CN114965174A - Test device and test method for water vapor migration characteristics of unsaturated soil subgrade - Google Patents
Test device and test method for water vapor migration characteristics of unsaturated soil subgrade Download PDFInfo
- Publication number
- CN114965174A CN114965174A CN202210585763.1A CN202210585763A CN114965174A CN 114965174 A CN114965174 A CN 114965174A CN 202210585763 A CN202210585763 A CN 202210585763A CN 114965174 A CN114965174 A CN 114965174A
- Authority
- CN
- China
- Prior art keywords
- temperature
- temperature control
- sample
- water
- control assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
技术领域technical field
本申请涉及岩土工程技术领域,具体而言,涉及一种非饱和土路基水气迁移特性测试装置及其测试方法。The present application relates to the technical field of geotechnical engineering, and in particular, to a testing device and a testing method for water vapor migration characteristics of unsaturated soil roadbed.
背景技术Background technique
水分是诱发路基病害发生、性能劣化的主要因素。在实际工况中,路基受到气候(降雨、蒸发)、地下水位和泵吸作用等影响,其内部水分迁移往往是液态和气态水同时进行。一方面地下水在毛细作用下以液态水的形式向上迁移进入路基土体内部;另一方面土体内部的气态水在土体孔隙中也会发生迁移,在路基顶面表层低温的作用下冷凝成水。Moisture is the main factor that induces roadbed diseases and performance deterioration. In actual working conditions, the subgrade is affected by climate (rainfall, evaporation), groundwater level and pumping, and its internal water migration is often carried out by liquid and gaseous water simultaneously. On the one hand, groundwater migrates upwards into the subgrade soil in the form of liquid water under capillary action; on the other hand, the gaseous water in the soil also migrates in the soil pores and condenses into subgrade under the action of low temperature on the top surface of the subgrade. water.
目前对路基内部水分赋存变化的研究,多是以单相液态水分迁移为主,但在一些干旱且地下水埋藏较深地区,气态水迁移对于路基填土的影响比重较大,不容忽视。目前国内针对水气迁移作用下路基填土内部长期性能演变规律开展了研究,由于理论上涉及因素较多,多场耦合数值模拟与理论推导极其复杂且难以获得较好的计算结果,故多基于室内试验开展路基水气迁移规律的研究。At present, most of the research on the change of water occurrence in the subgrade is mainly based on the migration of single-phase liquid water. However, in some arid areas with deep groundwater burial, the influence of gaseous water migration on the subgrade fill is relatively large and cannot be ignored. At present, domestic researches have been carried out on the long-term performance evolution law of subgrade fill under the action of water and gas migration. Since there are many factors involved in theory, multi-field coupling numerical simulation and theoretical derivation are extremely complicated, and it is difficult to obtain better calculation results. Indoor experiments are carried out to study the law of water and vapor migration in roadbeds.
现有的试验仪器设备主要从温度(温差)、地下水(波动)两方面同时考虑水气迁移过程中路基土体内部的湿度与性能的变化规律,与路基实际的工程工况具有一定的偏差,无法准确的模拟出实际工况下气态水分迁移对路基湿度及性能影响规律。The existing test equipment mainly considers the change law of humidity and performance inside the subgrade soil during the water vapor migration process from two aspects: temperature (temperature difference) and groundwater (fluctuation), which has a certain deviation from the actual engineering conditions of the subgrade. It is impossible to accurately simulate the influence of gaseous moisture migration on the humidity and performance of subgrade under actual working conditions.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供一种非饱和土路基水气迁移特性测试装置及其测试方法,能够模拟不同工况条件下的水气迁移对路基内部性能与湿度变化情况的影响,使模拟效果更符合工程实际。The purpose of this application is to provide a device for testing the water vapor migration characteristics of unsaturated soil roadbed and a testing method thereof, which can simulate the influence of water vapor migration under different working conditions on the internal performance and humidity changes of the roadbed, so that the simulation effect is more in line with Engineering practice.
本申请的实施例是这样实现的:The embodiments of the present application are implemented as follows:
本申请实施例的一方面,提供一种非饱和土路基水气迁移特性测试装置,包括模型箱,以及设置在所述模型箱内的水分调节组件、第一温度控制组件和第二温度控制组件,其中,所述第一温度控制组件用于设置在试样的顶部,所述第二温度控制组件用于设置在所述试样的底部,所述水分调节组件设置在第二温度控制组件上;所述模型箱内还设置有温湿度测量组件、排水组件和位移传感器,所述位移传感器用于检测所述试样的高度变化量,所述温湿度测量组件用于测量所述试样在不同位置处的温度和湿度,所述第一温度控制组件包括吸水器件,所述吸水器件与所述排水组件连接。In one aspect of the embodiments of the present application, there is provided an apparatus for testing water vapor migration characteristics of unsaturated soil roadbed, including a model box, and a moisture adjustment component, a first temperature control component, and a second temperature control component disposed in the model box , wherein the first temperature control component is used to be arranged on the top of the sample, the second temperature control component is used to be arranged on the bottom of the sample, and the moisture adjustment component is arranged on the second temperature control component ; The model box is also provided with a temperature and humidity measurement component, a drainage component and a displacement sensor, the displacement sensor is used to detect the height change of the sample, and the temperature and humidity measurement component is used to measure the sample at The temperature and humidity at different positions, the first temperature control assembly includes a water absorption device, and the water absorption device is connected with the drainage assembly.
可选地,所述第一温度控制组件包括第一温度控制器,以及与所述第一温度控制器连接的第一温度调节板,所述第一温度调节板上连接有层叠设置的传热隔板,所述第一温度调节板通过可旋转调节支撑件与其中一个所述传热隔板连接,所述传热隔板上分别设置有通孔,两所述传热隔板相互转动,以使所述通孔导通或截止,所述第一温度调节板与所述可旋转调节支撑件形成有容置空腔,所述吸水器件位于所述容置空腔内。Optionally, the first temperature control assembly includes a first temperature controller, and a first temperature adjustment plate connected to the first temperature controller, and the first temperature adjustment plate is connected with stacked heat transfer plates. baffles, the first temperature adjustment plate is connected with one of the heat transfer baffles through a rotatable adjustment support, the heat transfer baffles are respectively provided with through holes, and the two heat transfer baffles rotate with each other, In order to turn on or off the through hole, the first temperature adjustment plate and the rotatable adjustment support member form an accommodating cavity, and the water absorbing device is located in the accommodating cavity.
可选地,所述第二温度控制组件包括第二温度控制器,以及与所述第二温度控制器连接的第二温度调节板,所述第二温度调节板与所述模型箱的底壁之间设置有垫块。Optionally, the second temperature control assembly includes a second temperature controller, and a second temperature adjustment plate connected to the second temperature controller, the second temperature adjustment plate is connected to the bottom wall of the model box There are spacers in between.
可选地,所述水分调节组件包括储水箱,以及与所述储水箱连接的控制阀,所述控制阀上连接有出水管,所述出水管与设置在第二温度调节板上的透水石连接,所述透水石上还连接有第一排水管,所述第一排水管和收集箱连接,所述透水石上设置有隔水板,所述隔水板用于使水气通过,限制液态水通过,所述隔水板上用于放置所述试样。Optionally, the moisture adjustment assembly includes a water storage tank, and a control valve connected to the water storage tank, the control valve is connected with a water outlet pipe, and the water outlet pipe is connected to the permeable stone arranged on the second temperature adjustment plate. The permeable stone is also connected with a first drainage pipe, the first drainage pipe is connected with the collection box, and the permeable stone is provided with a baffle plate, which is used to allow the passage of water vapor and restrict liquid water Through, the water baffle is used to place the sample.
可选地,所述温湿度测量组件包括数据采集组件,以及与所述数据采集组件连接的多个探针,多个所述探针用于插设于所述试样在高度方向的不同位置。Optionally, the temperature and humidity measurement assembly includes a data acquisition assembly, and a plurality of probes connected to the data acquisition assembly, and the plurality of probes are used to be inserted in different positions of the sample in the height direction. .
可选地,所述排水组件包括与所述吸水器件连接的第二排水管,以及与所述第二排水管连接的冷凝水收集器。Optionally, the drainage assembly includes a second drainage pipe connected with the water absorbing device, and a condensate water collector connected with the second drainage pipe.
可选地,所述模型箱包括箱体,以及在箱体的一侧设置的门体,所述门体上设置有透明观察口,所述箱体上设置有隔热层,以及过孔,所述过孔内圈设置有密封圈,所述箱体内还设置有温度计,用于观察所述箱体内的温度。Optionally, the model box includes a box body, and a door body provided on one side of the box body, the door body is provided with a transparent observation port, the box body is provided with a heat insulation layer, and a through hole, The inner ring of the via hole is provided with a sealing ring, and a thermometer is also provided in the box for observing the temperature in the box.
本申请实施例的另一方面,提供一种非饱和土路基水气迁移特性测试方法,采用如上所述任意一项所述的非饱和土路基水气迁移特性测试装置进行测试,所述方法包括:Another aspect of the embodiments of the present application provides a method for testing water vapor transport characteristics of unsaturated soil roadbeds, using any one of the above-described water vapor transport characteristics testing devices for unsaturated soil roadbeds for testing, and the method includes: :
制备路基模型试样,并在所述试样外圈包裹保温层;Prepare a roadbed model sample, and wrap the thermal insulation layer on the outer circle of the sample;
将温湿度测试组件的探针插入所述试样内;Insert the probe of the temperature and humidity test assembly into the sample;
将所述试样放置在水分调节组件上,并将第一温度控制组件放置在所述试样顶部;placing the sample on a moisture conditioning assembly and placing a first temperature control assembly on top of the sample;
将所述位移传感器与所述第一温度控制组件对应配合;matching the displacement sensor with the first temperature control assembly;
分别调节所述第一温度控制组件、第二温度控制组件和水分调节组件;respectively adjusting the first temperature control assembly, the second temperature control assembly and the moisture adjustment assembly;
记录所述位移传感器和所述温湿度测试组件的数据变化量。Record the data changes of the displacement sensor and the temperature and humidity test assembly.
可选地,所述制备路基模型试样包括:Optionally, the preparation of the roadbed model sample includes:
取待测试土样,进行室内轻型击实试验,以确定所述土样的最优含水量和最大干密度;Take the soil sample to be tested and carry out an indoor light compaction test to determine the optimal water content and maximum dry density of the soil sample;
根据实际工程中对路基填料压实度和含水量的要求标准对试样进行拌和;The samples are mixed according to the requirements for the compaction degree and water content of the subgrade filler in the actual project;
将所述土样分上下两层压实。The soil samples were compacted in two layers.
可选地,所述分别调节所述第一温度控制组件、第二温度控制组件和水分调节组件包括:Optionally, the separately adjusting the first temperature control assembly, the second temperature control assembly and the moisture adjustment assembly includes:
调节第一温度控制组件和第二温度控制组件的温度,以使所述试样的顶部和底部具有温度差;adjusting the temperature of the first temperature control assembly and the second temperature control assembly so that the top and bottom of the sample have a temperature difference;
调节水分调节组件中水的流量,用于模拟地下水位高度。Regulates the flow of water in the Moisture Conditioning Component, used to simulate water table heights.
本申请实施例的有益效果包括:The beneficial effects of the embodiments of the present application include:
本申请实施例提供的非饱和土路基水气迁移特性测试装置及其测试方法,通过设置在模型箱内的水分调节组件、第一温度控制组件和第二温度控制组件,以便于模拟不同的工况环境,如路基表层和内部的温差,以及地下水情况等。在对数据进行采集时,通过温湿度测量组件和位移传感器,在考虑水气迁移过程中土体内部湿度、温度测试的同时,还增加了土体变形测试分析,可同时获得水气迁移过程中非饱和土路基性能演变规律。另外,通过吸水器件和排水组件相配合,避免了液滴回渗对实验准确性造成的影响。采用上述形式,能够准确的得到在考虑多种工况下的路基性能演变规律,真实的对实际工程中遇到的多种复杂环境影响下路基水气迁移实施全过程模拟,全面掌握非饱和土路基考虑水、气双向流动过程中物理、力学、变形等性质的演变规律,对后期开展针对性的路基处治、路基服役性能全方位保障工程提供有力的理论支撑。且在模拟不同工况条件下的水气迁移对路基内部性能与湿度变化情况的影响时,使模拟效果更符合工程实际。The device for testing the water vapor migration characteristics of unsaturated soil roadbed and the testing method thereof provided in the embodiments of the present application, through the moisture adjustment component, the first temperature control component and the second temperature control component arranged in the model box, so as to facilitate the simulation of different working conditions. environmental conditions, such as the temperature difference between the surface and interior of the subgrade, and groundwater conditions. When collecting data, through the temperature and humidity measurement components and displacement sensors, while considering the internal humidity and temperature test of the soil during the water vapor migration process, the soil deformation test analysis is also added. Evolution law of performance of unsaturated soil subgrade. In addition, through the cooperation of the water absorption device and the drainage component, the influence of the droplet re-seepage on the experimental accuracy is avoided. By using the above form, the evolution law of subgrade performance under consideration of various working conditions can be accurately obtained, and the whole process simulation of water and gas migration of subgrade under the influence of various complex environments encountered in actual engineering can be carried out, and the unsaturated soil can be fully grasped. The subgrade takes into account the evolution laws of physics, mechanics, deformation and other properties during the two-way flow of water and gas, and provides a strong theoretical support for the later development of targeted subgrade treatment and comprehensive protection of subgrade service performance. And when simulating the influence of water vapor migration under different working conditions on the internal performance and humidity changes of the subgrade, the simulation effect is more in line with the actual engineering.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例提供的非饱和土路基水气迁移特性测试装置的结构示意图;1 is a schematic structural diagram of a device for testing the water vapor migration characteristics of an unsaturated soil roadbed provided by an embodiment of the application;
图2为本申请实施例第一温度控制组件和排水组件的结构示意图;2 is a schematic structural diagram of a first temperature control assembly and a drainage assembly according to an embodiment of the present application;
图3为本申请实施例提供的第一温度控制组件的结构示意图;3 is a schematic structural diagram of a first temperature control assembly provided by an embodiment of the present application;
图4为本申请实施例提供的模型箱的结构示意图;4 is a schematic structural diagram of a model box provided by an embodiment of the present application;
图5为本申请实施例提供的非饱和土路基水气迁移特性测试方法的流程图。FIG. 5 is a flowchart of a method for testing water vapor migration characteristics of an unsaturated soil roadbed provided in an embodiment of the present application.
图标:100-非饱和土路基水气迁移特性测试装置;110-模型箱;112-箱体;114-门体;1142-透明观察口;116-隔热层;118-过孔;119-密封圈;120-水分调节组件;122-储水箱;124-控制阀;126-透水石;127-第一排水管;128-收集箱;129-隔水板;130-第一温度控制组件;132-吸水器件;134-第一温度控制器;136-第一温度调节板;137-可旋转调节支撑件;138-传热隔板;1382-通孔;140-第二温度控制组件;142-第二温度控制器;144-第二温度调节板;150-温湿度测量组件;152-数据采集组件;154-探针;160-排水组件;162-第二排水管;164-冷凝水收集器;170-位移传感器;180-垫块;190-温度计。Icon: 100-Testing device for water vapor migration characteristics of unsaturated soil subgrade; 110-Model box; 112-Box body; 114-Door body; 1142-Transparent observation port; 116-Insulation layer; circle; 120-moisture regulation assembly; 122-water storage tank; 124-control valve; 126-permeable stone; 127-first drain pipe; 128-collection box; 129-water baffle; 130-first temperature control assembly;132 - water absorption device; 134 - first temperature controller; 136 - first temperature adjustment plate; 137 - rotatable adjustment support; 138 - heat transfer baffle; 1382 - through hole; 140 - second temperature control assembly; 142 - The second temperature controller; 144 - the second temperature adjustment plate; 150 - the temperature and humidity measuring component; 152 - the data acquisition component; 154 - the probe; 160 - the drainage component; ; 170 - displacement sensor; 180 - spacer; 190 - thermometer.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of the present application, but not all of the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.
在本申请的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于区分描述,而不能理解为指示或暗示相对重要性。In the description of this application, it should be noted that the orientation or positional relationship indicated by the terms "inside", "outside", etc. is based on the orientation or positional relationship shown in the accompanying drawings, or is usually placed when the product of the application is used. The orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the present application. In addition, the terms "first" and "second" are only used to differentiate the description and should not be construed as indicating or implying relative importance.
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should also be noted that, unless otherwise expressly specified and limited, the terms "arrangement" and "connection" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected in one piece; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be internal communication between two components. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood in specific situations.
现有的试验仪器设备主要从温度(温差)、地下水(波动)两方面同时考虑水气迁移过程中路基土体内部的湿度与性能的变化规律,与路基实际的工程工况具有一定的偏差,无法准确的模拟出实际工况下气态水分迁移对路基湿度及性能影响规律。针对上述问题,本申请实施例提供以下技术方案,以克服上述问题。The existing test equipment mainly considers the change law of humidity and performance inside the subgrade soil during the water vapor migration process from two aspects: temperature (temperature difference) and groundwater (fluctuation), which has a certain deviation from the actual engineering conditions of the subgrade. It is impossible to accurately simulate the influence of gaseous moisture migration on the humidity and performance of subgrade under actual working conditions. In view of the above problems, the embodiments of the present application provide the following technical solutions to overcome the above problems.
请参照图1,本实施例提供一种非饱和土路基水气迁移特性测试装置100,包括模型箱110,以及设置在模型箱110内的水分调节组件120、第一温度控制组件130和第二温度控制组件140,其中,第一温度控制组件130用于设置在试样的顶部,第二温度控制组件140用于设置在试样的底部,水分调节组件120设置在第二温度控制组件140上;模型箱110内还设置有温湿度测量组件150、排水组件160和位移传感器170,位移传感器170用于检测试样的高度变化量,温湿度测量组件150用于测量试样在不同位置处的温度和湿度,第一温度控制组件130包括吸水器件132,吸水器件132与排水组件160连接。Referring to FIG. 1 , the present embodiment provides an
具体的,模型箱110主要用来保证实验过程中所需的技术性能与运行安全提供保障,避免实验过程中受外部环境的影响。通过在模型箱110内设置水分调节组件120,以便于模拟地下水进行实验。第一温度控制组件130和第二温度控制组件140主要用来模拟实际工况下,路基存在温度差的情况。另外,模型箱110内设置的温湿度测量组件150主要用来测量实验过程中试样中的温度和湿度的变化情况。而位移传感器170用于检测试样的高度变化量,以便于获知温度的变化对试样的收缩或膨胀的影响程度。Specifically, the
通过将第一温度控制组件130的吸水器件132与排水组件160连接,在进行水气迁移特性的实验时,防止水气在顶层凝集形成液滴后下渗,有利于保证实验时的稳定性。同时,通过将吸水器件132与排水组件160连接,以防止吸水器件132内水分饱和后下渗。其中,吸水器件132可采用吸水材料制成,本申请实施例对此不做具体限制。By connecting the
需要说明的是,本申请实施例对模型箱110内设置的试样的组数不做具体限制,示例的,可以仅设置一组,也可以设置为两组或三组,只要能够保证每组试样均有对应的器件与其匹配即可。如,在具有两组试样时,则所需的第一温度控制组件130和第二温度控制组件140也需要设置为两组。It should be noted that the embodiment of the present application does not specifically limit the number of groups of samples set in the
本申请实施例提供的非饱和土路基水气迁移特性测试装置100,通过设置在模型箱110内的水分调节组件120、第一温度控制组件130和第二温度控制组件140,以便于模拟不同的工况环境,如路基表层和内部的温差,以及地下水情况等。在对数据进行采集时,通过温湿度测量组件150和位移传感器170,在考虑水气迁移过程中土体内部湿度、温度测试的同时,还增加了土体变形测试分析,可同时获得水气迁移过程中非饱和土路基性能演变规律。另外,通过吸水器件132和排水组件160相配合,避免了液滴回渗对实验准确性造成的影响。采用上述形式,能够准确的得到在考虑多种工况下的路基性能演变规律,真实的对实际工程中遇到的多种复杂环境影响下路基水气迁移实施全过程模拟,全面掌握非饱和土路基考虑水、气双向流动过程中物理、力学、变形等性质的演变规律,对后期开展针对性的路基处治、路基服役性能全方位保障工程提供有力的理论支撑。且在模拟不同工况条件下的水气迁移对路基内部性能与湿度变化情况的影响时,使模拟效果更符合工程实际。The
如图1、图2和图3所示,第一温度控制组件130包括第一温度控制器134,以及与第一温度控制器134连接的第一温度调节板136,第一温度调节板136上连接有层叠设置的传热隔板138,第一温度调节板136通过可旋转调节支撑件137与其中一个传热隔板138连接,传热隔板138上分别设置有通孔1382,两传热隔板138相互转动,以使通孔1382导通或截止,第一温度调节板136与可旋转调节支撑件137形成有容置空腔,吸水器件132位于容置空腔内。As shown in FIG. 1 , FIG. 2 and FIG. 3 , the first
具体的,第一温度控制器134主要用来控制第一温度调节板136的温度,以便于模拟不同工况条件下的实际温度。可以理解的,当试样设置为两组时,可以对应设置两个第一温度调节板136,采用同一个第一温度控制组件130进行控制即可。另外,排水组件160通过可旋转调节支撑件137与吸水器件132连通,在可旋转调节支撑件137上可设置开关旋钮,以便于控制吸水器件132与排水组件160之间的导通。Specifically, the
通过在第一温度调节板136上设置传热隔板138,以便于通过热传递将第一温度调节板136上的热量均匀的传递至试样的顶部。同时,通过将传热隔板138设置为层叠且可相互转动的形式,在模拟实际的工况环境时,通过将传热隔板138的通孔1382相对应使之导通,就可以实现不封闭情况下(路基不封闭排水或路基不封闭不排水)路基性能变化的实验模拟。可以理解的,当传热隔板138的通孔1382相错位使之截止时,就可以实现封闭情况下(路基封闭不排水或路基封闭排水)路基性能变化的实验模拟。这样一来,可实现考虑不同上部路面基层排水条件下路基填土内部温湿度等性能变化规律,以便于更全面的实现实际工况的模拟。By disposing a
如图1所示,第二温度控制组件140包括第二温度控制器142,以及与第二温度控制器142连接的第二温度调节板144,第二温度调节板144与模型箱110的底壁之间设置有垫块180。As shown in FIG. 1 , the second
通过在第二温度调节板144与模型箱110的底壁之间设置垫块180,以便于第二温度调节板144的设置,且能够避免模型箱110对实验准确性的影响。为了保证第一温度调节板136和第二温度调节板144使用时的稳定性,在两者相对侧之外的其他区域,均以保温材料和橡皮膜包裹的形式进行处理,防止温度的散失,以保证实验时的准确性。另外,第一温度控制组件130和第二温度控制组件140的温度变化范围均为-30℃至60℃(温度偏差为±0.01℃、温度波动度不超过±0.01℃)。通过模型箱110外连接的第一温度控制器134和第二温度控制器142上可以设置试验过程中的目标温度、温度持续时间和温度变化方式等,以便于更好的模拟工况环境的变化。By disposing the
如图1所示,水分调节组件120包括储水箱122,以及与储水箱122连接的控制阀124,控制阀124上连接有出水管,出水管与设置在第二温度调节板144上的透水石126连接,透水石126上还连接有第一排水管127,第一排水管127和收集箱128连接,透水石126上设置有隔水板129,隔水板129用于使水气通过,限制液态水通过,隔水板129上用于放置试样。As shown in FIG. 1 , the
具体的,通过与储水箱122连接的控制阀124,以便于控制补水量、补水速度、补水时间和可控补水间歇时间等。整个水分供给采用无压供水的方式,当储水箱122内的水不足时,向储水箱122中补水即可。通过将出水管与透水石126连接,以便于使透水石126润湿,模拟地下水情况。另外,通过在透水石126上设置隔水板129,以使水气通过,限制液态水通过,从而更好的模拟非饱和土路基水气迁移特性。在实验过程中,试样下部有水溢出,可通过与透水石126连接的第一排水管127完成排水。Specifically, through the
可以理解的,透水石126上也可以不设置隔水板129,以便于通过不同的设置形式实现试样底部水、气分别迁移以及联合迁移过程。采用上述形式,为干旱、少雨、地下水埋藏较深地区的水气迁移规律的实际情况的模拟提供了条件,便于为研究水气迁移规律提供基础数据支撑。It can be understood that the
如图1所示,温湿度测量组件150包括数据采集组件152,以及与数据采集组件152连接的多个探针154,多个探针154用于插设于试样在高度方向的不同位置。As shown in FIG. 1 , the temperature and
示例的,在进行实验时,可在试样沿高度方向每隔5cm自上往下设置一个探针154,探针154可可采用防腐电极,以保证测量的可靠性。另外,位移传感器170也可以与数据采集组件152连接,以便于将实时监测到的温度、湿度以及位移变化情况通过数据采集组件152进行数据采集,从而便于进行整理分析。For example, when performing an experiment, a
如图2所示,排水组件160包括与吸水器件132连接的第二排水管162,以及与第二排水管162连接的冷凝水收集器164,以收集吸水器件132吸附的水分。As shown in FIG. 2 , the
如图4所示,模型箱110包括箱体112,以及在箱体112的一侧设置的门体114,门体114上设置有透明观察口1142,箱体112上设置有隔热层116,以及过孔118,过孔118内圈设置有密封圈119,箱体112内还设置有温度计190,用于观察箱体112内的温度。As shown in FIG. 4 , the
具体的,模型箱110应满足要求达到的技术性能与运行安全防护的目标,实现隔热、保温和保湿的功能。对于隔热和保温来说,可采用钢板包裹保温材料(即在箱体112上设置隔热层116)作为隔绝试模型箱110温度与外界温度之间温度交换的措施。另外,为了满足实验时的可视化需求,可将透明观察口1142采用透明树脂、气凝胶板和玻璃制作,在保证密封的情况下达到可视化的需求。Specifically, the
另外,通过在箱体112的一侧设置的门体114,便于在侧面进行开关门,方便试样的取放。通过在箱体112上设置过孔118,可方便多种数据采集线进入试验箱,以便于进行工况的模拟和数据的采集。箱体112内设置的温度计190可以观察箱体112内的环境温度,避免因箱体112内环境温度的波动而影响实验结果的准确性。示例的,为了消除温度对实验结果的影响,可使箱体112内的温度保持在25℃,而温度计190则用来观察箱体112内的环境温度是否满足要求。In addition, through the
如图5所示,本申请实施例还公开了一种非饱和土路基水气迁移特性测试方法,采用前述实施例中的非饱和土路基水气迁移特性测试装置100进行测试,该方法包括:As shown in FIG. 5 , the embodiment of the present application also discloses a method for testing the water vapor migration characteristics of unsaturated soil roadbed, using the
S100、制备路基模型试样,并在试样外圈包裹保温层。S100, preparing a roadbed model sample, and wrapping a thermal insulation layer on the outer circle of the sample.
具体的,路基模型试样可制备为圆柱形,为了节省试验时间并可以对比观察,分别开展两组平行试验,为了尽可能减少试样的尺寸效应,每组试样尺寸均设置为直径15cm,高度为35cm的柱体,也可以根据实际需要设置为其他尺寸,本申请实施例对此不做具体限制。在设置保温层时,可在圆柱体试样周围首先包裹一层橡皮膜,其次包裹一层柔性保温材料,最外层再包裹一层橡皮膜。采用上述方式,能够减少模型箱110内部空气温度对试样温度的影响,最大程度实现单向控温。同时,双层橡皮膜可有效保证保温材料的平整和全接触,柔化压缩保温材料,达到更好的保温效果。这种橡皮膜、柔性保温材料和橡皮膜的三层夹层的设置形式,可较好实现隔温和单向控温,具有较好的实验效果。Specifically, the roadbed model sample can be prepared into a cylindrical shape. In order to save the test time and allow for comparative observation, two groups of parallel tests were carried out. The column with a height of 35 cm can also be set to other sizes according to actual needs, which is not specifically limited in the embodiment of the present application. When setting the thermal insulation layer, a layer of rubber film can be wrapped around the cylindrical sample first, followed by a layer of flexible thermal insulation material, and the outermost layer can be wrapped with a layer of rubber film. By adopting the above method, the influence of the air temperature inside the
S200、将温湿度测试组件的探针154插入试样内。S200, insert the
S300、将试样放置在水分调节组件120上,并将第一温度控制组件130放置在试样顶部。S300, placing the sample on the
S400、将位移传感器170与第一温度控制组件130对应配合。S400 , match the
S500、分别调节第一温度控制组件130、第二温度控制组件140和水分调节组件120。S500 , adjust the first
S600、记录位移传感器170和温湿度测试组件的数据变化量。S600, record the data variation of the
采用上述方式,可以较好的模拟实际路基工程内部水汽迁移过程,直观地获得不同温度梯度、不同地下水情况、不同非饱和土路基填料、初始填筑条件下路基水气迁移规律。而且试验成本低,经济效益巨大,有利于获得多种水气迁移条件下的非饱和土路基湿度、变形、温度的变化分布情况,可有效指导路基工程施工设计,提高工程安全性。Using the above method, the internal water vapor migration process of the actual subgrade project can be better simulated, and the water vapor migration law of the subgrade under different temperature gradients, different groundwater conditions, different unsaturated soil subgrade fillings, and initial filling conditions can be obtained intuitively. In addition, the test cost is low and the economic benefit is huge, which is beneficial to obtain the distribution of humidity, deformation and temperature of unsaturated soil subgrade under various water vapor migration conditions, which can effectively guide the construction design of subgrade engineering and improve engineering safety.
在本申请的可选实施例中,制备路基模型试样包括:In an optional embodiment of the present application, preparing a roadbed model sample includes:
S110、取待测试土样,进行室内轻型击实试验,以确定土样的最优含水量和最大干密度。S110, take the soil sample to be tested, and perform an indoor light compaction test to determine the optimal water content and maximum dry density of the soil sample.
S120、根据实际工程中对路基填料压实度和含水量的要求标准对试样进行拌和。S120, the sample is mixed according to the required standards for the compaction degree and water content of the subgrade filler in the actual project.
S130、将土样分上下两层压实。S130, the soil sample is divided into upper and lower layers and compacted.
具体的,在确定土样的最优含水量和最大干密度之后,以便于使试样达到最佳的压实度,从而保证实验的效果。在压实过程中,通过将土样分上下两侧压实,以便于模拟路床和路堤,保证实验过程与实际工况相匹配。Specifically, after determining the optimal water content and maximum dry density of the soil sample, it is convenient for the sample to achieve the best compaction degree, so as to ensure the effect of the experiment. During the compaction process, the soil samples were compacted at the upper and lower sides to facilitate the simulation of roadbeds and embankments, and to ensure that the experimental process matched the actual working conditions.
在本申请的可选实施例中,分别调节第一温度控制组件130、第二温度控制组件140和水分调节组件120包括:In an optional embodiment of the present application, adjusting the first
S510、调节第一温度控制组件130和第二温度控制组件140的温度,以使试样的顶部和底部具有温度差;S510, adjust the temperature of the first
S520、调节水分调节组件120中水的流量,用于模拟地下水位高度。S520. Adjust the flow rate of water in the
具体的,在实际工程中一般在路面结构以下路基顶层以上会设置排水层,现有试验仪器对路基顶部土体在有、无排水工况下的土体湿度变化和区别未做考虑。为使试验更接近工程实际,本申请通过设置隔水板129的形式,阻止毛细作用产生的地下液态水迁移,不阻挡气态水的迁移,并通过第一温度控制组件130和第二温度控制组件140以单独并有效获得气态水分迁移对路基湿度及性能影响规律。另外,第一温度控制组件130通过传热隔板138与吸水器件132相结合,并且连通排水组件160,监测出水量。同时,通过调节水分调节组件120中水的流量,用于模拟地下水位高度,以便于模拟不同的工况环境。Specifically, in practical projects, a drainage layer is generally set below the pavement structure and above the top layer of the subgrade. The existing test instruments do not consider the change and difference of soil moisture at the top of the subgrade with and without drainage. In order to make the experiment closer to the engineering practice, the present application uses the form of the
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210585763.1A CN114965174A (en) | 2022-05-26 | 2022-05-26 | Test device and test method for water vapor migration characteristics of unsaturated soil subgrade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210585763.1A CN114965174A (en) | 2022-05-26 | 2022-05-26 | Test device and test method for water vapor migration characteristics of unsaturated soil subgrade |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114965174A true CN114965174A (en) | 2022-08-30 |
Family
ID=82955888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210585763.1A Pending CN114965174A (en) | 2022-05-26 | 2022-05-26 | Test device and test method for water vapor migration characteristics of unsaturated soil subgrade |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114965174A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115653820A (en) * | 2022-10-25 | 2023-01-31 | 北京航空航天大学 | Power generation method utilizing pot cover effect |
CN116297026A (en) * | 2023-03-09 | 2023-06-23 | 北京航空航天大学 | A test instrument for studying the migration law of gaseous water in soil under pot cover effect and its application method |
CN118917239A (en) * | 2024-07-18 | 2024-11-08 | 长沙理工大学 | Roadbed moisture migration simulation platform under complex conditions and application of roadbed moisture migration simulation platform in hydraulic model construction |
CN119043863A (en) * | 2024-10-31 | 2024-11-29 | 深圳大学 | Gaseous water migration quality testing system, method, terminal and computer readable storage medium |
-
2022
- 2022-05-26 CN CN202210585763.1A patent/CN114965174A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115653820A (en) * | 2022-10-25 | 2023-01-31 | 北京航空航天大学 | Power generation method utilizing pot cover effect |
CN115653820B (en) * | 2022-10-25 | 2024-06-11 | 北京航空航天大学 | Power generation method utilizing pot cover effect |
CN116297026A (en) * | 2023-03-09 | 2023-06-23 | 北京航空航天大学 | A test instrument for studying the migration law of gaseous water in soil under pot cover effect and its application method |
CN118917239A (en) * | 2024-07-18 | 2024-11-08 | 长沙理工大学 | Roadbed moisture migration simulation platform under complex conditions and application of roadbed moisture migration simulation platform in hydraulic model construction |
CN119043863A (en) * | 2024-10-31 | 2024-11-29 | 深圳大学 | Gaseous water migration quality testing system, method, terminal and computer readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114965174A (en) | Test device and test method for water vapor migration characteristics of unsaturated soil subgrade | |
CN103743771B (en) | A kind of Frozen-thawed cycled pick-up unit being applicable to natural salt dirting soil | |
CN202562912U (en) | Layered temperature controlling soil freezing and thawing cycle test device | |
CN106525661B (en) | Unsaturated soil vapour complex characteristic test device and its test method | |
CN104215566B (en) | Visualization soil body frozen-thaw process assay device | |
CN113588912B (en) | Simulation system and method for simulating frozen soil environment on site | |
CN109668922B (en) | Monitoring device for frozen soil model test and using method thereof | |
CN104730100B (en) | A kind of device for testing aqueous porous media in frozen-thaw process reclaimed water thermal change feature | |
CN112964855B (en) | Test device and test method for rainfall-evaporation circulation and soil fracture characteristic measurement | |
CN102706728A (en) | Multifunctional unsaturated soil triaxial test device capable of circularly applying suction and method thereof | |
CN108061740B (en) | An indoor test device and test method for studying the migration law of unsaturated salt based on soil-water curve | |
CN108827853B (en) | Nuclear magnetic resonance-based tight reservoir rock electric measurement device and measurement method | |
CN104266926B (en) | A kind of soil water in vapor phase collecting and measuring system | |
CN106370816A (en) | Testing system capable of dynamically testing soil dehumidification/freezing water content change features | |
CN109490350A (en) | Ventilation type body frost heaving experimental rig and test method | |
CN111272604A (en) | Monitoring device and monitoring method for freezing and thawing process of seasonal frozen soil | |
Wang et al. | The effect of heat and moisture coupling migration of ground structure without damp-proof course on the indoor floor surface temperature and humidity: Experimental study | |
CN217033720U (en) | Time-varying coverage effect freeze-thaw cycle simulation instrument | |
CN114324603B (en) | Test method for rock deterioration based on wave impedance of filling joints under freeze-thaw cycles | |
CN216560011U (en) | Test device for measuring soil body humidifying deformation | |
Luo et al. | Development of pot-cover effect apparatus with freezing-thawing cycles | |
CN112730801A (en) | Water and salt migration automatic test device suitable for multi-environment controllable temperature | |
CN110595850A (en) | Sample preparation device, test system and method for measuring thermal conductivity of loose medium | |
CN116908036A (en) | Test device and test method for synchronously acquiring seepage characteristics of unsaturated soil | |
CN209231337U (en) | An experimental device for observing water-air-heat migration in a dry soil column |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |