CN115166010A - Flow self-adaptive intelligent gas calibration control method - Google Patents
Flow self-adaptive intelligent gas calibration control method Download PDFInfo
- Publication number
- CN115166010A CN115166010A CN202210748975.7A CN202210748975A CN115166010A CN 115166010 A CN115166010 A CN 115166010A CN 202210748975 A CN202210748975 A CN 202210748975A CN 115166010 A CN115166010 A CN 115166010A
- Authority
- CN
- China
- Prior art keywords
- flow
- calibration
- overflow
- air inlet
- numerical control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000000630 rising effect Effects 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 56
- 238000012360 testing method Methods 0.000 description 21
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
技术领域technical field
本发明涉及智能气体标定控制方法,具体涉及一种流量自适应的智能气体标定控制方法。The invention relates to an intelligent gas calibration control method, in particular to a flow adaptive intelligent gas calibration control method.
背景技术Background technique
在能源化工、材料研发等领域的基础科研实验研究中,不可避免的需要各类成分检测设备对实验中的气体组份进行精确测量,如质谱分析仪、色谱分析仪、化学发光法检测器等等。所有精密检测设备运行前,均需经历目标气体标定阶段,即要用已知特定浓度的标定气对仪器进行标定,确定该浓度下对应的信号强度,以此校准测试设备测试精度实现基础实验过程中对目标气体浓度的精准测量。但是,由于不同的精密检测设备、不同型号的检测设备其量程、测量进气量等均不相同。因此,在标定时对于标定气的进气流量要求也各不相同。使用过大或者过小的气体流量进行标定会对检测设备的测量准确度造成干扰,长时间错误标定甚至会损坏仪器设备。此外,上述情况同样造成在标定不同的精密检测设备时,需根据仪器设备的特性参考设备使用说明书针对该仪器专门进行标定气流量的调节,大大减缓整体实验效率。因此,为了简化繁琐的标定流程实现实验检测过程尤其是设备标定过程的优化改进,现急需一种可以自动检测不同测试设备标定气体需求流量并同时实现以最优流量标定的智能标定方法。In the basic scientific research and experimental research in the fields of energy chemical industry, material research and development, etc., it is inevitable to need various component detection equipment to accurately measure the gas components in the experiment, such as mass spectrometers, chromatographic analyzers, chemiluminescence detectors, etc. Wait. All precision testing equipment needs to go through the target gas calibration stage before running, that is to use a calibration gas with a known specific concentration to calibrate the instrument to determine the corresponding signal intensity at this concentration, so as to calibrate the testing accuracy of the testing equipment and realize the basic experimental process Accurate measurement of target gas concentration in However, due to different precision testing equipment and different types of testing equipment, the measuring range and air intake volume are different. Therefore, the intake flow requirements for the calibration gas are also different during calibration. Using too large or too small gas flow for calibration will interfere with the measurement accuracy of the testing equipment, and long-term incorrect calibration may even damage the equipment. In addition, the above situation also results in that when calibrating different precision testing equipment, it is necessary to adjust the calibration gas flow specifically for the instrument according to the characteristics of the equipment and refer to the equipment instruction manual, which greatly slows down the overall experimental efficiency. Therefore, in order to simplify the tedious calibration process and realize the optimization and improvement of the experimental detection process, especially the equipment calibration process, there is an urgent need for an intelligent calibration method that can automatically detect the required flow rate of calibration gases of different test equipment and achieve calibration with the optimal flow rate at the same time.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服已有技术的难题,提供一种无需提前确定检测设备标定气气体需求流量,而采用溢流控制策略智能调节标定气气体流量,从而实现自动寻找最佳标定气体流量并以此流量进行标定的智能气体标定控制方法。The purpose of the present invention is to overcome the difficulties of the prior art, and to provide a method that does not need to determine the required flow rate of the calibration gas of the detection equipment in advance, but adopts the overflow control strategy to intelligently adjust the flow rate of the calibration gas, so as to automatically find the best calibration gas flow and use This flow is calibrated with an intelligent gas calibration control method.
本发明的一种流量自适应的智能气体标定控制方法,包括以下步骤:A flow adaptive intelligent gas calibration control method of the present invention includes the following steps:
步骤一、连接标定控制装置,所述的标定控制装置包括进气管路,所述的进气管路一端连接标定气供气源并且另一端依次连接减压阀、进气数控流量计、三通连接件以及待标定检测设备,所述的三通连接件的一个阀口通过溢流管路依次连接溢流数控流量计以及排气管路,所述的进气数控流量计以及溢流数控流量计分别通过数据传输线与PID控制器连接;Step 1. Connect the calibration control device. The calibration control device includes an intake pipeline, one end of the intake pipeline is connected to the calibration gas supply source and the other end is connected to the pressure reducing valve, the intake numerical control flowmeter, and the three-way connection in turn. A valve port of the three-way connector is connected to the overflow numerical control flowmeter and the exhaust pipe in turn through the overflow pipeline, the intake numerical control flowmeter and the overflow numerical control flowmeter. They are respectively connected with the PID controller through the data transmission line;
步骤二、设置待标定检测设备的运行模式为标定模式;Step 2: Set the operation mode of the testing equipment to be calibrated as the calibration mode;
步骤三、运行所述的标定控制装置,具体步骤为:Step 3: Running the calibration control device, the specific steps are:
第一步,通过所述减压阀调节进入进气管路的标定气进气压力为1~2bar,使得进气管路中保持1~2bar的气体压力;The first step is to adjust the intake pressure of the calibration gas entering the intake pipeline to be 1-2 bar through the pressure reducing valve, so that the gas pressure of 1-2 bar is maintained in the intake pipeline;
第二步,启动PID控制器,PID控制器向进气数控流量计输出控制信号,控制进气数控流量计的电子阀门开度使得进气管路流量从0mL/min开始,以50~100mL/s的速度进行流量的提升,当进气流量未满足检测设备标定流量时,标定气气体通过三通连接件被持续吸入待标定检测设备;随着进气流量的提升,当进气流量满足待标定仪器的标定流量时,多余的气体通过溢流管路流出,在此过程中溢流流量通过溢流数控流量计进行测量,溢流数控流量计将溢流流量信号反馈给PID控制器;当溢流流量达到进气流量当前数值的5%~10%时,PID控制器通过数据传输线向进气数控流量计发送保持当前开度指令,使进气管路中流量停止上升并保持当前气体流量;The second step, start the PID controller, the PID controller outputs a control signal to the intake numerical control flowmeter, and controls the electronic valve opening of the intake numerical control flowmeter so that the flow rate of the intake pipeline starts from 0mL/min, and reaches 50~100mL/s. When the intake flow does not meet the calibration flow of the testing equipment, the calibration gas is continuously sucked into the testing device to be calibrated through the three-way connector; with the increase of the intake flow, when the intake flow meets the calibration flow During the calibration flow of the instrument, the excess gas flows out through the overflow pipeline. During this process, the overflow flow is measured by the overflow numerical control flowmeter, and the overflow numerical control flowmeter feeds back the overflow flow signal to the PID controller; When the flow rate reaches 5% to 10% of the current value of the intake flow, the PID controller sends a command to maintain the current opening to the intake numerical control flowmeter through the data transmission line, so that the flow in the intake pipeline stops rising and maintains the current gas flow;
步骤四、采用当前的气体流量,操作待标定检测设备的标定模式进入校准程序;
步骤五、完成校准程序后关闭待标定检测设备的标定模式以及标定控制装置;
步骤六、开启标定后检测设备的测量模式,即可开始实验测量。
本发明与现有的技术相比具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
对精密检测设备而言,待测气体浓度标定是气体浓度测量过程中最重要的步骤之一。检测设备标定过程中,设备会通过自身真空泵以一定流量抽取标定气气体进行测量。通过对比设备的测量信号幅值与已知浓度的标定气数值,从而实现测量信号与浓度的转换。为了实现准确的待测气体浓度标定,现有标定方法需要提前确定检测设备标定过程中所需的标定气气体流量,从而通过流量计手动通入特定流量的标定气进行标定。而本发明相比现有技术,可在不明确待测设备所需标定气气体流量的条件下,通过数控流量计并结合溢流反馈控制策略,实现自动确定待测设备最佳标定气气体流量并以最佳标定气气体流量进行标定的功能。For precision testing equipment, the calibration of the gas concentration to be measured is one of the most important steps in the gas concentration measurement process. During the calibration process of the testing equipment, the equipment will extract the calibration gas at a certain flow rate through its own vacuum pump for measurement. By comparing the amplitude of the measured signal of the device with the calibration gas value of known concentration, the conversion of the measured signal and the concentration is realized. In order to achieve accurate calibration of the gas concentration to be measured, the existing calibration method needs to determine the calibration gas flow required in the calibration process of the detection equipment in advance, so that a specific flow of calibration gas is manually passed through the flow meter for calibration. Compared with the prior art, the present invention can automatically determine the optimal calibration gas flow rate of the equipment to be tested by using the numerical control flowmeter combined with the overflow feedback control strategy without knowing the flow rate of the calibration gas required by the equipment to be tested. And the function of calibration with the best calibration gas flow.
附图说明Description of drawings
图1是采用本发明的一种流量自适应的智能气体标定控制方法的装置的结构示意图。FIG. 1 is a schematic structural diagram of a device adopting a flow adaptive intelligent gas calibration control method of the present invention.
具体实施方式Detailed ways
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。The following examples further illustrate the content of the present invention, but should not be construed as limiting the present invention. Modifications and substitutions made to the methods, steps or conditions of the present invention without departing from the essence of the present invention all belong to the scope of the present invention.
如图1所示的本发明的一种流量自适应的智能气体标定控制方法,包括以下步骤:As shown in Figure 1, a flow adaptive intelligent gas calibration control method of the present invention includes the following steps:
步骤一、连接标定控制装置,所述的标定控制装置包括进气管路3,所述的进气管路3一端连接标定气供气源并且另一端依次连接减压阀2、进气数控流量计4、三通连接件5以及待标定检测设备,所述的三通连接件5的一个阀口通过溢流管路7依次连接溢流数控流量计8以及排气管路,所述的进气数控流量计4以及溢流数控流量计8分别通过数据传输线11与PID控制器10连接;本步骤采用的进气数控流量计4自带电子阀门;Step 1. Connect the calibration control device. The calibration control device includes an
其中减压阀2用于调节标定气气瓶出口压力并稳定进气管路压力。进气数控流量计4用于调节进气管路中进气流量。三通连接件5用于连接进气管路、待测设备以及溢流管路。溢流管路7用于排除管路中多余的气体,并通过溢流管路7的溢流排气口9连接到排气管路中。溢流数控流量计8用于测量并监控溢流管路中溢流流量,并发送反馈信号至PID控制器10。PID控制器用于根据溢流流量计的流量信号对进气数控流量计进行反馈控制并显示当前进气数控流量计与溢流数控流量计流量数值。The
步骤二、设置待标定检测设备的运行模式为标定模式;Step 2: Set the operation mode of the testing equipment to be calibrated as the calibration mode;
步骤三、运行所述的标定控制装置,具体步骤为:Step 3: Running the calibration control device, the specific steps are:
第一步,通过所述减压阀2调节进入进气管路3的标定气进气压力为1~2bar,使得进气管路3中保持1~2bar的气体压力;The first step is to adjust the inlet pressure of the calibration gas entering the
第二步,启动PID控制器,PID控制器向进气数控流量计4输出控制信号,控制进气数控流量计4的电子阀门开度使得进气管路流量从0mL/min开始,以50~100mL/s的速度进行流量的提升,当进气流量未满足检测设备标定流量时,标定气气体通过三通连接件被持续吸入待标定检测设备;随着进气流量的提升,当进气流量满足待标定仪器的标定流量时,多余的气体通过溢流管路7流出,在此过程中溢流流量通过溢流数控流量计8进行测量,溢流数控流量计8将溢流流量信号反馈给PID控制器10;当溢流流量达到进气流量当前数值的5%~10%时,PID控制器10通过数据传输线11向进气数控流量计4发送保持当前开度指令,使进气管路中流量停止上升并保持当前气体流量;让当前气体流量大于设备标定流量,并不会采用设备刚好所需的标定流量进行标定。防止因流量波动使设备吸入环境气体造成标定浓度波动,从而产生误差。The second step is to start the PID controller, and the PID controller outputs a control signal to the intake
步骤四、采用当前的气体流量,操作待标定检测设备的标定模式进入校准程序;
步骤五、完成校准程序后关闭待标定检测设备的标定模式以及标定控制装置;
步骤六、开启标定后检测设备的测量模式,即可开始实验测量。
实施例Example
在实验前对检测设备-质谱仪进行待测气体浓度标定,准备好质谱仪、标定气以及本发明所提到的流量自适应智能标定系统。Before the experiment, the detection equipment-mass spectrometer is calibrated for the concentration of the gas to be measured, and the mass spectrometer, the calibration gas and the flow adaptive intelligent calibration system mentioned in the present invention are prepared.
1.将标定气气瓶连接口1与5MPa的1000ppm浓度的NO标定气气瓶进行连接,将待标定仪器接口6与待标定质谱仪进行连接,将溢流排气口9与实验室排气管路进行连接。标定气指已知浓度的气体,用来标定使用。利用该气体对设备的测量信号进行标定,标定后认为该设备测量信号数值代表该浓度;1. Connect the calibration gas cylinder connection port 1 to the NO calibration gas cylinder of 5MPa with a concentration of 1000ppm, connect the to-
2.打开减压阀并调整进气流量为1bar。打开质谱仪自带的标定程序并运行质谱仪的标定程序。2. Open the pressure reducing valve and adjust the intake air flow to 1bar. Open the calibration program that comes with the mass spectrometer and run the calibration program for the mass spectrometer.
3.通电并开启PID控制器工作开关,通过PID控制器10开启进气流量计升流量程序。3. Power on and turn on the working switch of the PID controller, and start the flow rate increase program of the intake air flow through the
4.从PID控制器的面板显示屏可监控进气流量与溢流流量。随着升流量程序运行,此时进气管路流量从0mL/min以50mL/s的上升速度逐渐提高管路中气体流量。4. The intake air flow and overflow flow can be monitored from the panel display of the PID controller. As the flow-up program runs, the flow rate of the intake pipeline is gradually increased from 0mL/min at a rising speed of 50mL/s.
5.等待直到溢流流量计出现流量,PID反馈控制通过比较进气流量与溢流流量数值。5. Wait until the overflow flow meter shows flow, and the PID feedback control compares the intake flow with the overflow flow value.
6.当溢流流量达到60mL/min时,此时进气流量显示为600mL/min。通过PID控制器计算此时溢流流量达到进气流量的10%,随即发送指令给进气流量计使进气流量停止上升,并保持600mL/min持续进气。6. When the overflow flow reaches 60mL/min, the intake flow rate is displayed as 600mL/min. The PID controller calculates that the overflow flow reaches 10% of the intake flow at this time, and then sends an instruction to the intake flowmeter to stop the intake flow and maintains continuous intake at 600mL/min.
7.此时可通过PID控制器面板显示的进气流量与溢流流量数值相减得到该质谱仪标定所需进气流量为540mL/min。保持目前的600mL/min标定气进气流量,使标定系统始终有60mL/min的标定气溢流流量,开始标定。本步骤不会采用设备刚好所需的540mL/min流量进行标定。防止因流量波动使设备吸入环境气体造成标定浓度波动,从而产生误差。7. At this time, the intake flow rate required for the calibration of the mass spectrometer can be obtained by subtracting the intake flow rate and the overflow flow rate displayed on the PID controller panel to be 540mL/min. Keep the current 600mL/min calibration gas inlet flow, so that the calibration system always has a calibration gas overflow flow of 60mL/min, and start the calibration. This step will not use the 540mL/min flow rate that the device just needs to be calibrated. To prevent the calibration concentration fluctuation caused by the equipment inhaling ambient gas due to flow fluctuation, resulting in errors.
8.在质谱仪标定程序中输入已知NO标定气气体浓度1000ppm进行校准,此时质谱仪根据目前NO测量信号幅值以及输入的NO浓度数值,自动校准信号幅值与浓度的对应关系,从而完成标定。8. Enter the known NO calibration gas concentration of 1000ppm in the mass spectrometer calibration program for calibration. At this time, the mass spectrometer automatically calibrates the corresponding relationship between the signal amplitude and the concentration according to the current NO measurement signal amplitude and the input NO concentration value. Calibration is complete.
9.完成标定后,关闭设备标定程序,关闭减压阀,关闭标定控制装置。9. After completing the calibration, close the equipment calibration procedure, close the pressure reducing valve, and close the calibration control device.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210748975.7A CN115166010B (en) | 2022-06-29 | 2022-06-29 | Flow self-adaptive intelligent gas calibration control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210748975.7A CN115166010B (en) | 2022-06-29 | 2022-06-29 | Flow self-adaptive intelligent gas calibration control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115166010A true CN115166010A (en) | 2022-10-11 |
CN115166010B CN115166010B (en) | 2024-09-13 |
Family
ID=83488609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210748975.7A Active CN115166010B (en) | 2022-06-29 | 2022-06-29 | Flow self-adaptive intelligent gas calibration control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115166010B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115617085A (en) * | 2022-12-19 | 2023-01-17 | 星宇电子(宁波)有限公司 | High-pressure gas pressure control valve |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221416A (en) * | 2004-02-06 | 2005-08-18 | Horiba Ltd | Calibration method for infrared gas analyzer |
KR100782155B1 (en) * | 2006-06-27 | 2007-12-06 | 한국표준과학연구원 | Gas flow measurement device for flowmeter calibration |
CN202305563U (en) * | 2011-07-25 | 2012-07-04 | 天津空中代码工程应用软件开发有限公司 | Calibration device of sensor measuring speed of gas-liquid two-phase flow and gas content |
WO2015140343A1 (en) * | 2014-03-21 | 2015-09-24 | Avl List Gmbh | Calibrating unit for an exhaust-gas measuring device |
CN204705623U (en) * | 2014-12-02 | 2015-10-14 | 广西电网有限责任公司南宁供电局 | A kind of gas diverter measured for multitask |
CN106383198A (en) * | 2016-11-24 | 2017-02-08 | 天津大学 | Device and method for simulating influence of diesel engine waste gas recirculation on tail gas exhaust |
CN207366288U (en) * | 2017-10-26 | 2018-05-15 | 西安圆方环境卫生检测技术有限公司 | A kind of caliberating device of toxic gas sample devices |
CN208383250U (en) * | 2018-07-30 | 2019-01-15 | 锦州天辰博锐仪表有限公司 | Mass flowmeter for small flow caliberating device |
CN110927346A (en) * | 2019-12-24 | 2020-03-27 | 中国航空工业集团公司西安飞机设计研究所 | A kind of gas concentration test system calibration method and device |
CN111579013A (en) * | 2020-05-26 | 2020-08-25 | 北京七星华创流量计有限公司 | Gas mass flow controller and flow calibration method thereof |
-
2022
- 2022-06-29 CN CN202210748975.7A patent/CN115166010B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221416A (en) * | 2004-02-06 | 2005-08-18 | Horiba Ltd | Calibration method for infrared gas analyzer |
KR100782155B1 (en) * | 2006-06-27 | 2007-12-06 | 한국표준과학연구원 | Gas flow measurement device for flowmeter calibration |
CN202305563U (en) * | 2011-07-25 | 2012-07-04 | 天津空中代码工程应用软件开发有限公司 | Calibration device of sensor measuring speed of gas-liquid two-phase flow and gas content |
WO2015140343A1 (en) * | 2014-03-21 | 2015-09-24 | Avl List Gmbh | Calibrating unit for an exhaust-gas measuring device |
CN204705623U (en) * | 2014-12-02 | 2015-10-14 | 广西电网有限责任公司南宁供电局 | A kind of gas diverter measured for multitask |
CN106383198A (en) * | 2016-11-24 | 2017-02-08 | 天津大学 | Device and method for simulating influence of diesel engine waste gas recirculation on tail gas exhaust |
CN207366288U (en) * | 2017-10-26 | 2018-05-15 | 西安圆方环境卫生检测技术有限公司 | A kind of caliberating device of toxic gas sample devices |
CN208383250U (en) * | 2018-07-30 | 2019-01-15 | 锦州天辰博锐仪表有限公司 | Mass flowmeter for small flow caliberating device |
CN110927346A (en) * | 2019-12-24 | 2020-03-27 | 中国航空工业集团公司西安飞机设计研究所 | A kind of gas concentration test system calibration method and device |
CN111579013A (en) * | 2020-05-26 | 2020-08-25 | 北京七星华创流量计有限公司 | Gas mass flow controller and flow calibration method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115617085A (en) * | 2022-12-19 | 2023-01-17 | 星宇电子(宁波)有限公司 | High-pressure gas pressure control valve |
Also Published As
Publication number | Publication date |
---|---|
CN115166010B (en) | 2024-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105974062B (en) | A kind of gas sensor calibrating installation and its calibration method | |
CN106706487B (en) | Remote full-flow calibration system for flue gas and ambient air on-line monitoring equipment | |
EP3480593B1 (en) | Method and system for calibrating a gas analysis apparatus | |
CN108226387B (en) | Vehicle-mounted exhaust gas analysis system, inspection method thereof, storage medium, and inspection system | |
CN115166010B (en) | Flow self-adaptive intelligent gas calibration control method | |
CN203519626U (en) | Automatic calibration device for transformer gas in oil | |
CN106770940B (en) | A kind of check device of gas analyzer system | |
CN204064740U (en) | Pressure stability sampling apparatus | |
CN104122122A (en) | Pressure stabilizing sampling device | |
CN211627369U (en) | A kind of device for automatically monitoring the content of acetic anhydride | |
CN115236273A (en) | Multi-gas-path valve box for gas analyzer | |
CN202149889U (en) | Intelligent resistance-capacitance type dew point instrument with high precision | |
CN102252966A (en) | Bubble eliminating structure for photometer of glycosylated hemoglobin analyzer | |
CN107869492A (en) | A kind of proportioning valve is performance test bed | |
CN111638263A (en) | Gas sampling and analyzing device and method | |
WO2023276762A1 (en) | Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system | |
CN202083679U (en) | Glycosylated hemoglobin analyzer photometer bubble eliminating structure | |
CN215953498U (en) | Sulphide diluting device | |
CN201653847U (en) | A test device for oxygen permeability of corneal repair materials | |
CN207502393U (en) | The dilution error detection device of calibrating gas dilution device based on infra-red gas analyzer | |
CN112051231B (en) | A method and device for preventing water from entering into a cavity ring-down closed-circuit flux analyzer | |
JP2019053058A (en) | Particle analyzer | |
CN211086032U (en) | A device for checking ventilation rate standard rods | |
CN207647901U (en) | A Proportional Valve Performance Test Bench | |
CN204855489U (en) | Equivalent normalizing device of intelligence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |