由于反渗水输出时也进行了除气处理,使得该透析液在线配制的透析液中混入气泡的可能性极大地降低,治疗的安全性得以进一步提高。但对于该种透析液配制系统,由于其单独设置了A浓缩液除气装置和B浓缩液除气装置,因此,需要增设多个除气装置和控制阀体,导致整体控制方法复杂,在治疗前的预冲阶段、治疗后的清洗消毒过程中,均需要花很长时间才能将整体配液系统冲洗干净,会浪费大量的时间和水资源,极大地提高了治疗的经济成本和时间成本。In order to solve the defects in the above-mentioned dialysate preparation system, some dialysis machines are designed with separate A concentrated liquid degassing device and B concentrated liquid degassing device before the A concentrated liquid pump and B concentrated liquid pump, and through the A concentrated liquid degassing device and B concentrated liquid degassing device to remove the gas in the A concentrated liquid and the B concentrated liquid respectively, so as to ensure the complete removal of the gas in the A concentrated liquid and the B concentrated liquid. The possibility of mixing air bubbles in the dialysate prepared online is greatly reduced, and the safety of treatment is further improved. But for this kind of dialysate preparation system, since it is provided with A concentrated liquid degassing device and B concentrated liquid degassing device separately, therefore, it is necessary to add multiple degassing devices and control valve bodies, resulting in the overall control method is complicated, in the treatment It takes a long time to rinse the whole dosing system clean during the pre-flushing stage before treatment and the cleaning and disinfection process after treatment, which will waste a lot of time and water resources, and greatly increase the economic cost and time cost of treatment.
发明内容Contents of the invention
为解决上述技术问题,本发明的目的在于提供一种透析液配制系统、透析液配制及其除气方法,所述透析液配制系统、透析液配制及其除气方法可实现透析液自动配制的过程中的自动除气,同时保证透析液质量和透析治疗的安全性。In order to solve the above technical problems, the object of the present invention is to provide a dialysate preparation system, dialysate preparation and degassing method thereof, the dialysate preparation system, dialysate preparation and its degassing method can realize the automatic preparation of dialysate Automatic degassing during the process, while ensuring the quality of the dialysate and the safety of the dialysis treatment.
为达到上述技术效果,本发明采用了以下技术方案:In order to achieve the above technical effects, the present invention adopts the following technical solutions:
第一方面,本发明提供的一种透析液配制系统,包括:In a first aspect, a dialysate preparation system provided by the present invention includes:
第一浓缩液输入管线,用于输入第一浓缩液;The first concentrated liquid input pipeline is used for inputting the first concentrated liquid;
第二浓缩液输入管线,用于输入第二浓缩液;The second concentrated solution input pipeline is used for inputting the second concentrated solution;
反渗水输入管线,用于输入反渗水;The reverse osmosis water input pipeline is used for inputting reverse osmosis water;
第二混合罐,所述第二混合罐用于对第一浓缩液、第二浓缩液以及反渗水进行混合以形成透析液,所述第二混合罐通过透析液输出管线向外输出透析液,且所述透析液输出管线上还设有第二电导传感器;The second mixing tank, the second mixing tank is used to mix the first concentrated liquid, the second concentrated liquid and the reverse osmosis water to form a dialysate, and the second mixed tank outputs the dialysate through the dialysate output line, And the dialysate output pipeline is also provided with a second conductivity sensor;
除气装置,连接至所述第二混合罐的顶部并用于排除所述第二混合罐内的气体。A degassing device connected to the top of the second mixing tank and used to remove the gas in the second mixing tank.
优选地,所述反渗水输入管线中至少设有一个反渗水除气设备,以去除存在于反渗水中的大量气泡,该反渗水除气设备可从现有技术中进行选择。Preferably, at least one reverse osmosis water degassing device is provided in the reverse osmosis water input pipeline to remove a large number of air bubbles existing in the reverse osmosis water, and the reverse osmosis water degassing device can be selected from the prior art.
进一步地,所述透析液配制系统,还包括:Further, the dialysate preparation system also includes:
第一混合罐,所述第一混合罐设于所述第一浓缩液输入管线和反渗水输入管线的下游,所述第一混合罐用于对第一浓缩液和反渗水进行预混,以形成预混液,所述第一混合罐通过预混液通路将所述预混液输送至第二混合罐。The first mixing tank, the first mixing tank is arranged downstream of the first concentrated liquid input line and the reverse osmosis water input line, and the first mixing tank is used to premix the first concentrated liquid and reverse osmosis water, so as to A premix is formed, and the first mixing tank delivers the premix to the second mixing tank through a premix passage.
进一步地,所述第一混合罐和第二混合罐的目的是为对输入至其内部的液体进行混合,其内部结构可根据需要进行选择和设计。Further, the purpose of the first mixing tank and the second mixing tank is to mix the liquids input into them, and their internal structures can be selected and designed according to needs.
进一步地,所述第一混合罐的顶部设有上端出口,所述第一混合罐的底部设有下端出口,所述预混液通路包括第一通路和第二通路,所述第一通路用于连通所述上端出口和第二混合罐,所述第二通路用于连通所述下端出口和第二混合罐,且所述第二通路上设有第一电导传感器,所述第一电导传感器用于对预混液的电导率进行初步测定,而第一通路则可供第一混合罐顶部的液体和可能汇集在第一混合罐顶部的气泡通过,同时,由于该第一通路中并无电导率传感器,可避免该透析液配制系统的误报警。Further, the top of the first mixing tank is provided with an upper outlet, and the bottom of the first mixing tank is provided with a lower outlet, and the premixed liquid passage includes a first passage and a second passage, and the first passage is used for The upper outlet is communicated with the second mixing tank, the second passage is used to communicate with the lower outlet and the second mixing tank, and the second passage is provided with a first conductance sensor, and the first conductance sensor uses For the preliminary measurement of the conductivity of the premixed liquid, the first path can pass through the liquid at the top of the first mixing tank and the air bubbles that may collect at the top of the first mixing tank. At the same time, since there is no conductivity in the first path The sensor can avoid false alarms of the dialysate preparation system.
进一步地,所述第一浓缩液为B浓缩液,所述第二浓缩液为A浓缩液,所述A浓缩液和B浓缩液可根据现有配制标准进行配制,并具有相对稳定的电导率。Further, the first concentrated solution is B concentrated solution, the second concentrated solution is A concentrated solution, and the A concentrated solution and B concentrated solution can be prepared according to existing preparation standards, and have relatively stable electrical conductivity .
进一步地,所述第二混合罐的底部设有透析液出口,所述透析液输出管线的进液端连接至所述透析液出口,以避免第二混合罐中的气泡进入该透析液输出管线中;此外,所述第二混合罐的顶部还设有气体出口,所述除气装置的一端连接至所述气体出口,以便于将该第二混合罐中的气泡向外排出。Further, the bottom of the second mixing tank is provided with a dialysate outlet, and the liquid inlet end of the dialysate output line is connected to the dialysate outlet, so as to prevent air bubbles in the second mixing tank from entering the dialysate output line In addition, a gas outlet is provided on the top of the second mixing tank, and one end of the degassing device is connected to the gas outlet, so as to discharge the air bubbles in the second mixing tank to the outside.
优选地,所述第二混合罐的顶部设有气体汇集部,气体汇集部的顶端设有气体出口,且所述气体汇集部的横截面积由下至上逐渐渐缩,由此,由于所述气体汇集部的设置,使得该第二混合罐内的气体易于汇集至所述第二混合罐的顶端,从而使得该第二混合罐内的气体易于完全通过除气装置向外排出。Preferably, the top of the second mixing tank is provided with a gas collection part, and the top of the gas collection part is provided with a gas outlet, and the cross-sectional area of the gas collection part gradually shrinks from bottom to top, thus, due to the The arrangement of the gas collection part makes it easy for the gas in the second mixing tank to collect to the top of the second mixing tank, so that the gas in the second mixing tank is easy to be completely discharged outside through the degassing device.
优选地,所述透析液输出管线的出液端连接至透析治疗设备的平衡系统,该透析液配制系统配制得到的透析液可经由该平衡系统输送至透析治疗设备中进行使用,该平衡系统、透析治疗设备的结构以及连接方式均属现有技术,因此,此处不作赘述。Preferably, the outlet end of the dialysate output line is connected to the balance system of the dialysis treatment equipment, and the dialysate prepared by the dialysate preparation system can be transported to the dialysis treatment equipment for use through the balance system. The balance system, The structure and connection mode of the dialysis treatment equipment belong to the prior art, so details are not described here.
进一步地,所述除气装置包括负压排气管路,所述负压排气管路上设有除气电磁阀和负压除气泵。Further, the degassing device includes a negative pressure exhaust pipeline, and a degassing solenoid valve and a negative pressure degassing pump are arranged on the negative pressure exhaust pipeline.
进一步地,所述第二混合罐的内部设有液位传感器,所述液位传感器用于实时监测所述第二混合罐内的液位,以获得该第二混合罐内的实时液位高度。Further, a liquid level sensor is provided inside the second mixing tank, and the liquid level sensor is used to monitor the liquid level in the second mixing tank in real time, so as to obtain the real-time liquid level height in the second mixing tank .
进一步地,所述透析液配制系统还包括控制单元,所述第一浓缩液输入管线和第二浓缩液输入管线上分别设有第一输出泵和第二输出泵,所述第一输出泵、第二输出泵、第二电导传感器以及除气装置均电连接或信号连接至所述控制单元,以实现透析液的自动配制。Further, the dialysate preparation system also includes a control unit, a first output pump and a second output pump are respectively arranged on the first concentrate input line and the second concentrate input line, and the first output pump, The second output pump, the second conductivity sensor and the degassing device are all electrically or signally connected to the control unit, so as to realize the automatic preparation of dialysate.
第二方面,本发明还提供一种透析液除气方法,所述除气方法包括:In a second aspect, the present invention also provides a dialysate degassing method, the degassing method comprising:
S21:检测步骤,检测并获取第二混合罐内的实时液位高度;S21: detection step, detecting and obtaining the real-time liquid level in the second mixing tank;
S22:判断步骤,判断该实时液位高度是否低于预设液位高度;S22: Judging step, judging whether the real-time liquid level height is lower than the preset liquid level height;
S23:执行步骤,当所述判断步骤判断为是时,启动除气装置进行排气操作以排除第二混合罐内的气体。S23: Execution step, when the judgment step is judged to be yes, start the degassing device to perform an exhaust operation to remove the gas in the second mixing tank.
进一步地,所述供给工序中,所述第一浓缩液先于第二浓缩液与反渗水进行混合,以形成预混液,所述第二浓缩液再与所述预混液进行混合后一同输送至第二混合罐内或第二浓缩液与预混液分别单独地输送至该第二混合罐内。Further, in the supply process, the first concentrated liquid is mixed with the reverse osmosis water prior to the second concentrated liquid to form a premixed liquid, and the second concentrated liquid is mixed with the premixed liquid and delivered to The second mixing tank or the second concentrated liquid and the premixed liquid are separately delivered to the second mixing tank.
进一步地,所述S23具体为:当所述判断步骤判断为是时,启动除气装置进行排气操作以至少部分排除第二混合罐内的气体或将所述第二混合罐内的气体完全向外排出。Further, the S23 is specifically: when the judging step is judged to be yes, start the degassing device to perform an exhaust operation to at least partially remove the gas in the second mixing tank or completely remove the gas in the second mixing tank. Exhaust outward.
优选地,当所述第二混合罐内的实时液位高度低于预设液位高度时通过启动除气装置以排除第二混合罐内的气体,且当第二混合罐内的液面高度恢复至H1时停止排气操作,所述H1大于预设液位高度,且所述H1小于或等于第二混合罐内的最大液面高度。Preferably, when the real-time liquid level in the second mixing tank is lower than the preset liquid level, the degassing device is activated to remove the gas in the second mixing tank, and when the liquid level in the second mixing tank Stop the exhaust operation when returning to H1, said H1 is greater than the preset liquid level height, and said H1 is less than or equal to the maximum liquid level height in the second mixing tank.
进一步地,所述排气操作为间歇排气。Further, the exhaust operation is intermittent exhaust.
进一步地,所述排气操作为间歇排气,且单次最大排气量为Vmax,所述Vmax小于或等于向所述透析液配制系统中单次补充反渗水的最大体积,所述单次补充反渗水的最大体积是指向所述透析液配制系统中补充一定体积反渗水而不导致第二电导传感器检测值超出设定阈值范围时允许补充反渗水的最大体积,优选地,所述Vmax等于向所述透析液配制系统中单次补充反渗水的最大体积。在此过程中,由于组成该透析液配制系统的各罐体和管路容积是恒定的,因此,由该第二混合罐中向外排出的气体体积通过向所述透析液配制系统中补充反渗水进行补足,以使得配制的透析液浓度和电导率符合要求,因此,在本发明中,通过控制单次最大排气量,使得在每次排气时中进入该透析液配制系统中的反渗水体积可控,避免了单次补充反渗水体积过大导致的透析液浓度波动过大从而引起的系统报警,且可保证治疗过程安全。Further, the exhaust operation is intermittent exhaust, and the single maximum exhaust volume is Vmax, and the Vmax is less than or equal to the maximum volume of reverse osmosis water added to the dialysate preparation system in a single time, and the single The maximum volume of supplementary reverse osmosis water refers to the maximum volume of supplementary reverse osmosis water that is allowed to supplement a certain volume of reverse osmosis water in the dialysate preparation system without causing the detection value of the second conductivity sensor to exceed the set threshold range. Preferably, the Vmax is equal to The maximum volume of reverse osmosis water added to the dialysate preparation system for a single time. During this process, since the volumes of the tanks and pipelines that make up the dialysate preparation system are constant, the volume of gas discharged from the second mixing tank is supplemented by adding reaction to the dialysate preparation system. Seep water is supplemented so that the concentration and conductivity of the prepared dialysate meet the requirements. Therefore, in the present invention, by controlling the single maximum exhaust volume, the reverse fluid that enters the dialysate preparation system during each exhaust is The seepage water volume is controllable, which avoids the system alarm caused by the excessive fluctuation of the dialysate concentration caused by the excessive volume of reverse osmosis water replenishment in a single time, and can ensure the safety of the treatment process.
具体地,所述第二电导传感器检测值的设定阈值范围为标准透析液电导率的±0.1~5%,所述标准透析液可按照相关标准进行制备并获得标准透析液电导率。Specifically, the set threshold range of the detection value of the second conductivity sensor is ±0.1-5% of the conductivity of the standard dialysate, and the standard dialysate can be prepared according to relevant standards to obtain the standard dialysate conductivity.
进一步地,本发明还提供一种单次最大排气量的具体计算方式,具体而言,所述单次最大排气量为Vmax,该Vmax通过以下方式进行计算:Further, the present invention also provides a specific calculation method for a single maximum exhaust volume, specifically, the single maximum exhaust volume is Vmax, and the Vmax is calculated in the following manner:
Vmax=V总*x%Vmax=Vtotal*x%
其中,所述V总为透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的总容积,所述x%为透析液配制过程中允许的透析液的实时电导率相对于透析液标准电导率的最大波动百分比,x%的取值范围为±0.1~±5%。Wherein, the V total is the total volume between the mixing point of the first concentrated solution and reverse osmosis water in the dialysate preparation system to the second concentrated solution and reverse osmosis water mixing point, and the x% is the allowable volume during the dialysate preparation process. The maximum fluctuation percentage of the real-time conductivity of the dialysate relative to the standard conductivity of the dialysate, the value range of x% is ±0.1 to ±5%.
进一步地,所述排气操作为间歇排气,且单次最大排气量为Vmax,所述间歇排气通过间歇性地开合除气电磁阀实现。Further, the exhaust operation is intermittent exhaust, and the single maximum exhaust volume is Vmax, and the intermittent exhaust is realized by intermittently opening and closing the degassing solenoid valve.
优选地,为对该Vmax进行控制,所述排气操作为间歇排气,所述间歇排气通过间歇性地开合除气电磁阀实现,所述除气电磁阀的单次开启最长时间为T1,所述T1按照以下方法计算:Preferably, in order to control the Vmax, the exhaust operation is intermittent exhaust, and the intermittent exhaust is realized by intermittently opening and closing the degassing electromagnetic valve, and the single opening time of the degassing electromagnetic valve is the longest is T1, and the T1 is calculated according to the following method:
T1=Vmax/F1T1=Vmax/F1
其中,F1为除气流量,Vmax为单次最大排气量,在具体实施时,通过控制每次排气时间小于或等于T1,以保证单次排气量小于或等于单次最大排气量Vmax,从而避免引起透析液的电导率波动较大。Among them, F1 is the degassing flow rate, and Vmax is the single maximum exhaust volume. In the specific implementation, by controlling each exhaust time to be less than or equal to T1, to ensure that the single exhaust volume is less than or equal to the single maximum exhaust volume Vmax, so as to avoid large fluctuations in the conductivity of the dialysate.
进一步地,所述排气操作为间歇排气,且两次排气过程之间的最小间隔时间为T0,所述T0根据透析液配制系统容积和透析液配制系统中的透析液输出流量确定。Further, the venting operation is intermittent venting, and the minimum interval between two venting processes is T0, and the T0 is determined according to the volume of the dialysate preparation system and the dialysate output flow in the dialysate preparation system.
优选地,所述间歇排气的两次排气过程之间的最小间隔时间为T0,所述T0的计算方法如下:Preferably, the minimum interval between two exhaust processes of the intermittent exhaust is T0, and the calculation method of T0 is as follows:
T0=V总/F0T0=V total/F0
其中,所述V总为透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的总体积,F0为透析液配制系统中的透析液输出流量。Wherein, V is the total volume between the mixing point of the first concentrate and reverse osmosis water in the dialysate preparation system to the second concentrate and reverse osmosis water mixing point, and F0 is the dialysate output flow in the dialysate preparation system .
第三方面,本发明还提供一种透析液配制方法,该透析液配制方法包括同时进行的配制步骤和除气步骤,其中,所述除气步骤采用上述的除气方法对第二混合罐中的气体进行去除,所述配制步骤具体包括:In a third aspect, the present invention also provides a dialysate preparation method, which includes a simultaneous preparation step and a degassing step, wherein the degassing step adopts the above-mentioned degassing method for the second mixing tank. The gas is removed, and the preparation steps specifically include:
供给工序,将第一浓缩液、第二浓缩液以及反渗水单独或混合地输送至第二混合罐内,其中,第一浓缩液和第二浓缩液分别以恒定的第一流速和第二流速向第二混合罐方向输送;The supply process is to transport the first concentrated liquid, the second concentrated liquid and the reverse osmosis water individually or in combination to the second mixing tank, wherein the first concentrated liquid and the second concentrated liquid are respectively supplied at a constant first flow rate and a second flow rate Transport to the direction of the second mixing tank;
混合工序,对输送至第二混合罐内的第一浓缩液、第二浓缩液以及反渗水进行混合,以形成透析液;A mixing process, mixing the first concentrated solution, the second concentrated solution and the reverse osmosis water delivered to the second mixing tank to form a dialysate;
输出工序,将第二混合罐内形成的透析液通过透析液输出管线以恒定的输出流速向外输出;The output process is to output the dialysate formed in the second mixing tank through the dialysate output pipeline at a constant output flow rate;
检测工序,通过第二电导传感器对经由透析液输出管线向外输出的透析液的电导率进行检测以获得透析液的实时电导率;A detection process, using a second conductivity sensor to detect the conductivity of the dialysate output through the dialysate output pipeline to obtain the real-time conductivity of the dialysate;
判断执行工序,判断实时电导率是否处于设定阈值范围内,当实时电导率超过设定阈值范围时,暂停或终止输出步骤;Judging the execution process, judging whether the real-time conductivity is within the set threshold range, and suspending or terminating the output step when the real-time conductivity exceeds the set threshold range;
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
第一方面,本发明提供的一种透析液配制系统,通过在第二混合罐的顶部设置除气装置,通过使得第一浓缩液、第二浓缩液以及反渗水在该第二混合罐中进行混合并通过该除气装置对在该第二混合罐内的产生的气泡进行去除,从而避免该气泡跟随透析液一同向外输出,可有效地提高透析液质量,并保证治疗安全,此外,通过对该气泡进行去除,还可避免由透析液中的气泡触发的透析液系统报警,并避免由此导致的治疗暂停或中止。In the first aspect, in the dialysate preparation system provided by the present invention, a degassing device is arranged on the top of the second mixing tank, and the first concentrated solution, the second concentrated solution and reverse osmosis water are processed in the second mixing tank. Mix and remove the air bubbles generated in the second mixing tank through the degassing device, so as to prevent the air bubbles from being output together with the dialysate, which can effectively improve the quality of the dialysate and ensure the safety of treatment. In addition, through Removing the air bubbles can also avoid the alarm of the dialysate system triggered by the air bubbles in the dialysate, and avoid the suspension or termination of treatment caused by it.
第二方面,本方面提供的一种透析液除气方法,采用间歇排气在第一浓缩液、第二浓缩液以及反渗水混合过程中产生的气体进行排除,使得该气体被排除的同时可保证透析液的浓度和电导率符合要求,从而保证透析液质量合格。In the second aspect, a method for degassing dialysate provided by this aspect uses intermittent exhaust to remove the gas generated during the mixing process of the first concentrated liquid, the second concentrated liquid and reverse osmosis water, so that the gas can be removed while being excluded. Ensure that the concentration and conductivity of the dialysate meet the requirements, so as to ensure the quality of the dialysate.
第三方面,本发明提供的一种透析液配制方法,通过设于第二混合罐内的液位传感器对该第二混合罐内的液位高度进行检测以获得实时液位高度,通过对该实时液位高度进行监测,当该实时液位高度低于预设液位高度时,触发排气操作,并通过间歇排气的方式对该第二混合罐中的部分或全部气体进行排空,以达到排气效果。In the third aspect, in the dialysate preparation method provided by the present invention, the liquid level in the second mixing tank is detected by a liquid level sensor installed in the second mixing tank to obtain the real-time liquid level, and the The real-time liquid level is monitored. When the real-time liquid level is lower than the preset liquid level, the exhaust operation is triggered, and part or all of the gas in the second mixing tank is emptied by intermittent exhaust. In order to achieve the exhaust effect.
通过采用本发明提供的一种透析液配制系统、透析液配制及其除气方法,可极大地简化透析液配制系统的设备组成,但仍可以对A浓缩液和B浓缩液中可能存在的少量气体进行排除,以保证透析治疗的安全和效率。By adopting a dialysate preparation system, dialysate preparation and degassing method provided by the present invention, the equipment composition of the dialysate preparation system can be greatly simplified, but it is still possible to treat a small amount of possible presence in the A concentrate and the B concentrate. Gas is removed to ensure the safety and efficiency of dialysis treatment.
附图说明Description of drawings
图1为本发明的背景技术提供的现有技术中的透析液配制系统的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the dialysate preparation system in the prior art provided by the background technology of the present invention;
图2为本发明的实施例1提供的一种透析液配制系统的整体结构示意图;2 is a schematic diagram of the overall structure of a dialysate preparation system provided in Embodiment 1 of the present invention;
图3为本发明的实施例3提供的一种透析液配制系统的整体结构示意图;3 is a schematic diagram of the overall structure of a dialysate preparation system provided in Embodiment 3 of the present invention;
图4为本发明的实施例4提供的一种透析液配制系统的整体结构示意图;4 is a schematic diagram of the overall structure of a dialysate preparation system provided in Embodiment 4 of the present invention;
附图标记为:10,第一浓缩液输入管线,11,第一输出泵,13,第一浓缩液储罐,20,第二浓缩液输入管线,21,第二输出泵,23,第二浓缩液储罐,30,反渗水输入管线,40,透析液输出管线,41,透析液输出泵,42,第二电导传感器,50,第一混合罐,51,第一进液接口,521,上端出口,522,下端出口,53,预混液通路,531,第一通路,532,第二通路,532a,第一电导传感器,60,第二混合罐,61,第二进液接口,62,透析液出口,63,气体汇集部,631,气体出口,70,负压排气管路,71,除气电磁阀,72,负压除气泵,73,液位传感器。Reference numerals are: 10, the first concentrated liquid input pipeline, 11, the first output pump, 13, the first concentrated liquid storage tank, 20, the second concentrated liquid input pipeline, 21, the second output pump, 23, the second Concentrate storage tank, 30, reverse osmosis water input pipeline, 40, dialysate output pipeline, 41, dialysate output pump, 42, second conductivity sensor, 50, first mixing tank, 51, first liquid inlet port, 521, Upper outlet, 522, lower outlet, 53, premix liquid passage, 531, first passage, 532, second passage, 532a, first conductivity sensor, 60, second mixing tank, 61, second liquid inlet port, 62, Dialysate outlet, 63, gas collection part, 631, gas outlet, 70, negative pressure exhaust pipeline, 71, degassing solenoid valve, 72, negative pressure degassing pump, 73, liquid level sensor.
具体实施方式Detailed ways
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。Embodiments of the technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and therefore are only examples, rather than limiting the protection scope of the present invention.
如无特殊说明,在本发明中,若有术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此本发明中描述方位或位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以结合附图,并根据具体情况理解上述术语的具体含义。Unless otherwise specified, in the present invention, if there are terms "length", "width", "upper", "lower", "front", "back", "left", "right", "vertical", Orientation or positional relationship indicated by "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", "axial", "radial", "circumferential", etc. It is based on the orientation or positional relationship shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, so this The terms describing the orientation or positional relationship in the invention are only used for illustrative purposes, and should not be construed as limitations on this patent. Those of ordinary skill in the art can understand the specific meanings of the above terms according to specific situations in conjunction with the accompanying drawings.
需要特殊说明的是,在本发明中,术语“进液端”和“上游”指流体从其流动的方向,“下游”和“出液端”均指流体流到其的方向。It should be noted that, in the present invention, the terms "inlet end" and "upstream" refer to the direction from which the fluid flows, and "downstream" and "outlet end" both refer to the direction to which the fluid flows.
实施例1Example 1
如图2所示,本实施例提供一种透析液配制系统,该透析液配制系统包括第一浓缩液输入管线10、设置于第一浓缩液输入管线10进液端的第一浓缩液储罐13、第二浓缩液输入管线20、设置于第二浓缩液输入管线20进液端的第二浓缩液储罐23、反渗水输入管线30、第二混合罐60以及控制单元,其中,所述第一浓缩液输入管线10用于向第二混合罐60中输入第一浓缩液,第二浓缩液输入管线20向第二混合罐60中输入第二浓缩液,反渗水输入管线30用于向第二混合罐60中输入反渗水,该第一浓缩液先于第二浓缩液与反渗水进行混合以形成预混液,而后该第二浓缩液与预混液进行混合后一同输送至该第二混合罐60内进行混合,以形成透析液,在该第二混合罐60内混合形成的透析液,通过透析液输出管线40向外输出,具体地,该透析液输出管线40的末端连接至透析治疗设备的平衡系统。此处,需要特别说明的是,该第二混合罐60内部结构可从现有技术中进行选择和设置,以实现第一浓缩液、第二浓缩液以及反渗水的均匀混合,因此,该第二混合罐60的内部结构在本实施例以及后续实施例中均不作赘述。As shown in Figure 2, the present embodiment provides a dialysate preparation system, the dialysate preparation system includes a first
在本实施例中,为控制该透析液配制系统配制获得的透析液的浓度符合要求,所述第一浓缩液输入管线10上设置有第一输出泵11,所述第二浓缩液输入管线20上设置有第二输出泵21,所述第一输出泵11、第二输出泵21均电连接或信号连接至所述控制单元,以分别控制第一浓缩液和第二浓缩液的输出速率,同时,为使得透析液的输出速率可控,所述透析液输出管线40上设有透析液输出泵41,所述透析液输出泵41电连接或信号连接至所述控制单元,以控制透析液输出流量。此外,为对透析液的质量进行控制,所述透析液输出管线40上还设有第二电导传感器42,该第二电导传感器42电连接或信号连接至所述控制单元,该第二电导传感器42用于对透析液配制系统中配制完成的透析液的电导率进行检测以获得实时电导率,当该实时电导率处于设定阈值范围内时,该透析液配制系统所配制形成的透析液符合要求,可输入至平衡系统中进行使用。In this embodiment, in order to control the concentration of the dialysate prepared by the dialysate preparation system to meet the requirements, the first concentrated
在本实施例中,由于未经除气处理的反渗水中可能存在大量的气泡,易导致透析液配制过程中的电导率和浓度波动过大,因此,在本系统中输入的反渗水输入管线30中至少设置有一个反渗水除气设备(附图未示出),从而去除存在于反渗水中的大量气泡,该反渗水除气设备可从现有技术中进行选择,此处不再进行赘述。同时,由于第一浓缩液和第二浓缩液中可能存在的少量气泡可能在透析液配制过程中析出,为对上述气泡进行去除,所述透析液配制系统还设置有除气装置,该除气装置连接至所述第二混合罐60的顶部并用于排除所述第二混合罐60内的气体,以避免该第二混合罐60中的气泡跟随透析液输出至平衡系统中。具体地,该第二混合罐60的底部设有第二进液接口61,以实现第一浓缩液、第二浓缩液以及反渗水的输入,该第二混合罐60的底部设有透析液出口62,所述透析液输出管线40的进液端连接至所述透析液出口62,同时,该第二混合罐60的顶部设有气体汇集部63,气体汇集部63的顶端设有气体出口631,所述除气装置包括负压排气管路70,所述负压排气管路70上设有除气电磁阀71和负压除气泵72,所述除气电磁阀71和负压除气泵72均电连接或信号连接至所述控制单元。所述负压排气管路70的进气端连接至所述气体出口631,以便于将所述第二混合罐60内的气体向外排出。更具体地,该气体汇集部63的横截面积由下至上逐渐渐缩,由于所述气体汇集部63的设置,使得该第二混合罐60内的气体易于汇集至所述第二混合罐60的顶端,从而使得该第二混合罐60内的气体易通过除气装置向外排出。在具体实施时,当该第二混合罐60中产生气泡时,该气泡可上浮并汇集于所述气体汇集部63的顶端,并通过该气体出口631进入该负压排气管路70中进行排除。In this embodiment, since there may be a large number of air bubbles in the reverse osmosis water without degassing treatment, it is easy to cause the conductivity and concentration fluctuations in the dialysate preparation process to be too large. Therefore, the reverse osmosis water input pipeline input in this
实施例2Example 2
请参阅图2,本实施例提供一种透析液配制方法和除气方法,该透析液配制方法基于实施例1提供的一种透析液配制系统得以实施,该透析液配制方法具体包括同时进行的配制步骤和除气步骤,其中,所述配制步骤具体包括:Please refer to Figure 2. This embodiment provides a dialysate preparation method and a degassing method. The dialysate preparation method is implemented based on the dialysate preparation system provided in Example 1. The dialysate preparation method specifically includes simultaneous Preparation step and degassing step, wherein, the preparation step specifically includes:
供给工序:将第一浓缩液、第二浓缩液以及反渗水分别通过第一浓缩液输入管线10、第二浓缩液输入管线20以及反渗水输入管线30向第二混合罐60中进行输送,且该第一浓缩液和第二浓缩液分别以恒定的第一流速和第二流速进行输送;Supply process: transport the first concentrated liquid, the second concentrated liquid and the reverse osmosis water to the
混合工序:在第二混合罐60中,对输送至第二混合罐60内的第一浓缩液、第二浓缩液以及反渗水进行混合,以形成浓度和电导率相对恒定的透析液;Mixing process: in the
输出工序;将第二混合罐60内形成的透析液通过透析液输出管线40以恒定的输出流速向外输出;Output process: the dialysate formed in the
检测工序;在该透析液的输出工序中,通过第二电导传感器42对经由透析液输出管线40向外输出的透析液的电导率进行检测以获得透析液的实时电导率;Detection process: in the dialysate output process, the
判断执行工序;在该透析液的输出工序中,判断该透析液的实时电导率是否处于设定阈值范围内,当实时电导率超过设定阈值范围时,说明该透析液配制系统所配制的透析液不符合使用标准,因此,由控制单元控制该透析液输出泵41暂停或终止输出步骤,以使得治疗过程暂停,保证透析治疗的安全性。Judging the execution process; in the output process of the dialysate, it is judged whether the real-time conductivity of the dialysate is within the set threshold range, and when the real-time conductivity exceeds the set threshold range, it means that the dialysate prepared by the dialysate preparation system The dialysate does not meet the use standard, therefore, the control unit controls the
所述除气步骤按照以下除气方法进行:The degassing step is carried out according to the following degassing method:
S21:检测步骤,通过该第二混合罐60内的液位传感器73实时地检测并获取第二混合罐60内的实时液位高度;S21: a detection step, detecting and obtaining the real-time liquid level height in the
S22:判断步骤,判断该实时液位高度是否低于预设液位高度;S22: Judging step, judging whether the real-time liquid level height is lower than the preset liquid level height;
S23:执行步骤,以所述判断步骤判断为是作为排气操作的启动时间点,此时,通过控制单元控制除气装置工作进行排气操作以排除第二混合罐60内的气体,直至该第二混合罐60内的液面高度恢复至H1时作为排气操作的终止时间点,此时,停止排气操作。具体地,该H1大于预设液位高度,且所述H1小于或等于第二混合罐60内的最大液面高度,该H1同样通过位于该第二混合罐60内的第二液位传感器73进行监测。S23: Execution step, judged by the judging step as the starting time point of the exhaust operation, at this time, the control unit controls the degassing device to work to perform the exhaust operation to eliminate the gas in the
更具体地,当该第二混合罐60中的气体向外排出后,由于该第二混合罐60内的压力减小,因此,该反渗水自动补充至该第二混合罐60中,当该反渗水单次补充体积过大时,可能引起该第二混合罐60向外输出的透析液浓度不符合要求,从而导致该第二电导传感器42所检测的实时电导率超出设定阈值范围,并使得透析治疗过程终止。因此,本实施例采用间歇排气方法对第二混合罐60中的气体进行排除,具体地,该间歇排气的单次最大排气量为Vmax,其最小间隔时间为T0,其中,该Vmax小于向所述透析液配制系统中单次补充反渗水的最大体积,该最大体积是指向所述透析液配制系统中补充一定体积反渗水而不导致第二电导传感器42检测值超出设定阈值范围时允许补充反渗水的最大体积,同时,为避免两次排气过程之间间隔时间过短而导致的透析液电导率波动超过设定阈值范围的情况,该间歇排气还需控制两次排气过程之间的时间间隔大于或等于最小间隔时间TO。More specifically, after the gas in the
在本实施例中,还提供了一种单次最大排气量Vmax和最小时间间隔T0的计算方法,分别如下:In this embodiment, a calculation method for a single maximum exhaust volume Vmax and a minimum time interval T0 is also provided, respectively as follows:
Vmax=V总*x%Vmax=Vtotal*x%
其中,V总该为该透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的管路总容积,所述x%根据透析液的制备标准进行设置,该的取值范围为±0.1~±5%,且优选为±2.5%,以保证配制获得的透析液中的钠离子浓度以及其他溶质的浓度符合使用标准。具体而言,该间歇排气通过间歇性地控制该除气电磁阀71的开合实现,当所述除气电磁阀71开启时,配合所述负压除气泵72工作,以从第二混合罐60中向外排出一定体积的气体,该过程中,该除气电磁阀71的单次开启最长时间为,所述按照以下方法计算:Wherein, V total should be the total volume of the pipeline between the mixing point of the first concentrated solution and reverse osmosis water in the dialysate preparation system to the mixing point of the second concentrated solution and reverse osmosis water, and the x% is according to the preparation standard of dialysate It is set that the value range is ±0.1-±5%, and preferably ±2.5%, so as to ensure that the sodium ion concentration and other solute concentrations in the prepared dialysate meet the use standards. Specifically, the intermittent exhaust is realized by intermittently controlling the opening and closing of the
T1=Vmax/F1T1=Vmax/F1
其中,F1为除气流量,该除气流量由负压除气泵72决定,具体而言,在具体实施过程中,可通过控制该除气流量F1恒定,然后控制每次除气电磁阀71开启的时间小于或等于T1,以保证间歇排气时的单次排气量小于或等于单次最大排气量Vmax,从而避免引起透析液的电导率波动较大,使得在除气的同时可保证透析液的电导率在设定阈值范围内进行波动,可保证治疗的安全性,并且,无需中断或中止治疗过程。Among them, F1 is the degassing flow rate, which is determined by the negative
在此过程中,为避免频繁除气造成的透析液电导率波动过大,本实施例还同时提供了一种T0的计算方法,具体为:During this process, in order to avoid excessive fluctuations in the conductivity of the dialysate caused by frequent degassing, this embodiment also provides a calculation method for T0, specifically:
T0=V总/F0T0=V total/F0
其中,所述V总为该透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的管路总容积,F0为透析液配制系统中的透析液输出流量。Wherein, V is the total volume of the pipeline between the mixing point of the first concentrate and reverse osmosis water in the dialysate preparation system to the second concentrate and reverse osmosis water mixing point, and F0 is the dialysis volume in the dialysate preparation system. Liquid output flow.
本实施例提供的一种透析液配制方法,在透析液的配制过程中,由于用于治疗的透析液中溶质与溶剂的比例相对恒定,因而,该第一输送泵、第二输送泵以及透析液输出泵41均以恒定流量运行,同时,由于组成该透析液配制系统的各罐体和管路容积是恒定的,因此,由该第二混合罐60中向外排出的气体体积通过向所述透析液配制系统中补充反渗水进行补足,以使得配制的透析液浓度和电导率符合要求,因此,在本实施例中,通过采用间歇排气的方法,并控制单次最大排气量以及相邻两次排气过程之间的最小时间间隔,使得在每次排气时中进入该透析液配制系统中的反渗水体积合理,避免了单次补充反渗水体积过大导致的透析液浓度波动过大从而引起的系统报警以及治疗过程中断,且可保证治疗过程安全。In the dialysate preparation method provided in this embodiment, during the preparation process of the dialysate, since the ratio of solute and solvent in the dialysate used for treatment is relatively constant, the first delivery pump, the second delivery pump and the dialysis The liquid output pumps 41 all operate at a constant flow rate, and at the same time, since the volumes of the tanks and pipelines that make up the dialysate preparation system are constant, the volume of gas discharged from the
实施例3Example 3
如图3所示,本实施例提供一种透析液配制系统,该透析液配制系统与实施例1提供的一种透析液配制系统的区别在于:As shown in Figure 3, this embodiment provides a dialysate preparation system, the difference between the dialysate preparation system and the dialysate preparation system provided in Example 1 is that:
本实施例提供的一种透析液配制系统,还包括第一混合罐50,所述第一混合罐50设于所述第一浓缩液输入管线10和反渗水输入管线30的下游,且位于所述第二浓缩液输入管线20和第二混合罐60的上游,该第一混合罐50用于对第一浓缩液和反渗水进行预混,以形成预混液,所述第一混合罐50通过预混液通路53将所述预混液输送至第二混合罐60并与第二浓缩液再次进行混合。A dialysate preparation system provided in this embodiment further includes a
在本实施例中,由于该第一混合罐50的设置,使得该第一浓缩液可预先在该第一混合罐50中与反渗水进行混合,从而提高其混合效果。In this embodiment, due to the setting of the
实施例4Example 4
如图3所示,本实施例提供一种透析液配制系统,其与实施例1提供的一种透析液配制系统的区别在于,本实施例提供的一种透析液配制系统还包括第一混合罐50、第一电导传感器532a、由第一通路531和第二通路532组成的预混液通路53以及控制单元,在该透析液配制系统中,第一输出泵11、第二输出泵21、透析液输出泵41、第一电导传感器532a、第二电导传感器42、除气电磁阀71以及负压除气泵72均电连接或信号连接至所述控制单元,以实现透析液的自动配制和除气。As shown in Figure 3, this embodiment provides a dialysate preparation system, which differs from the dialysate preparation system provided in Example 1 in that the dialysate preparation system provided by this embodiment also includes a first mixing The
在本实施例中,该第一混合罐50用于实现第一浓缩液和反渗水的初步混合,具体地,该第一混合罐50的底部设置有第一进液接口51,所述第一进液接口51用于实现第一浓缩液和反渗水的输入,该第一混合罐50的顶部设置有上端出口521,所述第一混合罐50的底部设有下端出口522,所述预混液通路53包括第一通路531和第二通路532,所述第一通路531用于连接所述上端出口521和第二混合罐60,所述第二通路532用于连通所述下端出口522和第二混合罐60,该第一电导传感器532a设于所述第二通路532上。此外,该第一混合罐50的下端出口522的口径大于所述上端出口521的口径,以使得该第一混合罐50中的液体易于进入该第二通路532中。在具体实施时,在该第一混合罐50内,该第一浓缩液和反渗水实现混合以形成预混液,且预混液大部分通过第二通路532输送至该第二混合罐60中,而少部分预混液以及在第一混合罐50中产生的气泡则通过第一通路531输送至第二混合罐60中,在此过程中,为进一步避免该第一混合罐50中残留气体且使得该第一混合罐50中的气泡更易进入该第一通路531中,该第一混合罐50的顶部也设置有与第二混合罐60结构相同的气体汇集部63,以使得气泡在由第一混合罐50转移至第二混合罐60的过程中,可跨过所述第一电导传感器532a的监测,避免引起该第一电导传感器532a的检测值异常引起的透析液配制系统的输出暂停。此时,由于该第一电导传感器532a的设置,可对该第一混合罐50中形成的预混液的电导率进行初步检测,此时,该第一预混液优先选择B浓缩液,该第一电导传感器532a通过对该预混液的电导率配进行初步监测,以便于更加精确控制透析液中的B浓缩液的比例。In this embodiment, the
在本实施例中,为对除气过程进行控制,所述第二混合罐60的内部设有液位传感器73,所述液位传感器73用于实时监测所述第二混合罐60内的液位,以获得实时液位高度。In this embodiment, in order to control the degassing process, a
实施例5Example 5
请参阅图4,本实施例提供一种透析液配制方法和除气方法,该透析液配制方法基于实施例4提供的一种透析液配制系统得以实施,该透析液配制方法具体包括同时进行的配制步骤和除气步骤,其中,所述配制步骤具体包括:Please refer to Figure 4. This embodiment provides a dialysate preparation method and a degassing method. The dialysate preparation method is implemented based on the dialysate preparation system provided in Example 4. The dialysate preparation method specifically includes simultaneous Preparation step and degassing step, wherein, the preparation step specifically includes:
供给工序:将第一浓缩液和反渗水输送至第一混合罐50中进行预混以形成预混液,该第一混合罐50中的预混液大部分通过第二通路532输送至第二混合罐60中并在此过程中,通过第一电导传感器532a对该预混液的电导率进行监测,以提高配液精度,而该第一混合罐50中的少部分预混液以及该第一混合罐50中的少量气泡则通过第一通路531输送至该第二混合罐60中,在此过程中,该第一输出泵11和第二输出泵21均以恒定流量进行输送;Supply process: transport the first concentrated liquid and reverse osmosis water to the
混合工序:在第二混合罐60中,对输送至第二混合罐60内的第二浓缩液以及预混液进行再次混合,以形成浓度和电导率相对恒定的透析液;Mixing process: in the
输出工序;将第二混合罐60内形成的透析液通过透析液输出管线40以恒定的输出流速向外输出;Output process: the dialysate formed in the
检测工序;在该透析液的输出工序中,通过第二电导传感器42对经由透析液输出管线40向外输出的透析液的电导率进行检测以获得透析液的实时电导率;Detection process: in the dialysate output process, the
判断执行工序;在该透析液的输出工序中,判断实时电导率是否处于设定阈值范围内,当实时电导率超过设定阈值范围时,说明该透析液配制系统所配制的透析液不符合使用标准,因此,由控制单元控制该透析液输出泵41暂停或终止输出步骤,从而使得治疗过程暂停,以保证透析治疗的安全性。Judging the execution process; in the output process of the dialysate, it is judged whether the real-time conductivity is within the set threshold range. When the real-time conductivity exceeds the set threshold range, it means that the dialysate prepared by the dialysate preparation system is not suitable for use. Standard, therefore, the control unit controls the
本实施例提供的一种透析液配制方法,其配制步骤概述如下:该第一浓缩液与反渗水被输送至该第一混合罐50中进行混合,混合后的形成的大部分预混液由该第一混合罐50的底部流出并通过第二通路532输送至第二混合罐60,在此过程中,该第一电导传感器532a可实时地对该预混液的电导率进行监测,当该第一电导传感器532a的检测值异常时,说明该反渗水和第一浓缩液配比不当,此时由所述控制单元控制该透析液输出过程暂停或中止,以保证治疗安全;当该第一电导传感器532a的检测值正常时,该系统中的各液体正常流动并使该预混液和第二浓缩液在第二混合罐中再次进行混合,以将其配制成为透析液,该透析液在经由透析液输出管线40向外输出时,通过该第二电导传感器42对透析液的电导率再次进行监测,以确保治疗安全。在上述配制步骤中,当第一电导传感器532a和第二电导传感器42任一的检测值发生异常时,均由所述控制单元控制该透析液输出泵41暂停或终止输出步骤,从而使得治疗过程暂停或中止,以确保治疗安全。In the dialysate preparation method provided in this embodiment, the preparation steps are summarized as follows: the first concentrated liquid and reverse osmosis water are transported to the
为进一步提高该透析液配制系统的安全性,该透析液配制系统还包括报警器,所述报警器电连接或信号连接至所述控制单元,当所述第一电导传感器532a和第二电导传感器42任一的检测值发生异常时,均由所述控制单元控制所述报警器发出提示信息,该提示信息可为声光信号中的任意一种。In order to further improve the safety of the dialysate preparation system, the dialysate preparation system also includes an alarm, the alarm is electrically or signally connected to the control unit, when the
所述除气步骤按照以下除气方法进行:The degassing step is carried out according to the following degassing method:
S21:检测步骤,通过该第二混合罐60内的液位传感器73实时地检测并获取第二混合罐60内的实时液位高度;S21: a detection step, detecting and obtaining the real-time liquid level height in the
S22:判断步骤,判断该实时液位高度是否低于预设液位高度;S22: Judging step, judging whether the real-time liquid level height is lower than the preset liquid level height;
S23:执行步骤,以所述判断步骤判断为是作为排气操作的启动时间点,此时,通过控制单元控制除气装置工作进行排气操作以排除第二混合罐60内的气体,直至该第二混合罐60内的液面高度恢复至H1时作为排气操作的终止时间点,此时,停止排气操作。具体地,该H1大于预设液位高度,且所述H1小于或等于第二混合罐60内的最大液面高度,该H1同样通过位于该第二混合罐60内的第二液位传感器73进行监测。S23: Execution step, judged by the judging step as the starting time point of the exhaust operation, at this time, the control unit controls the degassing device to work to perform the exhaust operation to eliminate the gas in the
更具体地,当该第二混合罐60中的气体向外排出后,由于该第二混合罐60内的压力减小,此时,该系统中的反渗水自动补充至该第二混合罐60中,当该反渗水单次补充体积过大时,可能引起该第二混合罐60向外输出的透析液浓度不符合要求,从而导致该第二电导传感器42所检测的实时电导率超出设定阈值范围,并使得透析治疗过程终止。因此,本实施例采用间歇排气方法对第二混合罐60中的气体进行排除,具体地,该间歇排气的单次最大排气量为Vmax,其最小间隔时间为,其中,该Vmax小于向所述透析液配制系统中单次补充反渗水的最大体积,该最大体积是指向所述透析液配制系统中补充一定体积反渗水而不导致第二电导传感器42检测值超出设定阈值范围时允许补充反渗水的最大体积,同时,为避免两次排气过程之间间隔时间过短而导致的透析液电导率波动超过设定阈值范围的情况,该间歇排气还需控制两次排气过程之间的时间间隔大于或等于该最小间隔时间为T0。More specifically, when the gas in the
在本实施例中,还具体提供了一种和的计算方法,分别如下:In this embodiment, a method for calculating the sum is also specifically provided, which are as follows:
Vmax=V总*x%Vmax=Vtotal*x%
其中,该V总为该透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的管路以及第一混合罐50的总容积,所述x%根据透析液的制备标准进行设置,该x%的取值范围为±0.1~±5%,且优选为±2.5%,以保证配制获得的透析液中的钠离子浓度以及其他溶质的浓度均符合使用标准。Wherein, the V total is the total volume of the pipeline between the mixing point of the first concentrated liquid and reverse osmosis water to the mixing point of the second concentrated liquid and reverse osmosis water and the
在本实施例中,该间歇排气通过间歇性地控制该除气电磁阀71的开合时间实现,当所述除气电磁阀71开启时,配合所述负压除气泵72工作,以从第二混合罐60中向外排出一定体积的气体,然后关闭该除气电磁阀71,形成一个排气周期,在该间歇排气方法中,通过多个排气周期的循环,直至该第二混合罐60中的液面高度恢复至H1,此时,停止排气操作。该过程中,该除气电磁阀71的单次开启最长时间为T1,所述按照以下方法计算:In this embodiment, the intermittent exhaust is realized by intermittently controlling the opening and closing time of the
T1=Vmax/F1T1=Vmax/F1
其中,F1为除气流量,该除气流量由负压除气泵72决定,具体而言,在具体实施过程中,可通过控制该除气流量恒定,然后控制每次除气电磁阀71开启的时间小于或等于T1,以保证间歇排气时的单次排气量小于或等于单次最大排气量Vmax,从而避免引起透析液的电导率波动较大,使得在除气的同时可保证透析液的电导率在设定阈值范围内进行波动,以保证治疗的安全性,并且,无需中断或中止治疗过程。Among them, F1 is the degassing flow rate, which is determined by the negative
在此过程中,为避免频繁除气和补充反渗水造成的透析液电导率波动过大,本实施例还同时提供了一种最小时间间隔T0的计算方法,具体为:During this process, in order to avoid excessive fluctuations in the conductivity of the dialysate caused by frequent degassing and replenishment of reverse osmosis water, this embodiment also provides a calculation method for the minimum time interval T0, specifically:
T0=V总/F0T0=V total/F0
其中,所述V总为该透析液配制系统中的第一浓缩液与反渗水混合点至第二浓缩液与反渗水混合点之间的管路以及第一混合罐50的总容积,F0为透析液配制系统中的透析液输出流量,该透析液输出流量由透析液输出泵41决定。Wherein, V is always the total volume of the pipeline between the mixing point of the first concentrated solution and reverse osmosis water to the mixing point of the second concentrated solution and reverse osmosis water in the dialysate preparation system and the
本实施例提供的一种透析液配制方法,其除气步骤概述如下:在治疗过程中,该透析液配制系统处于配液模式,当空气进入第二混合罐60内使液面下降,直至该第二混合罐60中的实时液位高度低于预设液位高度,此时,由控制单元控制该除气装置工作以进入排气操作,为在排气操作中保证该透析液的配制质量,该排气操作为间歇排气,且在该间歇排气过程中控制单次最大排气量为Vmax,当单次除气过程结束,此时开始计时,直至排气时间间隔等于或大于最小间隔时间时,可再次进行除气,直至该第二混合罐60中的液位高度恢复至H1时,停止除气。In the dialysate preparation method provided in this embodiment, the degassing steps are summarized as follows: During the treatment process, the dialysate preparation system is in the liquid preparation mode, and when the air enters the
当该透析液配制系统处于非配液模式时,由于不需要保证该透析液配制系统中的溶质浓度稳定,此时需要及时排出混合罐内气体,则排气过程可采用连续排气,而无需采用上述方法进行间歇排气,以提高排气效率。When the dialysate preparation system is in the non-dispensing mode, since there is no need to ensure the stability of the solute concentration in the dialysate preparation system, it is necessary to discharge the gas in the mixing tank in time, and the exhaust process can adopt continuous exhaust instead of Use the above method for intermittent exhaust to improve exhaust efficiency.
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。本发明未详细描述的技术、形状、构造部分均为公知技术。The above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. Without departing from the purpose and scope of the technical solutions of the present invention, all of them should be included in the scope of the claims of the present invention. The technologies, shapes and construction parts not described in detail in the present invention are all known technologies.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210788516.1A CN115282370A (en) | 2022-07-06 | 2022-07-06 | Dialysate preparation system, dialysate preparation and degassing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210788516.1A CN115282370A (en) | 2022-07-06 | 2022-07-06 | Dialysate preparation system, dialysate preparation and degassing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115282370A true CN115282370A (en) | 2022-11-04 |
Family
ID=83822189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210788516.1A Pending CN115282370A (en) | 2022-07-06 | 2022-07-06 | Dialysate preparation system, dialysate preparation and degassing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115282370A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07275353A (en) * | 1994-04-08 | 1995-10-24 | Shibuya Kogyo Co Ltd | Storage system of dialyzing fluid |
CN101708347A (en) * | 2009-03-11 | 2010-05-19 | 重庆多泰医用设备有限公司 | Hemodialysis system for controlling electric conduction and ultra-filtration by weighing |
CN205007342U (en) * | 2015-09-11 | 2016-02-03 | 重庆市澳凯龙医疗器械研究有限公司 | Blood purification equipment dislysate preparation system |
CN206566553U (en) * | 2017-03-15 | 2017-10-20 | 重庆山外山血液净化技术股份有限公司 | Blood purification mixing degassing tank |
US20180243494A1 (en) * | 2014-12-10 | 2018-08-30 | Medtronic, Inc. | Degassing system for dialysis |
CN111201050A (en) * | 2017-10-12 | 2020-05-26 | 维沃尼克有限公司 | Device and method for degassing dialysis concentrates for automatic density measurement in mixing installations |
JP2021035662A (en) * | 2019-08-30 | 2021-03-04 | 日機装株式会社 | Mixer |
-
2022
- 2022-07-06 CN CN202210788516.1A patent/CN115282370A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07275353A (en) * | 1994-04-08 | 1995-10-24 | Shibuya Kogyo Co Ltd | Storage system of dialyzing fluid |
CN101708347A (en) * | 2009-03-11 | 2010-05-19 | 重庆多泰医用设备有限公司 | Hemodialysis system for controlling electric conduction and ultra-filtration by weighing |
US20180243494A1 (en) * | 2014-12-10 | 2018-08-30 | Medtronic, Inc. | Degassing system for dialysis |
CN205007342U (en) * | 2015-09-11 | 2016-02-03 | 重庆市澳凯龙医疗器械研究有限公司 | Blood purification equipment dislysate preparation system |
CN206566553U (en) * | 2017-03-15 | 2017-10-20 | 重庆山外山血液净化技术股份有限公司 | Blood purification mixing degassing tank |
CN111201050A (en) * | 2017-10-12 | 2020-05-26 | 维沃尼克有限公司 | Device and method for degassing dialysis concentrates for automatic density measurement in mixing installations |
JP2021035662A (en) * | 2019-08-30 | 2021-03-04 | 日機装株式会社 | Mixer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6783875B2 (en) | Systems and methods for peritoneal dialysis with on-site dialysis fluid preparation using water reservoirs and disposable sets | |
RU2298428C2 (en) | Method and the device for operation with the hemmodiafiltering receiving-withdrawing module | |
EP2150290B1 (en) | A device for connecting to a liquid source | |
US10099214B2 (en) | Zirconium phosphate and zirconium oxide recharger control logic and operational process algorithms | |
CN107427619B (en) | Dialysate supply system | |
JP2005013735A (en) | Device for extracorporeal blood treatment with equipment for checking sterile filter and method for checking sterile filter of extracorporeal blood treatment device | |
CN102481401A (en) | Tube set for a blood handling apparatus and blood handling apparatus comprising a tube set | |
CA2837103C (en) | Method and arrangement for venting gases from a container having a powdered concentrate for use in hemodialysis | |
CN101829371B (en) | Hemodialysis system | |
JP6070348B2 (en) | Hemodialysis machine | |
CN107427620A (en) | Dialysis liquid supply system | |
CN112312938B (en) | Calculation of depletion time during dialysis | |
CN112135799B (en) | Method and apparatus for assessing the condition of a water purification system | |
CN115282370A (en) | Dialysate preparation system, dialysate preparation and degassing method thereof | |
CN201668779U (en) | Hemodialysis system | |
CN112843361B (en) | A precise hemodialysis system | |
CN203989188U (en) | A kind of device of hemodialysis | |
CN109432525B (en) | Continuous dilution type complete sequential treatment peritoneal dialysis solution treatment system | |
CN209253761U (en) | Peritoneal dialysis dispensing treatment system for serial dilution type complete sequential therapy | |
CN113874053B (en) | Blood purification device | |
CN104117105A (en) | Haemodialysis device | |
CN217548657U (en) | Concentrated solution degassing system of blood purification equipment | |
US20220126007A1 (en) | Pump calibration during bag filling | |
CA1293127C (en) | Dialysate preparation apparatus | |
CN207020545U (en) | A control system for disinfectant production equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |