[go: up one dir, main page]

CN114703169B - L-threonine aldolase mutant R318L/H128N and application thereof - Google Patents

L-threonine aldolase mutant R318L/H128N and application thereof Download PDF

Info

Publication number
CN114703169B
CN114703169B CN202210466832.7A CN202210466832A CN114703169B CN 114703169 B CN114703169 B CN 114703169B CN 202210466832 A CN202210466832 A CN 202210466832A CN 114703169 B CN114703169 B CN 114703169B
Authority
CN
China
Prior art keywords
threonine aldolase
mutant
gene
amino acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210466832.7A
Other languages
Chinese (zh)
Other versions
CN114703169A (en
Inventor
戚娜
王伯初
马劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202210466832.7A priority Critical patent/CN114703169B/en
Publication of CN114703169A publication Critical patent/CN114703169A/en
Application granted granted Critical
Publication of CN114703169B publication Critical patent/CN114703169B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02005L-Threonine aldolase (4.1.2.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to threonine aldolase, in particular to an L-threonine aldolase mutant R318L/H128N and application thereof. The amino acid sequence of the L-threonine aldolase mutant is shown as SEQ ID NO. 3, and the L-threonine aldolase mutant is obtained by changing the 318 th amino acid of the L-threonine aldolase with the amino acid sequence of SEQ ID NO. 1 from Arg to Leu and changing the 128 th amino acid from His to Asn. The mutant has 92.89% diastereoselectivity in catalyzing the reaction of synthesizing droxidopa [ L-threo- (3, 4-dihydroxyl) phenylserine ] by 3, 4-dihydroxybenzaldehyde and glycine, the yield reaches 1.26mg/mL, and the diastereoselectivity in synthesizing droxidopa is 94.5% and the yield is 1.6mg/mL when the mutant is catalyzed by whole cells expressing R318L/H128N. Whole cells have great potential for application in droxidopa biosynthesis.

Description

L-苏氨酸醛缩酶突变体R318L/H128N及其应用L-Threonine Aldolase Mutant R318L/H128N and Its Application

技术领域Technical Field

本发明涉及苏氨酸醛缩酶,具体涉及一种L-苏氨酸醛缩酶突变体R318L/H128N及其应用。The invention relates to threonine aldolase, and in particular to an L-threonine aldolase mutant R318L/H128N and an application thereof.

背景技术Background Art

屈昔多巴(L-threo-DOPS即L-苏式-(3,4-二羟基)苯基丝氨酸)是自1996年米多君获批以来唯一用于治疗帕金森相关神经源体位性低血压(NOH)的药物,用于改善由帕金森病引起的步态僵直和直立性头晕;改善由Shy-Drager综合征或家族性淀粉样神经病所致的直立性低血压、直立性头晕和昏厥;改善血液透析患者由于直立性低血压引发的头晕和乏力。Droxidopa (L-threo-DOPS, i.e. L-threo-(3,4-dihydroxy)phenylserine) is the only drug used to treat Parkinson's-related neurogenic orthostatic hypotension (NOH) since midodrine was approved in 1996. It is used to improve gait stiffness and orthostatic dizziness caused by Parkinson's disease; to improve orthostatic hypotension, orthostatic dizziness and syncope caused by Shy-Drager syndrome or familial amyloid neuropathy; and to improve dizziness and fatigue caused by orthostatic hypotension in hemodialysis patients.

目前曲昔多巴的合成方法包括化学合成和酶催化法,其工业化生产一直依赖于化学合成。其中,化学合成法主要是通过加成反应、酯化反应和光学拆分来得到手性的屈昔多巴,虽然操作简单,但是反应过程中用到了大量的水、重金属和剧毒的硫化氢,并且光学拆分会导致一半的原料浪费、生产成本高和潜在的环境污染,不符合目前和将来国家提倡和推进的原子经济学和环境保护政策。而酶催化法具有条件温和、用水量少(仅为化学法的十分之一)、没有重金属污染、不使用剧毒化学品、手性选择高等诸多优点,具有很好的应用前景。At present, the synthesis method of droxidopa includes chemical synthesis and enzyme catalysis, and its industrial production has always relied on chemical synthesis. Among them, the chemical synthesis method mainly obtains chiral droxidopa through addition reaction, esterification reaction and optical resolution. Although the operation is simple, a large amount of water, heavy metals and highly toxic hydrogen sulfide are used in the reaction process, and optical resolution will cause half of the raw materials to be wasted, the production cost is high and potential environmental pollution, which does not meet the atomic economics and environmental protection policies advocated and promoted by the country at present and in the future. The enzyme catalysis method has many advantages such as mild conditions, less water consumption (only one-tenth of the chemical method), no heavy metal pollution, no use of highly toxic chemicals, high chiral selectivity, etc., and has a good application prospect.

苏氨酸醛缩酶有着十分广泛的应用潜力,它可以催化合成手性的医药关键中间体β-羟基-α-氨基酸。根据苏氨酸醛缩酶对底物苏氨酸α碳上的立体专一性可将该酶分为L型和D型两类。申请号为2019109657806,发明名称为“苏氨酸醛缩酶、其编码基因和在屈昔多巴生物合成中的应用”的专利申请公开了一种从黑熊粪便样品中分离的L-苏氨酸醛缩酶基因,全长1032bp,编码由343个氨基酸组成的L-苏氨酸醛缩酶。该酶以3-/4-位羟基取代的苯甲醛和甘氨酸为底物合成屈昔多巴的非对映选择性为30%。较低的非对映选择性大大阻碍了该酶在曲昔多巴合成中的应用。因此,非常有必要挖掘具有高选择性的苏氨酸醛缩酶用于屈昔多巴的合成。Threonine aldolase has a wide range of application potential. It can catalyze the synthesis of chiral pharmaceutical key intermediates β-hydroxy-α-amino acids. According to the stereospecificity of threonine aldolase on the α-carbon of the substrate threonine, the enzyme can be divided into two types: L-type and D-type. The patent application with application number 2019109657806 and invention name "Threonine aldolase, its encoding gene and application in the biosynthesis of droxidopa" discloses an L-threonine aldolase gene isolated from a black bear fecal sample, with a total length of 1032bp, encoding an L-threonine aldolase composed of 343 amino acids. The enzyme synthesizes droxidopa with a diastereoselectivity of 30% using 3-/4-hydroxy-substituted benzaldehyde and glycine as substrates. The low diastereoselectivity greatly hinders the application of the enzyme in the synthesis of droxidopa. Therefore, it is very necessary to explore highly selective threonine aldolase for the synthesis of droxidopa.

发明内容Summary of the invention

对苏氨酸醛缩酶的立体选择性和催化活性具有重要的影响It has a significant impact on the stereoselectivity and catalytic activity of threonine aldolase

为了开发具有高选择性的苏氨酸醛缩酶,本发明从一级结构至高级结构多角度多层系比较了从黑熊粪便样品中分离的野生型L-苏氨酸醛缩酶(氨基酸序列如SEQ ID NO:1所示)与同源酶蛋白的异同,在前期确定了影响野生型L-苏氨酸醛缩酶学性质的位点为第318位氨基酸——精氨酸并将该位点的精氨酸(Arg)变为亮氨酸(Leu)的前提下,通过半理性设计和理性设计发掘了具有亚基相互作用的氨基酸His128,将第128位氨基酸由His变为Asn,得到酶突变体,命名为L-TA R318L/H128N突变体。利用分子克隆技术获得了L-TAR318L/H128N突变体的编码基因(SEQ ID NO:4),通过构建突变体基因的GST融合表达载体并导入基因工程菌E.coli BL21中诱导表达,获得了L-TA R318L/H128N突变体酶蛋白。以L-TA R318L/H128N突变体为催化剂、3-/4-位羟基取代的苯甲醛为底物、甘氨酸为辅底物、5-磷酸吡哆醛为辅酶,在适当的条件和介质内进行酶催化反应,结果表明,该突变体合成屈昔多巴(L-threo-DOPS)的非对映选择性高达92.89%,是野生型的3.09倍,产率达到了1.26mg/mL,在屈昔多巴的工业生产中有巨大的应用价值。In order to develop a threonine aldolase with high selectivity, the present invention compared the similarities and differences between the wild-type L-threonine aldolase (amino acid sequence as shown in SEQ ID NO: 1) isolated from black bear feces samples and homologous enzyme proteins from multiple angles and multiple systems from primary structure to higher-order structure. On the premise that the site affecting the biological properties of the wild-type L-threonine aldolase was determined in the early stage as the 318th amino acid - arginine and the arginine (Arg) at this site was changed to leucine (Leu), the amino acid His128 with subunit interaction was discovered through semi-rational design and rational design, and the 128th amino acid was changed from His to Asn to obtain an enzyme mutant named L-TA R318L/H128N mutant. The coding gene (SEQ ID NO: 4) of the L-TAR318L/H128N mutant was obtained by molecular cloning technology, and the L-TA R318L/H128N mutant enzyme protein was obtained by constructing a GST fusion expression vector of the mutant gene and introducing it into the genetic engineering bacteria E. coli BL21 for induction of expression. The L-TA R318L/H128N mutant was used as a catalyst, 3-/4-hydroxy-substituted benzaldehyde was used as a substrate, glycine was used as a cosubstrate, and 5-pyridoxal phosphate was used as a coenzyme. The enzyme catalyzed reaction was carried out under appropriate conditions and media. The results showed that the mutant synthesized droxidopa (L-threo-DOPS) with a diastereoselectivity of up to 92.89%, which was 3.09 times that of the wild type, and the yield reached 1.26 mg/mL, which has great application value in the industrial production of droxidopa.

本发明提供一种L-苏氨酸醛缩酶突变体,其特征在于,其氨基酸序列如SEQ IDNO:3所示,是氨基酸序列为SEQ ID NO:1的L-苏氨酸醛缩酶的第318位氨基酸由Arg变为Leu以及第128位氨基酸由His变为Asn所得。The present invention provides an L-threonine aldolase mutant, characterized in that its amino acid sequence is as shown in SEQ ID NO: 3, which is obtained by changing the 318th amino acid of the L-threonine aldolase of the amino acid sequence SEQ ID NO: 1 from Arg to Leu and from His to Asn.

编码所述L-苏氨酸醛缩酶突变体的基因也属于本发明的保护范围。The gene encoding the L-threonine aldolase mutant also belongs to the protection scope of the present invention.

在本发明的一些优选实施例中,所述基因的核苷酸序列如SEQ ID NO:4所示。In some preferred embodiments of the present invention, the nucleotide sequence of the gene is shown in SEQ ID NO:4.

包含所述基因的表达盒、载体或重组菌也属于本发明的保护范围。The expression cassette, vector or recombinant bacteria containing the gene also fall within the protection scope of the present invention.

本发明提供的载体,可以是克隆载体,包含L-TA R318L/H128N突变体基因和质粒复制所需的其它元件;也可以是表达载体,包含L-TA R318L/H128N突变体基因和能够使蛋白成功表达的其它元件。在本发明的一些实施例中,所述表达载体为插入了L-TA R318L/H128N突变体基因的pGEX-6p-2载体,pGEX-6p-2载体是已知的市售载体。The vector provided by the present invention can be a cloning vector, comprising the L-TA R318L/H128N mutant gene and other elements required for plasmid replication; or it can be an expression vector, comprising the L-TA R318L/H128N mutant gene and other elements that enable the successful expression of the protein. In some embodiments of the present invention, the expression vector is a pGEX-6p-2 vector into which the L-TA R318L/H128N mutant gene is inserted, and the pGEX-6p-2 vector is a known commercially available vector.

本发明提供的重组菌,可以是包含克隆载体的重组菌,例如E.coli DH5α,通过培养重组菌使L-TA R318L/H128N突变体基因得到复制;也可以是包含表达载体的重组菌,例如E.coli BL21,在适当的条件下培养重组菌并进行蛋白表达,例如:向重组菌培养液中加入适量的IPTG,于16℃诱导L-TA R318L/H128N突变体蛋白的表达。The recombinant bacteria provided by the present invention may be a recombinant bacteria comprising a cloning vector, such as E. coli DH5α, and the L-TA R318L/H128N mutant gene may be replicated by culturing the recombinant bacteria; or it may be a recombinant bacteria comprising an expression vector, such as E. coli BL21, and the recombinant bacteria may be cultured under appropriate conditions and protein expression may be performed, for example, an appropriate amount of IPTG is added to the culture fluid of the recombinant bacteria, and the expression of the L-TA R318L/H128N mutant protein is induced at 16°C.

本发明还提供所述L-苏氨酸醛缩酶突变体的制备方法,包括如下步骤:合成所述L-苏氨酸醛缩酶突变体的编码基因,构建表达载体,转化蛋白表达宿主菌,诱导蛋白表达并纯化。The invention also provides a method for preparing the L-threonine aldolase mutant, comprising the following steps: synthesizing the coding gene of the L-threonine aldolase mutant, constructing an expression vector, transforming a protein expression host bacterium, inducing protein expression and purifying the protein.

在本发明的制备方法的优选实施例中,所述L-苏氨酸醛缩酶突变体的编码基因的核苷酸序列如SEQ ID NO:4所示。In a preferred embodiment of the preparation method of the present invention, the nucleotide sequence of the gene encoding the L-threonine aldolase mutant is shown in SEQ ID NO:4.

在本发明的制备方法的一些实施例中,所述表达载体为pGEX-6p-2载体,所述蛋白表达宿主菌为E.coli BL21(DE3)。In some embodiments of the preparation method of the present invention, the expression vector is a pGEX-6p-2 vector, and the protein expression host bacteria is E. coli BL21 (DE3).

本发明还提供一种催化剂,其有效成分包含所述L-苏氨酸醛缩酶突变体。所述催化剂可以单独使用,也可以与其它适合的催化剂同时使用,从而提高酶非对映选择性或者在同一反应体系中先后进行两种催化反应。The present invention also provides a catalyst, the active ingredient of which comprises the L-threonine aldolase mutant. The catalyst can be used alone or simultaneously with other suitable catalysts to improve the enzyme diastereoselectivity or to carry out two catalytic reactions in the same reaction system.

所述L-苏氨酸醛缩酶突变体或所述催化剂在醛醇缩合反应中的应用也属于本发明的保护范围。The use of the L-threonine aldolase mutant or the catalyst in aldol condensation reaction also falls within the protection scope of the present invention.

在本发明的一些优选实施例中,使用所述L-苏氨酸醛缩酶突变体或所述催化剂,以3,4-二羟基苯甲醛为底物、甘氨酸为辅底物、5-磷酸吡哆醛为辅酶进行催化反应,合成屈昔多巴。In some preferred embodiments of the present invention, the L-threonine aldolase mutant or the catalyst is used to carry out a catalytic reaction with 3,4-dihydroxybenzaldehyde as a substrate, glycine as a cosubstrate, and pyridoxal 5-phosphate as a coenzyme to synthesize droxidopa.

在本发明的一些优选实施例中,所述催化反应在15-37℃、pH 6.0-11.0条件下进行。In some preferred embodiments of the present invention, the catalytic reaction is carried out at 15-37° C. and pH 6.0-11.0.

本发明的L-TA R318L/H128N突变体,在15-37℃、pH 6.0-11.0的反应条件下能够催化3,4-二羟基苯甲醛和甘氨酸的醛醇缩合可逆反应。The L-TA R318L/H128N mutant of the present invention can catalyze the reversible aldol condensation reaction of 3,4-dihydroxybenzaldehyde and glycine under the reaction conditions of 15-37° C. and pH 6.0-11.0.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1.L-苏氨酸醛缩酶(L-TA)催化合成屈昔多巴的示意图。Figure 1. Schematic diagram of the synthesis of droxidopa catalyzed by L-threonine aldolase (L-TA).

图2.L-苏氨酸醛缩酶突变体R318L/H128N的SDS-PAGE电泳图;其中,M为蛋白质分子量标准(Marker);R318L/H128N为突变体蛋白,其分子量约为38.7KD。Figure 2. SDS-PAGE electrophoresis of L-threonine aldolase mutant R318L/H128N; wherein M is a protein molecular weight standard (Marker); R318L/H128N is a mutant protein with a molecular weight of approximately 38.7KD.

图3.L-苏氨酸醛缩酶突变体R318L/H128N催化产物的HPLC图谱;其中,最上面的谱图(标记为R318L/H128N)显示L-TAR318L/H128N突变体的催化产物,该催化反应是以3,4-二羟基苯甲醛为底物、甘氨酸为辅底物、5-磷酸吡哆醛为辅酶,在25℃、pH 7.4的条件下进行;中间的谱图(标记为L-threo-DOPS)是L-threo-DOPS标准品;最下面的谱图(标记为L-DOPS)是L-threo-DOPS和L-erythro-DOPS外消旋体标准品。L-erythro-DOPS的保留时间为5.5min,L-threo-DOPS的保留时间为6.2min。Figure 3. HPLC spectra of the catalytic products of the L-threonine aldolase mutant R318L/H128N; the top spectrum (labeled as R318L/H128N) shows the catalytic products of the L-TAR318L/H128N mutant, the catalytic reaction is carried out at 25°C and pH 7.4 with 3,4-dihydroxybenzaldehyde as substrate, glycine as cosubstrate, and 5-pyridoxal phosphate as coenzyme; the middle spectrum (labeled as L-threo-DOPS) is the L-threo-DOPS standard; the bottom spectrum (labeled as L-DOPS) is the L-threo-DOPS and L-erythro-DOPS racemate standard. The retention time of L-erythro-DOPS is 5.5min, and the retention time of L-threo-DOPS is 6.2min.

具体实施方式DETAILED DESCRIPTION

下面结合具体实施例进一步描述本发明,需要声明的是,下述实施例仅作为解释和说明,不以任何方式限制本发明的范围。The present invention is further described below in conjunction with specific examples. It should be noted that the following examples are only for explanation and illustration and do not limit the scope of the present invention in any way.

主要试剂与耗材:Main reagents and consumables:

Prime STAR Max Premix(2×)(货号R045A)、BamH I限制性内切酶(货号1010S)、Xho I限制性内切酶(货号1094S)、T4 DNA Ligase(货号D2011A)和10×T4 Ligase buffer,均购买自宝生物科技有限公司(大连);Prime STAR Max Premix (2×) (Cat. No. R045A), BamH I restriction endonuclease (Cat. No. 1010S), Xho I restriction endonuclease (Cat. No. 1094S), T4 DNA Ligase (Cat. No. D2011A), and 10× T4 Ligase buffer were all purchased from Bao Biotechnology Co., Ltd. (Dalian);

pGEX-6p-2质粒为已知的大肠杆菌表达载体,别名pGEX6P2,pGEX6P2,载体大小为4985bp,Tac启动子,载体标签N-GST,载体抗性Ampicillin(氨苄青霉素),购自上海生工生物科技有限公司,本实验室亦有保存;The pGEX-6p-2 plasmid is a known E. coli expression vector, alias pGEX6P2, pGEX6P2, vector size 4985 bp, Tac promoter, vector tag N-GST, vector resistance Ampicillin (ampicillin), purchased from Shanghai Shenggong Biotechnology Co., Ltd., and also preserved in this laboratory;

Trans5α感受态细胞(货号CD201-01)和E.coli BL21(DE3)感受态细胞(货号CD601),均购买自全式金生物技术有限公司;Trans5α competent cells (Cat. No. CD201-01) and E. coli BL21 (DE3) competent cells (Cat. No. CD601) were purchased from Quanshijin Biotechnology Co., Ltd.;

Glutathione Sepharose 4B,购买自GE Healthcare,货号10223836;Glutathione Sepharose 4B, purchased from GE Healthcare, catalog number 10223836;

PreScission Protease,购买自Gen Script公司,货号Z02799-100;PreScission Protease, purchased from Gen Script, catalog number Z02799-100;

Bradford蛋白浓度测定试剂盒,购买自Beyotime公司,货号P0006;Bradford protein concentration assay kit, purchased from Beyotime, catalog number P0006;

L-threo-DOPS标准品(CAS:23651-95-8,产品编号:D4235,分子式:C9H11NO5),LDOPS(L-threo-DOPS和L-erythro-DOPS外消旋体)标准品(CAS:23651-95-8,产品编号:D9446),1-庚烷磺酸钠盐(CAS:22767-50-6,分子式:C7H15NaO3S),1,4-二恶烷(CAS:123-91-1,分子式:C4H8O2)均购买自百灵威科技公司;L-threo-DOPS standard (CAS: 23651-95-8, product number: D4235, molecular formula: C 9 H 11 NO 5 ), LDOPS (L-threo-DOPS and L-erythro-DOPS racemate) standard (CAS: 23651-95-8, product number: D9446), 1-heptanesulfonic acid sodium salt (CAS: 22767-50-6, molecular formula: C 7 H 15 NaO 3 S), and 1,4-dioxane (CAS: 123-91-1, molecular formula: C 4 H 8 O 2 ) were purchased from J&K Scientific;

甘氨酸(CAS:56-40-6,分子式:C2H5NO2,货号A502065),3,4-二羟基苯甲醛(CAS:139-85-5,线性分子式:(HO)2C6H3CHO,货号A601406),5-磷酸吡哆醛(英文名PLP,CAS:41468-25-1,分子式C8H12NO7P,货号A610455),均购买自生工生物工程(上海)股份有限公司。Glycine (CAS: 56-40-6, molecular formula: C 2 H 5 NO 2 , product number A502065), 3,4-dihydroxybenzaldehyde (CAS: 139-85-5, linear molecular formula: (HO) 2 C 6 H 3 CHO, product number A601406), and 5-pyridoxal phosphate (PLP, CAS: 41468-25-1, molecular formula C 8 H 12 NO 7 P, product number A610455) were purchased from Shenggong Biotechnology (Shanghai) Co., Ltd.

LB培养基LB medium

每100mL LB培养基含有:1g胰蛋白胨、0.5g酵母提取物、1g氯化钠,pH 7.4。Each 100 mL of LB medium contains: 1 g tryptone, 0.5 g yeast extract, 1 g sodium chloride, pH 7.4.

配制方法:在950mL ddH2O中溶解10g胰蛋白胨,5g酵母提取物,10g氯化钠,然后用NaOH调节pH为7.4,用dd H2O定容至1L。若配制固体培养基,则每升加入15g琼脂。121℃高压蒸汽灭菌20min。Preparation method: Dissolve 10g tryptone, 5g yeast extract, and 10g sodium chloride in 950mL ddH 2 O, then adjust the pH to 7.4 with NaOH and make up to 1L with dd H 2 O. If preparing solid culture medium, add 15g agar per liter. Sterilize with high pressure steam at 121℃ for 20min.

PBS缓冲液PBS buffer

pH 7.4,10mM PBS的配制方法:称取8g NaCl、0.2g KCl、1.44g Na2HPO4和0.24gKH2PO4,溶于800mL蒸馏水中,用HCl调节溶液的pH值至7.4,最后加蒸馏水定容至1L即可。121℃高压蒸气灭菌至少20分钟,保存于室温或4℃冰箱中备用。Preparation of pH 7.4, 10mM PBS: weigh 8g NaCl, 0.2g KCl, 1.44g Na 2 HPO 4 and 0.24g KH 2 PO 4 , dissolve in 800mL distilled water, adjust the pH value of the solution to 7.4 with HCl, and finally add distilled water to 1L. Sterilize with high pressure steam at 121℃ for at least 20 minutes, and store at room temperature or in a refrigerator at 4℃ for later use.

若未特别说明,以下实施例中使用的试剂均为本领域常规试剂,可商购获得或按照本领域常规方法配制而得,规格为实验室纯级即可。若未特别说明,以下实施例中使用的方法均为本领域常规方法,使用的实验条件均为本领域常规实验条件,可参考相关实验手册或厂商说明书。Unless otherwise specified, the reagents used in the following examples are all conventional reagents in the art, which can be obtained commercially or prepared according to conventional methods in the art, and the specifications are laboratory pure grade. Unless otherwise specified, the methods used in the following examples are all conventional methods in the art, and the experimental conditions used are all conventional experimental conditions in the art, and reference can be made to relevant experimental manuals or manufacturer instructions.

实施例1.L-苏氨酸醛缩酶R318L/H128N突变体的制备Example 1. Preparation of L-threonine aldolase R318L/H128N mutant

一、L-苏氨酸醛缩酶突变体设计1. Design of L-threonine aldolase mutants

野生型L-苏氨酸醛缩酶基因(L-TA基因,SEQ ID NO:2)是本实验室从四川黑熊保护及孵育基地的健康黑熊的粪便样品中分离得到的,L-TA基因的开放阅读框全长1032bp,其编码的L-苏氨酸醛缩酶由343个氨基酸组成。该基因的分离和克隆过程记载在申请号为2019109657806,公布号为CN110592058A,发明名称为“苏氨酸醛缩酶、其编码基因和在屈昔多巴生物合成中的应用”的专利申请文本中,通过引用将该专利申请的全部内容包含在本文中。The wild-type L-threonine aldolase gene (L-TA gene, SEQ ID NO: 2) was isolated from the fecal sample of a healthy black bear in the Sichuan Black Bear Protection and Incubation Base by this laboratory. The open reading frame of the L-TA gene is 1032 bp in length, and the L-threonine aldolase encoded by it consists of 343 amino acids. The isolation and cloning process of the gene is recorded in the patent application with application number 2019109657806, publication number CN110592058A, and invention name "Threonine aldolase, its encoding gene and its application in droxidopa biosynthesis", and the entire contents of the patent application are included in this article by reference.

所述野生型L-苏氨酸醛缩酶的氨基酸序列(343aa)为:The amino acid sequence (343aa) of the wild-type L-threonine aldolase is:

MYSFKNDYSEGAHPRILETLLRTNLEQCEGYGKDTYCEEAENLIKNKLNNESIEVHFISGGTQTNLIAISAFLRPHEGVISADTGHIFVNEAGSIEATGHKVISVDVVDGKLRRDDILSVLSKFTNEHVVKPKLVYISNSTEIGTIYKKSELEELSKVCRENNLLLFMDGARLGSALSCKENDLTLEDISKLTDAFYIGGTKNGALLGEALVICNKDLQEDFRYHLKQKGAMLAKGRLLGIQFIELFKDDLFFEIGKHENDMADILRDGISRLGYEFLVDSPSNQIFPVFNNDIIRELEKNYGFNIWEKVNEEKTAIRLVTSFATKEEPCLEFIKFLSGLTNK(SEQIDNO:1)MYSFKNDYSEGAHPRILETLLRTNLEQCEGYGKDTYCEEAENLIKNKLNNESIEVHFISGGTQTNLIAISAFLRPHEGVISADTGHIFVNEAGSIEATGHKVISVDVVDGKLRRDDILSVLSKFTNEHVVKPKLVYISNSTEIGTIYKKSELEELSKVCRENNLLLFMDGARLGSALSCKENDLTLEDISKLTDAFYIGGTKNGALLGEALVICNK DLQEDFRYHLKQKGAMLAKGRLLGIQFIELFKDDLFFEIGKHENDMADILRDGISRLGYEFLVDSPSNQIFPVFNNDIIRELEKNYGFNIWEKVNEEKTAIRLVTSFATKEEPCLEFIKFLSGLTNK(SEQIDNO:1)

所述野生型L-苏氨酸醛缩酶的编码基因的核苷酸序列(1032bp)为:The nucleotide sequence (1032 bp) of the wild-type L-threonine aldolase encoding gene is:

ATGTATAGTTTTAAAAATGATTATAGTGAAGGGGCACATCCTAGAATTCTTGAAACGTTGCTGAGAACAAATTTAGAACAATGTGAAGGTTACGGAAAAGATACATACTGTGAGGAAGCTGAAAACTTAATAAAAAATAAACTAAATAATGAGTCTATTGAAGTCCATTTCATATCTGGAGGTACACAAACTAACTTAATAGCAATATCTGCATTTTTAAGGCCTCATGAGGGTGTTATATCAGCAGATACAGGGCATATATTTGTAAATGAAGCAGGTTCAATAGAAGCAACAGGACATAAGGTGATATCTGTTGATGTTGTGGATGGTAAACTAAGAAGAGACGATATACTATCAGTATTGAGTAAGTTTACTAATGAGCATGTTGTAAAACCAAAGCTTGTTTATATATCTAACTCTACTGAAATTGGAACTATATATAAAAAATCTGAATTAGAAGAGTTAAGCAAAGTTTGTAGAGAAAATAATTTATTACTATTTATGGATGGAGCAAGATTAGGATCTGCACTTTCTTGCAAAGAAAATGATTTGACATTAGAAGATATAAGTAAATTAACTGATGCTTTTTATATCGGGGGAACTAAGAATGGAGCTCTTTTAGGAGAAGCACTTGTTATATGTAATAAAGATTTACAGGAAGATTTTAGATATCACTTAAAACAAAAAGGAGCGATGCTTGCTAAGGGAAGGTTGCTTGGAATACAGTTTATAGAATTATTTAAAGATGATTTATTTTTTGAAATAGGAAAACATGAAAATGATATGGCTGATATATTAAGGGATGGAATAAGTAGGCTTGGATATGAATTTTTAGTAGACTCTCCATCTAATCAAATATTCCCAGTATTTAACAATGATATTATAAGAGAATTAGAGAAAAACTATGGATTTAATATATGGGAAAAAGTAAATGAAGAGAAAACTGCAATAAGATTAGTAACATCTTTTGCAACAAAAGAAGAACCTTGTCTAGAGTTTATAAAGTTTTTAAGTGGATTAACTAATAAATAA(SEQIDNO:2)ATGTATAGTTTTAAAAATGATTATAGTGAAGGGGCACATCCTAGAATTCTTGAAACGTTGCTGAGAACAAATTTAGAACAATGTGAAGGTTACGGAAAAGATACATACTGTGAGGAAGCTGAAAACTTAATAAAAAATAAACTAAATAATGAGTCTATTGAAGTCCATTTCATATCTGGAGGTACACAAACTAACTTAATAGCAATATCTGCATTTTTAAGGCCTCATGAGGGTGTTATATCAGCAGATACAGGGCATAT ATTTGTAAATGAAGCAGGTTCAATAGAAGCACAGGACATAAGGTGATATCTGTTGATGTTGTGGATGGTAAACTAAGAAGAGACGATATACTATCAGTATTGAGTAAGTTTACTAATGAGCATGTTGTAAAACCAAAGCTTGTTTATATATCTAACTCTACTGAAATTGGAACTATATATAAAAAATCTGAATTAGAAGAGTTAAGCAAAGTTTGTAGAGAAAATAATTTATTACTATTTATGGATGGAGCAAGATTAGG ATCTGCACTTTTCTGCAAAGAAAATGATTTGACATTAGAAGATATAAGTAAATTAACTGATGCTTTTTATATCGGGGGAACTAAGAATGGAGCTCTTTTAGGAGAAGCACTTGTTATATGTAATAAAGATTTACAGGAAGATTTTAGATATCACTTAAAACAAAAAGGAGCGATGCTTGCTAAGGGAAGGTTGCTTGGAATACAGTTTATAGAATTATTTAAAGATGATTTATTTTTTGAAATAGGAAAACATGAAAATGA TATGGCTGATATATTAAGGGATGGAATAAGTAGGCTTGGATATGAATTTTTAGTAGACTCTCCATCTAATCAAATATTCCCAGTATTTAACAATGATATTATAAGAGAATTAGAGAAAAACTATGGATTTAATATATGGGAAAAAAGTAAATGAAGAGAAAACTGCAATAAGATTAGTAACATCTTTTGCAACAAAAGAAGAACCTTGTCTAGAGTTTATAAAGTTTTTAAGTGGATTAACTAATAAATAA(SEQID NO:2)

我们通过从一级结构至高级结构的多角度多层系比较野生型L-苏氨酸醛缩酶与同源酶蛋白的异同,确定了影响酶学性质的位点为野生型L-苏氨酸醛缩酶的第318位及128位氨基酸,其对应的核苷酸序列为第952-954位及382-384位密码子。将野生型L-TA基因序列的第952-954处密码子由AGA更改为CTG以及将382-384处密码子由GCT更改为AAT,从而将氨基酸序列的第318位由原来的精氨酸(R)替换成亮氨酸(L)及将原来的组氨酸(H)替换成天冬门酰胺(N),得到酶突变体,命名为L-TA R318L/H128N突变体,其氨基酸序列如SEQ IDNO:3所示,其编码基因的核苷酸序列如SEQ ID NO:4所示。We compared the similarities and differences between wild-type L-threonine aldolase and homologous enzyme proteins from multiple angles and multiple layers from primary structure to higher-order structure, and determined that the sites that affect the enzymatic properties are the 318th and 128th amino acids of wild-type L-threonine aldolase, and the corresponding nucleotide sequences are codons 952-954 and 382-384. The codons 952-954 of the wild-type L-TA gene sequence were changed from AGA to CTG, and the codons 382-384 were changed from GCT to AAT, thereby replacing the original arginine (R) at position 318 of the amino acid sequence with leucine (L) and the original histidine (H) with asparagine (N), and an enzyme mutant was obtained, named L-TA R318L/H128N mutant, whose amino acid sequence is shown in SEQ ID NO:3, and the nucleotide sequence of its encoding gene is shown in SEQ ID NO:4.

二、L-TA R318L/H128N突变体基因的获得2. Obtaining the L-TA R318L/H128N mutant gene

L-TA R318L/H128N突变体基因可以通过全基因合成方法或分子克隆方法获得。本实验采用PCR法获得突变体基因。The L-TA R318L/H128N mutant gene can be obtained by whole gene synthesis or molecular cloning. In this experiment, the mutant gene was obtained by PCR.

1、引物设计1. Primer design

对获得的L-TA R318L/H128N突变体基因序列(SEQ ID NO:4)设计引物,在5’端引物中加入酶切位点BamH I(GGATCC),在3’端引物中加入酶切位点Xho I(CTCGAG)。引物的核苷酸序列如下:Primers were designed for the obtained L-TA R318L/H128N mutant gene sequence (SEQ ID NO: 4), and the restriction site BamH I (GGATCC) was added to the 5' end primer, and the restriction site Xho I (CTCGAG) was added to the 3' end primer. The nucleotide sequence of the primer is as follows:

上游引物L-TA-R318L-BamH I-F:Upstream primer L-TA-R318L-BamHI-F:

5′-CGCGGATCCATGTATAGTTTTAAAAATGATTAT-3′(SEQ ID NO:5),5′-CGCGGATCCATGTATAGTTTTAAAAATGATTAT-3′ (SEQ ID NO: 5),

下游引物L-TA-R318L-Xho I-R:Downstream primer L-TA-R318L-Xho I-R:

5′-CCGCTCGAGTTATTTATTAGTTAATCCACTTA-3′(SEQ ID NO:6)。5'-CCGCTCGAGTTATTTATTAGTTAATCCACTTA-3' (SEQ ID NO: 6).

上游引物L-TA-R318L/H128N-F:Upstream primer L-TA-R318L/H128N-F:

5′-TAAGTTTACTAATGAGAATGTTGTAAAACCAAAGCTTG-3′(SEQ ID NO:7)5′-TAAGTTTACTAATGAGAATGTTGTAAAACCAAAGCTTG-3′ (SEQ ID NO:7)

下游引物L-TA-R318L/H128N-R:Downstream primer L-TA-R318L/H128N-R:

5′-CAAGCTTTGGTTTTACAACATTCTCATTAGTAAACTTAC-3′(SEQ ID NO:8)5′-CAAGCTTTGGTTTTACAACATTCTCATTAGTAAACTTAC-3′(SEQ ID NO:8)

委托生工生物工程(上海)股份有限公司合成上述引物。The above primers were synthesized by Shanghai Sangon Biotechnology Co., Ltd.

2、L-TA R318L/H128N突变体基因克隆2. L-TA R318L/H128N mutant gene cloning

以申请号为202010323801.7,发明名称为:“L-苏氨酸醛缩酶突变体R3318L及其应用”中报道的L-TA突变体R318L基因的质粒为模板,采用步骤1获得的上游引物和下游引物,按照下列PCR体系和程序扩增L-TA R318L/H128N突变体基因。Using the plasmid of the L-TA mutant R318L gene reported in application number 202010323801.7 and invention name: "L-threonine aldolase mutant R3318L and its application" as a template, use the upstream primer and downstream primer obtained in step 1 to amplify the L-TA R318L/H128N mutant gene according to the following PCR system and procedure.

PCR体系:Prime STAR Max Premix(2×)25μL,质粒模板0.5μL,上游引物L-TAR318L/H128N-BamH I-F(10μM)2μL,下游引物L-TA-R318L/H128N-Xho I-R(10μM)2μL,补ddH2O至总体积为50μL。PCR system: Prime STAR Max Premix (2×) 25 μL, plasmid template 0.5 μL, upstream primer L-TAR318L/H128N-BamH IF (10 μM) 2 μL, downstream primer L-TA-R318L/H128N-Xho IR (10 μM) 2 μL, supplemented with ddH 2 O to a total volume of 50 μL.

PCR程序如下:The PCR program is as follows:

a.94℃预变性5min;a. Pre-denaturation at 94℃ for 5 min;

b.98℃变性10sec,47℃退火10sec,72℃延伸10sec;40个循环;b. Denaturation at 98°C for 10 sec, annealing at 47°C for 10 sec, and extension at 72°C for 10 sec; 40 cycles;

c.72℃延伸10min。c. Extend at 72°C for 10 min.

使用1.2%琼脂糖凝胶电泳检测PCR扩增产物,得到大小约为1000bp的目的条带。在紫外灯下切取目的条带,使用Omega Gel Extraction Kit D2500,按照试剂盒说明书回收L-TA R318L/H128N突变体基因片段。The PCR amplification product was detected by 1.2% agarose gel electrophoresis to obtain a target band of about 1000 bp in size. The target band was cut under ultraviolet light and the L-TA R318L/H128N mutant gene fragment was recovered using Omega Gel Extraction Kit D2500 according to the kit instructions.

3、表达载体构建3. Expression vector construction

(1)酶切和连接(1) Enzyme digestion and ligation

利用BamH I和Xho I限制性内切酶分别对L-TA R318L/H128N突变体基因和pGEX-6p-2载体进行双酶切。酶切体系(基因):L-TA R318L/H128N突变体基因35μL,BamH I酶3μL,Xho I酶3μL,10×K buffer6μL,补无菌双蒸水至体系为60μL。酶切体系(载体):pGEX-6p-2载体2μL,BamH I酶0.5μL,Xho I酶0.5μL,10×K buffer 1μL,补无菌双蒸水至体系为10μL。酶切条件:37℃酶切3h。BamH I and Xho I restriction endonucleases were used to double-digest the L-TA R318L/H128N mutant gene and pGEX-6p-2 vector, respectively. Enzyme digestion system (gene): L-TA R318L/H128N mutant gene 35μL, BamH I enzyme 3μL, Xho I enzyme 3μL, 10×K buffer 6μL, and sterile double distilled water was added to the system to 60μL. Enzyme digestion system (vector): pGEX-6p-2 vector 2μL, BamH I enzyme 0.5μL, Xho I enzyme 0.5μL, 10×K buffer 1μL, and sterile double distilled water was added to the system to 10μL. Enzyme digestion conditions: 37℃ digestion for 3h.

然后使用T4 DNA连接酶连接酶切后的L-TA R318L/H128N突变体基因和pGEX-6p-2线性载体:酶切后的L-TA R318L/H128N突变体基因6μL,pGEX-6p-2线性载体2μL,T4 DNALigase 1μL,10×T4 Ligase buffer 1μL。16℃连接过夜,得到连接产物pGEX-6p-2/L-TAR318L/H128N。Then, T4 DNA ligase was used to connect the L-TA R318L/H128N mutant gene and pGEX-6p-2 linear vector after restriction digestion: 6 μL of L-TA R318L/H128N mutant gene after restriction digestion, 2 μL of pGEX-6p-2 linear vector, 1 μL of T4 DNA Ligase, and 1 μL of 10×T4 Ligase buffer. The ligation was carried out at 16°C overnight to obtain the ligation product pGEX-6p-2/L-TAR318L/H128N.

(2)转化(2) Conversion

将Trans5α感受态细胞(全式金,CD201-01)放置于冰上,待细胞融化后加入10μLpGEX-6p-2/L-TA R318L/H128N,冰上放置30min。42℃热激90s,然后冰上放置2min。加入600μL无菌LB液体培养基,37℃,150rpm摇床培养45min。吸取200μL培养好的菌液,涂布于Amp+抗性(100μg/mL)LB平板培养基上,37℃倒置培养过夜。Place Trans5α competent cells (full gold, CD201-01) on ice, add 10μL pGEX-6p-2/L-TA R318L/H128N after the cells thaw, and place on ice for 30 minutes. Heat shock at 42℃ for 90 seconds, then place on ice for 2 minutes. Add 600μL sterile LB liquid culture medium, and culture at 37℃, 150rpm shaking for 45 minutes. Pipette 200μL of the cultured bacterial solution, spread it on Amp+ resistance (100μg/mL) LB plate culture medium, and culture it upside down at 37℃ overnight.

(3)阳性克隆筛选(3) Positive clone screening

挑取LB平板上的单菌落,接种于Amp+抗性(100μg/mL)LB液体培养基中,37℃,220rpm摇床培养至OD 600≈1.0,8000rpm离心5min收集菌体,用于质粒提取。使用OMEGAPlasmid Mini Kit I(货号:D6943)按照说明书提取质粒,并对质粒进行双酶切鉴定。Pick a single colony on the LB plate, inoculate it in Amp+ resistance (100 μg/mL) LB liquid medium, culture at 37°C, 220 rpm shaking to OD 600≈1.0, and collect the bacteria by centrifugation at 8000 rpm for 5 min for plasmid extraction. Use OMEGAPlasmid Mini Kit I (Cat. No.: D6943) to extract the plasmid according to the instructions, and perform double enzyme digestion identification on the plasmid.

酶切体系:Enzyme digestion system:

酶切条件:37℃酶切3h。使用1.2%琼脂糖凝胶电泳检测酶切产物,选取双酶切鉴定正确的重组质粒送TAKARA(中国,大连)公司测序,测序结果正确的重组质粒作为L-TAR318L/H128N突变体的表达载体。Enzyme digestion conditions: 37°C for 3h. 1.2% agarose gel electrophoresis was used to detect the digestion products, and the recombinant plasmids with correct double digestion identification were sent to TAKARA (Dalian, China) for sequencing. The recombinant plasmids with correct sequencing results were used as the expression vectors of L-TAR318L/H128N mutants.

4.酶蛋白的GST融合异源表达4. GST fusion heterologous expression of enzyme protein

(1)质粒转化E.coli BL21(DE3)细胞(1) Plasmid transformation into E. coli BL21 (DE3) cells

从-80℃中取出E.coli BL21(DE3)感受态细胞,冰上放置。待细胞融化后,加入10μL测序结果正确的表达载体pGEX-6p-2/L-TA R318L/H128N,冰上放置30min。42℃热激90s,然后冰上放置2min。加入600μL无菌LB液体培养基,37℃,150rpm摇床培养45min。吸取200μL培养好的菌液,涂布于Amp+抗性(100μg/mL)LB平板培养基上,37℃倒置培养过夜。挑取LB平板上的单菌落,按照步骤2中的PCR体系和程序进行菌落PCR鉴定,将鉴定结果正确的菌落作为蛋白表达菌株。Remove the competent cells of E.coli BL21 (DE3) from -80℃ and place them on ice. After the cells melt, add 10μL of the expression vector pGEX-6p-2/L-TA R318L/H128N with the correct sequencing results and place them on ice for 30min. Heat shock at 42℃ for 90s, then place on ice for 2min. Add 600μL of sterile LB liquid culture medium and culture at 37℃, 150rpm shaking for 45min. Pipette 200μL of the cultured bacterial solution, spread it on the Amp+ resistance (100μg/mL) LB plate culture medium, and invert and culture it at 37℃ overnight. Pick a single colony on the LB plate, perform colony PCR identification according to the PCR system and procedure in step 2, and use the colony with the correct identification result as the protein expression strain.

(2)蛋白表达与纯化(2) Protein expression and purification

a.将蛋白表达菌株接种入无菌LB液体培养基中,氨苄青霉素终浓度为100μg/mL,37℃,170rpm培养。a. Inoculate the protein expression strain into sterile LB liquid culture medium with a final concentration of ampicillin of 100 μg/mL at 37°C and 170 rpm.

b.待OD 600≈0.8时,加入终浓度为0.2mM的IPTG,16℃180rpm诱导培养过夜(12h)。8000rpm离心5min收集菌体。b. When OD 600 ≈ 0.8, add IPTG at a final concentration of 0.2 mM, and induce culture overnight (12 h) at 16°C and 180 rpm. Centrifuge at 8000 rpm for 5 min to collect the cells.

c.按1L培养体系加30mL裂解缓冲液(pH 7.4,10mM PBS)的比例重悬菌体,4℃用超高压纳米均质机进行细胞壁的破碎处理。破碎的菌液均分至4℃预冷的50mL无菌离心管中,4℃,12000rpm离心20min,待离心结束,用精密移液枪将上清转移到4℃预冷的50mL无菌离心管中。c. Resuspend the bacteria in the ratio of 1L culture system plus 30mL lysis buffer (pH 7.4, 10mM PBS), and use an ultra-high pressure nano homogenizer to break the cell wall at 4℃. Divide the broken bacterial solution into 50mL sterile centrifuge tubes precooled at 4℃, centrifuge at 4℃, 12000rpm for 20min, and transfer the supernatant to a 50mL sterile centrifuge tube precooled at 4℃ with a precision pipette after the centrifugation is completed.

d.取Glutathione Sepharose 4B填料(GE Healthcare)装于层析柱(GEHealthcare)中,填料使用的比例为每升培养体系使用5mL填料。用4℃预冷的pH 7.4,10mM无菌PBS冲洗3个柱体积,去除无水乙醇。将步骤c得到的上清与Glutathione Sepharose 4B结合,于4℃垂直混悬3h。d. Glutathione Sepharose 4B filler (GE Healthcare) was loaded into a chromatography column (GE Healthcare) at a ratio of 5 mL filler per liter of culture system. Three column volumes were washed with 4°C precooled pH 7.4, 10 mM sterile PBS to remove anhydrous ethanol. The supernatant obtained in step c was combined with Glutathione Sepharose 4B and suspended vertically at 4°C for 3 h.

e.结合完毕后,500rpm离心5min沉淀填料。填料用4℃预冷的pH 7.4,10mM无菌PBS冲洗3-5个柱体积,去除杂蛋白。e. After binding, centrifuge at 500 rpm for 5 min to precipitate the filler. Rinse the filler with 4°C precooled pH 7.4, 10 mM sterile PBS for 3-5 column volumes to remove impurities.

f.加入4℃预冷的酶切缓冲液(pH 7.4,10mM PBS),加入PreScission Protease酶(GenScript,Z02799-100),4℃酶切过夜。f. Add 4°C pre-cooled enzyme digestion buffer (pH 7.4, 10 mM PBS), add PreScission Protease (GenScript, Z02799-100), and digest at 4°C overnight.

g.酶切完毕后,将上清从层析柱中放出,即得L-TAR318L/H128N酶液。g. After the enzyme digestion is completed, the supernatant is released from the chromatography column to obtain L-TAR318L/H128N enzyme solution.

h.将L-TA R318L/H128N酶液进行SDS-PAGE检测,鉴定其分子量大小。使用Bradford蛋白浓度测定试剂盒(Beyotime,P0006)按照试剂盒说明书测定L-TA R318L/H128N酶液的浓度。h. The L-TA R318L/H128N enzyme solution was subjected to SDS-PAGE detection to identify its molecular weight. The concentration of the L-TA R318L/H128N enzyme solution was determined using a Bradford protein concentration determination kit (Beyotime, P0006) according to the kit instructions.

结果如图2所示,SDS-PAGE检测结果显示L-TA R318L/H128N突变体可溶性表达成功,蛋白分子量约为38.7KD,酶蛋白纯度很高,呈单一条带。经测定,L-TA R318L/H128N酶液的浓度为2mg/mL。The results are shown in Figure 2. The SDS-PAGE test results show that the L-TA R318L/H128N mutant was successfully expressed in a soluble form, the protein molecular weight was about 38.7KD, the enzyme protein purity was very high, and it was a single band. The concentration of the L-TA R318L/H128N enzyme solution was determined to be 2mg/mL.

实施例2.利用L-TAR318L/H128N突变体合成屈昔多巴并检测de值Example 2. Synthesis of droxidopa using the L-TAR318L/H128N mutant and detection of de value

1、屈昔多巴的合成1. Synthesis of Droxidopa

在PBS缓冲液(pH=7.0)中,加入1M甘氨酸,60mM 3,4-二羟基苯甲醛和50μM的PLP,2.8mg纯化的L-TA,37℃反应4h后,超滤管(10kDa)超滤样品以除去不溶物。将超滤后的样品放入冷冻干燥机中冻干,然后加入有机相溶液(90%0.1%w/v庚烷磺酸钠盐/0.1%w/v 1,4-二噁烷),定容到适合的浓度。In PBS buffer (pH = 7.0), 1M glycine, 60mM 3,4-dihydroxybenzaldehyde and 50μM PLP, 2.8mg purified L-TA were added, and after reacting at 37°C for 4h, the sample was ultrafiltered using an ultrafiltration tube (10kDa) to remove insoluble matter. The ultrafiltered sample was placed in a freeze dryer for freeze drying, and then an organic phase solution (90% 0.1% w/v sodium heptanesulfonate/0.1% w/v 1,4-dioxane) was added to the appropriate concentration.

2、屈昔多巴的检测与de值计算2. Detection of droxidopa and calculation of de value

将步骤1超滤后得到的样品稀释10倍以达到更好的HPLC分离效果。利用HPLC检测样品中屈昔多巴(L-threo-DOPS)和它的非对映异构体(L-erythro-DOPS)的量。HPLC仪器型号:安捷伦1260。参数设置:色谱柱:COSMOSIL5C18-MS4.6×150mm;波长280nm,柱温30℃;流动相:90%0.1%(w/v,g/mL)1-庚烷磺酸钠盐/0.1%(w/v,g/mL)1,4-二恶烷(溶剂为蒸馏水),10%甲醇;进样量10μL,流速1mL/min。按照相同的HPLC参数分别检测L-threo-DOPS标准品(0.1mg/mL,pH 7.4,10mM PBS),以及L-threo-DOPS和L-erythro-DOPS的外消旋体标准品(0.01mg/mL,pH 7.4,10mM PBS)。The sample obtained after ultrafiltration in step 1 was diluted 10 times to achieve better HPLC separation effect. The amount of droxidopa (L-threo-DOPS) and its diastereomer (L-erythro-DOPS) in the sample was detected by HPLC. HPLC instrument model: Agilent 1260. Parameter setting: chromatographic column: COSMOSIL5C18-MS4.6×150mm; wavelength 280nm, column temperature 30℃; mobile phase: 90% 0.1% (w/v, g/mL) 1-heptanesulfonic acid sodium salt/0.1% (w/v, g/mL) 1,4-dioxane (solvent is distilled water), 10% methanol; injection volume 10μL, flow rate 1mL/min. The same HPLC parameters were used to detect L-threo-DOPS standard (0.1 mg/mL, pH 7.4, 10 mM PBS) and the racemic standards of L-threo-DOPS and L-erythro-DOPS (0.01 mg/mL, pH 7.4, 10 mM PBS).

根据峰面积确定样品中L-threo-DOPS与L-erythro-DOPS的量。然后基于以下方程式确定de值(diastereoisomericexcess,非对映体过量百分率):The amount of L-threo-DOPS and L-erythro-DOPS in the sample was determined based on the peak area. The de value (diastereoisomeric excess) was then determined based on the following equation:

[(L-threo-DOPS的量-L-erythro-DOPS的量)/(L-threo-DOPS的量+L-erythro-DOPS的量)]×100%。[(Amount of L-threo-DOPS - Amount of L-erythro-DOPS)/(Amount of L-threo-DOPS + Amount of L-erythro-DOPS)] × 100%.

HPLC结果如图3所示,其中,最上面的谱图(标记为R318L/H128N)是L-TAR318L/H128N突变体的催化产物;中间的谱图(标记为L-threo-DOPS)是L-threo-DOPS标准品;最下面的谱图(标记为L-DOPS)是L-threo-DOPS和L-erythro-DOPS外消旋体的标准品。L-erythro-DOPS的保留时间为5.5min,L-threo-DOPS的保留时间为6.2min。经计算,L-TAR318L/H128N突变体在催化3,4-二羟基苯甲醛和甘氨酸合成屈昔多巴(L-threo-DOPS)的反应中具有84.9%的非对映选择性(de值)。The HPLC results are shown in Figure 3, where the top spectrum (labeled as R318L/H128N) is the catalytic product of the L-TAR318L/H128N mutant; the middle spectrum (labeled as L-threo-DOPS) is the L-threo-DOPS standard; the bottom spectrum (labeled as L-DOPS) is the standard of L-threo-DOPS and L-erythro-DOPS racemates. The retention time of L-erythro-DOPS is 5.5min, and the retention time of L-threo-DOPS is 6.2min. It is calculated that the L-TAR318L/H128N mutant has a diastereoselectivity (de value) of 84.9% in the reaction of catalyzing 3,4-dihydroxybenzaldehyde and glycine to synthesize droxidopa (L-threo-DOPS).

Claims (10)

1.一种L-苏氨酸醛缩酶突变体,其特征在于,其氨基酸序列如SEQ ID NO:3所示,是氨基酸序列为SEQ ID NO:1的L-苏氨酸醛缩酶的第318位氨基酸由Arg变为Leu以及第128位氨基酸由His变为Asn所得。1. An L-threonine aldolase mutant, characterized in that its amino acid sequence is as shown in SEQ ID NO: 3, and it is an L-threonine aldolase whose amino acid sequence is SEQ ID NO: 1. The 318th amino acid was changed from Arg to Leu and the 128th amino acid was changed from His to Asn. 2.编码权利要求1所述的L-苏氨酸醛缩酶突变体的基因。2. A gene encoding the L-threonine aldolase mutant according to claim 1. 3.根据权利要求2所述的基因,其特征在于,其核苷酸序列如SEQ ID NO:4所示。3. The gene according to claim 2, characterized in that its nucleotide sequence is shown in SEQ ID NO: 4. 4.包含权利要求2所述基因的表达盒、载体或重组菌。4. An expression cassette, vector or recombinant bacterium containing the gene of claim 2. 5.权利要求1所述的L-苏氨酸醛缩酶突变体的制备方法,其特征在于,包括如下步骤:合成所述L-苏氨酸醛缩酶突变体的编码基因,构建表达载体,转化蛋白表达宿主菌,诱导蛋白表达并纯化。5. The preparation method of the L-threonine aldolase mutant according to claim 1, characterized in that it includes the following steps: synthesizing the coding gene of the L-threonine aldolase mutant and constructing an expression vector , transform protein expression host bacteria, induce protein expression and purify. 6.根据权利要求5所述的方法,其特征在于:所述L-苏氨酸醛缩酶突变体的编码基因的核苷酸序列如SEQ ID NO:4所示。6. The method according to claim 5, characterized in that: the nucleotide sequence of the gene encoding the L-threonine aldolase mutant is shown in SEQ ID NO: 4. 7.一种催化剂,其特征在于,其有效成分包含权利要求1所述的L-苏氨酸醛缩酶突变体。7. A catalyst, characterized in that its active ingredient contains the L-threonine aldolase mutant according to claim 1. 8.权利要求1所述的L-苏氨酸醛缩酶突变体或权利要求7所述的催化剂在3,4-二羟基苯甲醛和甘氨酸的羟醛缩合反应中的应用。8. Application of the L-threonine aldolase mutant of claim 1 or the catalyst of claim 7 in the aldol condensation reaction of 3,4-dihydroxybenzaldehyde and glycine. 9.根据权利要求8所述的应用,其特征在于,使用权利要求1所述的L-苏氨酸醛缩酶突变体或权利要求7所述的催化剂,以3,4-二羟基苯甲醛为底物、甘氨酸为辅底物、5-磷酸吡哆醛为辅酶进行催化反应,合成屈昔多巴。9. Application according to claim 8, characterized in that, using the L-threonine aldolase mutant according to claim 1 or the catalyst according to claim 7, 3,4-dihydroxybenzaldehyde is used. It is the substrate, glycine is the co-substrate, and pyridoxal-5-phosphate is the coenzyme to catalyze the reaction to synthesize droxidopa. 10.根据权利要求9所述的应用,其特征在于,所述催化反应在15-37℃、pH 6.0-11.0条件下进行。10. The application according to claim 9, characterized in that the catalytic reaction is carried out at 15-37°C and pH 6.0-11.0.
CN202210466832.7A 2022-04-29 2022-04-29 L-threonine aldolase mutant R318L/H128N and application thereof Active CN114703169B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210466832.7A CN114703169B (en) 2022-04-29 2022-04-29 L-threonine aldolase mutant R318L/H128N and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210466832.7A CN114703169B (en) 2022-04-29 2022-04-29 L-threonine aldolase mutant R318L/H128N and application thereof

Publications (2)

Publication Number Publication Date
CN114703169A CN114703169A (en) 2022-07-05
CN114703169B true CN114703169B (en) 2023-10-31

Family

ID=82177016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210466832.7A Active CN114703169B (en) 2022-04-29 2022-04-29 L-threonine aldolase mutant R318L/H128N and application thereof

Country Status (1)

Country Link
CN (1) CN114703169B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287311B (en) * 2022-04-29 2025-03-25 重庆大学 A method for preparing norepinephrine based on L-threonine aldolase R318L/H128N
CN116103259A (en) * 2022-12-24 2023-05-12 江南大学 Rational modification of L-threonine transaldolase and its integrated system for efficient synthesis of β-hydroxy-α-amino acids

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748854A (en) * 2016-12-01 2017-05-31 暨明医药科技(苏州)有限公司 A kind of preparation method of Droxidopa
CN110272856A (en) * 2019-05-08 2019-09-24 江南大学 A kind of recombinant bacterium that expressing D-Thr aldolase and its construction method and application
CN110592058A (en) * 2019-05-30 2019-12-20 重庆大学 Threonine aldolase, its coding gene and its application in droxidopa biosynthesis
CN111394343A (en) * 2020-04-22 2020-07-10 重庆大学 L-threonine aldolase mutant R318L and application thereof
CN111849952A (en) * 2020-04-22 2020-10-30 重庆大学 L-threonine aldolase mutant R318V and its application
CN111849951A (en) * 2020-04-22 2020-10-30 重庆大学 L-threonine aldolase mutant R318M and its application
CN112513010A (en) * 2018-06-21 2021-03-16 意大利合成制造有限公司 Enzymatic method for preparing droxidopa
CN112941123A (en) * 2021-02-25 2021-06-11 南京工业大学 Method for biologically synthesizing droxidopa based on L-threonine aldolase
CN113481188A (en) * 2018-11-06 2021-10-08 王喆明 Threonine aldolase mutant and application thereof in preparation of substituted phenylserine derivative

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748854A (en) * 2016-12-01 2017-05-31 暨明医药科技(苏州)有限公司 A kind of preparation method of Droxidopa
CN112513010A (en) * 2018-06-21 2021-03-16 意大利合成制造有限公司 Enzymatic method for preparing droxidopa
CN113481188A (en) * 2018-11-06 2021-10-08 王喆明 Threonine aldolase mutant and application thereof in preparation of substituted phenylserine derivative
CN110272856A (en) * 2019-05-08 2019-09-24 江南大学 A kind of recombinant bacterium that expressing D-Thr aldolase and its construction method and application
CN110592058A (en) * 2019-05-30 2019-12-20 重庆大学 Threonine aldolase, its coding gene and its application in droxidopa biosynthesis
CN111394343A (en) * 2020-04-22 2020-07-10 重庆大学 L-threonine aldolase mutant R318L and application thereof
CN111849952A (en) * 2020-04-22 2020-10-30 重庆大学 L-threonine aldolase mutant R318V and its application
CN111849951A (en) * 2020-04-22 2020-10-30 重庆大学 L-threonine aldolase mutant R318M and its application
CN112941123A (en) * 2021-02-25 2021-06-11 南京工业大学 Method for biologically synthesizing droxidopa based on L-threonine aldolase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Renfen Zha等.Improving the Cβ stereoselectivity of L-threonine aldolase for the preparation of L-threo-3,4-dihydroxyphenylserine, a powerful anti-Parkinson's disease drug.《Biochemical Engineering Journal》.2023,全文. *
苏氨酸醛缩酶的催化机理、分子改造及合成应用;陈启佳等;《生物工程学报》;第37卷(第12期);全文 *
苏氨酸醛缩酶的研究进展;黎军等;《生物技术通讯》;第30卷(第3期);全文 *
高立体选择性L-TA的基因挖掘、分子改造与应用研究;赵文艳;《中国优秀硕士学位论文全文数据库》;全文 *

Also Published As

Publication number Publication date
CN114703169A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN111394343B (en) L-threonine aldolase mutant R318L and application thereof
CN111849951B (en) L-threonine aldolase mutant R318M and its application
US11535839B2 (en) Encoding genes of nitrilase mutants and application thereof
CN110592058B (en) Threonine aldolase, its encoding gene and its application in droxidopa biosynthesis
CN114703169B (en) L-threonine aldolase mutant R318L/H128N and application thereof
CN111849952B (en) L-threonine aldolase mutant R318V and its application
CN112280761B (en) A kind of recombinant transaminase and mutant of said recombinant transaminase and application thereof
CN107653233B (en) An improved transaminase, its encoding gene and genetically engineered bacteria expressing the enzyme
CN113337494B (en) L-threonine aldolase mutant and application thereof
CN109837317B (en) A kind of synthetic method of chiral bis-aryl alcohol compound
CN112852790B (en) Plant nitrilase chimeric enzyme mutant, coding gene and application thereof
CN110272856B (en) A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application
CN106701723B (en) D-fructose-6-phosphate aldolase A mutant, recombinant expression vector, genetic engineering bacteria and its application and reaction products
CN104560905A (en) Thioether monooxygenase from pseudomonas monteilii as well as synthesis and application thereof
CN107937377A (en) A kind of D N carbamyl hydrolysis enzymes and application
CN112522228B (en) R-aminotransferase from pseudomonas ammoxidation and synthesis method thereof
CN111424006B (en) A kind of recombinant cell and its application of synthesizing α, β-unsaturated aldehyde
CN104630194A (en) (+)-gamma-lactamase from microbacterium as well as coding gene and application of (+)-gamma-lactamase
CN1342771A (en) Expression purification of tubercle mycobacterium Ag85B antigen and its application in vaccine
CN112941123A (en) Method for biologically synthesizing droxidopa based on L-threonine aldolase
CN112322607B (en) Fusion type nitrile hydratase and application thereof
CN119193559A (en) L-Threonine Aldolase Mutant R318L/H128N/N305V and Its Application
CN119320764A (en) L-threonine aldolase mutant R318L/H128N/N90Q and application thereof
CN115287311B (en) A method for preparing norepinephrine based on L-threonine aldolase R318L/H128N
CN110129382A (en) Method for synthesizing chiral ortho-halo-α-phenylethanol catalyzed by a carbonyl reductase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant