CN114813408B - In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions - Google Patents
In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions Download PDFInfo
- Publication number
- CN114813408B CN114813408B CN202210412828.2A CN202210412828A CN114813408B CN 114813408 B CN114813408 B CN 114813408B CN 202210412828 A CN202210412828 A CN 202210412828A CN 114813408 B CN114813408 B CN 114813408B
- Authority
- CN
- China
- Prior art keywords
- module
- diaphragm
- loading
- acoustic
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 26
- 230000008878 coupling Effects 0.000 title claims abstract description 23
- 238000010168 coupling process Methods 0.000 title claims abstract description 23
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 23
- 238000012360 testing method Methods 0.000 title claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 42
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 238000001228 spectrum Methods 0.000 claims abstract description 18
- 238000001931 thermography Methods 0.000 claims abstract description 14
- 238000012634 optical imaging Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 claims description 29
- 230000007613 environmental effect Effects 0.000 claims description 23
- 239000003792 electrolyte Substances 0.000 claims description 17
- 230000003068 static effect Effects 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 10
- 230000033001 locomotion Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 claims description 6
- 239000007774 positive electrode material Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 238000009659 non-destructive testing Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 238000000399 optical microscopy Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0005—Repeated or cyclic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0017—Tensile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0073—Fatigue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/04—Chucks, fixtures, jaws, holders or anvils
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及精密仪器领域,电池材料的原位测试领域,尤指一种模拟实际工况并集成多光谱-声谱监测的电池隔膜静-动态耦合加载的原位测试系统。该系统通过光学显微镜、红外热成像仪和声发射无损检测元件集成使用,利用三级帕尔贴片创造低温环境,通过电解质溶液和正、负极材料模拟电化学环境,可对实际工况下隔膜双轴静-动态耦合加载的失效过程进行多光谱-声谱原位监测,为了解、揭示隔膜的失效机理和提升电池服役可靠性、稳定性提供测试仪器。The present invention relates to the field of precision instruments and the field of in-situ testing of battery materials, and in particular to an in-situ testing system for static-dynamic coupled loading of battery diaphragms that simulates actual working conditions and integrates multi-spectral-acoustic monitoring. The system integrates an optical microscope, an infrared thermal imager, and an acoustic emission nondestructive testing element, uses a three-level Peltier patch to create a low-temperature environment, and simulates an electrochemical environment through an electrolyte solution and positive and negative electrode materials. It can perform multi-spectral-acoustic in-situ monitoring of the failure process of biaxial static-dynamic coupled loading of the diaphragm under actual working conditions, and provides a testing instrument for understanding and revealing the failure mechanism of the diaphragm and improving the service reliability and stability of the battery.
背景技术Background technique
21世纪以来,经济飞速发展的背后能源紧缺和环境污染的问题给传统汽车产业带来极大冲击,其对不可再生能源的高度依赖与对环境的破坏限制了未来长期应用。作为重点发展领域之一,新能源汽车革新了其动力源,采用电池作为汽车驱动的新动力,这对电池技术提出了更高要求。其中,具有能量密度高、循环寿命长、充电效率高等显著优点的锂离子电池是目前电动汽车中的主流电池。而着火爆炸事故频发又限制了其大规模应用和迅速普及,尽管经过长期的实验与探索,车载动力电池系统的设计较为完备,大多安装在坚固的壳体中用作保护,且通过了大量的工业测试,然而难以预料的交通碰撞事故和复杂的服役工作环境使得锂离子电池出现由于滥用而失效的情况。挤压、碰撞、针刺等机械滥用,在低温环境下的热滥用以及过充、过放的电滥用都会导致电池内部出现短路,发生复杂的化学反应,放出大量的热和气体,引发热失控,进而引发起火甚至爆炸的危险后果。低温环境下锂离子电池中锂的加速脱嵌沉积会诱发枝晶生长发展,刺穿隔膜导致短路。隔膜作为锂离子电池中的一个重要组成部分,其在寒冷环境、静-动态载荷等多物理场耦合作用下的失效机理对于锂离子电池的安全性与稳定性具有重大影响。为了探究隔膜的性能,较为常见的是利用电子显微镜、XRD等仪器进行静态的监测与分析,然而这种非原位测试只能获取隔膜在测试前后的显微结构与性能,并不能对隔膜失效全部过程的微观结构变化进行动态观测。因此,设计一种能模拟实际工况并集成“光学-红外-声发射”多光谱-声谱原位监测仪器的隔膜静-动态耦合加载装置,对于获取隔膜性能与显微结构演化行为之间的实时相关性,开展电池隔膜的失效机理研究具有重要意义。Since the 21st century, the energy shortage and environmental pollution behind the rapid economic development have brought great impact to the traditional automobile industry. Its high dependence on non-renewable energy and damage to the environment have limited its long-term application in the future. As one of the key development areas, new energy vehicles have innovated its power source and adopted batteries as a new power source for automobile driving, which has put forward higher requirements for battery technology. Among them, lithium-ion batteries with significant advantages such as high energy density, long cycle life and high charging efficiency are the mainstream batteries in electric vehicles. The frequent occurrence of fire and explosion accidents has limited its large-scale application and rapid popularization. Although after long-term experiments and explorations, the design of the on-board power battery system is relatively complete, most of them are installed in a solid shell for protection, and have passed a large number of industrial tests, but unpredictable traffic collision accidents and complex service working environments have caused lithium-ion batteries to fail due to abuse. Mechanical abuse such as extrusion, collision, and puncture, thermal abuse in low temperature environments, and electrical abuse such as overcharging and over-discharging can cause short circuits inside the battery, complex chemical reactions, and release of a large amount of heat and gas, causing thermal runaway, and then causing dangerous consequences such as fire and even explosion. The accelerated lithium intercalation and deposition in lithium-ion batteries under low temperature conditions can induce dendrite growth and development, piercing the diaphragm and causing a short circuit. As an important component of lithium-ion batteries, the failure mechanism of the diaphragm under the coupling of multiple physical fields such as cold environment and static-dynamic load has a significant impact on the safety and stability of lithium-ion batteries. In order to explore the performance of the diaphragm, it is more common to use instruments such as electron microscopes and XRD for static monitoring and analysis. However, this non-in-situ test can only obtain the microstructure and performance of the diaphragm before and after the test, and cannot dynamically observe the microstructural changes of the entire diaphragm failure process. Therefore, designing a diaphragm static-dynamic coupling loading device that can simulate actual working conditions and integrates an "optical-infrared-acoustic emission" multi-spectrum-acoustic spectrum in-situ monitoring instrument is of great significance for obtaining the real-time correlation between the diaphragm performance and the microstructural evolution behavior, and conducting research on the failure mechanism of battery diaphragms.
发明内容Summary of the invention
本发明的目的在于设计一种实际工况下电池隔膜力-热-电耦合原位测试系统,以解决上述现有技术存在的问题,针对于锂离子电池隔膜在实际工况下的双轴静-动态耦合加载过程进行“光学-红外-声发射”多光谱-声谱原位监测,可对隔膜的微观结构变化、全域温度梯度和局部损伤失效进行观察。The purpose of the present invention is to design an in-situ testing system for the force-heat-electric coupling of a battery diaphragm under actual working conditions to solve the problems existing in the above-mentioned prior art. The "optical-infrared-acoustic emission" multi-spectrum-acoustic spectrum in-situ monitoring of the biaxial static-dynamic coupled loading process of the lithium-ion battery diaphragm under actual working conditions can be performed to observe the microstructural changes, global temperature gradients and local damage and failure of the diaphragm.
本发明的上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved by the following technical solutions:
一种实际工况下电池隔膜力-热-电耦合原位测试系统,包括温控箱1、环境模块2、力学加载模块3和多光谱-声谱监测模块4,所述温控箱1内设置有环境模块2、力学加载模块3和多光谱-声谱监测模块4,十字形隔膜试样3.2安装在所述力学加载模块3内进行双轴静-动态耦合加载,所述环境模块2模拟隔膜实际工况的电化学环境和低温环境,所述多光谱-声谱监测模块包括光学成像模块 4、红外热成像模块5和声发射模块6,通过横杆1.3集成于所述温控箱1内。A battery diaphragm force-heat-electric coupling in-situ testing system under actual working conditions, comprising a temperature control box 1, an environmental module 2, a mechanical loading module 3 and a multi-spectrum-acoustic monitoring module 4, wherein the temperature control box 1 is provided with the environmental module 2, the mechanical loading module 3 and the multi-spectrum-acoustic monitoring module 4, a cross-shaped diaphragm specimen 3.2 is installed in the mechanical loading module 3 for biaxial static-dynamic coupling loading, the environmental module 2 simulates the electrochemical environment and low temperature environment of the actual working condition of the diaphragm, the multi-spectrum-acoustic monitoring module comprises an optical imaging module 4, an infrared thermal imaging module 5 and an acoustic emission module 6, which are integrated into the temperature control box 1 via a cross bar 1.3.
所述温控箱1包括温度传感器1.1、导轨1.2、横杆1.3、显示器1.4和温控箱体1.5,显示器1.4布置在温控箱体1.5外侧面,导轨1.2对称布置在温控箱体 1.5内部两侧面,横杆1.3通过两端卡槽与导轨1.2滑动连接实现高度调节,所述多光谱-声谱监测模块通过横杆1.3集成安装在温控箱1内环境模块2正上方。The temperature control box 1 includes a temperature sensor 1.1, a guide rail 1.2, a cross bar 1.3, a display 1.4 and a temperature control box body 1.5. The display 1.4 is arranged on the outer side of the temperature control box body 1.5, and the guide rails 1.2 are symmetrically arranged on the two inner side surfaces of the temperature control box body 1.5. The cross bar 1.3 is slidably connected to the guide rail 1.2 through the card slots at both ends to achieve height adjustment. The multi-spectrum-acoustic spectrum monitoring module is integrated and installed directly above the environment module 2 in the temperature control box 1 through the cross bar 1.3.
所述环境模块2包括电解质环境箱2.1和低温环境箱2.2,所述电解质环境箱2.1包括电解质箱体2.1.1和端盖2.1.2,箱体顶部设有石英窗口,用于所述多光谱-声谱监测模块中各表征仪器的聚焦;端盖2.1.2底面用于模拟电池正极,从上至下依次为导电板和正极材料层,电解质箱体2.1.1底部用于模拟电池负极,从下至上依次为导电板和负极材料层,箱体内部充满电解质溶液,用于实现隔膜实际工况的电化学环境模拟。所述低温环境箱2.2包括低温箱体2.2.1、三级帕尔贴片2.2.2和散热片2.2.3,散热片2.2.3与三级帕尔贴片2.2.2通过强力胶粘结,阵列布置于低温箱体2.2.1四周及底面。The environmental module 2 includes an electrolyte environment box 2.1 and a low temperature environment box 2.2. The electrolyte environment box 2.1 includes an electrolyte box body 2.1.1 and an end cover 2.1.2. A quartz window is provided on the top of the box body for focusing each characterization instrument in the multi-spectral-acoustic spectrum monitoring module. The bottom of the end cover 2.1.2 is used to simulate the positive electrode of the battery, which is a conductive plate and a positive electrode material layer from top to bottom. The bottom of the electrolyte box body 2.1.1 is used to simulate the negative electrode of the battery, which is a conductive plate and a negative electrode material layer from bottom to top. The inside of the box body is filled with electrolyte solution, which is used to achieve electrochemical environment simulation of the actual working condition of the diaphragm. The low temperature environment box 2.2 includes a low temperature box body 2.2.1, a three-stage Peltier sheet 2.2.2 and a heat sink 2.2.3. The heat sink 2.2.3 is bonded to the three-stage Peltier sheet 2.2.2 by strong glue, and the array is arranged around and on the bottom of the low temperature box body 2.2.1.
所述力学加载模块3包括力传感器3.1、十字形隔膜试样3.2、动态加载单元3.3、十字形试样夹持单元3.4、静态加载单元3.5、支撑垫块3.6、夹具垫块 3.7和基座3.8。所述十字形试样夹持单元3.4的上夹具体和下夹具体与隔膜接触表面设置有滚花结构以增大摩擦力保证稳定夹持,通过紧固螺钉夹紧上、下夹具体并固定在夹具垫块3.7上;所述动态加载单元3.3由四个正交布置的磁致伸缩驱动器组成,柔性铰链3.3.2通过对称设置的内螺纹孔结构分别与夹具垫块 3.7/力传感器3.1、支撑垫块3.6紧固连接,由磁性线圈驱动的磁致伸缩棒3.3.1 内嵌于柔性铰链3.3.2中;所述静态加载单元3.5由两组正交布置的左右旋滚珠丝杠螺母副组成,包括左右旋滚珠丝杠3.5.1、滚珠螺母3.5.4、固定座3.5.2、电机3.5.3和支撑座3.5.5,固定座3.5.2和支撑座3.5.5通过螺纹连接方式与所述基座3.8刚性连接,电机3.5.3安装于固定座3.5.2端驱动左右旋滚珠丝杠螺母副,滚珠螺母3.5.4通过螺母座与支撑垫块3.6过渡刚性连接。The mechanical loading module 3 includes a force sensor 3.1, a cross-shaped diaphragm specimen 3.2, a dynamic loading unit 3.3, a cross-shaped specimen clamping unit 3.4, a static loading unit 3.5, a support pad 3.6, a fixture pad 3.7 and a base 3.8. The upper clamping body and the lower clamping body of the cross-shaped specimen clamping unit 3.4 are provided with a knurled structure on the contact surface with the diaphragm to increase the friction force and ensure stable clamping. The upper and lower clamping bodies are clamped by tightening screws and fixed on the fixture pad 3.7; the dynamic loading unit 3.3 is composed of four orthogonally arranged magnetostrictive actuators, and the flexible hinge 3.3.2 is respectively fastened to the fixture pad 3.7/force sensor 3.1 and the support pad 3.6 through a symmetrically arranged internal threaded hole structure. The magnetostrictive rod 3.3.1 driven by the magnetic coil Embedded in the flexible hinge 3.3.2; the static loading unit 3.5 is composed of two groups of orthogonally arranged left-right ball screw nut pairs, including left-right ball screws 3.5.1, ball nuts 3.5.4, fixed seats 3.5.2, motors 3.5.3 and support seats 3.5.5. The fixed seats 3.5.2 and support seats 3.5.5 are rigidly connected to the base 3.8 by threaded connections. The motor 3.5.3 is installed at the end of the fixed seat 3.5.2 to drive the left-right ball screw nut pairs. The ball nuts 3.5.4 are rigidly connected to the support pads 3.6 through nut seats.
所述光学成像模块4包括第一支架4.1、光学显微镜4.2和工业相机4.3,光学显微镜4.2尾端与工业相机4.3螺纹连接,通过第一夹持机构4.1.5夹紧固定,通过第一位移块4.1.1与横杆1.3滑动连接,第一转向机构4.1.3调节角度变化。The optical imaging module 4 includes a first bracket 4.1, an optical microscope 4.2 and an industrial camera 4.3. The tail end of the optical microscope 4.2 is threadedly connected to the industrial camera 4.3, clamped and fixed by a first clamping mechanism 4.1.5, and slidably connected to the cross bar 1.3 through a first displacement block 4.1.1. The first steering mechanism 4.1.3 adjusts the angle change.
所述红外热成像模块5包括第二支架5.1、固定框5.2和红外热成像仪5.3,红外热成像仪5.3通过螺纹连接内嵌于固定框5.2内,通过第二位移块5.1.1与横杆1.3滑动连接,第二转向机构5.1.3调节角度变化。The infrared thermal imaging module 5 comprises a second bracket 5.1, a fixing frame 5.2 and an infrared thermal imager 5.3. The infrared thermal imager 5.3 is embedded in the fixing frame 5.2 through a threaded connection, and is slidably connected to the crossbar 1.3 through a second displacement block 5.1.1. The second steering mechanism 5.1.3 adjusts the angle change.
所述声发射模块6包括第三支架6.1、精密位移台6.2和声发射传感器6.3。声发射传感器6.3通过强力胶粘结在精密位移台6.2台面,精密位移台6.2通过螺纹连接方式与第三支架6.1刚性连接,通过第三位移块6.1.2与横杆1.3滑动连接。The acoustic emission module 6 includes a third bracket 6.1, a precision displacement platform 6.2 and an acoustic emission sensor 6.3. The acoustic emission sensor 6.3 is bonded to the surface of the precision displacement platform 6.2 by strong glue, and the precision displacement platform 6.2 is rigidly connected to the third bracket 6.1 by threaded connection, and is slidably connected to the crossbar 1.3 by the third displacement block 6.1.2.
所述多光谱-声谱监测模块基于光学显微成像技术、红外热成像技术、声发射无损检测技术进行“光学-红外-声发射”多光谱-声谱原位监测,用于观察十字形隔膜试样3.2在静-动态耦合加载作用下的失效微区显微结构、全域温度梯度和局部损伤失效,可以覆盖加载过程中的视觉盲区,实现全方位监测。The multi-spectral-acoustic monitoring module performs "optical-infrared-acoustic emission" multi-spectral-acoustic in-situ monitoring based on optical microscopy imaging technology, infrared thermal imaging technology, and acoustic emission non-destructive testing technology, and is used to observe the microstructure of the failure micro-area, the global temperature gradient, and local damage failure of the cross-shaped diaphragm specimen 3.2 under static-dynamic coupled loading, and can cover the visual blind spots during the loading process to achieve all-round monitoring.
所述力学加载模块3实现对十字形隔膜试样3.2的静-动态耦合加载,所述静态加载单元3.5中左右旋滚珠丝杠螺母副在电机3.5.3的驱动下,将左/右旋向的转动转化为滚珠螺母3.5.4同步相反的大行程轴向运动,通过滚珠螺母3.5.4 带动与支撑垫块3.6刚性连接的柔性铰链3.3.2产生双向无限拉伸的静态载荷,适用于对超塑性隔膜材料进行加载;所述动态加载单元3.3中的柔性铰链3.3.2 采用菱形结构,将磁致伸缩棒3.3.1的长度变化量转化为其正交方向的位移量,磁致伸缩棒3.3.1始终处于承受压缩应力的状态,在激励磁场的作用下产生周期性变形,实现疲劳加载;所述静态加载单元3.5通过左右旋滚珠丝杠螺母副实现同步反向直线运动,所述动态加载单元3.3通过磁致伸缩驱动器两两对称的正交布置实现疲劳加载的同步性,有利于十字形隔膜试样3.2的中央区域始终处于成像视野的中心。The mechanical loading module 3 realizes static-dynamic coupling loading of the cross-shaped diaphragm specimen 3.2. The left-right rotation ball screw nut pair in the static loading unit 3.5 is driven by the motor 3.5.3 to convert the left/right rotation into a synchronous and opposite large-stroke axial movement of the ball nut 3.5.4. The ball nut 3.5.4 drives the flexible hinge 3.3.2 rigidly connected to the support pad 3.6 to generate a bidirectional infinite tensile static load, which is suitable for loading superplastic diaphragm materials; the flexible hinge 3.3.2 in the dynamic loading unit 3.3 A diamond structure is adopted to convert the length change of the magnetostrictive rod 3.3.1 into its displacement in the orthogonal direction. The magnetostrictive rod 3.3.1 is always in a state of bearing compressive stress and produces periodic deformation under the action of the excitation magnetic field to achieve fatigue loading. The static loading unit 3.5 realizes synchronous reverse linear motion through a left-right rotating ball screw nut pair, and the dynamic loading unit 3.3 realizes the synchronization of fatigue loading through the orthogonal arrangement of magnetostrictive drivers in pairs, which is conducive to the central area of the cross-shaped diaphragm sample 3.2 always being in the center of the imaging field.
所述十字形隔膜试样3.2在中央区域设置一道缺口,提供非均匀的应力场,作为加载过程中裂纹萌生或断裂发生的区域,便于在原位测试开始前确定所述多光谱-声谱监测模块的观测区域。The cross-shaped diaphragm specimen 3.2 is provided with a notch in the central region to provide a non-uniform stress field, which serves as the region where crack initiation or fracture occurs during loading, so as to facilitate determination of the observation region of the multi-spectrum-acoustic spectrum monitoring module before the in-situ test begins.
所述环境模块2中低温箱体2.2.1四周周向布局和底面阵列布局的三级帕尔贴片2.2.2创造均匀低温环境实现全局制冷,所述电解质箱体2.1.1采用高导热材料实现迅速降温,内部充满电解质溶液,与正/负极材料层共同模拟隔膜实际工况的电化学环境。所述温控箱体1.5的密闭性结构保持低温条件的稳定性,创造恒低温环境。The low-temperature box 2.2.1 in the environmental module 2 is arranged circumferentially around and the three-stage Peltier 2.2.2 arranged in an array on the bottom creates a uniform low-temperature environment to achieve global cooling. The electrolyte box 2.1.1 uses high thermal conductivity materials to achieve rapid cooling. The electrolyte solution is filled inside and together with the positive/negative electrode material layer simulates the electrochemical environment of the actual working condition of the diaphragm. The airtight structure of the temperature control box 1.5 maintains the stability of the low-temperature conditions and creates a constant low-temperature environment.
本发明的有益效果在于:通过环境模块构造出隔膜实际服役工况的低温环境和电化学环境,利用柔性铰链与滚珠丝杠传动副相结合的方式,可开展隔膜的动态疲劳测试和无限拉伸静态加载,通过光学显微镜、红外热成像仪和声发射传感器的集成,实现了“光学-红外-声发射”多光谱-声谱原位监测,可覆盖视觉盲区实现全方位观察,为了解、揭示隔膜的失效机理和提升电池的服役可靠性、稳定性提供测试仪器。The beneficial effects of the present invention are as follows: a low-temperature environment and an electrochemical environment of the actual service conditions of the diaphragm are constructed through the environmental module, and dynamic fatigue testing and infinite tensile static loading of the diaphragm can be carried out by combining a flexible hinge with a ball screw transmission pair. Through the integration of an optical microscope, an infrared thermal imager and an acoustic emission sensor, "optical-infrared-acoustic emission" multi-spectrum-acoustic spectrum in-situ monitoring is realized, which can cover the visual blind area to achieve all-round observation, and provide a test instrument for understanding and revealing the failure mechanism of the diaphragm and improving the service reliability and stability of the battery.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。The drawings described herein are used to provide further understanding of the present invention and constitute a part of this application. The illustrative examples of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations on the present invention.
图1为本发明的整体外观轴测图;FIG1 is an axonometric view of the overall appearance of the present invention;
图2为本发明的整体外观主视图;FIG2 is a front view of the overall appearance of the present invention;
图3为本发明的温控箱轴测图;FIG3 is an axonometric view of a temperature control box of the present invention;
图4位本发明的环境模块俯视图;FIG4 is a top view of an environmental module of the present invention;
图5为本发明的力学加载模块轴测图;FIG5 is an axonometric view of a mechanical loading module of the present invention;
图6为本发明的十字形隔膜试样俯视图;FIG6 is a top view of a cross-shaped diaphragm sample of the present invention;
图7为本发明的十字形试样夹持单元示意图;FIG7 is a schematic diagram of a cross-shaped sample clamping unit of the present invention;
图8为本发明的磁致伸缩驱动器示意图;FIG8 is a schematic diagram of a magnetostrictive actuator of the present invention;
图9为本发明的基座示意图;FIG9 is a schematic diagram of a base of the present invention;
图10为本发明的光学成像模块示意图;FIG10 is a schematic diagram of an optical imaging module of the present invention;
图11为本发明的红外热成像模块示意图;FIG11 is a schematic diagram of an infrared thermal imaging module of the present invention;
图12为本发明的声发射模块示意图。FIG. 12 is a schematic diagram of an acoustic emission module of the present invention.
图中:1、温控箱;1.1、温度传感器;1.2、导轨;1.3、横杆;1.4、显示器; 1.5、温控箱体;2、环境模块;2.1、电解质环境箱;2.1.1、电解质箱体;2.1.2、端盖;2.2、低温环境箱;2.2.1、低温箱体;2.2.2、三级帕尔贴片;2.2.3、散热片;3、力学加载模块;3.1、力传感器;3.2、十字形隔膜试样;3.3、动态加载单元;3.3.1、磁致伸缩棒;3.3.2、柔性铰链;3.4、十字形试样夹持单元;3.5、静态加载单元;3.5.1、左右旋滚珠丝杠;3.5.2、固定座;3.5.3、电机;3.5.4、滚珠螺母;3.5.5、支撑座;3.6、支撑垫块;3.7、夹具垫块;3.8、基座;4、光学成像模块;4.1、第一支架;4.1.1、第一位移块;4.1.2、第一手轮Ⅰ;4.1.3、第一转向机构;4.1.4、第一手轮Ⅱ;4.1.5、第一夹持机构;4.2、光学显微镜; 4.3、工业相机;5、红外热成像模块;5.1、第二支架;5.1.1、第二位移块;5.1.2、第二手轮Ⅰ;5.1.3、第二转向机构;5.1.4、第二手轮Ⅱ;5.2、固定框;5.3、红外热成像仪;6、声发射模块;6.1、第三支架;6.1.1、第三手轮;6.1.2、第三位移块;6.2、精密位移台;6.3、声发射传感器。In the figure: 1. Temperature control box; 1.1. Temperature sensor; 1.2. Guide rail; 1.3. Crossbar; 1.4. Display; 1.5. Temperature control box; 2. Environmental module; 2.1. Electrolyte environmental box; 2.1.1. Electrolyte box; 2.1.2. End cover; 2.2. Low temperature environmental box; 2.2.1. Low temperature box; 2.2.2. Three-stage Peltier patch; 2.2.3. Heat sink; 3. Mechanical loading module; 3.1. Force sensor; 3.2. Cross-shaped diaphragm specimen; 3.3. Dynamic loading unit; 3.3.1. Magnetostrictive rod; 3.3.2. Flexible hinge; 3.4. Cross-shaped specimen clamping unit; 3.5. Static 3.5.1, left-right rotating ball screw; 3.5.2, fixed seat; 3.5.3, motor; 3.5.4, ball nut; 3.5.5, support seat; 3.6, support pad; 3.7, fixture pad; 3.8, base; 4, optical imaging module; 4.1, first bracket; 4.1.1, first displacement block; 4.1.2, first hand wheel I; 4.1.3, first steering mechanism; 4.1.4, first hand wheel II; 4.1.5, first clamping mechanism; 4.2, optical microscope; 4.3. Industrial camera; 5. Infrared thermal imaging module; 5.1. Second bracket; 5.1.1. Second displacement block; 5.1.2. Second hand wheel I; 5.1.3. Second steering mechanism; 5.1.4. Second hand wheel II; 5.2. Fixed frame; 5.3. Infrared thermal imager; 6. Acoustic emission module; 6.1. Third bracket; 6.1.1. Third hand wheel; 6.1.2. Third displacement block; 6.2. Precision displacement stage; 6.3. Acoustic emission sensor.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的详细内容及其具体实施方式。The details of the present invention and its specific implementation methods are further described below in conjunction with the accompanying drawings.
参照图1至图12所示:本发明提供了一种实际工况下电池隔膜力-热-电耦合原位测试系统,系统的整体尺寸为1320mm×1340mm×940mm,包括温控箱、环境模块、力学加载模块和多光谱-声谱监测模块。温控箱内设置有环境模块、力学加载模块和多光谱-声谱监测模块,十字形隔膜试样安装在力学加载模块内进行双轴静-动态耦合加载,环境模块模拟隔膜实际工况的电化学环境和低温环境,多光谱-声谱监测模块包括光学成像模块、红外热成像模块和声发射模块。Referring to Figures 1 to 12: The present invention provides a battery diaphragm force-heat-electric coupling in-situ testing system under actual working conditions. The overall size of the system is 1320mm×1340mm×940mm, including a temperature control box, an environmental module, a mechanical loading module and a multi-spectral-acoustic monitoring module. The temperature control box is provided with an environmental module, a mechanical loading module and a multi-spectral-acoustic monitoring module. The cross-shaped diaphragm specimen is installed in the mechanical loading module for biaxial static-dynamic coupling loading. The environmental module simulates the electrochemical environment and low temperature environment of the actual working condition of the diaphragm. The multi-spectral-acoustic monitoring module includes an optical imaging module, an infrared thermal imaging module and an acoustic emission module.
本实施例中,温控箱包括温度传感器、导轨、横杆、显示器和温控箱体,温控箱体利用其密闭性结构维持恒低温状态,其内侧设有温度传感器,用于实时监测低温条件变化,显示器布置在温控箱体外侧面,将光学显微镜、红外热成像仪和声发射传感器的监测结果通过上位机软件集成于显示器上;导轨对称布置在温控箱体内部两侧面,横杆通过两端卡槽与导轨滑动连接实现高度调节;多光谱-声谱监测模块通过横杆集成安装在温控箱内环境模块正上方。In this embodiment, the temperature control box includes a temperature sensor, a guide rail, a cross bar, a display and a temperature control box body. The temperature control box body uses its closed structure to maintain a constant low temperature state. A temperature sensor is provided on the inside of the temperature control box body for real-time monitoring of changes in low temperature conditions. The display is arranged on the outer side of the temperature control box body, and the monitoring results of the optical microscope, infrared thermal imager and acoustic emission sensor are integrated into the display through the upper computer software; the guide rails are symmetrically arranged on the two sides inside the temperature control box body, and the cross bar is slidably connected to the guide rails through the slots at both ends to achieve height adjustment; the multi-spectrum-acoustic spectrum monitoring module is integrated and installed directly above the environmental module in the temperature control box through the cross bar.
本实施例中,环境模块包括电解质环境箱和低温环境箱,电解质环境箱包括电解质箱体和端盖,箱体顶部设有石英窗口,用于多光谱-声谱监测模块中各表征仪器的聚焦;端盖底面用于模拟电池正极,从上至下依次为导电板和正极材料层,电解质箱体底部用于模拟电池负极,从下至上依次为导电板和负极材料层,箱体内部充满电解质溶液,用于实现隔膜实际工况的电化学环境模拟。低温环境箱包括低温箱体、三级帕尔贴片和散热片,散热片与三级帕尔贴片通过强力胶粘结,在低温箱体四周周向布局和底面阵列布局创造低温环境实现全局制冷,电解质箱体采用高导热材料加快导热实现迅速降温。In this embodiment, the environmental module includes an electrolyte environment box and a low temperature environment box. The electrolyte environment box includes an electrolyte box body and an end cover. A quartz window is provided on the top of the box body for focusing each characterization instrument in the multi-spectral-acoustic spectrum monitoring module. The bottom of the end cover is used to simulate the positive electrode of the battery, which is a conductive plate and a positive electrode material layer from top to bottom. The bottom of the electrolyte box body is used to simulate the negative electrode of the battery, which is a conductive plate and a negative electrode material layer from bottom to top. The inside of the box body is filled with electrolyte solution, which is used to realize the electrochemical environment simulation of the actual working condition of the diaphragm. The low temperature environment box includes a low temperature box body, a three-stage Peltier sheet and a heat sink. The heat sink and the three-stage Peltier sheet are bonded by strong glue. The circumferential layout around the low temperature box body and the bottom array layout create a low temperature environment to achieve global refrigeration. The electrolyte box body uses high thermal conductivity materials to accelerate heat conduction and achieve rapid cooling.
本实施例中,力学加载模块包括力传感器、十字形隔膜试样、动态加载单元、十字形试样夹持单元、静态加载单元、支撑垫块、夹具垫块和基座。十字形隔膜试样在中央区域设置一道缺口,提供非均匀的应力场,作为加载过程中裂纹萌生或断裂发生的区域,便于在原位测试开始前确定多光谱-声谱监测模块的观测区域。十字形试样夹持单元的上夹具体和下夹具体与隔膜接触表面设置有滚花结构以增大摩擦力保证稳定夹持,通过紧固螺钉夹紧上、下夹具体并固定在夹具垫块上。动态加载单元由四个正交布置的磁致伸缩驱动器组成,柔性铰链通过对称设置的内螺纹孔结构分别与夹具垫块/力传感器、支撑垫块紧固连接,由磁性线圈驱动的磁致伸缩棒内嵌于柔性铰链中,利用菱形结构的特点将磁致伸缩棒的长度变化量转化为其正交方向的位移量,磁致伸缩棒始终处于承受压缩应力的状态,在激励磁场的作用下产生周期性变形,实现疲劳加载。静态加载单元由两组正交布置的左右旋滚珠丝杠螺母副组成,包括左右旋滚珠丝杠、滚珠螺母、固定座、电机和支撑座,固定座和支撑座通过螺纹连接方式与基座刚性连接,用于限制丝杠的轴向运动,电机安装于固定座端驱动左右旋滚珠丝杠螺母副,将左/右旋向的转动转化为一对滚珠螺母相反的大行程轴向运动,滚珠螺母通过螺母座与支撑垫块过渡刚性连接,带动与支撑垫块紧固连接的柔性铰链产生无限拉伸的静态载荷,适用于对超塑性隔膜材料进行加载。动态加载单元通过磁致伸缩驱动器器两两对称的正交布置实现疲劳加载的同步性,静态加载单元通过左右旋滚珠丝杠螺母副实现同步反向直线运动,有利于十字形隔膜试样的中央区域始终处于成像视野的中心,通过两种加载单元的结合实现对十字形隔膜试样的静-动态耦合加载,可开展疲劳测试、大行程拉伸试验及其耦合的测试方式。In this embodiment, the mechanical loading module includes a force sensor, a cross-shaped diaphragm specimen, a dynamic loading unit, a cross-shaped specimen clamping unit, a static loading unit, a support pad, a fixture pad and a base. A notch is set in the central area of the cross-shaped diaphragm specimen to provide a non-uniform stress field, which serves as the area where crack initiation or fracture occurs during the loading process, so as to facilitate the determination of the observation area of the multi-spectrum-acoustic spectrum monitoring module before the start of the in-situ test. The upper and lower clamping bodies of the cross-shaped specimen clamping unit are provided with a knurled structure on the contact surface with the diaphragm to increase the friction force and ensure stable clamping. The upper and lower clamping bodies are clamped by tightening screws and fixed on the fixture pad. The dynamic loading unit consists of four orthogonally arranged magnetostrictive actuators. The flexible hinge is fastened to the fixture pad/force sensor and the support pad through symmetrically arranged internal threaded hole structures. The magnetostrictive rod driven by the magnetic coil is embedded in the flexible hinge. The length change of the magnetostrictive rod is converted into its displacement in the orthogonal direction by utilizing the characteristics of the diamond structure. The magnetostrictive rod is always in a state of compressive stress and produces periodic deformation under the action of the excitation magnetic field to achieve fatigue loading. The static loading unit is composed of two groups of orthogonally arranged left-right ball screw nut pairs, including left-right ball screws, ball nuts, fixed seats, motors and support seats. The fixed seats and support seats are rigidly connected to the base through threaded connections to limit the axial movement of the screw. The motor is installed at the end of the fixed seat to drive the left-right ball screw nut pair, converting the left/right rotation into a pair of opposite large-stroke axial movements of the ball nuts. The ball nuts are rigidly connected to the support pads through the nut seat, driving the flexible hinges fastened to the support pads to generate infinitely tensile static loads, which are suitable for loading superplastic diaphragm materials. The dynamic loading unit realizes the synchronization of fatigue loading through the orthogonal arrangement of magnetostrictive drivers in pairs. The static loading unit realizes synchronous reverse linear motion through the left-right ball screw nut pair, which is conducive to the central area of the cross-shaped diaphragm specimen always being in the center of the imaging field of view. The static-dynamic coupled loading of the cross-shaped diaphragm specimen is realized through the combination of the two loading units, and fatigue tests, large-stroke tensile tests and their coupled test methods can be carried out.
本实施例中,光学成像模块包括第一支架、光学显微镜和工业相机,第一支架由第一位移块、第一手轮Ⅰ、第一转向机构、第一手轮Ⅱ和第一夹持机构组成。光学显微镜尾端与工业相机螺纹连接,采用高景深连续变倍光学显微镜镜头,通过第一夹持机构径向的紧固螺钉夹紧固定,通过第一手轮Ⅱ调节第一转向机构进行角度变化和位置锁定,第一位移块与横杆滑动连接并通过第一手轮Ⅰ锁定。多自由度的运动以及光学显微镜自身的变焦能力可以实现对十字形隔膜试样中央区域的准确聚焦及精准成像,进行隔膜失效微区显微结构的实时观测。In this embodiment, the optical imaging module includes a first bracket, an optical microscope and an industrial camera. The first bracket is composed of a first displacement block, a first hand wheel I, a first steering mechanism, a first hand wheel II and a first clamping mechanism. The tail end of the optical microscope is threadedly connected to the industrial camera, and a high depth of field continuously variable optical microscope lens is used. It is clamped and fixed by the radial fastening screws of the first clamping mechanism. The first steering mechanism is adjusted by the first hand wheel II to change the angle and lock the position. The first displacement block is slidably connected to the cross bar and locked by the first hand wheel I. The multi-degree-of-freedom movement and the zoom capability of the optical microscope itself can achieve accurate focusing and precise imaging of the central area of the cross-shaped diaphragm sample, and real-time observation of the microstructure of the diaphragm failure micro-area.
本实施例中,红外热成像模块包括第二支架、固定框和红外热成像仪,第二支架由第二位移块、第二手轮Ⅰ、第二转向机构和第二手轮Ⅱ组成。红外热成像仪通过螺纹连接内嵌于固定框内,第二手轮Ⅱ实现其与第二转向机构的角度调节和位置锁定,第二位移块与横杆滑动连接并通过第二手轮Ⅰ锁定。多自由度的运动可以实现红外热成像仪测试区域的全域温度梯度监测以及畸点温度的准确识别。In this embodiment, the infrared thermal imaging module includes a second bracket, a fixed frame and an infrared thermal imager. The second bracket is composed of a second displacement block, a second hand wheel I, a second steering mechanism and a second hand wheel II. The infrared thermal imager is embedded in the fixed frame through a threaded connection. The second hand wheel II realizes the angle adjustment and position locking between it and the second steering mechanism. The second displacement block is slidably connected to the cross bar and locked by the second hand wheel I. The multi-degree-of-freedom movement can realize the global temperature gradient monitoring of the infrared thermal imager test area and the accurate identification of the abnormal point temperature.
本实施例中,声发射模块包括第三支架、精密位移台和声发射传感器,第三支架由第三手轮和第三位移块组成。声发射传感器通过强力胶粘结在精密位移台台面实现高度方向的高精度微调,精密位移台通过螺纹连接方式与第三位移块刚性连接,第三位移块与横杆滑动连接并通过第三手轮锁定。本实例中,声发射传感器采用光纤传感器,实现非接触式测量,实时监测隔膜材料内部的缺陷与损伤,并经过分析处理后将隔膜内部缺陷损伤图像与显微结构、全域温度集成于显示器上。In this embodiment, the acoustic emission module includes a third bracket, a precision displacement stage and an acoustic emission sensor, and the third bracket is composed of a third handwheel and a third displacement block. The acoustic emission sensor is bonded to the surface of the precision displacement stage by strong glue to achieve high-precision fine-tuning in the height direction. The precision displacement stage is rigidly connected to the third displacement block by a threaded connection, and the third displacement block is slidably connected to the cross bar and locked by the third handwheel. In this example, the acoustic emission sensor uses an optical fiber sensor to achieve non-contact measurement, monitor the defects and damage inside the diaphragm material in real time, and integrate the internal defect damage image of the diaphragm with the microstructure and global temperature on the display after analysis and processing.
本实施例中,多光谱-声谱监测模块基于光学显微成像技术、红外热成像技术、声发射无损检测技术进行“光学-红外-声发射”多光谱-声谱原位监测,可以覆盖加载过程中的视觉盲区,实现电池隔膜在实际工况下受到静-动态加载作用时“微区显微结构-全域温度梯度-局部损伤失效”的“同步-同位”实时原位监测。In this embodiment, the multi-spectral-acoustic monitoring module performs "optical-infrared-acoustic emission" multi-spectral-acoustic in-situ monitoring based on optical microscopy imaging technology, infrared thermal imaging technology, and acoustic emission non-destructive testing technology. It can cover the visual blind spots during the loading process, and realize the "synchronous-same-situ" real-time in-situ monitoring of "micro-area microstructure-global temperature gradient-local damage and failure" when the battery diaphragm is subjected to static-dynamic loading under actual working conditions.
本实施例的实际工况下电池隔膜力-热-电耦合原位测试系统可以创造低温、电化学环境,并可对十字形隔膜试样施加双轴静-动态耦合加载,通过光学成像模块、红外热成像模块和声发射模块集成进行实际工况下的“光学-红外-声发射”多光谱-声谱原位监测,可实现隔膜的微区显微结构、全域温度梯度和局部失效缺陷的实时观测。本实施例为揭示力-热-电多物理场耦合下隔膜的失效机制及其微观结构演化行为提供仪器支撑。The battery diaphragm force-heat-electric coupling in-situ testing system under actual working conditions of this embodiment can create a low temperature and electrochemical environment, and can apply biaxial static-dynamic coupling loading to the cross-shaped diaphragm sample. Through the integration of optical imaging module, infrared thermal imaging module and acoustic emission module, the "optical-infrared-acoustic emission" multi-spectral-acoustic spectrum in-situ monitoring under actual working conditions can be performed, which can realize the real-time observation of the microstructure of the micro-area, the global temperature gradient and the local failure defects of the diaphragm. This embodiment provides instrument support for revealing the failure mechanism of the diaphragm and its microstructural evolution behavior under the coupling of force-heat-electric multi-physical fields.
以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210412828.2A CN114813408B (en) | 2022-04-19 | 2022-04-19 | In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210412828.2A CN114813408B (en) | 2022-04-19 | 2022-04-19 | In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114813408A CN114813408A (en) | 2022-07-29 |
CN114813408B true CN114813408B (en) | 2024-07-23 |
Family
ID=82504995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210412828.2A Active CN114813408B (en) | 2022-04-19 | 2022-04-19 | In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114813408B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113253135B (en) * | 2021-05-11 | 2022-09-06 | 吉林大学 | A battery in-situ testing system |
CN117169100B (en) * | 2023-11-03 | 2024-04-12 | 南通景康橡塑有限公司 | Finished product performance detection equipment and detection method thereof |
CN117518975A (en) * | 2024-01-04 | 2024-02-06 | 东北大学 | Integrated circuit AOI data acquisition control system based on line laser scanner |
CN118111838A (en) * | 2024-04-08 | 2024-05-31 | 吉林大学 | In-situ micro-nano impact indentation test device |
CN118408836A (en) * | 2024-06-26 | 2024-07-30 | 兰州理工大学 | Electric-thermal-force coupling tensile test device and method |
CN119470004A (en) * | 2025-01-14 | 2025-02-18 | 成都航利航空科技有限责任公司 | A variable stress ratio variable temperature ultra-high cycle biaxial fatigue test device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108279161A (en) * | 2017-12-29 | 2018-07-13 | 深圳市博盛新材料有限公司 | Stacked lithium ion battery diaphragm simulation on Mechanical tests system |
CN108827766A (en) * | 2018-06-08 | 2018-11-16 | 上海大学 | In situ measurement lithium battery active young modulus of material and stress test system and method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101664721B1 (en) * | 2015-07-01 | 2016-10-12 | 현대자동차주식회사 | Apparatus for Measuring Micro-Cracks in a Membrane Electrode Assembly and Method for Predicting Micro-Cracks in a Membrane Electrode Assembly |
KR102298127B1 (en) * | 2018-09-11 | 2021-09-03 | 주식회사 엘지화학 | Method of assessing mechanical safety of separator for lithium secondary batteries |
CN211122308U (en) * | 2019-10-31 | 2020-07-28 | 恒大新能源技术(深圳)有限公司 | Battery separator tensile strength testing device |
CN211697212U (en) * | 2019-12-12 | 2020-10-16 | 国联汽车动力电池研究院有限责任公司 | Performance testing device for battery diaphragm |
KR102798449B1 (en) * | 2020-03-04 | 2025-04-22 | 주식회사 엘지에너지솔루션 | Method for evaluating physical properties of thin film specimens and thin film specimen for tensile test |
CN113253135B (en) * | 2021-05-11 | 2022-09-06 | 吉林大学 | A battery in-situ testing system |
CN113805076B (en) * | 2021-10-14 | 2022-05-17 | 吉林大学 | System and method for measuring elastic modulus of diaphragm after low temperature failure of lithium ion battery |
-
2022
- 2022-04-19 CN CN202210412828.2A patent/CN114813408B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108279161A (en) * | 2017-12-29 | 2018-07-13 | 深圳市博盛新材料有限公司 | Stacked lithium ion battery diaphragm simulation on Mechanical tests system |
CN108827766A (en) * | 2018-06-08 | 2018-11-16 | 上海大学 | In situ measurement lithium battery active young modulus of material and stress test system and method |
Also Published As
Publication number | Publication date |
---|---|
CN114813408A (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114813408B (en) | In-situ testing system for force-heat-electric coupling of battery separators under actual working conditions | |
US20220365038A1 (en) | Battery in-situ test system | |
CN107607409B (en) | Ultra-high temperature complex load biaxial stretching compression testing device | |
CN103487315B (en) | A kind of material mechanical performance proving installation | |
CN104502202B (en) | Online material biaxial static-dynamic performance test platform under service temperature | |
WO2017107362A1 (en) | Material property testing apparatus and method for in situ combined mechanical, electrical, thermal, and magnetic testing in composite load mode | |
US8297130B2 (en) | Microtesting rig with variable compliance loading fibers for measuring mechanical properties of small specimens | |
CN103512803B (en) | Multi-load multiple physical field coupling material Micro Mechanical Properties in-situ test instrument | |
CN104913974A (en) | Material micro-mechanical property biaxial tension-fatigue test system and test method thereof | |
CN108286953A (en) | The test device of battery in-situ scanning electron microscope under a kind of multi- scenarios method | |
KR101777792B1 (en) | Reliability test apparatus for flexible device | |
CN104913981A (en) | High-temperature in situ tension-fatigue test system and test method thereof | |
CN103575593A (en) | In-situ uniaxial tension observation device for mesoscale metal material | |
CN108169029A (en) | Electromechanical thermal coupling stress corrosion original position fatigue performance testing device | |
CN207147899U (en) | Multistage quiet Dynamic Coupling mechanical loading unit for high frequency fatigue test | |
CN108267372A (en) | Biaxial stretch-formed mechanics performance testing apparatus and micro mechanical property test equipment in situ | |
JP2017212163A (en) | Evaluation system and fixing jig | |
CN110044722A (en) | Superhigh temperature high frequency material mechanical property tester device and method | |
CN104330308A (en) | SR-CR micro force loading device for detecting micro-nano structure evolution of material on line | |
CN116879002A (en) | High-speed current-carrying friction in-situ test system | |
Shadmehri | Buckling of laminated composite conical shells; theory and experiment | |
CN204718887U (en) | Portablely to draw-curved-turn round combined load material mechanical performance testing machine | |
Jiang et al. | Mechanical behavior of lithium-ion battery component materials and error sources analysis for test results | |
CN208109602U (en) | Biaxial stretch-formed mechanics performance testing apparatus and micro mechanical property test equipment in situ | |
CN115078118B (en) | Material high-temperature stretching and fatigue testing machine and method based on synchronous radiation and neutrons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |