[go: up one dir, main page]

CN114927302A - 稀土磁体及其制备方法 - Google Patents

稀土磁体及其制备方法 Download PDF

Info

Publication number
CN114927302A
CN114927302A CN202210610371.6A CN202210610371A CN114927302A CN 114927302 A CN114927302 A CN 114927302A CN 202210610371 A CN202210610371 A CN 202210610371A CN 114927302 A CN114927302 A CN 114927302A
Authority
CN
China
Prior art keywords
diffusion
rare earth
phase
magnet
ndfeb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210610371.6A
Other languages
English (en)
Other versions
CN114927302B (zh
Inventor
王传申
彭众杰
杨昆昆
董占吉
丁开鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Dongxing Magnetic Materials Inc
Original Assignee
Yantai Dongxing Magnetic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Dongxing Magnetic Materials Inc filed Critical Yantai Dongxing Magnetic Materials Inc
Priority to CN202210610371.6A priority Critical patent/CN114927302B/zh
Publication of CN114927302A publication Critical patent/CN114927302A/zh
Priority to JP2023076529A priority patent/JP7556668B2/ja
Priority to US18/201,747 priority patent/US20230386711A1/en
Priority to EP23176222.0A priority patent/EP4287220A1/en
Application granted granted Critical
Publication of CN114927302B publication Critical patent/CN114927302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种稀土磁体及其制备方法,属于稀土磁体技术领域,通过将扩散源涂覆在钕铁硼母材上,进行扩散、时效处理,得到稀土磁体,其中扩散源合金成份是RαMβBγFe100‑α‑β‑γ,其中R是指Nd、Pr中的至少一种,M是指Al、Cu、Ga中的至少一种,钕铁硼磁体是RaMbBcFe100‑a‑b‑c,其中R是指Nd、Pr、Ce、La中的至少一种,M是指Al、Cu、Ga、Ti、Zr、Co、Mg、Zn、Nb、Mo、Sn中的至少一种,剩余成分为Fe。本发明的一种稀土磁体及其制备方法,剩磁降低幅度低于0.3kGs,Hcj增加幅度大于4kOe。

Description

稀土磁体及其制备方法
技术领域
本发明涉及稀土磁体技术领域,尤其涉及一种可以提高自身矫顽力的稀土磁体及其制备方法。
背景技术
钕铁硼烧结永磁体广泛应用在电子信息、医疗设备、新能源汽车、家用电器、机器人等领域。在过去几十年的发展过程中,钕铁硼永磁体的研究得到快速的发展。尤其是扩散技术能够明显降低重稀土消耗,具有较大的成本优势。
钕铁硼烧结永磁体制造过程中经常使用通过在母材中加入重稀土元素Dy、Tb的方式,这种方式会使重稀土元素Dy,Tb大量进入晶粒内部,降低了磁体的剩磁和磁能积,消耗了大量重稀土元素,增加了成本。另一种方式是晶界扩散,是通过热处理使扩散源沿晶界进入磁体内部以提高磁体矫顽力的技术。该技术使用较少的重稀土,能够大幅提高磁体的矫顽力,因其成低廉而受到广泛关注。但是随着当前重稀土Dy,Tb原材的价格飞涨,纯Dy和Tb扩散的成本依然较高。重稀土合金的扩散技术可以在提高性能的同时,有效地降低磁体的制备成本。因此,发展重稀土合金的扩散技术,对钕铁硼磁体的大批量生产尤为重要。
公开号为CN106298219B,名称为一种制备R-T-B稀土永磁体的方法及装置的专利公开了以下内容:a)制备用做扩散源的RLuRHvFe100-u-v-w-zBwMz稀土合金,所述的RL表示Pr、Nd中的至少一种元素,RH表示Dy、Tb、Ho中的至少一种元素,M表示Co、Nb、Cu、Al、Ga、Zr、Ti中的至少一种元素,此稀土合金含有R-Fe-B四方晶的主相结构,u、v、w、z为各物质的重量百分数,u、v、w、z满足以下关系,0≤u≤10,35≤v≤70,0.5≤w≤5,0≤z≤5;b)粉碎RLuRHvFe100-u-v-w-zBwMz稀土合金,形成合金粉;c)所述的合金粉与R-T-B磁体一起装入旋转扩散装置进行热扩散,温度区间为750-950℃,时间区间为4-72h;d)进行时效处理,所述的旋转扩散装置内加入起分散或缓冲作用的陪料物质,该陪料物质为金属铁基材料、钛基材料的一种或多种,或非金属的氧化铝、氧化锆的一种或多种,陪料物质粒径<10mm,所述的旋转扩散装置内还可以加入防粘粉体,防粘粉体为氧化铝、氧化锆、氧化镝、氧化铽、氟化镝、氟化铽的一种或多种,防粘粉粒径<100um。该技术采用的扩散源合金为RLuRHvFe100-u-v-w- zBwMz稀土合金,不仅含轻稀土,而且含有重稀土。另一方面,扩散源中含B量过高时,其熔点会相对较高,不容易扩散到磁体中。虽然扩散源中含有重稀土,但是扩散后矫顽力增加不多,剩磁下降较多,达不到理想性能。
公开号为CN113764147A,名称为一种低熔点混合扩散提升钕铁硼磁体矫顽力的方法的专利,公开了如下内容:按照含重稀土低熔点(Dy,Tb)-Al-Cu合金和含高度稀土丰低熔点(Pr,Ce)-Ga-Cu合金成分分别称量各原料并进行电弧熔炼,随后分别通过高能球磨破碎和熔体快淬法及行星式低能球磨制粉,按比例混合制成糊状溶液;将糊状溶液均匀涂敷在钕铁硼磁体表面,随后进行N2气保护和低磁场辅助下的一级和二级回火热处理,获得高矫顽力钕铁硼磁体。该技术中使用轻稀土的目的是为了提高重稀土的扩散深度,轻稀土的作用不能提高矫顽力,况且也要使用重稀土。
公开号为CN113851320A,名称为一种轻稀土合金晶界扩散轻稀土烧结钕铁硼磁体的制备方法的专利,公开如下内容:将轻稀土合金扩散源粘贴到轻稀土烧结钕铁硼磁体的表面进行晶界扩散处理,再进行回火处理;所述轻稀土合金扩散源的成分为PrAFe100-A,其中10wt%≤A≤90wt%;所述轻稀土烧结钕铁硼磁体的成分如式所示:RxFeyMaGabBc(Ⅰ);其中,R选自La、Ce、Nd和Pr中的一种或多种,M1选自Cu、Al、Co和Zr中的一种或多种,x为28~33wt%,y为60~70wt%,a为0~0.6wt%,b为0.1~0.8wt%,c为0.9~0.98wt%。该技术的扩散源为PrAFe100-A,铁含量过高,扩散后形成过多的铁磁性相,虽然磁体的Hcj有所提高,但是造成Br下降幅度大,不利于提高整体性能。
基于以上技术分析,晶界扩散遇到以下两个问题:一方面,不使用重稀土。另一方面,轻稀土扩散后钕铁硼磁体不能大幅提高其性能。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种稀土磁体及其制备方法。
技术方案:为实现上述目的,本发明的一种稀土磁体,所述稀土磁体为钕铁硼磁体,所述钕铁硼磁体包括主相、晶界相和富稀土相,其中晶界相包含μ相或δ相,μ相即R36.5Fe63.5-xMx,1≤x≤4;δ相即R32.5Fe67.5-yMy,2≤y≤20,上述中R是指Nd,Pr,Ce,La中的至少两种元素,M是指Al,Cu,Ga中的至少两种元素,比例为原子百分比。
一种制备所述的稀土磁体的方法,包括以下步骤,
(S1)扩散源制作:配制扩散源合金,所述合金薄片的化学式为RαMβBγFe100-α-β-γ,其中10≤α≤80,15≤β≤90,0.1≤γ≤3,R为Nd、Pr中至少一种,M为Al、Cu、Ga中至少一种,进行时效处理,形成新型扩散源后进行吸氢和脱氢处理,比例为质量百分比;
(S2)钕铁硼母材制作:配制钕铁硼磁体母材的主合金和辅合金,主合金和辅合金混合后的质量比化学式是RaMbBcFe100-a-b-c,其中27≤a≤33,1≤b≤4,0.8≤c≤1.2,R是指Nd、Pr、Ce、La中的一种或多种,M是指Al、Cu、Ga、Ti、Zr、Co、Mg、Zn、Nb、Mo、Sn中的一种或多种,剩余成分为Fe,比例为质量百分比;
(S3)在钕铁硼母材上涂覆一层新型扩散源膜层,进行扩散和时效处理,得到钕铁硼磁体。
优选地,步骤(S2)中将钕铁硼母材薄片和润滑剂混合后进行氢处理,经气流磨制备混合粉末,将上述粉末压制成型,烧结得到钕铁硼磁体母材。
优选地,步骤(S1)中的扩散源为粉末状,扩散源的制备方法为雾化制粉、非晶甩带制粉或铸锭制粉。
优选地,步骤(S1)中吸氢温度为50-200℃。
优选地,所述气流磨粉末粒度为2-5μm。
优选地,所述扩散源粉末粒度为3-60μm。
优选地,步骤(S3)中涂覆的方法为磁控溅射镀膜、蒸镀镀膜、涂覆镀膜中的一种。
优选地,制备所述钕铁硼磁体母材烧结过程的烧结温度是980-1060℃,烧结时间为6-15h。
优选地,步骤(S3)中扩散温度为800-910℃,扩散时间为6-30h,一级时效温度为700-850℃,一级时效时间为2-10h,二级时效温度为450-600℃,二级时效时间为3-10h。
本发明的一种稀土磁体及其制备方法,至少具有以下技术效果:
(1)扩散源合金RαMβBγFe100-α-β-γ中高熔点B含量较低,而且无高熔点重稀土元素,轻稀土元素含量高,扩散系数大,扩散效率高,很容易扩散进入磁体;该方法能够将重稀土输送进入磁体,形成更多的轻稀土层和晶界结构,有效地增加磁体的矫顽力,特别是厚度大于5mm的钕铁硼磁体。
(2)扩散源合金RαMβBγFe100-α-β-γ中含有B元素,能够降低扩散过程中氧化问题,从而能够利用扩散源,增加扩散过程中元素的利用效率。
(3)扩散源合金RαMβBγFe100-α-β-γ中含有B元素和Fe元素,扩散进入磁体形成新的主相,增加磁体的剩磁,剩磁下降幅度低于0.3Kgs,同时Fe元素能够与特殊磁体中的Al、Ga、Cu元素形成μ相和δ相,进一步提高磁体的矫顽力。
(4)扩散源合金RαMβBγFe100-α-β-γ制成的粉末中含有B元素和Fe元素,B元素和Fe元素总重量比例最高可以达到20%,能够大幅度降低扩散源的价格,从而降低生产成本。
(5)该扩散源可以大批量制备,制成粉末后使用涂覆的方式可以达到近100%的利用效率,能够为大批量的磁体提供大量的扩散源,减少重稀土地使用,同时,该扩散源能够有效增加磁体的磁能积,从而降低生产成本,提高钕铁硼磁体产品生产过程中的核心竞争力。
与现有技术对比,本发明实现了轻稀土扩散源与相应成分的磁体相互配合,大幅度提高磁体的矫顽力,降低轻稀土扩散过程中Br下降幅度大的难题。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
一种制备钕铁硼稀土磁体的方法,包括以下步骤,
(S1)扩散源制作:配比扩散源合金成分,各个实施例的具体成分及含量如表1所示,放入真空熔炼炉中进行熔炼,浇筑形成合金薄片,冷却50℃后出料,合金薄片的平均厚度在0.25-1mm范围之内,合金薄片中C、O元素的含量≦200ppm,N含量≦50ppm;对合金薄片进行吸氢处理和脱氢处理,其中吸氢温度为50-200℃,脱氢温度为450-550℃。
(S2)配比钕铁硼母材合金,各个实施例的具体成分及含量如表2所示,将其放入真空熔炼内进行熔炼,浇筑形成薄片,冷却50℃后出料,薄片的平均厚度为0.25mm,C、O元素的含量≦200ppm,N含量≦50ppm。将钕铁硼母材薄片和润滑剂混合进行氢处理后经气流磨制备混合粉末,研磨气体为氩气,磨粉粒度为2-5μm。将钕铁硼粉料放入自动压机,在磁场下压制成毛坯,包装成块。将成块的毛坯扒料放入烧结炉内进行烧结,烧结温度是980-1060℃,烧结时间为6-15h后进行机加工。
(S3)将步骤(S1)制备的扩散源制备成浆料,利用涂覆的方法将扩散源浆料在钕铁硼母材上涂覆成膜,然后进行扩散和时效处理,最后得到钕铁硼磁体。
进行扩散和时效处理,得到钕铁硼磁体,具体工艺条件以及得到的钕铁硼磁体的性能如表1所示。
为了验证本方案,设计了十六种对比例,对比例与实施例的区别是:将扩散源合金成分中去掉B和Fe元素的成分,将成分(重量百分比)添加到轻稀土中,放入真空熔炼炉内进行熔炼,浇注形成薄片,冷却50℃后出料,薄片的厚度为0.25-1mm,C、O含量≦200ppm,N含量≦50ppm。各对比例的成分及工艺条件如表3所示。
基于以上数据,通过扩散扩散源合金RαMβBγFe100-α-β-γ到轻稀土磁体,所有的实施例扩散后△Hcj>4kOe,矫顽力增加明显,实施例剩磁降幅明显低于对比例,实施例矫顽力高于对比例。
因此,将实施例与对比例具体分析如下:
实施例1和对比例1:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例1扩散后Br=14.00kGs,Hcj=21.50kOe,含有μ相和δ相和对比例1扩散后Br=13.60kGs,Hcj=20kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例2和对比例2:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例2扩散后Br=14.00kGs,Hcj=23kOe,含有μ相和δ相和对比例2扩散后Br=13.50kGs,Hcj=21kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例3和对比例3:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例3扩散后Br=13.20kGs,Hcj=24.5kOe,含有μ相和δ相和对比例3扩散后Br=12.9kGs,Hcj=22.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例4和对比例4:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例4扩散后Br=13.30kGs,Hcj=25kOe,含有μ相和δ相和对比例4扩散后Br=12.8kGs,Hcj=22kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例5和对比例5:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例5扩散后Br=13.25kGs,Hcj=24kOe,含有μ相和δ相和对比例5扩散后Br=12.7kGs,Hcj=22kOe,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例6和对比例6:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例6扩散后Br=13.35kGs,Hcj=25kOe,含有μ相和δ相和对比例6扩散后Br=13kGs,Hcj=21kOe,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例7和对比例7:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例7扩散后Br=13.47kGs,Hcj=24.5kOe,含有μ相和δ相和对比例7扩散后Br=13.1kGs,Hcj=21.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例8和对比例8:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例8扩散后Br=13.5kGs,Hcj=24kOe,含有μ相和δ相和对比例8扩散后Br=13kGs,Hcj=20.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例9和对比例9:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例9扩散后Br=12.9kGs,Hcj=25.5kOe,含有μ相和δ相和对比例9扩散后Br=12.5kGs,Hcj=23.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例10和对比例10:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例10扩散后Br=13.45kGs,Hcj=25.5kOe,含有μ相和δ相和对比例10扩散后Br=13kGs,Hcj=23.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例11和对比例11:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例11扩散后Br=13.8kGs,Hcj=23kOe,含有μ相和δ相和对比例11扩散后Br=13.4kGs,Hcj=21kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例12和对比例12:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例12扩散后Br=13.7kGs,Hcj=24kOe,含有μ相和δ相和对比例12扩散后Br=13.2kGs,Hcj=22kOe,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例13和对比例13:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例13扩散后Br=12.3kGs,Hcj=25kOe,含有μ相和δ相和对比例13扩散后Br=12kGs,Hcj=23kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例14和对比例14:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例14扩散后Br=12.5kGs,Hcj=24kOe,含有μ相和δ相和对比例14扩散后Br=12.3kGs,Hcj=22kOe,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例15和对比例15:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例15扩散后Br=13.35kGs,Hcj=23kOe,含有μ相和δ相和对比例15扩散后Br=12.9kGs,Hcj=20.5kOe,实施例的Br(剩磁)和Hcj(矫顽力)优势明显高于对比例。
实施例16和对比例16:在相同的钕铁硼磁体母材及尺寸,相同的扩散温度和时效温度等条件下,相比扩散前,实施例16扩散后Br=13.25kGs,Hcj=25.50kOe,含有μ相和δ相和对比例16扩散后Br=12.8kGs,Hcj=23.5kOe,仅含有δ相,实施例的Br(剩磁)和Hcj(矫顽力)的综合性能优势明显高于对比例。
表1实施例中扩散源成分、含量
Figure BDA0003671819400000101
表2各实施例中钕铁硼磁体母材成分、含量及磁体性能
Figure BDA0003671819400000111
表3各对比例中扩散源成分、含量及工艺条件
Figure BDA0003671819400000121
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种稀土磁体,其特征在于,所述稀土磁体为钕铁硼磁体,所述钕铁硼磁体包括主相、晶界相和富稀土相,其中晶界相包含μ相或δ相,μ相即R36.5Fe63.5-xMx,1≤x≤4;δ相即R32.5Fe67.5-yMy,2≤y≤20,上述中R是指Nd,Pr,Ce,La中的至少两种元素,M是指Al,Cu,Ga中的至少两种元素,比例为原子百分比。
2.一种制备权利要求1所述的稀土磁体的方法,其特征在于,包括以下步骤,
(S1)扩散源制作:配制扩散源合金,所述扩散源合金的化学式为RαMβBγFe100-α-β-γ,其中10≤α≤80,15≤β≤90,0.1≤γ≤3,R为Nd、Pr中至少一种,M为Al、Cu、Ga中至少一种,进行时效处理,形成新型扩散源后进行吸氢和脱氢处理,比例为质量百分比;
(S2)钕铁硼母材制作:配制钕铁硼磁体母材的主合金和辅合金,主合金和辅合金混合后的质量比化学式是RaMbBcFe100-a-b-c,其中27≤a≤33,1≤b≤4,0.8≤c≤1.2,R是指Nd、Pr、Ce、La中的一种或多种,M是指Al、Cu、Ga、Ti、Zr、Co、Mg、Zn、Nb、Mo、Sn中的一种或多种,剩余成分为Fe,比例为质量百分比;
(S3)在钕铁硼母材上涂覆一层新型扩散源膜层,进行扩散和时效处理,得到钕铁硼磁体。
3.根据权利要求2所述的制备稀土磁体的方法,其特征在于,步骤(S2)中将钕铁硼母材薄片和润滑剂混合后进行氢处理,经气流磨制备混合粉末,将上述粉末压制成型,烧结得到钕铁硼磁体母材。
4.根据权利要求2所述的制备稀土磁体的方法,其特征在于:步骤(S1)中的扩散源为粉末状,扩散源的制备方法为雾化制粉、非晶甩带制粉或铸锭制粉。
5.根据权利要求1所述的制备稀土磁体的方法,其特征在于:步骤(S1)中吸氢温度为50-200℃,脱氢温度为450-550℃。
6.根据权利要求3所述的制备稀土磁体的方法,其特征在于:所述气流磨粉末粒度为2-5μm。
7.根据权利要求4所述的制备稀土磁体的方法,其特征在于:所述扩散源粉末粒度为3-60μm。
8.根据权利要求2所述的制备稀土磁体的方法,其特征在于:步骤(S3)中涂覆的方法为磁控溅射镀膜、蒸镀镀膜、涂覆镀膜中的一种。
9.根据权利要求3所述的制备稀土磁体的方法,其特征在于,制备所述钕铁硼磁体母材烧结过程的烧结温度是980-1060℃,烧结时间为6-15h。
10.根据权利要求2所述的制备稀土磁体的方法,其特征在于,步骤(S3)中扩散温度为800-910℃,扩散时间为6-30h,一级时效温度为700-850℃,一级时效时间为2-10h,二级时效温度为450-600℃,二级时效时间为3-10h。
CN202210610371.6A 2022-05-31 2022-05-31 稀土磁体及其制备方法 Active CN114927302B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210610371.6A CN114927302B (zh) 2022-05-31 2022-05-31 稀土磁体及其制备方法
JP2023076529A JP7556668B2 (ja) 2022-05-31 2023-05-08 希土類磁性体の製造方法
US18/201,747 US20230386711A1 (en) 2022-05-31 2023-05-24 Rare earth magnet and manufacturing method thereof
EP23176222.0A EP4287220A1 (en) 2022-05-31 2023-05-30 Method of preparing a ndfeb magnet and a ndfeb magnet obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210610371.6A CN114927302B (zh) 2022-05-31 2022-05-31 稀土磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN114927302A true CN114927302A (zh) 2022-08-19
CN114927302B CN114927302B (zh) 2025-02-11

Family

ID=82811813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210610371.6A Active CN114927302B (zh) 2022-05-31 2022-05-31 稀土磁体及其制备方法

Country Status (4)

Country Link
US (1) US20230386711A1 (zh)
EP (1) EP4287220A1 (zh)
JP (1) JP7556668B2 (zh)
CN (1) CN114927302B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831519A (zh) * 2023-02-14 2023-03-21 宁波守正磁电有限公司 一种烧结钕铁硼永磁体及其制备方法
CN118737602A (zh) * 2024-06-24 2024-10-01 赣州嘉通新材料有限公司 一种晶界扩散制备镧铈稀土永磁材料的方法
CN118762897A (zh) * 2024-09-05 2024-10-11 宁波同创强磁材料有限公司 一种高电阻率高性能烧结钕铁硼永磁材料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681225A (zh) * 2013-12-03 2015-06-03 湖南稀土金属材料研究院 一种提高烧结钕铁硼材料性能的处理方法
CN104882266A (zh) * 2015-06-16 2015-09-02 北京科技大学 晶界扩渗轻稀土-铜合金制备高矫顽力钕铁硼磁体的方法
CN105170976A (zh) * 2015-10-23 2015-12-23 北京科技大学 一种压坯扩渗后低温烧结制备高矫顽力钕铁硼的方法
CN105321702A (zh) * 2015-11-19 2016-02-10 北京科技大学 一种提高烧结NdFeB磁体矫顽力的方法
CN105489334A (zh) * 2016-01-14 2016-04-13 北京科技大学 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN106128679A (zh) * 2016-08-24 2016-11-16 江西金力永磁科技股份有限公司 一种改性钕铁硼磁体和其制造方法
CN108831653A (zh) * 2018-06-27 2018-11-16 京磁材料科技股份有限公司 高剩磁高矫顽力低重稀土的钕铁硼制备方法
KR101918975B1 (ko) * 2017-08-09 2018-11-16 한국기계연구원 Nd-Fe-B계 자석 및 그 제조방법
CN108922768A (zh) * 2018-07-18 2018-11-30 浙江中科磁业有限公司 一种高压热处理晶界扩散增强钕铁硼磁体矫顽力的方法
CN109360728A (zh) * 2018-07-18 2019-02-19 浙江中科磁业有限公司 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法
CN113782330A (zh) * 2021-09-16 2021-12-10 烟台东星磁性材料股份有限公司 镧铈添加钕铁硼磁体的制备方法
CN113851320A (zh) * 2021-10-13 2021-12-28 中国科学院宁波材料技术与工程研究所 一种轻稀土合金晶界扩散增强无重稀土烧结钕铁硼磁体的制备方法
CN113871123A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低成本稀土磁体及制造方法
US20220044853A1 (en) * 2020-08-08 2022-02-10 Yantai Shougang Magnetic Materials Inc NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
US20230095310A1 (en) * 2021-09-24 2023-03-30 Yantai Dongxing Magnetic Materials Inc. Low-heavy rare earth magnet and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225533A (ja) * 2012-03-19 2013-10-31 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
WO2016133067A1 (ja) 2015-02-17 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP6624455B2 (ja) 2016-08-17 2019-12-25 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN106298219B (zh) 2016-08-17 2017-09-29 宁波永久磁业有限公司 一种制备r‑t‑b稀土永磁体的方法及装置
CN112802677B (zh) * 2020-08-27 2023-09-01 北京工业大学 一种同时提高小尺寸烧结钕铁硼磁体矫顽力和力学性能的方法
CN113764147A (zh) 2021-09-18 2021-12-07 泮敏翔 一种低熔点混合扩散提升钕铁硼磁体矫顽力的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681225A (zh) * 2013-12-03 2015-06-03 湖南稀土金属材料研究院 一种提高烧结钕铁硼材料性能的处理方法
CN104882266A (zh) * 2015-06-16 2015-09-02 北京科技大学 晶界扩渗轻稀土-铜合金制备高矫顽力钕铁硼磁体的方法
CN105170976A (zh) * 2015-10-23 2015-12-23 北京科技大学 一种压坯扩渗后低温烧结制备高矫顽力钕铁硼的方法
CN105321702A (zh) * 2015-11-19 2016-02-10 北京科技大学 一种提高烧结NdFeB磁体矫顽力的方法
CN105489334A (zh) * 2016-01-14 2016-04-13 北京科技大学 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN106128679A (zh) * 2016-08-24 2016-11-16 江西金力永磁科技股份有限公司 一种改性钕铁硼磁体和其制造方法
KR101918975B1 (ko) * 2017-08-09 2018-11-16 한국기계연구원 Nd-Fe-B계 자석 및 그 제조방법
CN108831653A (zh) * 2018-06-27 2018-11-16 京磁材料科技股份有限公司 高剩磁高矫顽力低重稀土的钕铁硼制备方法
CN108922768A (zh) * 2018-07-18 2018-11-30 浙江中科磁业有限公司 一种高压热处理晶界扩散增强钕铁硼磁体矫顽力的方法
CN109360728A (zh) * 2018-07-18 2019-02-19 浙江中科磁业有限公司 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法
US20220044853A1 (en) * 2020-08-08 2022-02-10 Yantai Shougang Magnetic Materials Inc NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
CN113782330A (zh) * 2021-09-16 2021-12-10 烟台东星磁性材料股份有限公司 镧铈添加钕铁硼磁体的制备方法
CN113871123A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低成本稀土磁体及制造方法
US20230095310A1 (en) * 2021-09-24 2023-03-30 Yantai Dongxing Magnetic Materials Inc. Low-heavy rare earth magnet and manufacturing method thereof
CN113851320A (zh) * 2021-10-13 2021-12-28 中国科学院宁波材料技术与工程研究所 一种轻稀土合金晶界扩散增强无重稀土烧结钕铁硼磁体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"晶界液相扩散调控Nd-Fe-B磁体织构形成能力与矫顽力研究获进展", 稀土, no. 01, 15 February 2016 (2016-02-15) *
VAN ENDE, MA (VAN ENDE, MARIE-ALINE) ET.AL: "Thermodynamic optimization of the Dy-Nd-Fe-B system and application in the recovery and recycling of rare earth metals from NdFeB magnet", 《 ROYAL SOC CHEMISTRY》, 1 January 2015 (2015-01-01) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831519A (zh) * 2023-02-14 2023-03-21 宁波守正磁电有限公司 一种烧结钕铁硼永磁体及其制备方法
CN118737602A (zh) * 2024-06-24 2024-10-01 赣州嘉通新材料有限公司 一种晶界扩散制备镧铈稀土永磁材料的方法
CN118762897A (zh) * 2024-09-05 2024-10-11 宁波同创强磁材料有限公司 一种高电阻率高性能烧结钕铁硼永磁材料及其制备方法

Also Published As

Publication number Publication date
US20230386711A1 (en) 2023-11-30
JP2023177262A (ja) 2023-12-13
EP4287220A1 (en) 2023-12-06
JP7556668B2 (ja) 2024-09-26
CN114927302B (zh) 2025-02-11

Similar Documents

Publication Publication Date Title
CN102280240B (zh) 一种低镝含量高性能烧结钕铁硼的制备方法
EP4156209A1 (en) Ndfeb magnet, preparation method therefor, and application thereof
CN114927302A (zh) 稀土磁体及其制备方法
WO2020233316A1 (zh) 一种含REFe 2相的晶界扩散铈磁体及其制备方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
JP7253071B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
CN113593873B (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
WO2017101577A1 (zh) 一种耐腐蚀的富镧铈烧结钕铁硼磁体及制造方法
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN107578870A (zh) 一种利用高丰度稀土元素制备永磁材料的方法
CN108389711A (zh) 一种具有高矫顽力的烧结钕铁硼磁体的制备方法
WO2024114167A1 (zh) 一种烧结钕铁硼磁体及其制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN111554502A (zh) 增压扩散热处理制备高矫顽力烧结钕铁硼的方法
CN111916285A (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体的制备方法
CN114284018A (zh) 钕铁硼磁体及其制备方法和应用
CN112216460B (zh) 纳米晶钕铁硼磁体及其制备方法
CN114210976B (zh) 一种烧结钕铁硼双合金结合晶界扩散的方法
CN113096947B (zh) 一种高性能钕铁硼烧结磁体制备方法及微观结构
CN115881379A (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用
JP7542293B2 (ja) 希土類磁性体及びその製造方法
CN113012925B (zh) 一种高磁性低稀土含量的钕铁硼磁体的制备方法
CN114038641B (zh) 一种含银的混合稀土铁硼烧结永磁体及其制备方法
CN114914047A (zh) 一种钕铁硼磁体及制备方法
CN114360831A (zh) 一种磁性能一致性高的r-t-b系烧结磁体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant