[go: up one dir, main page]

CN115254100B - 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用 - Google Patents

一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用 Download PDF

Info

Publication number
CN115254100B
CN115254100B CN202211039495.XA CN202211039495A CN115254100B CN 115254100 B CN115254100 B CN 115254100B CN 202211039495 A CN202211039495 A CN 202211039495A CN 115254100 B CN115254100 B CN 115254100B
Authority
CN
China
Prior art keywords
catalyst
carrier
metal oxide
doped
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211039495.XA
Other languages
English (en)
Other versions
CN115254100A (zh
Inventor
刘小浩
郑珂
李玉峰
刘冰
胥月兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202211039495.XA priority Critical patent/CN115254100B/zh
Publication of CN115254100A publication Critical patent/CN115254100A/zh
Application granted granted Critical
Publication of CN115254100B publication Critical patent/CN115254100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种用于CO2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用,属于二氧化碳转化应用领域。本发明催化剂是由活性组分、掺杂型载体组成,其中,活性组分包括Rh、Pd、Ir、Fe、Co、Ni、Cu中的一种或几种;所述掺杂型载体包括CeO2、TiO2、In2O3、Al2O3、ZnO、SiO2、MnO2和Cr2O3中的两种或以上。本发明催化剂通过将单原子Rh嵌入到掺杂型载体上构建的Rh单原子催化剂显示出优异的CO2加氢性能,乙醇选择性>99%,且稳定性较高。本发明通过对载体掺杂处理的方式实现载体表面性质的调控,进而提高负载活性金属的分散性和结构稳定性,以及提高CO2加氢制乙醇催化性能。

Description

一种用于CO2加氢制乙醇的金属氧化物掺杂型单原子催化剂的 制备与应用
技术领域
本发明涉及一种用于CO2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用,属于二氧化碳转化应用领域。
背景技术
化石燃料的大量使用导致大气中二氧化碳浓度达到了前所未有的水平,它给地球环境和人类发展带来了不容忽视的严重后果。同时,CO2也是一种无毒、廉价、丰富、可再生的C1资源,因此将CO2转化为高附加值化学品具有重要的现实意义。乙醇是重要的基础化工原料,其被广泛用作消毒剂、反应溶剂和汽油添加剂。将二氧化碳直接转化为乙醇是消除温室气体以及生产有价值产品的理想工艺。然而,这一过程受到低活性的阻碍,这源于CO2的高热力学稳定性和化学惰性,以及副产物(如CH4、CO和CH3OH等)的形成。因此,开发用于乙醇生产的高活性和高选择性催化剂仍然是一项巨大的挑战。
已报道的CO2加氢制乙醇催化体系主要有贵金属基、Co基、Cu基、Fe基和多元素复合催化剂体系。其中,贵金属基催化剂表现出较高的乙醇选择性。然而,由于贵金属价格昂贵,因此将贵金属的利用效率最大化对于实际应用是势在必行的。单原子催化剂是指负载在载体表面上的孤立金属原子作为活性位点,因其独特的催化行为和100%效率而受到广泛关注。然而,单原子催化剂中有限的活性金属组分负载量决定了催化剂活性较低,极大限制了实际应用。同时,由于缺乏适当的金属-载体相互作用,单原子活性位点容易迁移和聚集,导致催化稳定性差。
因此,开发具有高活性、高选择性和优异稳定性的用于二氧化碳加氢制乙醇的新型单原子催化剂仍然是一项艰巨的挑战。
发明内容
为了解决上述问题,本发明采用掺杂的策略用于调控载体表面氧空位的数量与性质,使其在高温环境中更容易锚定金属原子,得到高分散且高稳定性的单原子催化剂。该催化剂在CO2加氢制乙醇过程中,能够将CO2高效地催化转化成具有高附加值的产品乙醇,有效降低了副产物如CO、CH4和CH3OH的形成,并且具有更高的稳定性。
本发明的第一个目的是提供一种用于催化CO2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备方法,包括如下步骤:
(1)将载体前驱体溶解在水中,加入沉淀剂,混匀进行水热反应;其中,载体前驱体为水溶性的铈盐、锆盐、铟盐、锌盐、铬盐、锰盐、铝盐、钛酸酯中任意两种或两种以上;反应结束后,过滤、收集固体,干燥,然后在300~800℃下进行焙烧,得到金属氧化物掺杂型载体;
(2)将金属氧化物掺杂型载体分散在有机溶剂中,得到悬浮液,然后向悬浮液中加入活性金属前驱体,搅拌5~20h,然后除去有机溶剂,得到固体,焙烧,得到金属氧化物掺杂型单原子催化剂;活性金属选自Rh、Pd、Ir、Fe、Co、Ni、Cu中任意一种或多种。
在本发明的一种实施方式中,步骤(1)所述载体前驱体中金属相对水的浓度为0.2-1.0mol/L。具体可选0.5mol/L。
在本发明的一种实施方式中,步骤(1)中载体前驱体为水溶性的硝酸盐、醋酸盐、硫酸盐和乙酰丙酮盐中的一种或几种。
在本发明的一种实施方式中,步骤(1)中载体前驱体包括主成分和掺杂成分,分别独立选自水溶性的铈盐、锆盐、铟盐、锌盐、铬盐、锰盐、铝盐、钛酸酯中任意一种或多种,且主成分和掺杂成分不相同;主成分中金属与掺杂成分中金属的摩尔比为1:0.3-0.3:1。
在本发明的一种实施方式中,步骤(1)中,主成分优选水溶性的铈盐、铟盐、锌盐、铝盐、钛酸酯中任意一种或多种,掺杂成分优选锆盐、铬盐、锰盐、钛酸酯中任意一种或多种;且主成分和掺杂成分不同为钛酸酯。
在本发明的一种实施方式中,所述钛酸酯具体可选用钛酸四丁酯。
在本发明的一种实施方式中,步骤(1)中的沉淀剂为尿素、钠盐、钾盐和氨水中的一种或几种。
在本发明的一种实施方式中,步骤(1)中沉淀剂相对水的浓度为0.8-1.5mol/L。
在本发明的一种实施方式中,步骤(1)中加入沉淀剂并在30~100℃下剧烈搅拌,实现混匀。
在本发明的一种实施方式中,步骤(1)中水热反应的条件为:在高压釜中加热至50~120℃反应5~100h,然后升至120~200℃继续反应1~20h。
在本发明的一种实施方式中,步骤(1)中焙烧的时间为1~10h。
在本发明的一种实施方式中,步骤(2)中有机溶剂为丙酮。
在本发明的一种实施方式中,步骤(2)中悬浮液中金属氧化物掺杂型载体的浓度为0.02-0.1g/mL;具体可选用0.05g/mL。
在本发明的一种实施方式中,步骤(2)中活性金属前驱体为活性金属的硝酸盐、醋酸盐、硫酸盐和乙酰丙酮盐中的一种或几种。
在本发明的一种实施方式中,步骤(2)中活性金属前驱体中活性金属相对载体的用量为0.01mmol/g。
在本发明的一种实施方式中,步骤(2)中焙烧的温度为800℃,时间为10h。
本发明提供了上述催化剂的制备方法,包括以下步骤:
(1)将载体的相应前驱体溶解在水中,加入沉淀剂并在30~100℃下剧烈搅拌,然后转移到不锈钢高压釜中并在烘箱中50~120℃水热5~100h,然后升至120~200℃水热1~20h。最后,将水热产物过滤并洗涤,在60~150℃下干燥过夜,并在马弗炉中在300~800℃焙烧1~10h,得到载体;
(2)将载体分散在丙酮溶剂中,超声处理1~10h,得到分散良好的悬浮液后向其中加入活性组分对应的前驱体,继续搅拌5~20h,旋蒸得到固体,在800℃焙烧10h,即得到催化剂。
本发明基于上述方法制备提供了一种用于催化CO2加氢制乙醇的金属氧化物掺杂型单原子催化剂。
在本发明的一种实施方式中,催化剂中的活性组分在载体上呈原子级别高度分散,活性组分包括Rh、Pd、Ir、Fe、Co、Ni、Cu中的一种或几种;载体包括CeO2、TiO2、In2O3、Al2O3、ZnO、SiO2、MnO2、Cr2O3和ZrO2中的两种或两种以上。
在本发明的一种实施方式中,催化剂中活性组分含量占催化剂总质量的0.01%~10%;载体占催化剂总质量的90%~99.99%。
在本发明的一种实施方式中,所述活性组分在载体上呈原子级别高度分散。
本发明还提供了一种CO2加氢制乙醇的方法,所述方法中以上述催化剂为加氢催化剂。
在本发明的一种实施方式中,所述方法是在CO2加氢制乙醇的催化剂中通入CO2/H2合成气,在间歇釜反应器、固定床或浆态床中进行CO2加氢制备乙醇的反应。
在本发明的一种实施方式中,所述催化剂在使用前要进行活化预处理,预处理气氛为氢气或一氧化碳,压力为0.1~2MPa,温度为300~600℃,时间为1~10h。
在本发明的一种实施方式中,所述CO2加氢制乙醇的反应条件为:CO2:H2=1:1~8,反应温度为100~350℃,反应压力为1~10MPa。
与现有技术相比,本发明具有以下有益效果:
(1)本发明引入金属氧化物掺杂概念,用于调控催化剂表面氧空位数量与性质,掺杂后得到的催化剂载体表面暴露出更多氧空位,可有效锚定活性组分原子,得到了高度分散的单原子催化剂。本发明催化剂通过将单原子Rh嵌入到掺杂型载体上构建的Rh单原子催化剂显示出优异的CO2加氢性能,乙醇选择性>99%,且稳定性较高。本发明通过对载体掺杂处理的方式实现载体表面性质的调控,进而提高负载活性金属的分散性和结构稳定性,以及提高CO2加氢制乙醇催化性能。
(2)本发明提出的掺杂策略可有效调控活性组分与载体之间的相互作用,使得活性组分难以发生团聚和烧结,表现出较高的稳定性。
附图说明
图1为催化剂结构示意图(Ti掺杂的CeO2载体负载Rh单原子催化剂),其中虚线圈内为单原子活性组分。
具体实施方式
为了更清楚地说明本发明,下面结合具体实例对本发明做进一步说明,本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
催化剂性能评价是在间歇釜反应器中进行的。具体催化性能评价方法如下:对催化剂进行还原活化处理。其中催化剂活化预处理条件为:预处理气氛为高纯氢,压力为0.1MPa,温度为300℃,时间为1h。还原完毕后,将CO2:H2=1:3的原料气充入反应器至3MPa,反应温度升至250℃后开始反应。催化剂质量为30mg,溶剂为水,溶剂体积为20mL,转速为400rpm,反应时间为5h。气体产物进入色谱进行在线分析,液相产物通过核磁共振谱图分析。
CO2转化率=(反应前CO2摩尔数-反应后CO2摩尔数)/反应前CO2摩尔数×100%;
产物选择性=产物摩尔数×产物分子中碳原子数/(反应前CO2摩尔数-反应后CO2摩尔数)×100%。
CO2加氢制乙醇的催化剂体系及其制备方法:
实施例1
第一步,将铈、钛摩尔比为0.3:1的硝酸铈和钛酸四丁酯溶解于80mL去离子水中形成铈钛混合溶液,其中铈钛混合溶液中铈和钛的总摩尔浓度为0.5mol/L;随后将5.586g尿素加入到铈钛混合溶液中,混合并在50℃下剧烈搅拌,80℃水热48h,然后升至120℃水热5h。最后,将水热产物过滤并用乙醇洗涤,在120℃下干燥过夜,并在马弗炉中在400℃焙烧4h,得到Ti掺杂的CeO2载体负载Rh单原子催化剂,记作CeTiOx载体;
第二步,将1g CeTiOx载体分散在20mL丙酮溶剂中,超声处理2h,然后向其中加入0.0039g乙酰丙酮铑,继续搅拌10h,旋蒸得到固体,在800℃焙烧10h,即得到Rh/CeTiOx催化剂。催化剂中Rh元素含量为0.1wt%。
实施例2
将实施例1第一步的载体前驱体改为硝酸铟和硝酸锆(铟、锆摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/InZrOx催化剂。
实施例3
将实施例1第一步的载体前驱体改为硝酸锌和硝酸锆(锌、锆摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/ZnZrOx催化剂。
实施例4
将实施例1第一步的钛酸四丁酯改为硝酸铬(铈、铬摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/CeCrOx催化剂。
实施例5
将实施例1第一步的载体前驱体改为硝酸钛和硝酸锰(钛、锰摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/TiMnOx催化剂。
实施例6
将实施例1第一步的硝酸铈改为硝酸铝(铝、钛摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/AlTiOx催化剂。
实施例7
将实施例1第一步的钛酸四丁酯改为硝酸锰(铈、锰摩尔比为0.3:1),其余步骤和操作不变,即得到Rh/CeMnOx催化剂。
实施例8
将实施例1第二步的乙酰丙酮铑改为等摩尔量的醋酸钯,其余步骤和操作不变,即得到Pd/CeTiOx催化剂。
实施例9
将实施例1第二步的乙酰丙酮铑改为等摩尔量的硝酸镍,其余步骤和操作不变,即得到Ni/CeTiOx催化剂。
实施例10
将实施例1第二步的乙酰丙酮铑改为等摩尔量的醋酸铱,其余步骤和操作不变,即得到Ir/CeTiOx催化剂。
实施例11
将实施例1第二步的乙酰丙酮铑改为等摩尔量的硝酸钴,其余步骤和操作不变,即得到Co/CeTiOx催化剂。
实施例12
将实施例1第二步的乙酰丙酮铑改为等摩尔量的硝酸铜,其余步骤和操作不变,即得到Cu/CeTiOx催化剂。
CO2加氢制乙醇催化剂的应用:
将催化剂置于间歇釜反应器中,在反应条件250℃,3MPa下,催化剂质量为30mg,溶剂为水,溶剂体积为20mL,转速为400rpm,反应5h。转化率和各产物选择性或分布结果见表1。将反应后的催化剂进行回收,标记为run N(N为循环次数),用于下一次循环测试。催化剂的催化性能结果见表1。
实施例13
将Rh/CeTiOx催化剂置于间歇釜反应器中,改变反应温度为100℃,其余参数不变。转化率和各产物选择性或分布结果见表1。
实施例14
将Rh/CeTiOx催化剂置于间歇釜反应器中,改变反应压力为1MPa,其余参数不变。转化率和各产物选择性或分布结果见表1。
实施例15
将Rh/CeTiOx催化剂置于间歇釜反应器中,改变水体积为5mL,其余参数不变。转化率和各产物选择性或分布结果见表1。
表1 不同催化剂的催化性能
从表1结果中可以看出,采用本发明的催化剂制备方法制备出的催化剂在CO2加氢制乙醇中表现出很高的乙醇选择性(>99%),并在经历五次循环测试后,催化剂仍可保持较好的催化性能,显示出了良好的催化稳定性。
对比例1
将硝酸铈和尿素溶解在水中(控制水中金属总摩尔浓度相同),其余步骤同实施例1,得到CeO2载体;其他催化剂制备步骤同实施例1,得到Rh/CeO2催化剂,并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表2。
对比例2
将钛酸四丁酯和尿素溶解在水中(控制水中金属总摩尔浓度相同),其余步骤同实施例1,得到TiO2载体;其他催化剂制备步骤同实施例1,得到Rh/TiO2催化剂,并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表2。
对比例3
将硝酸铟和尿素溶解在水中(控制水中金属总摩尔浓度相同),其余步骤同实施例1,得到In2O3载体;其他催化剂制备步骤同实施例1,得到Rh/In2O3催化剂,并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表2。
对比例4
将硝酸锆和尿素溶解在水中(控制水中金属总摩尔浓度相同),其余步骤同实施例1,得到ZrO2载体;其他催化剂制备步骤同实施例1,得到Rh/ZrO2催化剂,并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表2。
对比例5
将硝酸锌和尿素溶解在水中(控制水中金属总摩尔浓度相同),其余步骤同实施例1,得到ZnO载体;其他催化剂制备步骤同实施例1,得到Rh/ZnO催化剂,并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表2。
表2 不同催化剂对CO2加氢的催化性能
从表2中结果可以看出,在单一载体上负载的Rh催化剂CO2转化率和乙醇选择性均较低,且经历五次循环后催化剂的性能明显下降,表现出较差的稳定性。
对比例6
利用实施例1中的硝酸铈、钛酸四丁酯、乙酰丙酮铑原料制备非掺杂型催化剂:
(1)将3g CeO2载体在30%H2/CO的气氛下以2℃/min升到340℃,保持2h,空速为6000mL/g/h;
(2)将3g处理好的CeO2载体分散在含有500mL去离子水和100mL乙二醇溶液的混合溶剂中,超声处理3h;在超声作用下加入乙酰丙酮铑水溶液,将此悬浮液进一步搅拌10h。离心分离得到固体,然后用去离子水和乙醇洗涤制中性,干燥后在200℃下焙烧1h。
(3)将步骤(2)中所得固体分散在50mL去离子水中,超声分散1h,在超声作用下添加前驱体钛酸四丁酯(铈、钛摩尔比为0.3:1),搅拌1h。然后将此固液混合物缓慢旋转蒸发干燥,最后于350℃焙烧3h,得到催化剂Rh-CeO2-TiO2。催化剂中Rh元素含量为0.1wt%。
并在间歇釜反应器中进行CO2加氢性能评价,评价条件为250℃,3MPa。转化率和各产物选择性或分布结果见表3。
表3 Rh-CeO2-TiO2催化剂对CO2加氢的催化性能
从表3中结果可以看出,与现有相近方案相比,本发明制备的掺杂型载体负载的单原子催化剂具有更优异的催化活性和稳定性。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非用以限定本发明。对于所属领域的人员来说,在上述说明的基础上都可做出各种变化或变动。这里无法对所有的实施方式予以穷举。因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (5)

1.一种CO2加氢制乙醇的方法,其特征在于,所述方法中是在金属氧化物掺杂型单原子催化剂中通入CO2/H2合成气,在间歇釜反应器、固定床或浆态床中进行CO2加氢制备乙醇的反应;
所述金属氧化物掺杂型单原子催化剂的制备方法包括如下步骤:
(1)将载体前驱体溶解在水中,加入沉淀剂,混匀进行水热反应;其中,载体前驱体为水溶性的铈盐和钛酸酯;反应结束后,过滤、收集固体,干燥,然后在300~800 ℃下进行焙烧,得到金属氧化物掺杂型载体;
(2)将金属氧化物掺杂型载体分散在有机溶剂中,得到悬浮液,然后向悬浮液中加入活性金属前驱体,搅拌5~20 h,然后除去有机溶剂,得到固体,焙烧,得到金属氧化物掺杂型单原子催化剂;活性金属为Rh;
金属氧化物掺杂型单原子催化剂中活性组分含量占催化剂总质量的0.1%~10%;载体占催化剂总质量的90%~99.99%。
2. 根据权利要求1所述的方法,其特征在于,步骤(1)所述载体前驱体中金属相对水的浓度为0.2-1.0 mol/L。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中的沉淀剂为尿素、氨水中的一种或几种。
4. 根据权利要求1所述的方法,其特征在于,步骤(1)中水热反应的条件为:在高压釜中加热至50~120℃反应5~100 h,然后升至120~200℃继续反应1~20 h。
5.根据权利要求1-4任一项所述的方法,其特征在于,步骤(2)中悬浮液中金属氧化物掺杂型载体的浓度为0.02-0.1g/mL。
CN202211039495.XA 2022-08-29 2022-08-29 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用 Active CN115254100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211039495.XA CN115254100B (zh) 2022-08-29 2022-08-29 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039495.XA CN115254100B (zh) 2022-08-29 2022-08-29 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用

Publications (2)

Publication Number Publication Date
CN115254100A CN115254100A (zh) 2022-11-01
CN115254100B true CN115254100B (zh) 2024-07-30

Family

ID=83754056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039495.XA Active CN115254100B (zh) 2022-08-29 2022-08-29 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用

Country Status (1)

Country Link
CN (1) CN115254100B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888683B (zh) * 2022-11-15 2024-11-26 北京化工大学 一种锌单原子催化剂、其制备方法及在催化制备n-甲酰基化合物中的应用
CN115779980B (zh) * 2022-12-08 2024-02-13 常州大学 Ni/CeO2-Rh催化剂用于愈创木酚选择性加氢制备环己醇反应的应用
CN116099540A (zh) * 2023-03-15 2023-05-12 南京工业大学 一种二氧化碳加氢合成低碳醇铟基催化剂的制备方法及应用
CN116273032B (zh) * 2023-03-28 2024-08-23 中国科学院山西煤炭化学研究所 一种Cr-K改性铜铁复合氧化物及其制备方法和应用、二氧化碳加氢制低碳醇的方法
CN116474780B (zh) * 2023-04-23 2024-10-01 宁夏大学 一种用于直接co2加氢制乙醇的催化剂及其制备方法、应用
CN116474812B (zh) * 2023-04-25 2024-08-23 天津大学 一种催化VOCs氧化用催化剂的制备方法
CN116688980A (zh) * 2023-05-10 2023-09-05 江南大学 一种用于co2加氢制乙醇的高稳定性催化剂的制备与应用
CN118580882B (zh) * 2024-08-05 2024-11-05 洛阳恒玖生物能源有限公司 一种生物油脂制备saf的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713804A (zh) * 2021-08-05 2021-11-30 浙江大学 一种高比表面积金属氧化物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275004A (zh) * 2021-05-24 2021-08-20 南京师范大学 一种钯负载的模板剂改性镁铝水滑石催化剂及制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713804A (zh) * 2021-08-05 2021-11-30 浙江大学 一种高比表面积金属氧化物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts";Dong Wang等;《Chem. Commun.》;第52卷;摘要 *
"Hydrogenation of CO2 to methanol over CuCeTiOx catalysts";Kuan Chang等;《Applied Catalysis B: Environmental》;第206卷;第704-711页 *

Also Published As

Publication number Publication date
CN115254100A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN115254100B (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
CN105214658A (zh) 甲烷二氧化碳重整制合成气的催化剂及其制备方法
CN110102313B (zh) 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN110711582B (zh) 一种调控甲烷和一氧化碳选择性的催化剂制备方法及其应用
CN101444740A (zh) 一种生物油水蒸气重整制氢催化剂及其制备方法
CN111389404A (zh) 一种氧化铈负载镍催化剂的制备方法及其用途
CN106744677B (zh) 用RhNiCo/CeO2@C3N4纳米催化剂催化水合肼脱氢的方法
CN107597119A (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
CN111992213B (zh) 用于催化愈创木酚加氢脱氧制备环己醇的核壳型催化剂的制备方法
KR20140020492A (ko) 탄화수소 개질용 니켈 촉매
CN113842914B (zh) 一种二氧化碳合成甲醇的催化剂及其制备方法和应用
CN106914247A (zh) 一种用于二氧化碳甲烷化的镍基催化剂的制备及应用
CN111359644B (zh) 用于二甲醚水蒸气重整制氢的非贵金属基碳化钼催化剂及其制备方法和应用
WO2024230343A1 (zh) 一种用于co2加氢制乙醇的高稳定性催化剂的制备与应用
CN111217673A (zh) 一种乙醇高能化利用的方法
CN117427626A (zh) 一种高效催化二氧化碳加氢制甲醇的催化剂及其制备方法
CN113649014B (zh) 一种镍-锌基催化剂及其制备方法和应用
CN112371188B (zh) 一种高效甲烷化纳米催化剂的制备方法
CN116351428A (zh) 一种钠、钾作为助剂的逆水煤气变换催化剂的制备及应用
CN114522689A (zh) 一种草酸酯加氢制乙醇催化剂及制备方法
CN110180592B (zh) 一种用于二氧化碳加氢反应的催化剂的制备方法
CN101530809A (zh) 一种制备合成气的催化剂及制法和应用
CN115228468A (zh) 一种金属复合氧化物催化剂及其制备方法及在二氧化碳加氢制乙醇中的应用
CN115970742B (zh) 一种低温氧化ch4偶联co2直接制含氧化物的催化剂及其制备方法和应用
CN116212867B (zh) 一种水煤气变换反应催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant