[go: up one dir, main page]

CN115231624A - 一种高性价比无钴镍锰二元材料及其制备方法 - Google Patents

一种高性价比无钴镍锰二元材料及其制备方法 Download PDF

Info

Publication number
CN115231624A
CN115231624A CN202210520272.9A CN202210520272A CN115231624A CN 115231624 A CN115231624 A CN 115231624A CN 202210520272 A CN202210520272 A CN 202210520272A CN 115231624 A CN115231624 A CN 115231624A
Authority
CN
China
Prior art keywords
nickel
manganese
binary
cobalt
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210520272.9A
Other languages
English (en)
Inventor
张雷
陈腾飞
罗传军
许飞
焦玉春
任小磊
李佩琳
戚凤晓
刘飘
赵静
赵永锋
王震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Multi Fluorine New Energy Technology Co ltd
Original Assignee
Multi Fluorine New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Multi Fluorine New Energy Technology Co ltd filed Critical Multi Fluorine New Energy Technology Co ltd
Priority to CN202210520272.9A priority Critical patent/CN115231624A/zh
Publication of CN115231624A publication Critical patent/CN115231624A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种高性价比无钴镍锰二元材料及其制备方法,该制备方法包括以下步骤:S1:配置镍、锰摩尔浓度比为x:(1‑x)的二元混合盐液,将所述二元混合盐液与碱性沉淀剂和络合剂分别泵入反应釜中,通入保护气体,通过高速搅拌共沉淀制得二元镍锰前驱体,将所述二元镍锰前驱体洗涤、烘干和过筛后备用;S2:将所述二元镍锰前驱体与锂源和添加剂混合,在气氛炉中进行一定时间的高温烧结,经过冷却、破碎和筛分处理后,得到高性价比的无钴镍锰二元材料。本发明能够大大降低材料成本,提高循环性能,同时具有高容量和高性价比的特点。

Description

一种高性价比无钴镍锰二元材料及其制备方法
技术领域
本发明属于锂离子电池正极材料技术领域,具体涉及一种高性价比无钴镍锰二元材料及其制备方法。
背景技术
镍钴锰三元正极材料的成本组成中BOM成本占约80%的比重,高额的BOM成本是影响三元正极材料的关键因素,影响BOM成本的主要是镍、钴、锰三种元素中的钴,其中硫酸钴的价格是硫酸镍的2倍以上,是硫酸锰的10倍以上。因此2019年9月份以蜂巢为代表的电池厂也表示已经完成无钴电芯的初步电性能评估,认为无钴方向可行,并且已经开发出国际首款可以量产的镍锰电池。
目前国内市场上,小颗粒前驱体主要用于制备单晶型正极材料,大颗粒前驱体基本用于制备常规二次球型正极材料,但是单晶型材料的加工工艺更加复杂,对破碎筛分设备要求更高,而且容易产生微粉,需要增加工序进行去除,制造成本更高,而二次球型常规材料加工性能好,易过筛,但是在容量和循环性能方面劣于单晶材料。
基于成本和质量的双重压力,需要在当前基础上,开辟新的材料制备途径,镍锰材料由于抛弃钴元素,大大压缩了材料成本,但是因为缺少钴元素,导致材料的晶型结构不如传统的三元镍钴锰酸锂材料,循环稳定性会受到影响。
发明内容
本发明的目的是为了克服现有技术的不足,而提供一种高性价比无钴镍锰二元材料及其制备方法,能够大大降低材料成本,提高循环性能,同时具有高容量和高性价比的特点。
本发明采用的技术方案为:一种高性价比无钴镍锰二元材料的制备方法,包括以下步骤:
S1:配置镍、锰摩尔浓度比为x:(1-x)的二元混合盐液,将所述二元混合盐液与碱性沉淀剂和络合剂分别泵入反应釜中,通入保护气体,通过高速搅拌共沉淀制得二元镍锰前驱体,将所述二元镍锰前驱体洗涤、烘干和过筛后备用;
S2:将所述二元镍锰前驱体与锂源和添加剂混合,在气氛炉中进行一定时间的高温烧结,经过冷却、破碎和筛分处理后,得到无钴镍锰二元材料。
具体的,所述步骤S1中,制备的二元混合盐液所用的镍盐为硝酸镍、醋酸镍和硫酸镍中的一种,所用的锰盐为硝酸锰、醋酸锰和硫酸锰中的一种,0.50<x<0.75,所述二元混合盐液摩尔浓度为1~3mol/L。
具体的,所述步骤S1中所用的沉淀剂为氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、碳酸二氢钠、碳酸钾、碳酸氢钾、碳酸二氢钾溶液中的一种,沉淀剂浓度为4~10mol/L,所用的络合剂采用氨水和铵盐溶液中的一种,络合剂浓度为2~8mol/L,所采用的保护气体为氮气或氩气。
具体的,所述步骤S1中反应釜的转速为300~1000rpm。
具体的,所述步骤S1中的二元镍锰前驱体的粒度控制为D50<6.5μm。
具体的,所述步骤S2中的锂源为氢氧化锂、碳酸锂、硝酸锂和它们的水合物中的一种或多种,混合摩尔配比为Li:(Ni+Mn)=(1.01~1.12):1。
具体的,所述步骤S2中的添加剂为氟化锂、三氟化铝或锆、钇、铝、镁、钛、硼、锶、钨、铌、钼的元素化合物中的一种或几种,所述添加剂与二元镍锰前驱体的比例为(0.05%~0.5%):1。
具体的,所述步骤S2中的气氛炉内的氧浓度为20%~99.9%。
具体的,所述步骤S2中的烧结分为预烧阶段和高温阶段,所述预烧阶段的温度为200-700℃,保温时间为1-8h,所述高温阶段的温度为850-1000℃,保温时间为5-18h。
一种高性价比无钴镍锰二元材料,采用权利要求1-9任一项所述的无钴镍锰二元材料的制备方法制备得到,产物化学式为LiNixMnyO2,其中0.50<x<0.75,且x+y=1,所述无钴镍锰二元材料的形貌为单晶型或二次球型,单晶型粒度分布为1μm≤D50<4μm,二次球型粒度分布为1μm≤D50<6.5μm。
本发明的有益效果:本发明采用小颗粒无钴镍锰二元前驱体,去掉钴元素,大大降低了材料成本;小颗粒前驱体既能烧制成单晶形貌,做成高电压型材料,又能烧结成二次球形貌,相比单晶材料加工成本更低,通过烧结温度、烧结时间和添加剂的优化,使得材料保留较高的容量,具有较高循环稳定性,综合性价比高。
附图说明
图1为本发明实施例1制备得到的无钴镍锰二元材料SEM图;
图2为本发明实施例1制备得到的无钴镍锰二元材料扣电0.1C充0.2C放电的电压-容量曲线图;
图3为本发明实施例2制备得到的无钴镍锰二元材料SEM图;
图4为本发明实施例2制备得到的无钴镍锰二元材料扣电0.1C充0.2C放电的电压-容量曲线图;
图5为本发明实施例3制备得到的二元镍锰前驱体的SEM图;
图6为本发明实施例3制备得到的无钴镍锰二元材料SEM图;
图7为本发明实施例3制备得到的无钴镍锰二元材料扣电0.1C充0.2C放电的电压-容量曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围,以下结合实施例具体说明。
实施例1
采用硝酸镍和硝酸锰配置镍锰摩尔浓度比为6:4的二元混合盐液,二元混合盐液摩尔浓度为2mol/L,配置摩尔浓度为8mol/L的氢氧化钠溶液作为沉淀剂和2mol/L的氨水溶液作为络合剂,将二元混合盐液、氢氧化钠溶液和氨水分别用计量泵泵入50L到反应釜中,通入保护气体氮气,将反应釜电机转速调整到850rpm,固定盐液进料速率,调整氢氧化钠和氨水进料速率,将体系PH控制在11.2~11.5之间,生成粒度D50在3~4μm之间的二元镍锰前驱体,将此二元镍锰前驱体用清水洗涤,放置在鼓风干燥箱内120℃烘干12小时,过筛后备用;将过筛后的二元镍锰前驱体与碳酸锂按照摩尔比1:1.06的配比称料,并且掺入氧化钛,质量占二元镍锰前驱体质量的0.15%,将称好的原料加入到高效混料机中,进行均匀混合,保证二元镍锰前驱体和锂源混合均匀,不存在白点和结块,将混合好的物料装到陶瓷匣钵中进炉烧结,通入空气,600℃预保温3h,然后升温到950℃保温10h,然后缓慢降温至室温,得到无钴镍锰二元材料,该材料为类单晶材料,对其进行扫描得到的扫描电镜图如附图1所示,将制备的无钴镍锰二元材料做成扣电,扣电0.1C充0.2C放电的电压-容量的曲线如附图2所示。
实施例2
采用硝酸镍和硝酸锰配置镍锰摩尔浓度比为6:4的二元混合盐液,二元混合盐液摩尔浓度为1.5mol/L,配置摩尔浓度为8mol/L的氢氧化钠溶液作为沉淀剂和2mol/L的氨水溶液作为络合剂,将二元混合盐液、氢氧化钠溶液和氨水分别用计量泵泵入50L到反应釜中,通入保护气体氮气,将反应釜电机转速调整到300rpm,固定盐液进料速率,调整氢氧化钠和氨水进料速率,将体系PH控制在11.0~11.2之间,生成粒度D50在5~6μm之间的二元镍锰前驱体,将此二元镍锰前驱体用清水洗涤,放置在鼓风干燥箱内120℃烘干12小时,过筛后备用;将过筛后的二元镍锰前驱体与碳酸锂按照摩尔比1:1.08的配比称料,并且掺入氧化铝,质量占二元镍锰前驱体质量的0.12%,将称好的原料加入到高效混料机中,进行均匀混合,保证二元镍锰前驱体和锂源混合均匀,不存在白点和结块,将混合好的物料装到陶瓷匣钵中进炉烧结,通入高纯氧气,700℃预保温2h,然后升温到980℃保温10h,然后缓慢降温至室温,得到无钴镍锰二元材料,对其进行扫描得到的扫描电镜图如附图3所示,该材料为单晶材料,将制备的无钴镍锰二元材料做成扣电,扣电0.1C充0.2C放电的电压-容量的曲线如附图4所示。
实施例3
采用硝酸镍和硝酸锰配置镍锰摩尔浓度比为6:4的二元混合盐液,二元混合盐液摩尔浓度为2mol/L,配置摩尔浓度为8mol/L的氢氧化钠溶液作为沉淀剂和2mol/L的氨水溶液作为络合剂,将二元混合盐液、氢氧化钠溶液和氨水分别用计量泵泵入50L到反应釜中,通入保护气体氮气,将反应釜电机转速调整到300rpm,固定盐液进料速率,调整氢氧化钠和氨水进料速率,将体系游离NH3浓度控制在9.5~10.0g/L之间,生成粒度D50在5.5~6.5μm之间的二元镍锰前驱体,前驱体SEM形貌如附图5所示,将此二元镍锰前驱体用清水洗涤,放置在鼓风干燥箱内120℃烘干12小时,过筛后备用;将过筛后的二元镍锰前驱体与碳酸锂按照摩尔比1:1.08的配比称料,并且掺入氧化锆和氧化铝,质量分别占二元镍锰前驱体质量的0.20%和0.15%,将称好的原料加入到高效混料机中,进行均匀混合,保证二元镍锰前驱体和锂源混合均匀,不存在白点和结块,将混合好的物料装到陶瓷匣钵中进炉烧结,通入高纯氧气,700℃预保温2h,然后升温到985℃保温10h,然后缓慢降温至室温,得到无钴镍锰二元材料,该材料为单晶形貌,对其进行扫描得到的扫描电镜图如附图6所示,将制备的无钴镍锰二元材料做成扣电,扣电0.1C充0.2C放电的电压-容量的曲线如附图7所示。
根据上述三个实施例的实验结果,对比图2、图4和图7充放电曲线的结果,能够发现,将材料完全单晶化以后,能够显著提高材料的克容量,根据扣电充放电曲线能够得知,放电容量从165mAh/g提高到了180mAh/g左右,提高了约15mAh/g,效果显著,本发明采用的小颗粒无钴镍锰二元前驱体能够烧制成单晶形貌,做成高电压型材料,通过烧结温度、烧结时间和添加剂的优化,使得无钴镍锰二元材料保留了较高的容量,从而具有较高循环稳定性,综合性价比高。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的得同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (10)

1.一种高性价比无钴镍锰二元材料的制备方法,其特征在于,包括以下步骤:
S1:配置镍、锰摩尔浓度比为x:(1-x)的二元混合盐液,将所述二元混合盐液与碱性沉淀剂和络合剂分别泵入反应釜中,通入保护气体,通过高速搅拌共沉淀制得二元镍锰前驱体,将所述二元镍锰前驱体洗涤、烘干和过筛后备用;
S2:将所述二元镍锰前驱体与锂源和添加剂混合,在气氛炉中进行一定时间的高温烧结,经过冷却、破碎和筛分处理后,得到无钴镍锰二元材料。
2.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S1中,制备的二元混合盐液所用的镍盐为硝酸镍、醋酸镍和硫酸镍中的一种,所用的锰盐为硝酸锰、醋酸锰和硫酸锰中的一种,0.50<x<0.75,所述二元混合盐液摩尔浓度为1~3mol/L。
3.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S1中所用的沉淀剂为氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、碳酸二氢钠、碳酸钾、碳酸氢钾、碳酸二氢钾溶液中的一种,沉淀剂浓度为4~10mol/L,所用的络合剂采用氨水和铵盐溶液中的一种,络合剂浓度为2~8mol/L,所采用的保护气体为氮气或氩气。
4.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S1中反应釜的转速为300~1000rpm。
5.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S1中的二元镍锰前驱体的粒度控制为D50<6.5μm。
6.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S2中的锂源为氢氧化锂、碳酸锂、硝酸锂和它们的水合物中的一种或多种,混合摩尔配比为Li:(Ni+Mn)=(1.01~1.12):1。
7.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S2中的添加剂为氟化锂、三氟化铝或锆、钇、铝、镁、钛、硼、锶、钨、铌、钼的元素化合物中的一种或几种,所述添加剂与二元镍锰前驱体的比例为(0.05%~0.5%):1。
8.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S2中的气氛炉内的氧浓度为20%~99.9%。
9.根据权利要求1所述的一种高性价比无钴镍锰二元材料的制备方法,其特征在于:所述步骤S2中的烧结分为预烧阶段和高温阶段,所述预烧阶段的温度为200-700℃,保温时间为1-8h,所述高温阶段的温度为850-1000℃,保温时间为5-18h。
10.一种高性价比无钴镍锰二元材料,其特征在于:所述无钴镍锰二元材料采用权利要求1-9任一项所述的无钴镍锰二元材料的制备方法制备得到,产物化学式为LiNixMnyO2,其中0.50<x<0.75,且x+y=1,所述无钴镍锰二元材料的形貌为单晶型或二次球型,单晶型粒度分布为1μm≤D50<4μm,二次球型粒度分布为1μm≤D50<6.5μm。
CN202210520272.9A 2022-05-12 2022-05-12 一种高性价比无钴镍锰二元材料及其制备方法 Pending CN115231624A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210520272.9A CN115231624A (zh) 2022-05-12 2022-05-12 一种高性价比无钴镍锰二元材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210520272.9A CN115231624A (zh) 2022-05-12 2022-05-12 一种高性价比无钴镍锰二元材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115231624A true CN115231624A (zh) 2022-10-25

Family

ID=83667684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210520272.9A Pending CN115231624A (zh) 2022-05-12 2022-05-12 一种高性价比无钴镍锰二元材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115231624A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199027A (zh) * 2018-01-09 2018-06-22 江西理工大学 一种铌掺杂无钴镍基正极材料及其制备方法
CN111816877A (zh) * 2020-07-13 2020-10-23 四川长虹电器股份有限公司 一种高镍无钴四元正极材料及其制备方法
CN112694137A (zh) * 2020-12-24 2021-04-23 荆门市格林美新材料有限公司 小粒径无钴富锂锰基固溶体与钒酸锂复合材料及制备方法
CN113161548A (zh) * 2021-03-29 2021-07-23 广东邦普循环科技有限公司 一种无钴的镍锰正极材料及其制备方法和应用
CN114057236A (zh) * 2021-11-01 2022-02-18 广东佳纳能源科技有限公司 镍锰二元复合正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199027A (zh) * 2018-01-09 2018-06-22 江西理工大学 一种铌掺杂无钴镍基正极材料及其制备方法
CN111816877A (zh) * 2020-07-13 2020-10-23 四川长虹电器股份有限公司 一种高镍无钴四元正极材料及其制备方法
CN112694137A (zh) * 2020-12-24 2021-04-23 荆门市格林美新材料有限公司 小粒径无钴富锂锰基固溶体与钒酸锂复合材料及制备方法
CN113161548A (zh) * 2021-03-29 2021-07-23 广东邦普循环科技有限公司 一种无钴的镍锰正极材料及其制备方法和应用
CN114057236A (zh) * 2021-11-01 2022-02-18 广东佳纳能源科技有限公司 镍锰二元复合正极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN113636606B (zh) 一种锂离子电池富镍无钴单晶正极材料的制备方法及应用
CN108878799B (zh) 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN109037605B (zh) 一种高循环镍钴锰三元材料及其制备方法
CN113087025B (zh) 锂电池复合正极材料的前驱体及复合正极材料的制备方法
CN109037614B (zh) 一种高压实单晶镍钴锰三元材料及其制备方法
CN113258072A (zh) 一种镍钴锰正极材料及其制备方法
CN110589901A (zh) 镍钴锰酸锂正极材料(Ni≥0.8)的制备方法
CN112342605A (zh) 一种低成本低钴单晶三元正极材料及其制备方法
CN112830524A (zh) 一种单晶型锂的过渡金属氧化物正极材料及其制备方法和应用
CN115663173A (zh) 一种富钠层状氧化物材料及其制备方法和应用
JP2023036570A (ja) 大結晶粒凝集体三元正極材料、その製造方法およびリチウムイオン電池
CN113603153A (zh) 一种钨掺杂高镍无钴前驱体及其制备方法
CN115974174A (zh) 一种钠离子电池正极材料前驱体及其制备方法
CN114665090A (zh) 一种一步低温制备大粒径单晶三元正极材料的方法
CN105753072B (zh) 一种镍锰酸锂、其制备方法及用途
CN103943862A (zh) 磷酸盐表面包覆的二元层状锂离子电池正极材料及其制备方法
CN113991112A (zh) 一种掺杂纳米二氧化钛磷酸铁锂正极材料的制备方法
CN106816579B (zh) 一种冷冻结晶法制备镍钴锰酸锂锂离子电池正极材料方法
CN114426313A (zh) 一种高能量密度三元正极材料及其制备方法和应用
CN103972495A (zh) 一种锂离子电池正极材料镍锰酸锂的制备方法
CN113903909A (zh) 一种钴纳米涂层改性的富镍低钴单晶多元正极材料及其制备方法
CN112678879A (zh) 一种单晶三元正极材料的制备方法
CN110350162B (zh) 一种倍率型镍钴铝正极材料及其制备方法和应用
JP2024546419A (ja) 多元素共ドープによるナトリウムイオン正極材料及びその調製方法並びに使用
CN112382739A (zh) 一种表面包覆改性的镍钴锰酸锂三元正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221025