[go: up one dir, main page]

CN115274846A - High Electron Mobility Transistor - Google Patents

High Electron Mobility Transistor Download PDF

Info

Publication number
CN115274846A
CN115274846A CN202211170579.7A CN202211170579A CN115274846A CN 115274846 A CN115274846 A CN 115274846A CN 202211170579 A CN202211170579 A CN 202211170579A CN 115274846 A CN115274846 A CN 115274846A
Authority
CN
China
Prior art keywords
layer
groove
channel layer
channel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211170579.7A
Other languages
Chinese (zh)
Other versions
CN115274846B (en
Inventor
刘丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingtong Semiconductor Shenzhen Co ltd
Original Assignee
Jingtong Semiconductor Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingtong Semiconductor Shenzhen Co ltd filed Critical Jingtong Semiconductor Shenzhen Co ltd
Priority to CN202211170579.7A priority Critical patent/CN115274846B/en
Publication of CN115274846A publication Critical patent/CN115274846A/en
Application granted granted Critical
Publication of CN115274846B publication Critical patent/CN115274846B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The embodiment of the invention discloses a high electron mobility transistor, and belongs to the technical field of semiconductors. The invention protects a high electron mobility transistor, comprising: the semiconductor device includes a substrate, and a first channel layer and a first barrier layer sequentially formed on the substrate. And etching to form a first groove, wherein the first groove is provided with a bottom surface and a side wall. Forming a second channel layer on the first barrier layer, the sidewalls, and the bottom surface. And respectively etching the second channel layer to form a second groove and a third groove, filling the second groove and the third groove to form a source electrode and a drain electrode, and filling the first groove to form a grid electrode. According to the invention, the second channel layer is filled on the surface of the etched first channel layer by arranging the second channel layer, so that the influence of etching on the first channel layer is reduced, and meanwhile, the newly added second channel layer increases an electron transfer channel from a source electrode to a drain electrode, so that the electron mobility is improved.

Description

高电子迁移率晶体管High Electron Mobility Transistor

技术领域technical field

本发明涉及半导体技术领域,尤其涉及一种高电子迁移率晶体管。The invention relates to the technical field of semiconductors, in particular to a high electron mobility transistor.

背景技术Background technique

半导体(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。其中,电力电子器件是用于电能控制和转换的半导体器件,包括金属氧化物半导体场效应晶体管(MOSFET),绝缘栅双极型晶体管(IGBT)等晶体管。相比于传统的硅材料,新型的宽禁带半导体材料氮化镓(GaN))具备非常大的优势,其电力电子器件——高电子迁移率晶体管(HEMT)——具备更高的击穿电压、更低的导通电阻、更少的电荷,是高速电力开关的理想之选。氮化镓HEMT可以缩短死区时间,从而提高效率、实现被动冷却,同时其高开关频率可以缩小被动器件的体积,从而提高了氮化镓方案的可靠性和功率密度。Semiconductor (semiconductor material) is a class of electronic materials with semiconductor properties (conductivity between conductors and insulators, resistivity in the range of about 1mΩ·cm~1GΩ·cm), which can be used to make semiconductor devices and integrated circuits. Among them, power electronic devices are semiconductor devices used for power control and conversion, including metal oxide semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs) and other transistors. Compared with traditional silicon materials, the new wide-bandgap semiconductor material Gallium Nitride (GaN) has great advantages, and its power electronic devices - High Electron Mobility Transistors (HEMTs) - have higher breakdown voltage, lower on-resistance, and less charge, ideal for high-speed power switching. Gallium nitride HEMT can shorten the dead time, thereby improving efficiency and realizing passive cooling. At the same time, its high switching frequency can reduce the size of passive devices, thereby improving the reliability and power density of the gallium nitride solution.

电力电子晶体管通常作为电路中的开关使用,要求具有常关(e-mode 或normally-off)特性。现有氮化镓HEMT主要通过P型栅结构实现常关特性。参考图1,该结构在栅极107区域的铝镓氮势垒层102的上方加入p-氮化镓沟道层108以耗尽二维电子气来实现常关特性,具有电子迁移率高、界面态密度低等优势;但该结构中缺乏栅极绝缘层,导致了源极101到栅极107的击穿电压低、漏电流大等问题,使得具有P型栅结构型的器件控制难度大、栅极可靠性低等问题。Power electronic transistors are usually used as switches in circuits and are required to have a normally off (e-mode or normally-off) characteristic. Existing gallium nitride HEMTs mainly realize normally-off characteristics through a P-type gate structure. Referring to FIG. 1, this structure adds a p-gallium nitride channel layer 108 above the aluminum gallium nitride barrier layer 102 in the region of the gate 107 to deplete the two-dimensional electron gas to achieve normally-off characteristics, with high electron mobility, Advantages such as low interface state density; however, the lack of a gate insulating layer in this structure leads to problems such as low breakdown voltage from source 101 to gate 107 and large leakage current, making it difficult to control devices with a P-type gate structure , Low gate reliability and other issues.

针对P型栅结构存在的缺点,可以通过凹栅结构实现常关型氮化镓HEMT,参考图2,该结构通过对栅极208区域中的铝镓氮势垒层203进行竖直方向的部分或全面刻蚀,以移除二维电子气,再通过低压化学气相沉积(LPCVD)、原子层沉积(ALD)等方式沉积栅极绝缘层202,并最终获得具有高栅极击穿电压、低栅极漏电的常关型氮化镓HEMT。然而,该技术中的刻蚀会对铝镓氮势垒层203和沟道层204造成损伤,导致氮化镓HEMT中源极201到漏极209的电子迁移率降低,影响氮化镓HEMT的性能。In view of the shortcomings of the P-type gate structure, a normally-off GaN HEMT can be realized through a recessed gate structure. Referring to FIG. Or full etching to remove the two-dimensional electron gas, and then deposit the gate insulating layer 202 by low-pressure chemical vapor deposition (LPCVD), atomic layer deposition (ALD), etc., and finally obtain a high gate breakdown voltage, low Normally-off GaN HEMT with gate leakage. However, the etching in this technology will cause damage to the AlGaN barrier layer 203 and the channel layer 204, resulting in reduced electron mobility from the source 201 to the drain 209 in the GaN HEMT, affecting the performance of the GaN HEMT. performance.

发明内容Contents of the invention

有鉴于此,本发明提供了一种高电子迁移率晶体管,用于解决现有凹栅技术中被刻蚀的势垒层和沟道层的表面损伤导致氮化镓HEMT中源极到漏极的电子迁移率降低及被刻蚀的表面受到污染,影响氮化镓HEMT的性能的问题。In view of this, the present invention provides a high electron mobility transistor, which is used to solve the problem caused by the surface damage of the etched barrier layer and channel layer in the existing recessed gate technology from the source to the drain in the gallium nitride HEMT. The reduced electron mobility and the contamination of the etched surface affect the performance of GaN HEMTs.

本发明保护一种高电子迁移率晶体管,包括:The invention protects a high electron mobility transistor, including:

衬底和依次形成于所述衬底上的第一沟道层和第一势垒层;a substrate and a first channel layer and a first barrier layer sequentially formed on the substrate;

刻蚀所述第一势垒层至所述第一沟道层的内部形成第一凹槽,所述第一凹槽具有底面和侧壁,所述底面为所述第一沟道层;Etching the first barrier layer to the inside of the first channel layer to form a first groove, the first groove has a bottom surface and sidewalls, the bottom surface is the first channel layer;

在所述第一势垒层上、所述侧壁和所述底面上形成第二沟道层,在所述第一凹槽的两侧分别刻蚀所述第二沟道层至所述第一势垒层、所述第一势垒层的内部、所述第一沟道层或所述第一沟道层的内部,形成第二凹槽和第三凹槽,在所述第二凹槽内填充形成源极,在所述第三凹槽内填充形成漏极;A second channel layer is formed on the first barrier layer, the sidewall and the bottom surface, and the second channel layer is respectively etched to the first groove on both sides of the first groove. A barrier layer, the inside of the first barrier layer, the first channel layer, or the inside of the first channel layer form a second groove and a third groove, and in the second groove filling the trench to form a source, and filling the third groove to form a drain;

在所述第二沟道层上且在所述第一凹槽内填充形成栅极。A gate is formed on the second channel layer and filled in the first groove.

实施本发明实施例,将具有如下有益效果:Implementing the embodiment of the present invention will have the following beneficial effects:

通过设置第二沟道层,使被刻蚀的第一沟道层的表面填充了第二沟道层。新增加的第二沟道层形成了新的二维电子气沟道,形成了栅极区域内源极到漏极的电子迁移通道。该通道未受到刻蚀的影响,保持了比较高的电子迁移率,可以有效降低器件的导通电阻和栅极电荷。By setting the second channel layer, the etched surface of the first channel layer is filled with the second channel layer. The newly added second channel layer forms a new two-dimensional electron gas channel, forming a source-to-drain electron migration channel in the gate region. The channel is not affected by etching, maintains relatively high electron mobility, and can effectively reduce the on-resistance and gate charge of the device.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

其中:in:

图1为背景技术中p型结构的结构示意图。FIG. 1 is a schematic structural diagram of a p-type structure in the background art.

图2为背景技术中凹栅结构的结构示意图。FIG. 2 is a schematic structural diagram of a recessed gate structure in the background art.

图3为本发明一具体实施例的高电子迁移率晶体管的结构示意图。FIG. 3 is a schematic structural diagram of a high electron mobility transistor according to a specific embodiment of the present invention.

图4为本发明一具体实施例中俯视第一凹槽为矩形形状的结构示意图。FIG. 4 is a schematic structural diagram of a first groove in a rectangular shape when viewed from above in a specific embodiment of the present invention.

图5为本发明一具体实施例中俯视第一凹槽为矩形单侧结合三角形形状的结构示意图。Fig. 5 is a schematic view of the structure of the first groove in a top view in a specific embodiment of the present invention, which is a rectangle with one side combined with a triangular shape.

图6为本发明一具体实施例中俯视第一凹槽为矩形两侧结合三角形形状的结构示意图。FIG. 6 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle with two sides combined with a triangular shape.

图7为本发明一具体实施例中俯视第一凹槽为矩形另一单侧结合三角形形状的结构示意图。Fig. 7 is a schematic view of the structure of the first groove in a top view of a specific embodiment of the present invention, which is a rectangle and one side is combined with a triangle shape.

图8为本发明一具体实施例中俯视第一凹槽为矩形单侧结合半圆形形状的结构示意图。FIG. 8 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle with one side combined with a semicircular shape.

图9为本发明一具体实施例中俯视第一凹槽为矩形两侧结合对称半圆形形状的结构示意图。FIG. 9 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangular shape with two sides combined with a symmetrical semicircular shape.

图10为本发明一具体实施例中俯视第一凹槽为矩形另一单侧结合半圆形形状的结构示意图。Fig. 10 is a structural schematic view of a first groove in a top view of a specific embodiment of the present invention, which is a rectangle and one side combined with a semicircular shape.

图11为本发明一具体实施例中俯视第一凹槽为矩形两侧结合非对称半圆形形状的结构示意图。图中,Fig. 11 is a schematic view of the structure of the first groove in a top view of a specific embodiment of the present invention, where both sides of the rectangle are combined with an asymmetrical semicircular shape. In the figure,

101、源极;102、铝镓氮势垒层;103、氮化镓沟道层;104、氮化镓层;105、缓冲层;106、衬底;107、栅极;108、p-氮化镓沟道层、109、漏极;101, source; 102, aluminum gallium nitride barrier layer; 103, gallium nitride channel layer; 104, gallium nitride layer; 105, buffer layer; 106, substrate; 107, gate; 108, p-nitrogen GaN channel layer, 109, drain;

201、源极;202、栅极绝缘层;203、铝镓氮势垒层;204、沟道层;205、氮化镓层;206、缓冲层;207、衬底;208、栅极;209、漏极;201, source electrode; 202, gate insulating layer; 203, aluminum gallium nitride barrier layer; 204, channel layer; 205, gallium nitride layer; 206, buffer layer; 207, substrate; 208, gate; 209 , Drain;

301、第三金属电极;302、第一金属电极;303、栅极;304、第一钝化层;305、源极;306、保护层;307、第一势垒层;308、第一沟道层;309、掺杂沟道层;310、缓冲层;311、衬底;312、第四钝化层;313、第四金属电极;314、第三钝化层;315、第二金属电极;316、第二钝化层;317、漏极;318栅极绝缘层;319、第二势垒层;320、第二沟道层。301. The third metal electrode; 302. The first metal electrode; 303. The gate; 304. The first passivation layer; 305. The source; 306. The protective layer; 307. The first barrier layer; 308. The first trench channel layer; 309, doped channel layer; 310, buffer layer; 311, substrate; 312, fourth passivation layer; 313, fourth metal electrode; 314, third passivation layer; 315, second metal electrode 316, the second passivation layer; 317, the drain; 318 the gate insulating layer; 319, the second barrier layer; 320, the second channel layer.

具体实施方式Detailed ways

下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

参考图3~图11,本发明提供一种高电子迁移率晶体管,包括:Referring to Fig. 3 ~ Fig. 11, the present invention provides a kind of high electron mobility transistor, comprises:

衬底311和依次形成于衬底311上的第一沟道层308和第一势垒层307,其中,衬底311可以为蓝宝石衬底等,第一沟道层308可以为氮化镓层等,第一势垒层307可以为铝镓氮层等,铝镓氮层中的铝的摩尔比例为20%~35%,优选为25%。A substrate 311 and a first channel layer 308 and a first barrier layer 307 sequentially formed on the substrate 311, wherein the substrate 311 may be a sapphire substrate or the like, and the first channel layer 308 may be a gallium nitride layer etc., the first barrier layer 307 may be an aluminum gallium nitride layer, etc., and the molar ratio of aluminum in the aluminum gallium nitride layer is 20% to 35%, preferably 25%.

刻蚀第一势垒层307至第一沟道层308的内部形成第一凹槽,将第一凹槽刻蚀到第一沟道层308的内部是为了耗尽第一势垒层307和第一沟道层308接触位置的二维电子气,以实现增强高电子迁移率晶体管的目的。其中,参见图4~图11,第一凹槽的形状可以是周期性或者非周期行的独立形状。可以是圆形、矩形、三角形、椭圆形和平行四边形中的一种或两种以上,也可以是不规则图形,但是第一凹槽中都需要有一条贯穿的沟槽。Etching the first barrier layer 307 to the inside of the first channel layer 308 forms a first groove, and etching the first groove to the inside of the first channel layer 308 is to deplete the first barrier layer 307 and The first channel layer 308 is in contact with the two-dimensional electron gas, so as to achieve the purpose of enhancing the high electron mobility transistor. Wherein, referring to FIG. 4 to FIG. 11 , the shape of the first groove may be an independent shape of periodic or aperiodic rows. It can be one or more of circular, rectangular, triangular, elliptical and parallelogram, and can also be an irregular figure, but there needs to be a through groove in the first groove.

第一凹槽具有底面和侧壁,底面为第一沟道层308,第一凹槽是通过第一势垒层307表面垂直刻蚀到第一沟道层308的内部形成的,第一凹槽已经贯穿了第一势垒层307,因此,第一凹槽的侧壁是由第一势垒层307的侧面和第一沟道层308的部分侧面组成。在第一势垒层307上、侧壁和底面上形成第二沟道层320。The first groove has a bottom surface and sidewalls, the bottom surface is the first channel layer 308, the first groove is formed by vertically etching the surface of the first barrier layer 307 into the inside of the first channel layer 308, the first concave The groove has penetrated the first barrier layer 307 , therefore, the sidewall of the first groove is composed of the side of the first barrier layer 307 and part of the side of the first channel layer 308 . The second channel layer 320 is formed on the first barrier layer 307 , on the sidewalls and on the bottom surface.

在第一凹槽的两侧分别刻蚀第二沟道层320至第一势垒层307、第一势垒层307的内部、第一沟道层308或第一沟道层308的内部,形成第二凹槽和第三凹槽,在第二凹槽内填充形成源极305,在第三凹槽内填充形成漏极317。在第二沟道层320上且在第一凹槽内填充形成栅极303。其中,源极305和漏极317的材质选自钛、铝、镍和金中的一种或两种以上。栅极303的材质选自镍或金等。Etching the second channel layer 320 to the first barrier layer 307, the inside of the first barrier layer 307, the first channel layer 308 or the inside of the first channel layer 308 respectively on both sides of the first groove, A second groove and a third groove are formed, the second groove is filled to form a source 305 , and the third groove is filled to form a drain 317 . The gate 303 is formed on the second channel layer 320 and filled in the first groove. Wherein, the material of the source electrode 305 and the drain electrode 317 is selected from one or more than two of titanium, aluminum, nickel and gold. The material of the gate 303 is selected from nickel or gold.

通过设置第二沟道层320,使被刻蚀的第一沟道层308的表面填充了第二沟道层320,减小了刻蚀对第一沟道层308的影响,提升了第一沟道层308中的电子迁移率,同时,新增加的第二沟道层320增加了源极305到漏极317的电子迁移通道,提升了电子迁移率。By setting the second channel layer 320, the surface of the etched first channel layer 308 is filled with the second channel layer 320, which reduces the impact of etching on the first channel layer 308 and improves the first channel layer 308. The electron mobility in the channel layer 308, meanwhile, the newly added second channel layer 320 increases the electron migration channel from the source electrode 305 to the drain electrode 317, thereby improving the electron mobility.

参考图3,在一个具体实施例中,第二沟道层上320依次形成第二势垒层319和栅极绝缘层318。Referring to FIG. 3 , in a specific embodiment, a second barrier layer 319 and a gate insulating layer 318 are sequentially formed on the second channel layer 320 .

第二势垒层319、第二沟道层320和栅极绝缘层318中,至少第二沟道层320是通过气相沉积法沉积而成的单晶结构,可以是只有第二沟道层320为单晶结构;也可以是第二沟道层320和第二势垒层319均为单晶结构;还可以是第二沟道层320和栅极绝缘层318均为单晶结构;再可以是第二势垒层319、第二沟道层320和栅极绝缘层318均为单晶结构。其中,第二沟道层320为单晶结构可以提升电子迁移率。当第二势垒层319、第二沟道层320和栅极绝缘层318均为单晶结构时,可以通过气相沉积法连续沉积形成,全程在真空中操作,不与空气接触,防止污染,保证了上述各层结构以及高电子迁移率晶体管的质量。Among the second barrier layer 319, the second channel layer 320 and the gate insulating layer 318, at least the second channel layer 320 is a single crystal structure deposited by vapor deposition, and only the second channel layer 320 may be formed. It is a single crystal structure; it can also be that both the second channel layer 320 and the second barrier layer 319 have a single crystal structure; it can also be that both the second channel layer 320 and the gate insulating layer 318 have a single crystal structure; The second barrier layer 319, the second channel layer 320 and the gate insulating layer 318 are all of single crystal structure. Wherein, the second channel layer 320 has a single crystal structure to improve electron mobility. When the second barrier layer 319, the second channel layer 320 and the gate insulating layer 318 are all of a single crystal structure, they can be continuously deposited and formed by vapor phase deposition, and the whole process is operated in a vacuum without contact with air to prevent pollution. The above-mentioned layer structure and the quality of the high electron mobility transistor are guaranteed.

参考图3,在一个具体实施例中,第二沟道层320的厚度为1nm~100nm,第二势垒层319的厚度为1nm~50nm,栅极绝缘层318的厚度为1nm~100nm。其中,此范围内的第二沟道层320的厚度有利于提升电子迁移率,此范围内的第二势垒层319和栅极绝缘层318的厚度有利于提升源极305到栅极303的击穿电压。Referring to FIG. 3 , in a specific embodiment, the second channel layer 320 has a thickness of 1 nm to 100 nm, the second barrier layer 319 has a thickness of 1 nm to 50 nm, and the gate insulating layer 318 has a thickness of 1 nm to 100 nm. Wherein, the thickness of the second channel layer 320 within this range is conducive to improving electron mobility, and the thickness of the second barrier layer 319 and gate insulating layer 318 within this range is conducive to improving the distance between the source electrode 305 and the gate electrode 303. breakdown voltage.

参见图3,在一个具体实施例中,第二势垒层319选自铝镓氮层、铟铝氮层、铟铝镓氮层和氮化铝层中的一种,优选为铝镓氮层。第二沟道层320选自氮化镓层、铟镓氮层和铝镓氮层中的一种,优选为氮化镓层。栅极绝缘层318为氮化硅层等。氮化镓是一种具有较大禁带宽度、强的原子键、高的热导率、化学稳定性好等性质和强的抗辐照能力的半导体,适用于高电子迁移率晶体管。氮化硅具有良好的绝缘性,同时具备耐高温和耐冷热冲击的特点,绝缘效果稳定。Referring to FIG. 3, in a specific embodiment, the second barrier layer 319 is selected from one of an aluminum gallium nitride layer, an indium aluminum nitride layer, an indium aluminum gallium nitride layer and an aluminum nitride layer, preferably an aluminum gallium nitride layer . The second channel layer 320 is selected from one of a gallium nitride layer, an indium gallium nitride layer and an aluminum gallium nitride layer, preferably a gallium nitride layer. The gate insulating layer 318 is a silicon nitride layer or the like. Gallium nitride is a semiconductor with large band gap, strong atomic bond, high thermal conductivity, good chemical stability and strong radiation resistance, which is suitable for high electron mobility transistors. Silicon nitride has good insulation, and has the characteristics of high temperature resistance and thermal shock resistance, and the insulation effect is stable.

参考图3,在一个具体实施例中,高电子迁移率晶体管还包括保护层306,保护层306形成于第一势垒层307上,刻蚀保护层306和第一势垒层307至第一沟道层308内形成第一凹槽。设置保护层306的目的是为了保护第一势垒层307和第一沟道层308,因为在刻蚀第一凹槽的过程中,如果没有保护层306的保护,刻蚀过程中容易损坏第一势垒层307和第一沟道层308,进而影响第一势垒层307和第一沟道层308之间的性能。Referring to FIG. 3, in a specific embodiment, the high electron mobility transistor further includes a protection layer 306, the protection layer 306 is formed on the first barrier layer 307, and the protection layer 306 and the first barrier layer 307 are etched to the first A first groove is formed in the channel layer 308 . The purpose of providing the protection layer 306 is to protect the first barrier layer 307 and the first channel layer 308, because in the process of etching the first groove, if there is no protection of the protection layer 306, the first groove layer is easily damaged during the etching process. A barrier layer 307 and the first channel layer 308 , thereby affecting the performance between the first barrier layer 307 and the first channel layer 308 .

进一步地,在一个具体实施例中,保护层306为氮化镓层等,因为氮化镓层和第二沟道层320均为氮化镓层,同种物质,电子迁移率高。Further, in a specific embodiment, the protection layer 306 is a gallium nitride layer, etc., because the gallium nitride layer and the second channel layer 320 are both gallium nitride layers, the same material, and have high electron mobility.

参见图3,在一个具体实施例中,在栅极绝缘层318、源极305和漏极317上形成第一钝化层304,刻蚀第一钝化层304至栅极绝缘层318形成第四凹槽,在第四凹槽内填充形成栅极303。Referring to FIG. 3, in a specific embodiment, the first passivation layer 304 is formed on the gate insulating layer 318, the source electrode 305 and the drain electrode 317, and the first passivation layer 304 is etched to the gate insulating layer 318 to form the first passivation layer 304. Four grooves, the gate 303 is formed by filling the fourth groove.

在第一钝化层304和栅极303上形成第二钝化层316。A second passivation layer 316 is formed on the first passivation layer 304 and the gate 303 .

分别刻蚀第二钝化层316和第一钝化层304至源极305和漏极317,形成第五凹槽和第六凹槽。The second passivation layer 316 and the first passivation layer 304 are respectively etched to the source electrode 305 and the drain electrode 317 to form a fifth groove and a sixth groove.

在源极305上且在第五凹槽内填充第一金属,第一金属与源极305连接形成第一金属电极302。The first metal is filled on the source 305 and in the fifth groove, and the first metal is connected to the source 305 to form the first metal electrode 302 .

在漏极317上且在第六凹槽内填充第二金属,第二金属与漏极317连接形成第二金属电极315。The second metal is filled on the drain 317 and in the sixth groove, and the second metal is connected to the drain 317 to form a second metal electrode 315 .

设置第一钝化层304和第二钝化层316的目的之一是将高电子迁移率晶体管的表面与周围电的环境和化学的环境相隔离,以减少反向漏电流,提高击穿电压,增加功耗的定额;目的之二是将源极305、漏极317和栅极303更加牢固的固定在高电子迁移率上;目的之三是起到缓冲的作用,钝化层在受到物理冲击的时候,可以保护源极305、漏极317和栅极303。One of the purposes of setting the first passivation layer 304 and the second passivation layer 316 is to isolate the surface of the high electron mobility transistor from the surrounding electrical environment and chemical environment, so as to reduce the reverse leakage current and increase the breakdown voltage , increase the fixed power consumption; the second purpose is to fix the source 305, drain 317 and gate 303 more firmly on the high electron mobility; the third purpose is to play a buffer role, the passivation layer is subjected to physical In case of an impact, the source 305 , the drain 317 and the gate 303 can be protected.

参考图3,在一个具体实施例中,在第一金属电极302、第二金属电极315和第二钝化层316上形成第三钝化层314。Referring to FIG. 3 , in a specific embodiment, a third passivation layer 314 is formed on the first metal electrode 302 , the second metal electrode 315 and the second passivation layer 316 .

分别刻蚀第三钝化层314至第一金属电极302和第二金属电极315,形成第七凹槽和第八凹槽。The third passivation layer 314 is respectively etched to the first metal electrode 302 and the second metal electrode 315 to form a seventh groove and an eighth groove.

在第一金属电极302上且在第七凹槽内填充第三金属,第三金属与第一金属电极302连接形成第三金属电极301。The third metal is filled on the first metal electrode 302 and in the seventh groove, and the third metal is connected with the first metal electrode 302 to form the third metal electrode 301 .

在第二金属电极315上且在第八凹槽内填充第四金属,第四金属与第二金属电极315连接形成第四金属电极313。A fourth metal is filled on the second metal electrode 315 and in the eighth groove, and the fourth metal is connected to the second metal electrode 315 to form a fourth metal electrode 313 .

在第三金属电极301、第四金属电极313和第三钝化层314上形成第四钝化层312。A fourth passivation layer 312 is formed on the third metal electrode 301 , the fourth metal electrode 313 and the third passivation layer 314 .

分别刻蚀第四钝化层312至第三金属电极301和第四金属电极313。The fourth passivation layer 312 is etched to the third metal electrode 301 and the fourth metal electrode 313 respectively.

设置第三钝化层314和第四钝化层312的目的与第一钝化层304和第二钝化层316的目的相同。The purposes of the third passivation layer 314 and the fourth passivation layer 312 are the same as those of the first passivation layer 304 and the second passivation layer 316 .

进一步地,在一个具体实施例中,第一钝化层304、第二钝化层316、第三钝化层314和第四钝化层312的材料可以分别选为二氧化硅和氮化硅等,二氧化硅为良好的绝缘体,而且二氧化硅本身还耐高温,稳定性好。Further, in a specific embodiment, the materials of the first passivation layer 304, the second passivation layer 316, the third passivation layer 314 and the fourth passivation layer 312 can be respectively selected as silicon dioxide and silicon nitride Etc., silicon dioxide is a good insulator, and silicon dioxide itself is also resistant to high temperature and has good stability.

参考图3,衬底311和第一沟道层308之间还设有缓冲层310和掺杂沟道层309,缓冲层310在衬底311上形成,掺杂沟道层309在缓冲层310上形成。掺杂沟道层309可以是碳掺杂氮化硅层等。设置缓冲层310和掺杂沟道层309,是为了提升整个高电子迁移率的稳定性。Referring to FIG. 3, a buffer layer 310 and a doped channel layer 309 are also provided between the substrate 311 and the first channel layer 308. The buffer layer 310 is formed on the substrate 311, and the doped channel layer 309 is formed on the buffer layer 310. Formed on. The doped channel layer 309 may be a carbon doped silicon nitride layer or the like. The purpose of setting the buffer layer 310 and the doped channel layer 309 is to improve the stability of the entire high electron mobility.

以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。The above disclosures are only preferred embodiments of the present invention, and certainly cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.

Claims (10)

1. A high electron mobility transistor, comprising:
the device comprises a substrate, and a first channel layer and a first barrier layer which are sequentially formed on the substrate;
etching the first barrier layer to the inside of the first channel layer to form a first groove, wherein the first groove is provided with a bottom surface and a side wall, and the bottom surface is the first channel layer;
forming second channel layers on the first barrier layer, the side wall and the bottom surface, respectively etching the second channel layers to the first barrier layer, the interior of the first channel layer or the first channel layer on two sides of the first groove to form a second groove and a third groove, filling the second groove to form a source electrode, and filling the third groove to form a drain electrode;
and filling the second channel layer and the first groove to form a grid.
2. The HEMT of claim 1,
a second barrier layer and a gate insulating layer are sequentially formed on the second channel layer;
the second channel layer is a single crystal structure.
3. The HEMT of claim 2,
the thickness of the second channel layer is 1nm to 100nm;
the thickness of the second barrier layer is 1nm to 50nm;
the thickness of the gate insulating layer is 1nm to 100nm.
4. The HEMT of claim 2,
the second barrier layer is selected from one or more of an aluminum gallium nitride layer, an indium aluminum gallium nitride layer and an aluminum nitride layer;
the second channel layer is selected from one or more of a gallium nitride layer, an indium gallium nitride layer and an aluminum gallium nitride layer;
the gate insulating layer is a silicon nitride layer.
5. The HEMT of claim 2~4,
the protective layer is formed on the first barrier layer, and the protective layer and the first barrier layer are etched to form the first groove in the first channel layer.
6. The hemt of claim 5, wherein said protective layer is a gallium nitride layer.
7. The HEMT of claim 5,
forming a first passivation layer on the gate insulating layer, the source electrode and the drain electrode, and etching the first passivation layer to the gate insulating layer to form a fourth groove; filling the fourth groove to form the grid electrode;
forming a second passivation layer on the first passivation layer and the gate electrode;
etching the second passivation layer and the first passivation layer to the source electrode and the drain electrode respectively to form a fifth groove and a sixth groove;
filling a first metal on the source electrode and in the fifth groove, wherein the first metal is connected with the source electrode to form a first metal electrode;
and filling a second metal on the drain electrode and in the sixth groove, wherein the second metal is connected with the drain electrode to form a second metal electrode.
8. The HEMT of claim 7,
forming a third passivation layer on the first metal electrode, the second metal electrode, and the second passivation layer;
etching the third passivation layer to the first metal electrode and the second metal electrode respectively to form a seventh groove and an eighth groove;
filling a third metal on the first metal electrode and in the seventh groove, wherein the third metal is connected with the first metal electrode to form a third metal electrode;
filling a fourth metal on the second metal electrode and in the eighth groove, wherein the fourth metal is connected with the second metal electrode to form a fourth metal electrode;
forming a fourth passivation layer on the third metal electrode, the fourth metal electrode, and the third passivation layer;
and etching the fourth passivation layer to the third metal electrode and the fourth metal electrode respectively.
9. The hemt of claim 8, wherein said first, second, third and fourth passivation layers are all of silicon dioxide.
10. The HEMT of claim 1,
a buffer layer and a doped channel layer are further arranged between the substrate and the first channel layer, the buffer layer is formed on the substrate, and the doped channel layer is formed on the buffer layer.
CN202211170579.7A 2022-09-26 2022-09-26 High Electron Mobility Transistor Active CN115274846B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211170579.7A CN115274846B (en) 2022-09-26 2022-09-26 High Electron Mobility Transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211170579.7A CN115274846B (en) 2022-09-26 2022-09-26 High Electron Mobility Transistor

Publications (2)

Publication Number Publication Date
CN115274846A true CN115274846A (en) 2022-11-01
CN115274846B CN115274846B (en) 2023-01-10

Family

ID=83757648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211170579.7A Active CN115274846B (en) 2022-09-26 2022-09-26 High Electron Mobility Transistor

Country Status (1)

Country Link
CN (1) CN115274846B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690962A (en) * 2024-02-02 2024-03-12 深圳天狼芯半导体有限公司 Structure, manufacturing method and electronic equipment of gallium nitride power device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189560A1 (en) * 2004-02-26 2005-09-01 Park Chul H. Integrated circuit with enhancement mode pseudomorphic high electron mobility transistors having on-chip electrostatic discharge protection
US20100002843A1 (en) * 2006-10-13 2010-01-07 Yaohong Liu Standing wave electron linear accelerator and installation adjusting device thereof
US20120286763A1 (en) * 2003-08-29 2012-11-15 Japan Science And Technology Agency Method of use of a field-effect transistor, single-electron transistor and sensor
US20130075751A1 (en) * 2011-09-28 2013-03-28 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
US20140252368A1 (en) * 2013-03-08 2014-09-11 Samsung Electronics Co., Ltd. High-electron-mobility transistor
US20140266324A1 (en) * 2013-03-15 2014-09-18 Mitsubishi Electric Research Laboratories, Inc. High Electron Mobility Transistor with Multiple Channels
US9536962B1 (en) * 2015-07-20 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain regions for high electron mobility transistors (HEMT) and methods of forming same
CN109659352A (en) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 A kind of high electron mobility transistor and preparation method thereof
CN109786438A (en) * 2018-12-17 2019-05-21 华灿光电(浙江)有限公司 A kind of high electron mobility transistor and preparation method thereof
CN111463260A (en) * 2020-03-10 2020-07-28 芜湖启迪半导体有限公司 Vertical high electron mobility field effect transistor and preparation method thereof
CN111463259A (en) * 2020-03-10 2020-07-28 芜湖启迪半导体有限公司 High electron mobility field effect transistor and preparation method thereof
CN111682064A (en) * 2020-06-02 2020-09-18 华南师范大学 High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
US20220059587A1 (en) * 2020-08-18 2022-02-24 Omnivision Technologies, Inc. Method and image sensor with vertical transfer gate and buried backside-illuminated photodiodes
CN114420743A (en) * 2021-12-13 2022-04-29 晶通半导体(深圳)有限公司 Reverse Blocking High Mobility Transistor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120286763A1 (en) * 2003-08-29 2012-11-15 Japan Science And Technology Agency Method of use of a field-effect transistor, single-electron transistor and sensor
US20050189560A1 (en) * 2004-02-26 2005-09-01 Park Chul H. Integrated circuit with enhancement mode pseudomorphic high electron mobility transistors having on-chip electrostatic discharge protection
US20100002843A1 (en) * 2006-10-13 2010-01-07 Yaohong Liu Standing wave electron linear accelerator and installation adjusting device thereof
US20130075751A1 (en) * 2011-09-28 2013-03-28 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
US20140252368A1 (en) * 2013-03-08 2014-09-11 Samsung Electronics Co., Ltd. High-electron-mobility transistor
US20140266324A1 (en) * 2013-03-15 2014-09-18 Mitsubishi Electric Research Laboratories, Inc. High Electron Mobility Transistor with Multiple Channels
US9536962B1 (en) * 2015-07-20 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain regions for high electron mobility transistors (HEMT) and methods of forming same
CN109659352A (en) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 A kind of high electron mobility transistor and preparation method thereof
CN109786438A (en) * 2018-12-17 2019-05-21 华灿光电(浙江)有限公司 A kind of high electron mobility transistor and preparation method thereof
CN111463260A (en) * 2020-03-10 2020-07-28 芜湖启迪半导体有限公司 Vertical high electron mobility field effect transistor and preparation method thereof
CN111463259A (en) * 2020-03-10 2020-07-28 芜湖启迪半导体有限公司 High electron mobility field effect transistor and preparation method thereof
CN111682064A (en) * 2020-06-02 2020-09-18 华南师范大学 High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
US20220059587A1 (en) * 2020-08-18 2022-02-24 Omnivision Technologies, Inc. Method and image sensor with vertical transfer gate and buried backside-illuminated photodiodes
CN114420743A (en) * 2021-12-13 2022-04-29 晶通半导体(深圳)有限公司 Reverse Blocking High Mobility Transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690962A (en) * 2024-02-02 2024-03-12 深圳天狼芯半导体有限公司 Structure, manufacturing method and electronic equipment of gallium nitride power device
CN117690962B (en) * 2024-02-02 2024-05-07 深圳天狼芯半导体有限公司 Structure, manufacturing method and electronic device of gallium nitride power device

Also Published As

Publication number Publication date
CN115274846B (en) 2023-01-10

Similar Documents

Publication Publication Date Title
CN110400848B (en) A kind of Schottky diode and its manufacturing method
CN102013437B (en) Semiconductor device and making method thereof
CN108962977A (en) A kind of silicon carbide trench MOSFET s of integrated SBD and preparation method thereof
CN102184956B (en) Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof
CN102709320B (en) GaN-based MISFET device with vertical conduction and its manufacturing method
CN110649096A (en) High-voltage n-channel HEMT device
WO2015014324A1 (en) Semiconductor device and manufacturing method thereof
CN104051523A (en) Semiconductor device with low ohmic contact resistance and manufacturing method thereof
TWI786422B (en) High electron mobility transistor and method of fabricating the same
CN108417617B (en) Silicon carbide trench MOSFETs and method of making the same
CN112786680B (en) Cell structure of silicon carbide MOSFET device and power semiconductor device
CN104347701B (en) A kind of field-effect transistor with composite passivated Rotating fields
CN102945859A (en) GaN heterojunction HEMT (High Electron Mobility Transistor) device
CN110660851A (en) High-voltage n-channel HEMT device
CN111370470A (en) Gallium nitride MIS gate-controlled hybrid channel power field effect transistor and method of making the same
CN115274846B (en) High Electron Mobility Transistor
CN118800795B (en) An enhanced gallium nitride HEMT device with dual channels and a method for preparing the same
CN216250739U (en) Gallium nitride transistor with high conduction capability
CN110649097A (en) High-voltage p-channel HEMT device
CN110660843A (en) High-voltage p-channel HEMT device
CN114843337A (en) Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof
CN210897283U (en) Semiconductor device with a plurality of transistors
CN108807500A (en) A kind of enhancement type high electron mobility transistor with high threshold voltage
CN108231882A (en) HEMT device with back surface field harden structure and preparation method thereof
CN106783993B (en) Gallium nitride heterojunction field-effect tube with compound medium layer structure in substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant