CN115274846A - High Electron Mobility Transistor - Google Patents
High Electron Mobility Transistor Download PDFInfo
- Publication number
- CN115274846A CN115274846A CN202211170579.7A CN202211170579A CN115274846A CN 115274846 A CN115274846 A CN 115274846A CN 202211170579 A CN202211170579 A CN 202211170579A CN 115274846 A CN115274846 A CN 115274846A
- Authority
- CN
- China
- Prior art keywords
- layer
- groove
- channel layer
- channel
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 46
- 238000005530 etching Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 228
- 229910052751 metal Inorganic materials 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 52
- 238000002161 passivation Methods 0.000 claims description 41
- 229910002601 GaN Inorganic materials 0.000 claims description 37
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 27
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 11
- 230000027756 respiratory electron transport chain Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005533 two-dimensional electron gas Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种高电子迁移率晶体管。The invention relates to the technical field of semiconductors, in particular to a high electron mobility transistor.
背景技术Background technique
半导体(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。其中,电力电子器件是用于电能控制和转换的半导体器件,包括金属氧化物半导体场效应晶体管(MOSFET),绝缘栅双极型晶体管(IGBT)等晶体管。相比于传统的硅材料,新型的宽禁带半导体材料氮化镓(GaN))具备非常大的优势,其电力电子器件——高电子迁移率晶体管(HEMT)——具备更高的击穿电压、更低的导通电阻、更少的电荷,是高速电力开关的理想之选。氮化镓HEMT可以缩短死区时间,从而提高效率、实现被动冷却,同时其高开关频率可以缩小被动器件的体积,从而提高了氮化镓方案的可靠性和功率密度。Semiconductor (semiconductor material) is a class of electronic materials with semiconductor properties (conductivity between conductors and insulators, resistivity in the range of about 1mΩ·cm~1GΩ·cm), which can be used to make semiconductor devices and integrated circuits. Among them, power electronic devices are semiconductor devices used for power control and conversion, including metal oxide semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs) and other transistors. Compared with traditional silicon materials, the new wide-bandgap semiconductor material Gallium Nitride (GaN) has great advantages, and its power electronic devices - High Electron Mobility Transistors (HEMTs) - have higher breakdown voltage, lower on-resistance, and less charge, ideal for high-speed power switching. Gallium nitride HEMT can shorten the dead time, thereby improving efficiency and realizing passive cooling. At the same time, its high switching frequency can reduce the size of passive devices, thereby improving the reliability and power density of the gallium nitride solution.
电力电子晶体管通常作为电路中的开关使用,要求具有常关(e-mode 或normally-off)特性。现有氮化镓HEMT主要通过P型栅结构实现常关特性。参考图1,该结构在栅极107区域的铝镓氮势垒层102的上方加入p-氮化镓沟道层108以耗尽二维电子气来实现常关特性,具有电子迁移率高、界面态密度低等优势;但该结构中缺乏栅极绝缘层,导致了源极101到栅极107的击穿电压低、漏电流大等问题,使得具有P型栅结构型的器件控制难度大、栅极可靠性低等问题。Power electronic transistors are usually used as switches in circuits and are required to have a normally off (e-mode or normally-off) characteristic. Existing gallium nitride HEMTs mainly realize normally-off characteristics through a P-type gate structure. Referring to FIG. 1, this structure adds a p-gallium
针对P型栅结构存在的缺点,可以通过凹栅结构实现常关型氮化镓HEMT,参考图2,该结构通过对栅极208区域中的铝镓氮势垒层203进行竖直方向的部分或全面刻蚀,以移除二维电子气,再通过低压化学气相沉积(LPCVD)、原子层沉积(ALD)等方式沉积栅极绝缘层202,并最终获得具有高栅极击穿电压、低栅极漏电的常关型氮化镓HEMT。然而,该技术中的刻蚀会对铝镓氮势垒层203和沟道层204造成损伤,导致氮化镓HEMT中源极201到漏极209的电子迁移率降低,影响氮化镓HEMT的性能。In view of the shortcomings of the P-type gate structure, a normally-off GaN HEMT can be realized through a recessed gate structure. Referring to FIG. Or full etching to remove the two-dimensional electron gas, and then deposit the gate insulating layer 202 by low-pressure chemical vapor deposition (LPCVD), atomic layer deposition (ALD), etc., and finally obtain a high gate breakdown voltage, low Normally-off GaN HEMT with gate leakage. However, the etching in this technology will cause damage to the
发明内容Contents of the invention
有鉴于此,本发明提供了一种高电子迁移率晶体管,用于解决现有凹栅技术中被刻蚀的势垒层和沟道层的表面损伤导致氮化镓HEMT中源极到漏极的电子迁移率降低及被刻蚀的表面受到污染,影响氮化镓HEMT的性能的问题。In view of this, the present invention provides a high electron mobility transistor, which is used to solve the problem caused by the surface damage of the etched barrier layer and channel layer in the existing recessed gate technology from the source to the drain in the gallium nitride HEMT. The reduced electron mobility and the contamination of the etched surface affect the performance of GaN HEMTs.
本发明保护一种高电子迁移率晶体管,包括:The invention protects a high electron mobility transistor, including:
衬底和依次形成于所述衬底上的第一沟道层和第一势垒层;a substrate and a first channel layer and a first barrier layer sequentially formed on the substrate;
刻蚀所述第一势垒层至所述第一沟道层的内部形成第一凹槽,所述第一凹槽具有底面和侧壁,所述底面为所述第一沟道层;Etching the first barrier layer to the inside of the first channel layer to form a first groove, the first groove has a bottom surface and sidewalls, the bottom surface is the first channel layer;
在所述第一势垒层上、所述侧壁和所述底面上形成第二沟道层,在所述第一凹槽的两侧分别刻蚀所述第二沟道层至所述第一势垒层、所述第一势垒层的内部、所述第一沟道层或所述第一沟道层的内部,形成第二凹槽和第三凹槽,在所述第二凹槽内填充形成源极,在所述第三凹槽内填充形成漏极;A second channel layer is formed on the first barrier layer, the sidewall and the bottom surface, and the second channel layer is respectively etched to the first groove on both sides of the first groove. A barrier layer, the inside of the first barrier layer, the first channel layer, or the inside of the first channel layer form a second groove and a third groove, and in the second groove filling the trench to form a source, and filling the third groove to form a drain;
在所述第二沟道层上且在所述第一凹槽内填充形成栅极。A gate is formed on the second channel layer and filled in the first groove.
实施本发明实施例,将具有如下有益效果:Implementing the embodiment of the present invention will have the following beneficial effects:
通过设置第二沟道层,使被刻蚀的第一沟道层的表面填充了第二沟道层。新增加的第二沟道层形成了新的二维电子气沟道,形成了栅极区域内源极到漏极的电子迁移通道。该通道未受到刻蚀的影响,保持了比较高的电子迁移率,可以有效降低器件的导通电阻和栅极电荷。By setting the second channel layer, the etched surface of the first channel layer is filled with the second channel layer. The newly added second channel layer forms a new two-dimensional electron gas channel, forming a source-to-drain electron migration channel in the gate region. The channel is not affected by etching, maintains relatively high electron mobility, and can effectively reduce the on-resistance and gate charge of the device.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
其中:in:
图1为背景技术中p型结构的结构示意图。FIG. 1 is a schematic structural diagram of a p-type structure in the background art.
图2为背景技术中凹栅结构的结构示意图。FIG. 2 is a schematic structural diagram of a recessed gate structure in the background art.
图3为本发明一具体实施例的高电子迁移率晶体管的结构示意图。FIG. 3 is a schematic structural diagram of a high electron mobility transistor according to a specific embodiment of the present invention.
图4为本发明一具体实施例中俯视第一凹槽为矩形形状的结构示意图。FIG. 4 is a schematic structural diagram of a first groove in a rectangular shape when viewed from above in a specific embodiment of the present invention.
图5为本发明一具体实施例中俯视第一凹槽为矩形单侧结合三角形形状的结构示意图。Fig. 5 is a schematic view of the structure of the first groove in a top view in a specific embodiment of the present invention, which is a rectangle with one side combined with a triangular shape.
图6为本发明一具体实施例中俯视第一凹槽为矩形两侧结合三角形形状的结构示意图。FIG. 6 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle with two sides combined with a triangular shape.
图7为本发明一具体实施例中俯视第一凹槽为矩形另一单侧结合三角形形状的结构示意图。Fig. 7 is a schematic view of the structure of the first groove in a top view of a specific embodiment of the present invention, which is a rectangle and one side is combined with a triangle shape.
图8为本发明一具体实施例中俯视第一凹槽为矩形单侧结合半圆形形状的结构示意图。FIG. 8 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle with one side combined with a semicircular shape.
图9为本发明一具体实施例中俯视第一凹槽为矩形两侧结合对称半圆形形状的结构示意图。FIG. 9 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangular shape with two sides combined with a symmetrical semicircular shape.
图10为本发明一具体实施例中俯视第一凹槽为矩形另一单侧结合半圆形形状的结构示意图。Fig. 10 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle and one side combined with a semicircular shape.
图11为本发明一具体实施例中俯视第一凹槽为矩形两侧结合非对称半圆形形状的结构示意图。图中,Fig. 11 is a schematic view of the structure of the first groove in a top view of a specific embodiment of the present invention, where both sides of the rectangle are combined with an asymmetrical semicircular shape. In the figure,
101、源极;102、铝镓氮势垒层;103、氮化镓沟道层;104、氮化镓层;105、缓冲层;106、衬底;107、栅极;108、p-氮化镓沟道层、109、漏极;101, source; 102, aluminum gallium nitride barrier layer; 103, gallium nitride channel layer; 104, gallium nitride layer; 105, buffer layer; 106, substrate; 107, gate; 108, p-nitrogen GaN channel layer, 109, drain;
201、源极;202、栅极绝缘层;203、铝镓氮势垒层;204、沟道层;205、氮化镓层;206、缓冲层;207、衬底;208、栅极;209、漏极;201, source electrode; 202, gate insulating layer; 203, aluminum gallium nitride barrier layer; 204, channel layer; 205, gallium nitride layer; 206, buffer layer; 207, substrate; 208, gate; 209 , Drain;
301、第三金属电极;302、第一金属电极;303、栅极;304、第一钝化层;305、源极;306、保护层;307、第一势垒层;308、第一沟道层;309、掺杂沟道层;310、缓冲层;311、衬底;312、第四钝化层;313、第四金属电极;314、第三钝化层;315、第二金属电极;316、第二钝化层;317、漏极;318栅极绝缘层;319、第二势垒层;320、第二沟道层。301. The third metal electrode; 302. The first metal electrode; 303. The gate; 304. The first passivation layer; 305. The source; 306. The protective layer; 307. The first barrier layer; 308. The first trench channel layer; 309, doped channel layer; 310, buffer layer; 311, substrate; 312, fourth passivation layer; 313, fourth metal electrode; 314, third passivation layer; 315,
具体实施方式Detailed ways
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
参考图3~图11,本发明提供一种高电子迁移率晶体管,包括:Referring to Fig. 3 ~ Fig. 11, the present invention provides a kind of high electron mobility transistor, comprises:
衬底311和依次形成于衬底311上的第一沟道层308和第一势垒层307,其中,衬底311可以为蓝宝石衬底等,第一沟道层308可以为氮化镓层等,第一势垒层307可以为铝镓氮层等,铝镓氮层中的铝的摩尔比例为20%~35%,优选为25%。A
刻蚀第一势垒层307至第一沟道层308的内部形成第一凹槽,将第一凹槽刻蚀到第一沟道层308的内部是为了耗尽第一势垒层307和第一沟道层308接触位置的二维电子气,以实现增强高电子迁移率晶体管的目的。其中,参见图4~图11,第一凹槽的形状可以是周期性或者非周期行的独立形状。可以是圆形、矩形、三角形、椭圆形和平行四边形中的一种或两种以上,也可以是不规则图形,但是第一凹槽中都需要有一条贯穿的沟槽。Etching the
第一凹槽具有底面和侧壁,底面为第一沟道层308,第一凹槽是通过第一势垒层307表面垂直刻蚀到第一沟道层308的内部形成的,第一凹槽已经贯穿了第一势垒层307,因此,第一凹槽的侧壁是由第一势垒层307的侧面和第一沟道层308的部分侧面组成。在第一势垒层307上、侧壁和底面上形成第二沟道层320。The first groove has a bottom surface and sidewalls, the bottom surface is the first channel layer 308, the first groove is formed by vertically etching the surface of the
在第一凹槽的两侧分别刻蚀第二沟道层320至第一势垒层307、第一势垒层307的内部、第一沟道层308或第一沟道层308的内部,形成第二凹槽和第三凹槽,在第二凹槽内填充形成源极305,在第三凹槽内填充形成漏极317。在第二沟道层320上且在第一凹槽内填充形成栅极303。其中,源极305和漏极317的材质选自钛、铝、镍和金中的一种或两种以上。栅极303的材质选自镍或金等。Etching the
通过设置第二沟道层320,使被刻蚀的第一沟道层308的表面填充了第二沟道层320,减小了刻蚀对第一沟道层308的影响,提升了第一沟道层308中的电子迁移率,同时,新增加的第二沟道层320增加了源极305到漏极317的电子迁移通道,提升了电子迁移率。By setting the
参考图3,在一个具体实施例中,第二沟道层上320依次形成第二势垒层319和栅极绝缘层318。Referring to FIG. 3 , in a specific embodiment, a
第二势垒层319、第二沟道层320和栅极绝缘层318中,至少第二沟道层320是通过气相沉积法沉积而成的单晶结构,可以是只有第二沟道层320为单晶结构;也可以是第二沟道层320和第二势垒层319均为单晶结构;还可以是第二沟道层320和栅极绝缘层318均为单晶结构;再可以是第二势垒层319、第二沟道层320和栅极绝缘层318均为单晶结构。其中,第二沟道层320为单晶结构可以提升电子迁移率。当第二势垒层319、第二沟道层320和栅极绝缘层318均为单晶结构时,可以通过气相沉积法连续沉积形成,全程在真空中操作,不与空气接触,防止污染,保证了上述各层结构以及高电子迁移率晶体管的质量。Among the
参考图3,在一个具体实施例中,第二沟道层320的厚度为1nm~100nm,第二势垒层319的厚度为1nm~50nm,栅极绝缘层318的厚度为1nm~100nm。其中,此范围内的第二沟道层320的厚度有利于提升电子迁移率,此范围内的第二势垒层319和栅极绝缘层318的厚度有利于提升源极305到栅极303的击穿电压。Referring to FIG. 3 , in a specific embodiment, the
参见图3,在一个具体实施例中,第二势垒层319选自铝镓氮层、铟铝氮层、铟铝镓氮层和氮化铝层中的一种,优选为铝镓氮层。第二沟道层320选自氮化镓层、铟镓氮层和铝镓氮层中的一种,优选为氮化镓层。栅极绝缘层318为氮化硅层等。氮化镓是一种具有较大禁带宽度、强的原子键、高的热导率、化学稳定性好等性质和强的抗辐照能力的半导体,适用于高电子迁移率晶体管。氮化硅具有良好的绝缘性,同时具备耐高温和耐冷热冲击的特点,绝缘效果稳定。Referring to FIG. 3, in a specific embodiment, the
参考图3,在一个具体实施例中,高电子迁移率晶体管还包括保护层306,保护层306形成于第一势垒层307上,刻蚀保护层306和第一势垒层307至第一沟道层308内形成第一凹槽。设置保护层306的目的是为了保护第一势垒层307和第一沟道层308,因为在刻蚀第一凹槽的过程中,如果没有保护层306的保护,刻蚀过程中容易损坏第一势垒层307和第一沟道层308,进而影响第一势垒层307和第一沟道层308之间的性能。Referring to FIG. 3, in a specific embodiment, the high electron mobility transistor further includes a
进一步地,在一个具体实施例中,保护层306为氮化镓层等,因为氮化镓层和第二沟道层320均为氮化镓层,同种物质,电子迁移率高。Further, in a specific embodiment, the
参见图3,在一个具体实施例中,在栅极绝缘层318、源极305和漏极317上形成第一钝化层304,刻蚀第一钝化层304至栅极绝缘层318形成第四凹槽,在第四凹槽内填充形成栅极303。Referring to FIG. 3, in a specific embodiment, the
在第一钝化层304和栅极303上形成第二钝化层316。A
分别刻蚀第二钝化层316和第一钝化层304至源极305和漏极317,形成第五凹槽和第六凹槽。The
在源极305上且在第五凹槽内填充第一金属,第一金属与源极305连接形成第一金属电极302。The first metal is filled on the
在漏极317上且在第六凹槽内填充第二金属,第二金属与漏极317连接形成第二金属电极315。The second metal is filled on the
设置第一钝化层304和第二钝化层316的目的之一是将高电子迁移率晶体管的表面与周围电的环境和化学的环境相隔离,以减少反向漏电流,提高击穿电压,增加功耗的定额;目的之二是将源极305、漏极317和栅极303更加牢固的固定在高电子迁移率上;目的之三是起到缓冲的作用,钝化层在受到物理冲击的时候,可以保护源极305、漏极317和栅极303。One of the purposes of setting the
参考图3,在一个具体实施例中,在第一金属电极302、第二金属电极315和第二钝化层316上形成第三钝化层314。Referring to FIG. 3 , in a specific embodiment, a
分别刻蚀第三钝化层314至第一金属电极302和第二金属电极315,形成第七凹槽和第八凹槽。The
在第一金属电极302上且在第七凹槽内填充第三金属,第三金属与第一金属电极302连接形成第三金属电极301。The third metal is filled on the
在第二金属电极315上且在第八凹槽内填充第四金属,第四金属与第二金属电极315连接形成第四金属电极313。A fourth metal is filled on the
在第三金属电极301、第四金属电极313和第三钝化层314上形成第四钝化层312。A
分别刻蚀第四钝化层312至第三金属电极301和第四金属电极313。The
设置第三钝化层314和第四钝化层312的目的与第一钝化层304和第二钝化层316的目的相同。The purposes of the
进一步地,在一个具体实施例中,第一钝化层304、第二钝化层316、第三钝化层314和第四钝化层312的材料可以分别选为二氧化硅和氮化硅等,二氧化硅为良好的绝缘体,而且二氧化硅本身还耐高温,稳定性好。Further, in a specific embodiment, the materials of the
参考图3,衬底311和第一沟道层308之间还设有缓冲层310和掺杂沟道层309,缓冲层310在衬底311上形成,掺杂沟道层309在缓冲层310上形成。掺杂沟道层309可以是碳掺杂氮化硅层等。设置缓冲层310和掺杂沟道层309,是为了提升整个高电子迁移率的稳定性。Referring to FIG. 3, a buffer layer 310 and a doped channel layer 309 are also provided between the
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。The above disclosures are only preferred embodiments of the present invention, and certainly cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211170579.7A CN115274846B (en) | 2022-09-26 | 2022-09-26 | High Electron Mobility Transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211170579.7A CN115274846B (en) | 2022-09-26 | 2022-09-26 | High Electron Mobility Transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115274846A true CN115274846A (en) | 2022-11-01 |
CN115274846B CN115274846B (en) | 2023-01-10 |
Family
ID=83757648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211170579.7A Active CN115274846B (en) | 2022-09-26 | 2022-09-26 | High Electron Mobility Transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115274846B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117690962A (en) * | 2024-02-02 | 2024-03-12 | 深圳天狼芯半导体有限公司 | Structure, manufacturing method and electronic equipment of gallium nitride power device |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050189560A1 (en) * | 2004-02-26 | 2005-09-01 | Park Chul H. | Integrated circuit with enhancement mode pseudomorphic high electron mobility transistors having on-chip electrostatic discharge protection |
US20100002843A1 (en) * | 2006-10-13 | 2010-01-07 | Yaohong Liu | Standing wave electron linear accelerator and installation adjusting device thereof |
US20120286763A1 (en) * | 2003-08-29 | 2012-11-15 | Japan Science And Technology Agency | Method of use of a field-effect transistor, single-electron transistor and sensor |
US20130075751A1 (en) * | 2011-09-28 | 2013-03-28 | Fujitsu Limited | Compound semiconductor device and method of manufacturing the same |
US20140252368A1 (en) * | 2013-03-08 | 2014-09-11 | Samsung Electronics Co., Ltd. | High-electron-mobility transistor |
US20140266324A1 (en) * | 2013-03-15 | 2014-09-18 | Mitsubishi Electric Research Laboratories, Inc. | High Electron Mobility Transistor with Multiple Channels |
US9536962B1 (en) * | 2015-07-20 | 2017-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain regions for high electron mobility transistors (HEMT) and methods of forming same |
CN109659352A (en) * | 2018-11-30 | 2019-04-19 | 华灿光电(浙江)有限公司 | A kind of high electron mobility transistor and preparation method thereof |
CN109786438A (en) * | 2018-12-17 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of high electron mobility transistor and preparation method thereof |
CN111463260A (en) * | 2020-03-10 | 2020-07-28 | 芜湖启迪半导体有限公司 | Vertical high electron mobility field effect transistor and preparation method thereof |
CN111463259A (en) * | 2020-03-10 | 2020-07-28 | 芜湖启迪半导体有限公司 | High electron mobility field effect transistor and preparation method thereof |
CN111682064A (en) * | 2020-06-02 | 2020-09-18 | 华南师范大学 | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof |
US20220059587A1 (en) * | 2020-08-18 | 2022-02-24 | Omnivision Technologies, Inc. | Method and image sensor with vertical transfer gate and buried backside-illuminated photodiodes |
CN114420743A (en) * | 2021-12-13 | 2022-04-29 | 晶通半导体(深圳)有限公司 | Reverse Blocking High Mobility Transistor |
-
2022
- 2022-09-26 CN CN202211170579.7A patent/CN115274846B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120286763A1 (en) * | 2003-08-29 | 2012-11-15 | Japan Science And Technology Agency | Method of use of a field-effect transistor, single-electron transistor and sensor |
US20050189560A1 (en) * | 2004-02-26 | 2005-09-01 | Park Chul H. | Integrated circuit with enhancement mode pseudomorphic high electron mobility transistors having on-chip electrostatic discharge protection |
US20100002843A1 (en) * | 2006-10-13 | 2010-01-07 | Yaohong Liu | Standing wave electron linear accelerator and installation adjusting device thereof |
US20130075751A1 (en) * | 2011-09-28 | 2013-03-28 | Fujitsu Limited | Compound semiconductor device and method of manufacturing the same |
US20140252368A1 (en) * | 2013-03-08 | 2014-09-11 | Samsung Electronics Co., Ltd. | High-electron-mobility transistor |
US20140266324A1 (en) * | 2013-03-15 | 2014-09-18 | Mitsubishi Electric Research Laboratories, Inc. | High Electron Mobility Transistor with Multiple Channels |
US9536962B1 (en) * | 2015-07-20 | 2017-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain regions for high electron mobility transistors (HEMT) and methods of forming same |
CN109659352A (en) * | 2018-11-30 | 2019-04-19 | 华灿光电(浙江)有限公司 | A kind of high electron mobility transistor and preparation method thereof |
CN109786438A (en) * | 2018-12-17 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of high electron mobility transistor and preparation method thereof |
CN111463260A (en) * | 2020-03-10 | 2020-07-28 | 芜湖启迪半导体有限公司 | Vertical high electron mobility field effect transistor and preparation method thereof |
CN111463259A (en) * | 2020-03-10 | 2020-07-28 | 芜湖启迪半导体有限公司 | High electron mobility field effect transistor and preparation method thereof |
CN111682064A (en) * | 2020-06-02 | 2020-09-18 | 华南师范大学 | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof |
US20220059587A1 (en) * | 2020-08-18 | 2022-02-24 | Omnivision Technologies, Inc. | Method and image sensor with vertical transfer gate and buried backside-illuminated photodiodes |
CN114420743A (en) * | 2021-12-13 | 2022-04-29 | 晶通半导体(深圳)有限公司 | Reverse Blocking High Mobility Transistor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117690962A (en) * | 2024-02-02 | 2024-03-12 | 深圳天狼芯半导体有限公司 | Structure, manufacturing method and electronic equipment of gallium nitride power device |
CN117690962B (en) * | 2024-02-02 | 2024-05-07 | 深圳天狼芯半导体有限公司 | Structure, manufacturing method and electronic device of gallium nitride power device |
Also Published As
Publication number | Publication date |
---|---|
CN115274846B (en) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110400848B (en) | A kind of Schottky diode and its manufacturing method | |
CN102013437B (en) | Semiconductor device and making method thereof | |
CN108962977A (en) | A kind of silicon carbide trench MOSFET s of integrated SBD and preparation method thereof | |
CN102184956B (en) | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof | |
CN102709320B (en) | GaN-based MISFET device with vertical conduction and its manufacturing method | |
CN110649096A (en) | High-voltage n-channel HEMT device | |
WO2015014324A1 (en) | Semiconductor device and manufacturing method thereof | |
CN104051523A (en) | Semiconductor device with low ohmic contact resistance and manufacturing method thereof | |
TWI786422B (en) | High electron mobility transistor and method of fabricating the same | |
CN108417617B (en) | Silicon carbide trench MOSFETs and method of making the same | |
CN112786680B (en) | Cell structure of silicon carbide MOSFET device and power semiconductor device | |
CN104347701B (en) | A kind of field-effect transistor with composite passivated Rotating fields | |
CN102945859A (en) | GaN heterojunction HEMT (High Electron Mobility Transistor) device | |
CN110660851A (en) | High-voltage n-channel HEMT device | |
CN111370470A (en) | Gallium nitride MIS gate-controlled hybrid channel power field effect transistor and method of making the same | |
CN115274846B (en) | High Electron Mobility Transistor | |
CN118800795B (en) | An enhanced gallium nitride HEMT device with dual channels and a method for preparing the same | |
CN216250739U (en) | Gallium nitride transistor with high conduction capability | |
CN110649097A (en) | High-voltage p-channel HEMT device | |
CN110660843A (en) | High-voltage p-channel HEMT device | |
CN114843337A (en) | Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof | |
CN210897283U (en) | Semiconductor device with a plurality of transistors | |
CN108807500A (en) | A kind of enhancement type high electron mobility transistor with high threshold voltage | |
CN108231882A (en) | HEMT device with back surface field harden structure and preparation method thereof | |
CN106783993B (en) | Gallium nitride heterojunction field-effect tube with compound medium layer structure in substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |