CN114466637A - 电动车辆、电动车辆的控制方法以及电动车辆的控制程序 - Google Patents
电动车辆、电动车辆的控制方法以及电动车辆的控制程序 Download PDFInfo
- Publication number
- CN114466637A CN114466637A CN202080067456.3A CN202080067456A CN114466637A CN 114466637 A CN114466637 A CN 114466637A CN 202080067456 A CN202080067456 A CN 202080067456A CN 114466637 A CN114466637 A CN 114466637A
- Authority
- CN
- China
- Prior art keywords
- acceleration
- vehicle body
- front wheel
- wheel
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H3/04—Wheeled walking aids for patients or disabled persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H2003/001—Appliances for aiding patients or disabled persons to walk about on steps or stairways
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H3/04—Wheeled walking aids for patients or disabled persons
- A61H2003/043—Wheeled walking aids for patients or disabled persons with a drive mechanism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H3/04—Wheeled walking aids for patients or disabled persons
- A61H2003/046—Wheeled walking aids for patients or disabled persons with braking means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0165—Damping, vibration related features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1207—Driving means with electric or magnetic drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5084—Acceleration sensors
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
提供一种能够高精度地检测与台阶的接触从而实现使用者意图的动作的电动车辆。电动车辆具备:驱动部,其对包括前轮和后轮中的至少任一方的车轮进行驱动;控制部,其对所述驱动部进行控制来进行台阶的越过控制;测量部,其测量对设置有所述车轮的车身施加的速度和加速度中的至少任一方;以及判断部,其基于测量部的测量值来判断是否进行台阶的越过控制。
Description
技术领域
本公开涉及用于辅助老年人、残疾人、住院患者等行走受限制的人的行走的电动车辆、电动车辆的控制方法以及电动车辆的控制程序。
背景技术
以往,使用了用于辅助老年人的外出的行走车(助行车、手推动车)、为了辅助残疾人或住院患者的行走而使用了行走器等行走辅助装置。例如,在专利文献1中公开了能够在不进行对于使用者而言成为较大的负担的操作的情况下使前轮登上台阶的行走辅助装置。
在专利文献1中,公开了一种行走辅助装置(电动车辆),其特征在于,具备:框架;设置于框架的前轮和后轮;驱动部,其产生使前轮相对于后轮悬浮的驱动力;以及控制部,其与驱动部连接,用于控制驱动部,尽管使用者想要使电动车辆前进,但是控制部在判断为前轮碰撞到台阶时控制驱动部使前轮相对于后轮悬浮。
现有技术文献
专利文献
专利文献1:日本特开2018-61819号公报
发明内容
发明要解决的问题
在这种以往的行走辅助装置中,对于检测与台阶的接触的精度存在制约,无法进行充分精细的控制,因此有时无法实现使用者意图的台阶的越过动作。例如,到目前为止的行走辅助装置的台阶检测功能和台阶越过功能以行走辅助装置从相对于台阶大致正面(大致垂直的方向)进入为前提。因而,在行走辅助装置的右前轮和左前轮以具有时间差的方式接触到台阶的情况下,难以越过台阶。另外,为了准确地判断行走辅助装置进行台阶的越过动作的必要性,需要识别向台阶的接触以及由使用者进行的行走辅助装置的停止操作、行走辅助装置与台阶以外的物体接触的情况等之间的差异。
本公开提供一种能够高精度地检测与台阶的接触从而实现使用者意图的动作的、电动车辆、电动车辆的控制方法以及电动车辆的控制程序。
用于解决问题的方案
根据本公开的电动车辆的特征在于,具备:驱动部,其对设置于车身的包括前轮和后轮中的至少任一方的车轮进行驱动;控制部,其对所述驱动部进行使所述车轮越过台阶的台阶的越过控制;测量部,其测量对设置有所述车轮的车身施加的速度和加速度中的至少任一方;以及判断部,其基于所述测量部的测量值来判断是否使所述控制部进行台阶的越过控制。
在根据本公开的电动车辆中,也可以是,在所述判断部基于所述测量部的测量值而估计为所述前轮接触到台阶时,进行所述台阶的越过控制。
在根据本公开的电动车辆中,也可以是,所述台阶的越过控制包含增加所述驱动部对所述车轮进行驱动的驱动力的控制。
在根据本公开的电动车辆中,也可以是,所述台阶的越过控制包含使所述车身转弯的控制。
在根据本公开的电动车辆中,也可以是,所述台阶的越过控制包含一边使所述车身转弯一边增加驱动力的控制。
在根据本公开的电动车辆中,也可以是,所述前轮包括在所述车身的宽度方向上分离地配置的左前轮和右前轮,所述判断部基于所述测量部的测量值来估计左前轮和右前轮中的哪一者接触到所述台阶。
在根据本公开的电动车辆中,也可以是,所述测量部至少测量向使所述车身减速的方向的加速度和所述车身的前后方向上的加速度中的任一方、以及所述车身的宽度方向上的加速度。
在根据本公开的电动车辆中,也可以是,所述后轮包括在所述车身的宽度方向上分离地配置的左后轮和右后轮,所述测量部至少计算所述左后轮的转动方向上的加速度与所述右后轮的转动方向上的加速度的平均值、或者所述左后轮的转动方向上的加速度与所述右后轮的转动方向上的加速度之差。
在根据本公开的电动车辆中,也可以是,所述测量部至少计算左前轮的转动方向上的加速度与右前轮的转动方向上的加速度的平均值、或者左前轮的转动方向上的加速度与右前轮的转动方向上的加速度之差。
在根据本公开的电动车辆中,也可以是,所述测量部测定向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方、以及所述车身的宽度方向上的加速度,在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第一阈值以上时,所述判断部估计所述左前轮和所述右前轮中的哪一者接触到台阶。
在根据本公开的电动车辆中,也可以是,所述测量部测定向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方、以及所述车身的宽度方向上的加速度,在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第一阈值以上之后,在规定期间内测量到的所述车身的宽度方向上的加速度的绝对值的最大值成为第二阈值以上时,所述判断部估计所述左前轮和所述右前轮中的哪一者接触到所述台阶。
在根据本公开的电动车辆中,也可以是,所述测量部测量向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方,在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第三阈值以上时,所述判断部估计为所述左前轮和所述右前轮均接触到台阶,所述第三阈值小于所述第一阈值。
在根据本公开的电动车辆中,也可以是,所述控制部仅使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相同侧的所述后轮的所述驱动部产生驱动力。
在根据本公开的电动车辆中,也可以是,所述控制部仅使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部产生驱动力。
在根据本公开的电动车辆中,也可以是,所述控制部使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部产生驱动力,该驱动力大于被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的驱动力。
在根据本公开的电动车辆中,也可以是,所述控制部使被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的相同侧的所述后轮中的至少任一方的所述驱动部的驱动力大于被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力。
在根据本公开的电动车辆中,也可以是,所述控制部使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部的驱动力、以及被估计为接触到所述台阶的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力递增至第四阈值。
在根据本公开的电动车辆中,也可以是,位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部的所述驱动力大于被估计为接触到所述台阶的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力。
在根据本公开的电动车辆中,也可以是,在所述判断部基于所述测量部的测量值而估计为所述前轮两者均接触到台阶时,所述控制部使处于所述车身的宽度方向上的两侧的所述前轮和所述后轮中的至少任一方的所述前轮或者所述后轮的所述驱动部的驱动力相等。
在根据本公开的电动车辆中,也可以是,在由所述测量部测定出的所述车身的宽度方向上的加速度的绝对值的最大值成为第二阈值以上时,所述控制部将作为执行所述台阶的所述越过动作的条件的、加速度的第五阈值设定得小。
在根据本公开的电动车辆中,也可以是,随着由所述测量部测量到的所述车身的速度变大,所述控制部将作为执行所述台阶的所述越过动作的条件的、加速度的绝对值的第六阈值设定得大。
在根据本公开的电动车辆中,也可以是,测量部测量向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方,在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方大于第七阈值时,所述判断部估计为所述前轮接触到台阶。
在根据本公开的电动车辆中,也可以是,在所述测量部所测量到的向使所述车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为所述第七阈值以下时,所述判断部不估计为所述前轮接触到台阶。
在根据本公开的电动车辆中,也可以是,所述测量部测量所述车身的振动的频谱,在所述测量部所测量到的值的代表值大于第八阈值时,所述判断部估计为所述前轮接触到台阶。
在根据本公开的电动车辆中,也可以是,在所述测量部所测量到的值的代表值为所述第八阈值以下时,所述判断部不估计为所述前轮接触到台阶。
在根据本公开的电动车辆中,也可以是,具备存储部,所述存储部存储所述测量部的测量值,所述判断部基于所述存储部中存储的所述测量值来调整所述第七阈值。
在根据本公开的电动车辆中,也可以是,在所述控制部使所述前轮越过台阶之后,所述判断部在所述控制部进行所述前轮的台阶越过控制以前的规定期间内检测到小于所述第七阈值的加速度的情况下,所述判断部使所述第七阈值变更为更小的值。
在根据本公开的电动车辆中,也可以是,在所述控制部使所述前轮越过台阶时所述测量部所测量到的所述加速度大于所述第七阈值、且所述加速度与所述第七阈值之差大于规定值的情况下,所述判断部使所述第七阈值变更为更大的值。
在根据本公开的电动车辆中,也可以是,所述车身的振动包含所述车身的前后方向上的振动。
在根据本公开的电动车辆中,也可以是,具备缓冲构件,所述缓冲构件覆盖所述车身的前方或者所述车身的宽度方向上的两个侧面中的至少一部分。
在根据本公开的电动车辆中,也可以是,所述前轮为构成为能够转弯的双轮脚轮。
根据本公开的电动车辆的特征在于,具备:驱动部,其对包括前轮和后轮中的至少任一方的车轮进行驱动;控制部,其控制所述驱动部来进行台阶的越过控制;测量部,其测量对设置有所述车轮的车身施加的速度和加速度中的至少任一方;以及判断部,其基于所述测量部的测量值来判断是否使所述控制部进行台阶的越过控制,其中,在所述判断部基于所述测量部的测量值而判断为所述前轮接触到台阶时,所述控制部进行增加所述驱动部对所述车轮进行驱动的驱动力的控制或者使所述车身转弯的控制。
根据本公开的电动车辆的控制方法的特征在于,包括以下步骤:测量对车身施加的速度和加速度中的至少任一方;以及基于所述速度和所述加速度中的至少任一方来判断是否进行台阶的越过控制。
根据本公开的电动车辆的控制方法也可以是还包括以下步骤:基于所述速度和所述加速度中的至少任一方来判断前轮是否接触到台阶;以及在被估计为所述前轮接触到台阶时进行所述台阶的越过控制。
在根据本公开的电动车辆的控制方法中,也可以是,所述台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使所述车身转弯的控制、以及一边使所述车身转弯一边增加所述驱动力的控制中的至少任一方。
根据本公开的电动车辆的控制程序的特征在于,包括以下步骤:测量对车身施加的速度和加速度中的至少任一方;基于所述速度和所述加速度中的至少任一方来判断前轮是否接触到台阶;以及在被估计为所述前轮接触到台阶时进行所述台阶的越过控制。
在根据本公开的电动车辆的控制程序中,也可以是,所述台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使所述车身转弯的控制、以及一边使所述车身转弯一边增加所述驱动力的控制中的至少任一方。
根据本公开,能够高精度地检测与台阶的接触,并且实现使用者意图的动作。
附图说明
图1是示出本公开的第一实施方式所涉及的电动辅助行走车的立体图。
图2是示出本公开的第一实施方式所涉及的电动辅助行走车的侧视图。
图3是示出脚部探测传感器的概要图。
图4是示出把持传感器的概要图。
图5是示出把持传感器的变形例的概要图。
图6是用于说明控制部的动作的一例的流程图。
图7是示出驱动力从前轮碰撞到台阶起随着时间经过而变化的曲线图。
图8是示出了在碰撞到台阶、停止操作的各情形下检测到的加速度以及阈值的例子的曲线图。
图9是示出了在碰撞到柔软的物体时检测到的加速度以及碰撞到台阶时检测到的加速度的例子的曲线图。
图10是示出了在车身前方设置有缓冲材料的结构例的概要图。
图11是示出了在电动辅助行走车与台阶碰撞时施加到车身的加速度的例子的俯视图。
图12是示出了通过碰撞了的前轮检测到的加速度的差异的曲线图。
图13是示出了在转弯进入和直行进入的情况下检测到的加速度的例子的曲线图。
图14是示出了在与台阶碰撞时测量到的加速度的时间波形的例子的曲线图。
图15是示出了以相对于台阶具有角度的方式进入了的电动辅助行走车的第一例的俯视图。
图16是示出了以相对于台阶具有角度的方式进入了的电动辅助行走车的第二例的俯视图。
图17是示出了以相对于台阶具有角度的方式进入了的电动辅助行走车的第二例的俯视图。
图18是示出了用于在检测到任一个前轮与台阶接触之后使电动车辆转弯的控制的例子的曲线图。
图19是示出了用于在检测到任一个前轮与台阶接触之后使电动车辆转弯的控制的例子的曲线图。
图20是示出了在前轮相对于车身的行进方向具有角度的情况下的第一例的俯视图。
图21是示出了在前轮相对于车身的行进方向具有角度的情况下的第二例的俯视图。
图22是示出了电动辅助行走车与台阶的碰撞的例子的俯视图。
图23是示出了电动辅助行走车与台阶的碰撞的例子的俯视图。
图24是示出本公开的第二实施方式所涉及的电动辅助行走车的立体图。
图25是示出本公开的第二实施方式所涉及的电动辅助行走车的侧视图。
图26是示出本公开的第二实施方式所涉及的电动辅助行走车的后轮周边的结构的侧视图。
图27是示出本公开的第二实施方式所涉及的电动辅助行走车的后轮周边的结构的截面图(图25的XI-XI线截面图)。
图28是示出本公开的第二实施方式所涉及的电动辅助行走车的后轮周边的结构的截面立体图。
图29是示出电动辅助行走车的变形例的概要图(通常行车时)。
图30是示出电动辅助行走车的变形例的概要图(前轮锁定时)。
图31的(a)、图31的(b)是分别示出本公开的第三实施方式所涉及的电动辅助行走车的概要图。
图32的(a)、图32的(b)是分别示出本公开的第三实施方式的变形例所涉及的电动辅助行走车的概要图。
图33是示出本公开的第四实施方式所涉及的电动辅助行走车的立体图。
具体实施方式
(第一实施方式)
首先,一边参照图1~图23一边说明本公开的第一实施方式。下面,对相同的结构要素标注相同的附图标记。它们的名称和功能相同。关于被标注了相同的附图标记的结构要素,不重复详细的说明。
图1和图2是示出作为电动车辆的一例的电动的行走车(以下称为电动辅助行走车。)的图。图1是示出第一实施方式所涉及的电动辅助行走车10的外观的一例的示意性立体图,图2是图1的电动辅助行走车10的侧视图。
(电动辅助行走车的结构)
如图1和图2所示,电动辅助行走车10具备:框架11、设置于框架11的一对前轮(车轮)12及一对后轮(车轮)13、以及与框架11连接的一对手柄(操作部)14。一对后轮13在车身的宽度方向上分离地配置有两个。同样地,一对前轮12在车身的宽度方向上分离地配置有两个。以后,主要以电动车辆为前轮及后轮各配置有两个的四轮车的情况为例来进行说明,但该结构只不过是一例。例如,电动车辆也可以是在车身设置一个前轮以及在车身的宽度方向上分离地配置有两个的一对(两个)后轮的三轮车。另外,也可以是,在宽度方向上分离地配置三个以上的前轮。将对于车身前方方向配置在最右侧的前轮称为右前轮,将对于车身前方方向配置在最左侧的前轮称为左前轮。即,前轮包括在车身的宽度方向上分离地配置的左前轮和右前轮。并且,也可以是,在宽度方向上分离地配置三个以上的后轮。将对于车身前方方向配置在最右侧的后轮称为右后轮,将对于车身前方方向配置在最左侧的后轮称为左后轮。即,后轮包括在车身的宽度方向上分离地配置的左后轮和右后轮。不特别限制电动车辆所具备的车轮的数量。因而,电动车辆也可以具备与上述不同的数量的车轮。
另外,在各手柄14分别设置有用于手动停止电动辅助行走车10的制动器单元15。以后,将框架11以及被框架11支承的构造物整体称为电动辅助行走车10的车身。
一对后轮13分别与用于对所对应的后轮13的活动进行辅助的马达20连结。此外,电动辅助行走车也可以具备与各个前轮12连结且用于辅助各个前轮12的活动的马达。既可以是各前轮12及各后轮13与马达连结,也可以是仅前轮12与马达连结。在框架11中分别装配有电池21以及控制部16。
另外,在控制部16设置有加速度传感器22a以及速度传感器22b。并且,在手柄14分别设置有倾斜探测传感器23以及把持传感器(操作力传感器)24。在框架11上且比一对手柄14靠下方的位置配置有用于探测有无使用者的脚部的脚部探测传感器25。
接着,进一步说明电动辅助行走车10的各结构要素。
框架11具有左右一对管道框架31以及将一对管道框架31彼此横向地连结的连结框架32。
在左右一对管道框架31各自的前端侧分别设置有一对前轮12。即,在电动辅助行走车10的车身的宽度方向上分离地配置有两个前轮。将一对前轮12中的、特别是处于方向R侧的前轮称为右前轮,将特别是处于方向L侧的前轮称为右前轮,来进行区别。一对前轮12能够分别在前后方向进行转动,并且被设置为能够绕铅垂轴进行回转。
另外,在左右一对管道框架31各自的后端侧分别设置有一对后轮13。将一对后轮13中的、特别是处于方向R侧的后轮称为右后轮,将特别是处于方向L侧的后轮称为右后轮,来进行区别。各后轮13被设置为能够在前后方向进行转动。其结果,能够容易地使电动辅助行走车10前进和后退,另外,能够容易地使电动辅助行走车10在左右方向移动或进行方向转换(转弯)。
另外,在各后轮13的外周设置有能够机械接触的制动片33。
制动片33经由引线35来与制动器单元15的制动杆34连接。因而,响应于使用者手动操作制动杆34,制动片33进行工作,来对后轮13进行制动。此外,关于机械的制动器的结构,并不限于此,能够使用任意结构。
并且,从左右一对管道框架31各自的后端侧起设置有防止跌倒构件36。防止跌倒构件36用于防止电动辅助行走车10的一对前轮12从地面悬浮而向后方跌倒。
在左右一对管道框架31的上端部分别设置有一对手柄14。一对手柄14分别被使用者的手把持。一对手柄14具有棒状构件41。在棒状构件41分别设置有握持部42。另外,在棒状构件41分别装配有制动杆34。此外,关于手柄14的结构,并不限于此,例如也可以是以连接左右一对管道框架31的方式设置在水平方向延伸的把手,在该把手设置有握持部42作为左右一对手柄14。
在本实施方式中,作为马达20,能够使用伺服马达、步进马达、AC马达、DC马达等任意的马达。另外,也可以使用与减速机一体地形成的马达20。该马达20对后轮13的动作进行辅助,并使后轮13向前进方向驱动以在行走中使用。另外在本实施方式中,马达20也发挥作为使前轮12相对于后轮13举起的驱动部的作用。即,马达20(驱动部)的驱动力产生举起前轮12的方向上的力矩。
并且,马达20也可以具有作为发电制动器的功能。在该情况下,马达20进一步发挥作为对后轮13进行制动的制动部的作用。在马达20对后轮13进行制动的情况下,使马达20作为发电机进行动作,通过马达20的阻力来施加制动。此外,在马达20发挥作为制动部的作用的情况下,也可以将马达20用作向相反方向驱动的反转制动器。对后轮13进行制动的制动部也可以是与马达20不同的结构要素。作为这样的制动部的例子,能够列举出电磁制动器、机械制动器等。
此外,关于左右的马达20,也可以通过控制部16来分别独立地控制左右的马达20。但是,在不需要使车身右侧的车轮和车身左侧的车轮的速度、加速度产生差的情况下,控制部16也可以左右一体地进行马达20的控制。
在本实施方式中,设为马达20分别与各后轮13(左后轮、右后轮)连结。但是,不排除同一马达与一对前轮12及一对后轮13都连结的结构。
控制部16控制电动辅助行走车10的驱动部(例如,上述的马达20)来进行台阶的越过控制。在此,台阶的越过控制是指用于使车身的前轮登上台阶之上的控制。判断部16a基于测量部的测量值来判断是否进行台阶的越过控制。例如,判断部16a基于测量部的测量值而在被估计为前轮12接触到台阶时判断为进行台阶的越过控制。作为测量部的例子,能够列举出后述的加速度传感器22a、81r~82l以及速度传感器22b。例如,测量部也可以测量向使车身减速的方向的加速度和车身的前后方向上的加速度中的至少任一方、以及车身的宽度方向上的加速度。由此,能够判别是左前轮和右前轮中的哪一个接触到台阶(单侧接触)、还是左前轮和右前轮均接触到台阶(双轮接触)。
例如,控制部16以及判断部16a设置于电池21的附近。控制部16以及判断部16a也可以具备能够执行各种命令或者程序的处理器。控制部16以及判断部16a例如执行电动辅助行走车10(电动车辆)的控制程序。另外,控制部16以及判断部16a例如也可以具备ASIC、FPGA、PLD等硬件电路。另外,电动辅助行走车10也可以具备存储部16b。控制部16以及判断部16a能够对存储部16b进行数据的读写。将控制部16以及判断部16a所执行的命令、程序或者命令、程序的执行中使用的数据、各种传感器(测量部)的测量值保存于存储部16b。也可以使用共通的硬件电路来安装控制部16以及判断部16a。另外,也可以使用共通的程序来安装控制部16以及判断部16a。另外,控制部16以及判断部16a也可以通过不同的硬件电路或者程序来安装。
由驱动部进行的台阶的越过控制也可以包含增加驱动部对车轮进行驱动的驱动力的控制。另外,台阶的越过控制也可以包含使车身转弯的控制。台阶的越过控制也可以包含一边使车身转弯一边增加驱动力的控制。控制部16以及判断部16a所执行的处理的细节在后文进行描述。
存储部16b提供能够保存各种数据的存储区域。存储部16b既可以设置在控制部16的附近,也可以是控制部16的一部分。存储部16b既可以是例如SRAM、DRAM等易失性存储器,也可以是NAND、MRAM、FRAM等非易失性存储器。另外也可以是硬盘、SSD等储存装置、外部的存储装置,并不特别限定设备的种类。另外,存储部16b也可以是多种存储器设备、储存设备的组合。
加速度传感器22a测量车身的前后方向上的加速度以及车身的宽度方向上的加速度。因此,车身的前后方向上的加速度是指图1的方向FB上的加速度。另外,车身的宽度方向上的加速度是指图1的方向L及方向R上的加速度。如后述那样,也可以是,加速度传感器22a除了车身的前后方向上的加速度之外,还对向使车身减速的方向的加速度进行测量。另外,加速度传感器22a也可以对向使车身减速的方向的加速度进行测量来替代测量车身的前后方向上的加速度。控制部16能够获取由加速度传感器22a测量出的加速度。作为测量对车身施加的加速度的传感器的例子,能够列举出MEMS传感器等,但是也可以使用任意种类的设备。
另外,也可以使用压电传感器、应变仪、操作力传感器(例如,握持传感器)等来测量对电动辅助行走车10或者电动辅助行走车10中的任一结构要素施加的力,从而求出加速度的估计值。
此外,加速度传感器也可以测量电动辅助行走车10的各车轮的转动方向上的加速度。例如,图1的加速度传感器81r~82l测量各车轮的转动方向上的加速度。具体地说,加速度传感器81r测量右前轮(方向R侧的前轮12)的加速度。加速度传感器81l测量右前轮(方向L侧的前轮12)的加速度。加速度传感器82r测量右后轮(方向R侧的后轮13)的加速度。加速度传感器82l测量右后轮(方向L侧的后轮13)的加速度。
加速度传感器81r~82l既可以直接测量各车轮的加速度,也可以测量马达20的加速度来提供车轮的加速度的估计值。另外,也可以测量车轮或者马达20的速度来计算加速度的估计值。另外,也可以测量车轮或者马达20的每单位时间的转速来计算转速的时间微分从而求出加速度的估计值。控制部16能够获取由加速度传感器81r~82l测量出的加速度。
速度传感器22b探测后轮13的转速或者速度,向控制部16发送该转速或者速度的信号。速度传感器22b例如能够设置在控制部16的附近。此外,速度传感器22b也可以内置于电动辅助行走车10的一对后轮13的内部。或者,速度传感器22b既可以仅内置于一对前轮12的内部,也可以内置于一对前轮12及一对后轮13全部。作为速度传感器的一例,能够列举出测量角速度的陀螺传感器。通过使用陀螺传感器,从而能够检测左右哪一个车轮碰撞到台阶等物体。
在马达20为无刷马达的情况下,速度传感器22b也可以使用马达20中内置的霍尔元件来计算车轮的转速或者速度、电动辅助行走车10的速度。
此外,在能够根据马达20的反电动势来进行速度检测的情况下,构成为根据该反电动势来计算车轮的转速或者速度、电动辅助行走车10的速度,在能够进行各后轮13或者各前轮12的角速度检测的情况下,能够构成为根据该角速度来计算车轮的转速或者速度、电动辅助行走车10的速度。
另外,速度传感器22b不限于内置于一对前轮12及一对后轮13,也可以被装配于框架11、一对手柄14等其它任意的构件。另外,也可以对由加速度传感器测量出的加速度进行积分来计算速度。此外,在使用GPS(全球定位系统)的情况下,也可以基于坐标的每单位时间的位移来计算速度。
也可以使用速度传感器22b和加速度传感器81r~82l来测量向使车身减速的方向的加速度(负的加速度)。首先,基于速度传感器22b的测量值来确定车身的行进方向。然后,确定由加速度传感器81r~82l测量出的加速度的方向。在所测量出的加速度的方向包含与车身的行进方向相反方向的分量的情况下,能够将该分量的加速度设为向使车身减速的方向的加速度。
倾斜探测传感器23探测电动辅助行走车10的倾斜、例如检测电动辅助行走车10是处于平坦面还是处于倾斜面等,并向判断部16a发送与该电动辅助行走车10的倾斜有关的信号。判断部16a也可以基于倾斜传感器23的测量值来估计电动辅助行走车10是否成功越过台阶。倾斜探测传感器23设置于电动辅助行走车10的上部、例如一对手柄14内部。倾斜探测传感器23也能够设置于电动辅助行走车10的下部,但是通过将其配置在上部,与配置在下部的情况相比,能够可靠地探测电动辅助行走车10的姿势。此外,作为倾斜探测传感器23,也可以使用陀螺传感器。另外,也可以使用加速度传感器来探测电动辅助行走车10的倾斜。
图3是示出脚部探测传感器25的一例的示意图。如图3所示,脚部探测传感器25设置于连结框架32。作为脚部探测传感器25的例子,能够列举出图像传感器、红外线传感器等。脚部探测传感器25能够通过测定距电动辅助行走车10的使用者的脚下部的距离来探测脚的动作。
具体地说,图3的脚部探测传感器25能够判定在范围AR内使用者的脚是想要活动、还是想要停止、分离、接近、朝向后方地坐在座面37。
图4和图5是用于说明把持传感器24的概要图。
在一对手柄14的握持部42分别设置有用于探测使用者用手推动或拉拽电动辅助行走车10的操作力(握持力)的把持传感器24。把持传感器24利用未图示的弹性构件(例如弹簧)来限制向相对于棒状构件41的、推动方向及拉拽方向中的任一方或者双方的移动,并且具备用于探测该移动的电位计。
如上所述,握持部42能够相对于棒状构件41在前后方向上进行移动,在沿图4和图5的箭头方向(前方向)移动的情况下,能够判定为由使用者推动电动辅助行走车10,在沿图4和图5的箭头的相反方向(后方向)移动的情况下,能够判定为由使用者拉拽电动辅助行走车10,在未沿任一个方向移动的情况下,能够判定为没有进行这些移动中的任一方。
其结果,能够识别使用者想要使电动辅助行走车10向前方移动、使用者想要使电动辅助行走车10向后方移动、或者使用者没有使电动辅助行走车10的状态改变的意图。
在左右一对手柄14分别设置有独立的把持传感器24。各把持传感器24分别独立地探测对手柄14的操作力(握持力),并且将探测到的操作力向控制部16和判断部16a中的至少任一方发送。因此,控制部16和判断部16a中的至少任一方能够识别由使用者仅把持一对手柄14中的一方(单手持有状态)、未把持一对手柄14双方(两手松开状态)、或者把持一对手柄14双方(两手持有状态)。
此外,如图5所示,也可以以能够探测对握持部42或者一对管道框架31施加的力矩的方式在握持部42设置应变传感器38(例如应变仪),并将该应变传感器38作为把持传感器24。在该情况下,握持部42相对于棒状构件41被固定,因此能够使结构更简单。另外,也可以向握持部42设置操纵杆、推动按钮或者检测使用者的手的接近传感器,并将该接近传感器作为把持传感器24。即,在“判断为使用者经由操作部想要使电动车辆前进(使用者进行电动车辆的前进操作)”情况中,除了包含通过由使用者用手、身体的一部分推动或拉拽操作部,来检测对操作部赋予的使用者的操作力的情况之外,还包含通过操纵杆、推动按钮等开关单元来检测使用者的操作的情况。
(电动辅助行走车的概要)
电动辅助行走车10(电动车辆)具备:驱动部,其对设置于车身的包括前轮和后轮中的至少任一方的车轮进行驱动;控制部16,其对所述驱动部进行使所述车轮越过台阶的台阶的越过控制;测量部,其测量对设置有车轮的车身施加的速度和加速度中的至少任一方;以及判断部16a,其基于测量部的测量值来判断是否进行台阶的越过控制。也可以是,在判断部16a基于测量部的测量值而判断为前轮接触到台阶时,电动辅助行走车10的控制部进行增加驱动部对车轮进行驱动的驱动力的控制或者使车身转弯的控制。由此,电动辅助行走车10能够探测向台阶的碰撞(接触),而且能够判定与台阶接触的方式。另外,电动辅助行走车10能够在适当的定时进行适当的内容的台阶越过动作。
此外,以下,以控制部16向驱动部发送基于台阶越过控制的算法的指令来使驱动部进行动作的情况为例子来进行说明。但是,各结构要素中的处理的分配也可以与此不同。例如,也可以是,控制部16向驱动部发送台阶越过控制的开始指令,驱动部开始基于自身中设定的台阶越过控制算法的动作。
判断部16a基于测量部的(包含速度和加速度中的至少任一方的)测量值,来区别电动辅助行走车与台阶的接触、由使用者进行的停止操作、与台阶以外的物体的碰撞。另外,判断部16a能够基于该测量值来估计电动辅助行走车相对于台阶的行进方向(电动辅助行走车相对于台阶的角度)。
如果检测到与台阶的接触,则控制部16进行与估计出的电动辅助行走车相对于台阶的行进方向(角度)相应的台阶的越过动作。作为台阶的越过动作的例子,能够列举出车身的转弯、由连结于前轮的驱动部进行的辅助、车身的转弯与由连结于前轮的驱动部进行的辅助的组合。
此外,电动辅助行走车(电动车辆)的控制方法也可以包括以下步骤:测量对车身施加的速度和加速度中的至少任一方;基于速度和加速度中的至少任一方来判定有无台阶;在判定为有台阶的情况下执行台阶的越过动作。
电动辅助行走车(电动车辆)的控制也可以通过搭载于电动辅助行走车的程序、处理器、电子电路等硬件或者它们的组合来实现。另外,电动辅助行走车也可以接收来自外部的无线信号,并基于从外部的控制装置(信息处理装置)发送的控制信号而被控制。
(本实施方式的作用)
接着,说明具备上述的结构的本实施方式的作用。图6是用于说明控制部16的动作的一例的流程图。
首先,控制部16判断在使用者对电动辅助行走车10进行前进操作的期间前轮12是否碰撞到台阶。在该情况下,首先,控制部16基于从分别设置于左右一对手柄14的把持传感器24探测的信号,来判断左右一对手柄14是否被固定以上的力按压了固定时间以上(例如1秒以上)(步骤S101)。
此外,也可以是,控制部16除了使用操作力的值(绝对值)之外还同时使用操作力的变化的值(绝对值),由此判定手柄14是否被使用者的手以固定以上的力按压。在该情况下,能够更高精度地判定手柄14是否被使用者的手以固定以上的力按压。例如,也可以是,在操作力的绝对值为规定值以下并且操作力的变化(操作力的微分值)的绝对值为规定值以下的情况下,判定为该手柄14未被使用者的手以固定以上的力按压,在除此以外的情况下,判定为该手柄14被使用者的手以固定以上的力按压。另外,也可以是,在操作力和操作力的变化处于与由各规定值划分的长方形的数值范围内接的椭圆区域内的情况下,判定为该手柄14未被使用者的手把持。在该情况下,能够以更高精度进行判定。
在此,在一对手柄14未被固定以上的力按压的情况下(步骤S101:“否”),判断为使用者未想要使电动辅助行走车10前进,不进行以下的控制。在该情况下,控制部16也可以通过将马达20用作发电制动器,来对后轮13进行制动。
另一方面,在一对手柄14被固定以上的力按压了固定时间以上的情况下(步骤S101:“是”),控制部16判断为使用者想要使电动辅助行走车10前进。接下来控制部16判定前轮12是否与台阶碰撞(步骤S102)。
具体地说,速度传感器22b探测后轮13的转速或者速度,向控制部16发送该转速或者速度的信号。控制部16基于该发送的信号来计算后轮13的速度,并将该速度与预先决定的规定的速度(阈值)V进行比较。
假设在后轮13正在被驱动的情况、即后轮13以高于规定的速度V的速度进行活动的情况下(步骤S102:“是”),控制部16判断为电动辅助行走车10以通常的状态进行行走,并利用马达20持续辅助后轮13的活动。
另一方面,在后轮13的转动停止而速度为0(电动辅助行走车10的移动停止)的情况、或者以预先决定的规定的速度V以下活动(电动辅助行走车10的行走速度为固定以下)的情况下(步骤S102:“否”),控制部16基于测量部的(包含速度和加速度中的至少任一方的)测量值来估计是电动辅助行走车与台阶碰撞、还是发生了由使用者进行的停止操作、与台阶以外的物体的碰撞等其它事件中的任一方。
另外,控制部16在判定为电动辅助行走车碰撞到台阶的情况下(步骤S103:“是”),控制部16基于测量部的(包含速度和加速度中的至少任一方的)测量值来估计电动辅助行走车相对于台阶的行进方向(角度)(步骤S104)。然后,进行与所估计出的电动辅助行走车相对于台阶的行进方向(角度)相应的台阶的越过动作(步骤S105)。作为台阶的越过动作的例子,能够列举出车身的转弯、由连结于前轮的驱动部进行的辅助、车身的转弯与由连结于前轮的驱动部进行的辅助的组合。台阶的越过动作也可以包含使前轮抬起的动作。
此外,对于控制部16检测与台阶的碰撞的处理(步骤S103)、估计电动辅助行走车相对于台阶的行进方向的处理(步骤S104)、以及各种台阶的越过动作(步骤S105)的详情在后文进行描述。如后述那样,在步骤S103~步骤S105中,针对左右的结构要素的控制处理的差异、检测出的速度及加速度的方向是重要的。对于与左右的结构要素有关的控制处理的差异在后文进行描述,以下首先描述将前轮抬起的动作的例子。
在进行将前轮抬起的动作的情况下,控制部16控制马达20(驱动部),与例如按压手柄14的力(对手柄14施加的操作力)相应地使马达20的驱动力增减。由于前轮12与台阶碰撞而电动辅助行走车10无法前进,因此后轮13的前进方向上的驱动力使电动辅助行走车10产生使前轮12抬起的方向上的力矩。因此,能够使前轮12相对于后轮13抬起。
控制部16在判断为使用者想要使电动辅助行走车10前进(意图前进操作)时,如上所述通过使用手柄14被按压的时间和力来准确地判断使用者想要前进,从而能够避免与使用者的意图不同的判断。由此,使用者能够更安心地使用电动辅助行走车10。在该判断时,也能够仅使用手柄14被按压的力。例如,在手柄14被固定以上的力按压的情况下,判断为使用者想要使电动辅助行走车10前进。在该情况下,控制部16能够快速判断使用者想要前进,使用者能够以不大幅度降低行走速度的方式抬起前轮12。
此外,控制部16在判断前轮12是否与台阶碰撞时,除了后轮13的速度之外还可以同时使用后轮13的加速度。由此,能够更高精度地判定电动辅助行走车10是否在进行移动。例如,也可以是,在后轮13的速度为规定的速度V以下、且后轮13的加速度为规定的加速度以下的情况下,判定为电动辅助行走车10碰撞到台阶,在除此以外的情况下,判定为电动辅助行走车10未与台阶碰撞。
或者,也可以是,在后轮13的速度为接近0的规定的速度V以下、且电动辅助行走车10的减速度(负的加速度)即后轮13的减速度(负的加速度)为规定的阈值(阈值)以上的情况下,控制部16不管使用者想要使电动辅助行走车10前进(意图前进操作),都判定为前轮12碰撞到台阶。即,在后轮13的速度为接近0的值并且后轮13的减速度为固定值以上的情况下,认为前轮12碰撞到台阶而紧急停止了。在该情况下,即使不必使用来自把持传感器24的信息,也能够判断为前轮12碰撞到台阶。因此,也可以是,电动辅助行走车10不必具备把持传感器24。此外,减速度如上所述是负的加速度,在电动辅助行走车10正在减速的情况下该减速度的值为正,在电动辅助行走车10正在加速的情况下该减速度的值为负。
另外,也可以是,在一对手柄14被固定以上的力按压固定时间以上、且后轮13的减速度(负的加速度)为规定的阈值以上的情况下,尽管使用者想要使电动辅助行走车10前进(意图前进操作),但是控制部16判定为前轮12碰撞到台阶。由此,能够更高精度地判定电动辅助行走车10是否正在移动。此外,如上所述,能够基于来自把持传感器24的探测信号来判断一对手柄14是否被固定以上的力按压了固定时间以上。此外,也可以使用向车身的后方方向的加速度替代负的加速度来判定台阶12与台阶的碰撞。
在台阶比较低的情况下,利用上述的后轮13的驱动力来使前轮12抬起,前轮12能够登上台阶。在此,在前轮12未抬起的情况下,接下来使用者减弱按压手柄14的力。此时,在电动辅助行走车10中按下前轮12的方向上的力矩(与前轮12抬起对抗的力矩)减少。控制部16将后轮13的前进方向上的驱动力维持固定以上并使后轮13向前方驱动(参照图7)。由此,抬起前轮12的方向上的力矩增大,作用为抬起前轮12。
在即使如此前轮12也未抬起的情况下,接下来,使用者也进行将手柄14向后方拉拽的操作。此时,将手柄14向后方拉拽的力产生以后轮13为轴将前轮12抬起的方向上的力矩,与后轮13的驱动力一起进行作用,以使抬起前轮12。这样,除了来自马达20的操作力之外,还通过使用者操作操作手柄14来使电动辅助行走车10产生抬起前轮12的方向上的力矩(参照图2的箭头M),从而能够更可靠地抬起前轮12(使电动辅助行走车10后轮支撑(wheelie))。此外,也可以是,使用者踩固定在后轮13的转动轴的后方的未图示的踏板来替代使用者将手柄14向后方拉拽的操作,由此抬起前轮12。
此时,伴随前轮12相对于后轮13抬起,在前轮12与台阶之间产生间隙。由于后轮13向前进方向驱动,因此电动辅助行走车10前进以填充该间隙,能够使前轮12与台阶的上段接触。由此,前轮12能够顺利地登上台阶之上。
控制部16在使前轮12抬起之后,使后轮13的前进方向上的驱动力以第一减少量逐渐降低。在该情况下,在前轮12越过台阶之后后轮13不过度加速,因此,前轮12能够顺利地越过台阶。开始驱动力的降低的定时能够设定为不满足控制部16控制驱动部以使前轮12抬起时的规定的条件(使用者意图电动辅助行走车10的前进操作时判定为前轮12与台阶碰撞的条件)时。例如,也可以设为在手柄14未被固定以上的力按压时(使用者减弱按压手柄14的力时或者将手柄14向后方拉拽时)、或后轮13向前进方向以固定速度以上转动时。
之后,使用者以使前轮12相对于后轮13抬起的状态按压一对手柄14。由此,使电动辅助行走车10前进,前轮12能够越过台阶。
这样,通过使用者进行将手柄14向后方拉拽的操作,能够产生绕后轮13的力矩,因此,能够以与马达20的驱动力匹配的方式容易地抬起前轮12。因此,使用者不抬起电动辅助行走车10,前轮12就能够容易地越过台阶。此外,如上所述,在台阶低的情况等下,也可以不伴随由使用者进行的将手柄14向后方拉拽的操作,仅通过马达20(驱动部)的驱动力的增加来抬起前轮12。
当在前轮12越过台阶之后还增加马达20的输出的状态时,电动辅助行走车10有可能过度加速。因此,也可以是,在将前轮12相对于后轮13抬起之后,满足以下的条件(1)~(3)中的任一者的情况下,控制部16判断为前轮12越过了台阶,电动辅助行走车10不进一步加速。在该情况下,控制部16控制马达20来进一步加大马达20的后轮13的驱动力的减少量。具体地说,将后轮13的向前进方向的驱动力的减少量设为大于上述的第一减少量的第二减少量(参照图7的双点划线)。或者,控制部16也可以使后轮13的前进方向上的驱动力为零。
(1)由倾斜探测传感器23探测到的电动辅助行走车10的倾斜角度为固定的值以上的情况(是因为当前轮12登上台阶时电动辅助行走车10倾斜)。
(2)由速度传感器22b探测到的后轮13的转动速度满足了规定的条件的情况。例如,后轮13的转动速度为固定值以上的情况(是因为在前轮12越过台阶的瞬间后轮13的速度上升。另外,是因为在后轮13空转的情况下后轮13的转动速度上升)。
(3)由脚部探测传感器25探测到的使用者与电动辅助行走车10之间的距离为固定的值以上的情况(是因为在前轮12越过台阶的瞬间后轮13的速度上升,使电动辅助行走车10远离使用者)。
此外,在判断为使用者想要使电动车辆前进(意图前进操作)时,不限于上述方法,例如,也可以考虑从(i)前轮12或者后轮13的转动量、(ii)来自设置于电动辅助行走车10的应变仪的输出、(iii)前轮12或者后轮13的轮胎的气压、(iv)电动辅助行走车10的前后方向上的加速度、(v)来自设置于手柄14等的压力传感器的输出、(vi)来自设置于手柄14等的肌电传感器的输出、以及(vii)使用者的脚的活动等中选择出的一个或多个要素。
(台阶检测)
接着,说明检测电动辅助行走车(电动车辆)与台阶的碰撞的处理的详情。
作为由以往的电动辅助行走车(电动车辆)进行的台阶的检测的例子,能够列举出基于加速度的台阶检测。但是,电动辅助行走车检测加速度不限于与台阶碰撞时。例如,在使用者进行了电动辅助行走车的停止操作的情况下也检测到加速度,在电动辅助行走车与台阶以外的物体碰撞时也检测到加速度。为了提高台阶的检测精度,需要判别在电动辅助行走车碰撞到台阶时检测到的加速度与使用者进行了电动辅助行走车的停止操作时检测到的加速度之间的差异。同样地,必须也考虑因电动辅助行走车碰撞的物体的种类而引起的所检测到的加速度的差异。
图8是示出了在与台阶的碰撞、停止操作的各情形下检测到的加速度及阈值的例子的曲线图。图8的曲线图的横轴表示电动辅助行走车10(电动车辆)的车身的速度。另外,图8的曲线图的纵轴表示负的加速度。负的加速度是指使电动辅助行走车10(电动车辆)减速的方向上的加速度(减速度)。
在图8中绘制了在与台阶碰撞时以及由使用者进行的停止操作时测量出的速度与负的加速度之间的关系。当参照图8时,在与台阶碰撞时,因对电动辅助行走车10施加冲击而检测到比由使用者进行的停止操作时大的加速度。即,测量部只要测量向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方即可。在该情况下,也可以是,在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方大于阈值(第七阈值)时,判断部16a估计为前轮12接触到台阶。另外,也可以是,在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为阈值以下时,判断部16a不估计为前轮12接触到台阶。由此,能够判定前轮12与台阶的接触。
例如,在进行台阶越过控制之前(即,判断为前轮12接触到台阶时的时候)的固定期间中检测到小于阈值的加速度的情况下,由于阈值的设定值过大所以尽管前轮12实际上接触到台阶,也有可能不会判断为接触到台阶。因此,也可以是,在控制部16使前轮12越过台阶之后,判断部16a在控制部16进行前轮12的台阶越过控制以前的规定期间内检测到小于阈值(第七阈值)的加速度的情况下,使阈值(第七阈值)变更为更小的值。另外,在进行台阶越过控制之前(即、判断为前轮12接触到台阶时的时候)检测到的加速度大于阈值且检测到的加速度与阈值之差大于规定值的情况下,阈值的设定值有可能过小。因此,也可以是,在控制部16使前轮12越过台阶时测量部所测量到的加速度大于阈值(第七阈值)且该加速度与阈值(第七阈值)之差大于规定值的情况下,判断部16a使阈值(第七阈值)变更为更大的值。这样,在前轮12成功越过台阶时,调整在前轮12与台阶的接触的判定中使用的阈值,由此能够改善台阶接触检测的精度。
如上所述,电动辅助行走车10也可以具备存储测量部的测量值的存储部16b。在该情况下,判断部16a也可以基于存储部16b中存储的测量值来调整阈值(第七阈值)。通过使用存储部16b中存储的过去多次的台阶越过控制时的测量值,从而能够更高精度地调整阈值。另外,不限于第七阈值,也可以基于存储部16b中存储的测量值来调整本说明书中记载的其它阈值。
当参照图8时,可知:随着在与台阶碰撞时、由使用者进行的停止操作时,电动辅助行走车10的速度都变大,存在检测到大的加速度的倾向。此外,当在曲线图中绘制各情形下测量出的速度以及向车身的后方方向的加速度时,与图8相同的关系成立。
并不总是使用相同的阈值来检测与台阶的碰撞,能够根据电动辅助行走车10的速度而使所使用的阈值增大。然后,电动辅助行走车10能够在测量到的加速度大于阈值时执行台阶的越过动作。也可以是,随着由测量部测量到的电动辅助行走车10(电动车辆)的车身的速度变大,控制部16将作为执行台阶的越过动作的条件的、加速度的绝对值的阈值(第六阈值)设定得大。图8的虚线示出了这样的阈值(第四阈值)的一例。由此,能够改善台阶的检测精度。
此外,作为阈值的函数的例子,能够列举出T=Σ(αnv^βn)+γ,但是也可以是与它们不同的形式。在此,v为车身的速度、αn和βn为大于0的系数(正实数)。γ为任意的系数。γ既可以是正实数,也可以是0或者负实数。此外,在构造、所使用的材料因电动辅助行走车10的侧面而不同的情况下,也可以使用根据方向而不同的阈值或者阈值的函数。例如,在前轮和后轮的材料、构造、大小中的至少任一方不同的情况下,也可以在前轮与台阶的碰撞的检测以及后轮与台阶的碰撞中使用不同的系数。
图9是示出了电动辅助行走车10与柔软的物体碰撞时检测到的加速度以及在碰撞到台阶时检测到的加速度的例子的曲线图。在此,柔软的物体是指与台阶相比回跳硬度小的物体。作为这种物体的例子,能够列举出人体。图9的曲线图的横轴表示电动辅助行走车10(电动车辆)的车身的速度。另外,图9的曲线图的纵轴表示负的加速度(减速度)。
在图9中绘制了电动辅助行走车10与柔软的物体碰撞时及电动辅助行走车10碰撞到台阶时测量出的速度与负的加速度之间的关系。当参照图9时,可知在电动辅助行走车10的速度为相同程度的情况下,电动辅助行走车10碰撞到台阶时与电动辅助行走车10碰撞到柔软的物体时相比被检测到更大的加速度。根据其结果,可知能够根据在碰撞时检测的加速度的大小来估计电动辅助行走车10所碰撞到的物体的回跳硬度的大小。例如,通过将检测到的加速度与阈值进行比较,从而能够对与台阶的碰撞同与人体的碰撞进行区别。在图9的曲线图中,示出了负的加速度(向使车身减速的方向的加速度),但是即使使用向车身的后方方向的加速度替代负的加速度来制作曲线图,同样的关系也成立。
此外,在图9的例子中,也存在随着电动辅助行走车10的速度变大而检测到的加速度变大的倾向。
电动辅助行走车10的判断部16a通过将测量到的加速度与阈值进行比较,从而能够判断是否进行台阶的越过动作。例如,也可以是,在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为规定的阈值以下时,判断部16a估计为前轮12接触到台阶以外的物体。也可以是,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为阈值(第四阈值)以下时,判断部16a不使驱动部进行台阶的越过动作。由此,在电动辅助行走车10因使用者而停止、或者电动辅助行走车10有可能接触到人的情况下,难以执行台阶越过动作,能够提高电动辅助行走车10的安全性。
也可以是,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度或者向车身的后方方向的加速度大于阈值(第四阈值)时,判断部16a使驱动部进行台阶的越过动作。一般地说,在向使电动车辆减速的方向的加速度(减速度)或者向车身的后方方向的加速度大于阈值时,能够估计为电动车辆接触到台阶。例如,也可以是,测量部测量向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方,在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方大于规定的阈值(第五阈值)时,判断部16a估计为前轮12接触到台阶。由此,能够仅在判断部16a判断为向台阶碰撞的情况下使驱动部执行台阶的越过动作。
另外,电动辅助行走车(电动车辆)的控制方法也可以包括以下步骤:测量对车身施加的速度和加速度中的至少任一方;以及基于速度和加速度中的至少任一方来判断是否进行台阶的越过控制。另外,电动辅助行走车(电动车辆)的控制方法也可以还包含以下步骤:基于速度和加速度中的至少任一方来判断前轮12是否接触到台阶;以及在被估计为前轮12接触到台阶时进行台阶的越过控制。此外,也可以是,台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使车身转弯的控制、以及一边使车身转弯一边增加驱动力的控制中的至少任一方。
另外,电动辅助行走车(电动车辆)的控制程序也可以包括以下步骤:测量对车身施加的速度和加速度中的至少任一方;基于速度和加速度中的至少任一方来判断前轮12是否接触到台阶;以及在被估计为前轮12接触到台阶时进行台阶的越过控制。此外,也可以是,台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使车身转弯的控制、以及一边使车身转弯一边增加驱动力的控制中的至少任一方。控制程序可以由控制部16或者判断部16a执行,也可以由外部的控制器、服务器等执行。
此外,为了求出使电动辅助行走车10(电动车辆)减速的方向上的加速度、即负的加速度(减速度),需要确定电动辅助行走车10的行进方向。电动辅助行走车10的行进方向能够基于例如速度传感器22b的测量值来进行估计。
此外,在判定电动辅助行走车10是否进行台阶的越过中使用的加速度不限于负的加速度(减速度)。例如,也可以是,判断部16a基于由测量部测量到的、向电动辅助行走车10(电动车辆)的车身的后方方向施加的加速度,来判定是否使控制部16执行台阶的越过控制。也可以是,在基于电动辅助行走车10的向车身的后方方向的加速度来进行判定的情况下,不确定车身的行进方向。
例如,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为第五阈值以下时,判断部16a也可以不使控制部16进行台阶的越过控制。然后,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方大于第五阈值时,判断部16a也可以使控制部16进行台阶的越过控制。
另外,电动辅助行走车10(电动车辆)的判断部16a也可以基于由测量部检测到的振动,来判断是否使控制部16进行台阶的越过控制。
也可以是,在由测量部测量到的电动辅助行走车10(电动车辆)的车身的振动的、频谱的代表值为第六阈值以下时,判断部16a不使控制部16进行台阶的越过控制。另外,也可以是,在由测量部测量到的电动辅助行走车10(电动车辆)的车身的振动的、频谱的代表值大于第六阈值时,判断部16a使控制部16进行台阶的越过控制。即,也可以是,测量部测量车身的振动的频谱,在测量部所测量到的(频谱的)值的代表值大于阈值(第八阈值)时,判断部16a估计为前轮12接触到台阶。另外,也可以是,在测量部所测量到的(频谱的)值的代表值为阈值(第八阈值)以下时,判断部16a不估计为前轮12接触到台阶。此外,代表值的具体例在后文进行描述。
一般地说,可知物体彼此之间的碰撞时产生的振动依赖于物体的回跳硬度。在物体的回跳硬度大的情况下,在碰撞时产生的振动的频率变大。因而,在检测到的振动的频率大于阈值的情况下。能够估计为电动辅助行走车10(电动车辆)碰撞到台阶。另外,在检测到的振动的频率为阈值以下的情况下,能够估计为电动辅助行走车10与台阶以外的物体碰撞、或使用者进行了电动辅助行走车10的停止操作。作为与台阶以外的物体的碰撞(或者接触)的例子,能够列举出电动辅助行走车10(电动车辆)的任一部位与其他人的脚或者行李接触的情况等。但是,不特别限制物体的种类。
频谱的代表值既可以是频谱中的最大的峰值的频率,也可以是频谱中的多个峰值的权重平均值。另外,既可以是频谱中的中间频率,也可以是平均频率。即,不特别限制代表值的计算方法。
在电动辅助行走车10的前方侧碰撞到台阶等物体的情况下,向车身的前后方向施加力。因此,由测量部测量的电动辅助行走车10(电动车辆)的车身的振动也可以包含车身的前后方向上的振动。此外,不特别限定电动辅助行走车10的测量部所测量的电动辅助行走车10(电动车辆)的车身的振动的方向。
电动辅助行走车10(电动车辆)也可以具备缓冲构件,该缓冲构件覆盖车身的前方或者车身的宽度方向上的两个侧面中的至少一部分。当电动辅助行走车10(电动车辆)的框架与胫骨等与骨接近的比较硬的人体的部位碰撞时,产生较大的减速度,判断部16a有可能误检测台阶。因此,通过在电动辅助行走车10(电动车辆)的前方或者宽度方向上的两个侧面中的至少一部分设置第一缓冲构件,从而能够防止在与人体碰撞时检测到较大的减速度。
图10是示出了在车身前方设置有缓冲材料的结构例的概要图。图10的电动辅助行走车10的管道框架31向车身的前方突出。而且,在管道框架31向前方突出的部分的前端设置有缓冲构件81。此外,作为缓冲构件81的例子,存在橡胶、聚氨酯泡沫、发泡的树脂、各种弹簧等,但是不特别限定缓冲构件的种类。在此,图10示出了电动辅助行走车10的左侧的管道框架31以及缓冲构件81的结构。电动辅助行走车10的右侧的管道框架31也与左侧同样地,在向前方突出的部分的前端也可以具备缓冲构件81。此外,图10中设置的结构只不过是一例。因而,缓冲构件可以一体地形成,也可以以与图10不同的方法安装于电动辅助行走车。另外,缓冲构件也可以设置于电动辅助行走车的宽度方向上的两个侧面中的至少一部分。
以往的行走辅助装置的台阶检测、台阶越过功能以行走辅助装置从相对于台阶大致正面(大致垂直方向)进入为前提。因而,在行走辅助装置以相对于台阶具有角度的方式进入、右前轮和左前轮具有时间差地接触到台阶的情况下,难以越过台阶。以下,说明行走辅助装置以相对于台阶具有角度的方式进入的情况下的台阶检测。
图11是从上方观察电动辅助行走车10(电动车辆)时的俯视图。在图11的俯视图中,电动辅助行走车10沿台阶80的虚线P的方向(图11的左上方向)移动。即,虚线P表示电动辅助行走车10的行进方向。当参照图11时,可知由于在虚线P的前方存在台阶80,电动辅助行走车10向存在台阶80的方向进入。此外,在电动辅助行走车10为转弯中的情况下,电动辅助行走车10的行进方向根据时刻发生变动。因而,虚线P可以说表示某个时刻下的电动辅助行走车10的速度矢量的方向。
图11的虚线S是台阶80的垂线,表示台阶80的正面(垂直)方向。另一方面,表示电动辅助行走车10的行进方向的虚线P相对于台阶80的垂线S呈角度θ。这样,有时电动辅助行走车10并非从台阶的垂直方向进入,而是以相对于垂直方向具有角度的方式进入。此外,也可以是,台阶80不必如图11的例子那样是直线状。例如,在台阶为曲面状的情况下,能够将台阶的切线的垂线设为垂线。
如图11那样,在电动辅助行走车10以相对于台阶80具有角度的方式进入的情况下,右前轮和左前轮中的任一个前轮首先与台阶80碰撞。可知在图11的例子中,电动辅助行走车10的右前轮与台阶80碰撞。箭头a是表示因右前轮与台阶80的碰撞而向车身施加的加速度的矢量。此外,电动辅助行走车10的箭头l表示车身的前后方向,箭头w表示车身的宽度方向。当参照图11时,可知加速度的矢量a具有车身的前后方向l的分量以及车身的宽度方向w的分量。
接着,说明由电动辅助行走车10检测到的车身的前后方向上的加速度以及车身的宽度方向上的加速度的例子。
图12是示出了根据碰撞到的前轮而检测的加速度的差异的曲线图。图12的横轴表示车身的前后方向上的加速度。另一方面,图12的纵轴表示车身的宽度方向上的加速度。在图12的例子中,关于车身的前后方向上的加速度,将车身的前方方向上的加速度设为正值,将车身的前方方向上的加速度设为负值。另外,关于车身的宽度方向上的加速度,将右方向的加速度设为正值,将左方向的加速度设为负值。在此所示的加速度的方向与正值、负值的对应关系是例子,也可以使用与其不同的对应关系。
图12的曲线图示出了在任一个前轮与台阶碰撞的情况下不仅产生车身的前后方向上的加速度还产生车身的宽度方向上的加速度。在右前轮碰撞到台阶的情况下检测到左方向的加速度。另一方面,在左前轮碰撞到台阶的情况下检测到右方向的加速度。当参照图12的曲线图中的、双方前轮与台阶碰撞的情况下测量到的加速度时,可知与任一个前轮碰撞到台阶的情况相比存在车身的后方方向上的加速度变大的倾向。另外,在双方前轮均与台阶碰撞的情况下,也检测到宽度方向上的加速度。此外,在图12的曲线图中,在双方前轮均与台阶碰撞的情况下检测到的宽度方向上的加速度偏向右的加速度被推测为是因为在进行测量时左前轮比右前轮先碰撞到台阶的情况较多。
根据图12的结果,可知能够基于检测到的宽度方向上的加速度的方向来估计右前轮和左前轮中的哪一个碰撞到台阶。即,由测量部测量的加速度也可以包含电动辅助行走车10(电动车辆)的至少向使车身减速的方向的加速度和车身的前后方向上的加速度中的任一方、以及电动辅助行走车10(电动车辆)的车身的宽度方向上的加速度。然后,判断部16a能够基于电动辅助行走车10(电动车辆)的车身的宽度方向上的加速度来估计左右哪一个车轮接触到台阶。即,判断部16a也可以基于测量部的测量值来估计被估计为接触到台阶的前轮是哪一者。
另外,判断部16a能够基于测量部的测量值来判别左前轮和右前轮中的哪一者接触到台阶(单侧接触)、还是左前轮及右前轮均接触到台阶(双轮接触)。由此,能够与接触台阶的方式(单侧接触或者双轮接触)相应地进行包含台阶越过动作的车身的控制。例如,判断部16a能够基于车身宽度方向上的加速度以及车身前后方向上的加速度来进行单侧接触和双轮接触的判别。例如,判断部16a能够在车身宽度方向上的加速度大于阈值thw时判定为单侧接触。另外,判断部16a能够在车身前后方向上的加速度大于阈值thfb时判定为双轮接触。并且,也可以在车身宽度方向上的加速度小于阈值thw、而且车身前后方向上的加速度大于阈值thfb时判定为双轮接触。
测量部也可以测定向使车身减速的方向的加速度、向车身的后方方向的加速度以及车身的宽度方向上的加速度中的至少任一方。在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方成为规定的阈值(第一阈值)以上时,判断部16a估计左前轮和右前轮中的哪一者接触到台阶。另外,也可以是,在测量部所测量到的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方成为规定的阈值(第一阈值)以上之后在规定期间内测量到的车身的宽度方向上的加速度的绝对值的最大值成为规定的阈值(第二阈值)以上时,判断部16a估计左前轮和右前轮中的哪一者接触到台阶。由此,能够区别判定左前轮或者右前轮与台阶接触。
此外,判定中使用的车身的宽度方向上的加速度既可以是在与向使车身减速的方向的加速度或者向车身的后方方向的加速度成为阈值(第一阈值)以上时相同的时刻测量出的,也可以是在不同的时刻测量出的。控制部16能够执行与判定的结果相应的台阶的越过动作。
电动辅助行走车10(电动车辆)的控制方法也可以包括以下步骤:至少测量作为向使车身减速的方向的加速度和车身的前后方向上的加速度中的任一方的第一加速度、以及车身的宽度方向上的第二加速度;基于测量到的第一加速度和第二加速度来估计左右哪一个车轮接触到台阶;以及执行与被估计为接触到台阶的车轮相应的台阶的越过动作。
另外,电动辅助行走车10(电动车辆)的控制程序也可以包括以下步骤:至少测量作为向使车身减速的方向的加速度和车身的前后方向上的加速度中的任一方的第一加速度、以及车身的宽度方向上的第二加速度;基于测量到的第一加速度和第二加速度来估计左右哪一个车轮接触到台阶;以及执行与被估计为接触到台阶的车轮相应的台阶的越过动作。
此外,在此说明了由加速度传感器22a测量多个方向的加速度来估计接触到台阶的车轮的方法,但是并不妨碍使用由速度传感器22b测量出的速度的值。例如,在规定期间内的速度的减少量成为阈值以上的情况下,能够估计为存在与台阶的接触。另外,既可以使用速度传感器22b来测量多个方向的速度,也可以进行速度的测量和加速度的测量双方。即,判断部16a也可以基于速度和加速度中的至少任一方来估计接触到台阶的前轮。接触到台阶的前轮存在仅为左前轮、仅为右前轮、或者为左前轮和右前轮双方的情况。
图13的曲线图示出了电动辅助行走车10一边转弯一边碰撞到台阶的情况下测量的加速度、以及电动辅助行走车10一边直行一边碰撞到台阶的情况下测量的加速度。图13的曲线图的纵轴表示车身的宽度方向上的加速度。另一方面,图13的曲线图的横轴表示车身的前后方向上的加速度。
当参照图13的曲线图时,当仅参照车身的前后方向上的加速度以及车身的宽度方向上的加速度时,电动辅助行走车10一边直行一边碰撞到台阶或者电动辅助行走车10一边转弯一边碰撞到台阶不必是明确的。
因此,能够将与车轮的转动有关的信息一起使用来判别前者的情况和后者的情况。例如,在速度传感器22b测量出后轮的转动速度的情况下,能够将向以时间对转动速度进行微分而得到的值附加负的符号得到的值设为后轮的减速度(负的加速度)。若在右前轮碰撞到台阶的情况下,则右后轮的减速度存在比左后轮的减速度大的倾向。因此,能够不仅使用车身的前后方向上的加速度以及车身的宽度方向上的加速度还使用右后轮的减速度以及左后轮的减速度,来估计电动辅助行走车10一边直行一边碰撞到台阶或者电动辅助行走车10一边转弯一边碰撞到台阶。
例如,也可以是,在后轮13包括在车身的宽度方向上分离地配置的左后轮和右后轮的情况下,测量部至少计算左后轮的转动方向上的加速度与右后轮的转动方向上的加速度的平均值、或者左后轮的转动方向上的加速度与右后轮的转动方向上的加速度之差。另外,也可以是,在前轮12包括在车身的宽度方向上分离地配置的左后轮和右后轮的情况下,测量部至少计算左前轮的转动方向上的加速度与右前轮的转动方向上的加速度的平均值、或者左前轮的转动方向上的加速度与右前轮的转动方向上的加速度之差。由此,能够区别地判定右前轮和左前轮中的哪一者接触到台阶。
测量部也可以计算左前轮的转动方向上的加速度与右前轮的转动方向上的加速度的平均值、或者左后轮的转动方向上的加速度与右后轮的转动方向上的加速度的平均值,来作为第一加速度。另外,测量部也可以计算左前轮的转动方向上的加速度与右前轮的转动方向上的加速度之差或者左后轮的转动方向上的加速度与右后轮的转动方向上的加速度之差来作为第二加速度。在该情况下,在第二加速度大于阈值的情况下,也可以估计为电动辅助行走车10(电动车辆)进行转弯。根据该方法,也能够区别地判定右前轮和左前轮中的哪一者接触到台阶。
在此,也可以根据第一加速度的值来使用不同的值的阈值。例如,能够随着第一加速度变大而使用大的阈值。作为阈值的函数的例子,能够列举出T=Σ(αna^βn)+γ,但是也可以使用与这些不同的定义的阈值。在此,a为车身的加速度(第一加速度),αn和βn为大于0的系数(正实数)。γ为任意的系数。γ可以为正实数,也可以为0或者负实数。
图14的曲线图示出了在电动辅助行走车10与台阶碰撞时测量出的加速度的时间波形的例子。图14的横轴为时刻,纵轴表示检测的加速度。在图14的曲线图中,示出了电动辅助行走车10的多个动作模式下的加速度的测量值。在图14中,示出了电动辅助行走车10从台阶的正面碰撞的情况下测量出的波形90、电动辅助行走车10的各前轮错开时间与台阶碰撞的情况下测量出的波形91、由使用者进行了电动辅助行走车10的停止操作的情况下测量出的波形92。
在波形90中,在时刻0.0秒处,电动辅助行走车10与台阶碰撞,与其它波形相比较施加了较大的冲击,检测到较大的加速度。另一方面,在波形91中,各前轮错开时间与台阶碰撞,因此冲击分散成多次,检测到的加速度的峰值的大小比波形90小。在波形92中,电动辅助行走车10未与台阶碰撞,使用者手动地停止了电动辅助行走车10。因而,在波形92中检测到的加速度的峰值的大小比波形91更小。
需要考虑在图14中例示出的、在各动作模式下检测的加速度,来决定在检测与台阶的碰撞时使用的阈值。例如,当基于电动辅助行走车10从台阶的正面碰撞时检测的加速度(例如,波形90)的峰值来设定阈值时,阈值过大,因此,在电动辅助行走车10的各前轮错开时间与台阶碰撞的情况(例如,波形91)下,有可能无法进行台阶的检测。另一方面,当将阈值设定得过小时,在使用者手动地停止电动辅助行走车10时有可能误检测台阶。
因此,为了提高由电动辅助行走车10进行的台阶的检测的精度,能够根据条件分开使用阈值。例如,在通过上述的方法估计电动辅助行走车10是否正在转弯,并估计为电动辅助行走车10正在转弯的情况下,也可以使用与电动辅助行走车10正在直行的情况不同的阈值或者阈值的函数。即,在由测量部测定出的电动辅助行走车10(电动车辆)的车身的宽度方向上的加速度的绝对值的最大值成为规定的阈值(第二阈值)以上时,判断部16a也可以将作为执行台阶的越过动作的条件的、加速度的阈值(第五阈值)设定得小。在此,作为加速度的例子,能够列举出由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度或者向车身的后方方向的加速度。但是,也可以基于其它加速度来判定能否执行台阶的越过动作。另外,阈值既可以从多个固定值中的任一者中选择,也可以是将车身的速度作为参数的函数。
当参照示出了在电动辅助行走车10的各前轮错开时间与台阶碰撞的情况下测量的加速度的、图14的波形91时,在时刻0.0秒、时刻0.6秒处存在加速度的峰值。最初(时刻0.0秒)检测到的峰值处的加速度比之后(时刻0.6秒)检测到的峰值处的加速度更大。在各峰值处被估计为不同侧的前轮与台阶接触。认为由于电动辅助行走车10的运动能量因初次与台阶的接触而减少,因此在第二次与台阶接触时检测到的加速度变小。因此,在电动辅助行走车10的各前轮错开时间与台阶碰撞的情况下,能够根据碰撞的次数使用不同的阈值。
例如,在电动辅助行走车10以相对于台阶具有角度的方式进入、且右前轮和左前轮在不同的时刻与台阶接触的情况下,如果检测到任一个前轮与台阶接触,则使用比在初次与台阶接触的检测中使用的阈值小的阈值来作为用于检测另一方的前轮与台阶的接触的阈值。即,测量部测量向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方成为小于第一阈值的阈值(第三阈值)以上时,判断部16a也可以估计为左前轮和右前轮均接触到台阶。
由此,通过使用过度小的阈值,从而能够防止在电动辅助行走车10的手动停止时等、与台阶碰撞以外的场景下发生台阶的误探测。
此外,在电动辅助行走车10碰撞到台阶的情况下,有时与车身的前后方向上的加速度的峰值相比,晚测量出车身的宽度方向上的加速度的峰值。因此,在由测量部测量到的电动辅助行走车10(电动车辆)的向使车身减速的方向的加速度或者向车身的后方方向的加速度成为第一阈值以上之后,在规定期间内测量到的电动辅助行走车10(电动车辆)的车身的宽度方向上的加速度的绝对值的最大值成为第二阈值以上时,判断部16a也可以估计左右哪一个车轮接触到台阶。作为上述的规定期间的例子,存在10毫秒,但是也可以使用与此不同的值。
(台阶的越过动作)
接着,说明由电动辅助行走车(电动车辆)进行的台阶的越过动作。
图15是示出了以相对于台阶具有角度的方式进入台阶的电动辅助行走车的第一例的俯视图。以下,一边参照图15一边说明电动辅助行走车10以相对于台阶80具有角度的方式进入的情况下的台阶80的越过动作。在与电动辅助行走车10的行进方向有关的矢量(虚线P)与台阶80的垂线(虚线S)之间形成0度以上的角度时,电动辅助行走车10以相对于台阶80具有角度的方式进入。在图15中,电动辅助行走车10的右前轮与台阶80接触。判断部16a基于测量部的测量值检测到右前轮与台阶的碰撞。
在图15中,空白的箭头分别表示左后轮的驱动力dpl以及右后轮的驱动力dpr。在图15的例子中,当假设为将左后轮的驱动力dpl和右后轮的驱动力dpr设定为相等时,与台阶80垂直的方向上的力是驱动力dpl与驱动力dpr的合力中的sin(90-θ)倍。因而,角度θ越大,则电动辅助行走车10越难以越过台阶80。因此,在使电动辅助行走车10的车身转弯,并在台阶80的越过动作时要向与台阶80垂直的方向施加更大的力。
例如,如图15的例子那样,控制部16能够控制驱动部来使左后轮的驱动力dpl大于右后轮的驱动力dpr。由此,使电动辅助行走车10的车身向右方向转弯的力作用,能够以更小的角度θ进行台阶80的越过。像这样,控制部16也可以使位于车身的宽度方向上的与被估计为接触到台阶的前轮12相反侧的前轮12和后轮13中的至少任一方的驱动部产生驱动力,该驱动力大于被估计为接触到台阶的一侧的前轮12和位于车身的宽度方向上的与前轮12相同侧的后轮13中的至少任一方的驱动部的驱动力。
另外,控制部16也可以仅使位于车身的宽度方向上的与被估计为接触到台阶的前轮12相反侧的前轮12和后轮13中的至少任一方的驱动部产生驱动力。即,也可以是,位于车身的宽度方向上的与被估计为接触到台阶的前轮12相反侧的前轮12和后轮13中的至少任一方的驱动部的驱动力大于被估计为接触到台阶的前轮12和位于车身的宽度方向上的与前轮12相同侧的后轮13中的至少任一方的驱动部的驱动力。由此,能够在左前轮和右前轮中的任一者接触到台阶之后,使电动辅助行走车10正对台阶。此外,能够使用在上述的台阶的检测处理的说明中描述的方法来估计接触到台阶的一侧的车轮。
此外,也可以是,电动辅助行走车10以相对于台阶80具有角度的方式进入时,不必产生使电动辅助行走车10的车身转弯的驱动力。例如,控制部16也可以仅使位于车身的宽度方向上的与被估计为接触到台阶的前轮12相同侧的后轮13的驱动部产生驱动力。另外,控制部16也可以使被估计为接触到台阶的一侧的前轮12和位于车身的宽度方向上的与前轮12相同侧的后轮13中的至少任一方的驱动部的驱动力大于被估计为接触到台阶的一侧的前轮12和位于车身的宽度方向上的与前轮12相同侧的后轮13中的至少任一方的驱动部的驱动力。根据这些方法,也能够在左前轮和右前轮中的任一者接触到台阶之后使电动辅助行走车10正对台阶。例如,在应越过的台阶不高的情况、台阶为斜路状(斜坡状)的情况下,即使没有较大的驱动力有时也能够进行台阶的越过。在这种情况下,也可以在使电动辅助行走车10转弯后进行台阶越过控制,而不进行伴随电动辅助行走车10的转弯的台阶越过控制。由此,控制被单纯化,因此使用者能够在更短期间内越过台阶。
图16、图17是示出了以相对于台阶具有角度的方式进入的电动辅助行走车的第二例的俯视图。图16、图17示出了电动辅助行走车10的动作的各步骤。以下,一边参照图16、图17一边说明电动辅助行走车10的动作。
最初,电动辅助行走车10以相对于台阶80具有大于0度的角度θ的方式行进(步骤S1)。在步骤S1的时间点,左后轮的驱动力dpl与右后轮的驱动力dpr相等。在该情况下,既可以是dpl>0、dpr>0,也可以是dpl=dpr=0。在dpl=dpr=0的情况下,使用者以不使用辅助力的方式使电动辅助行走车10前进。
根据步骤S1电动辅助行走车10前进的结果为,右前轮接触到台阶80(步骤S2)。判断部16a基于测量部的测量值来检测右前轮与台阶80的碰撞。然后,控制部16控制驱动部,并将作为被估计为与台阶80接触的一侧的车轮的、右后轮向行进方向的驱动力dpr设定为0。另外,控制部16也可以控制制动部来对右后轮施加制动。此时,作为被估计为未与台阶80接触的一侧的车轮的、左后轮的驱动力被设定为dpl>0。因而,电动辅助行走车10开始向右方向转弯(方向转换)。
这样,控制部16也可以仅使位于车身的宽度方向上的与被估计为接触到台阶的一方的前轮相反侧的前轮和后轮中的任一方的驱动部产生驱动力。由此,能够在任一个前轮接触到台阶之后在短时间内使车身转弯。
电动辅助行走车10向右方向转弯的结果为,作为另一方的前轮12的左前轮接触到台阶80(步骤S3)。此时,电动辅助行走车10朝向台阶80的大致正面。即,上述的角度θ大致等于0度。角度θ越小,电动辅助行走车10能够以越小的驱动力越过台阶80。因而,电动辅助行走车10也可以根据步骤S3的时间点来开始台阶80的越过动作。即,也可以是,如果估计为双方的前轮均接触到台阶,则控制部16进行台阶的越过动作。由此,电动辅助行走车10能够取更稳定的姿势,因此不进行复杂的控制就能够实现台阶80的越过。
例如,在判断部16a基于测量部的测量值而估计为前轮12双方均接触到台阶时,控制部16也可以将处于电动辅助行走车10(电动车辆)的车身的宽度方向上的两侧的前轮和后轮中的至少任一方的驱动部的驱动力设定为相等。由此,能够调整驱动部的驱动力,以使电动辅助行走车10的转弯量不过大。在电动辅助行走车10的前表面朝向台阶80的大致正面的阶段进行辅助,因此存在更可靠地进行台阶80的越过的优点。
此外,不特别限制左前轮和右前轮(两个前轮)接触到台阶的定时。例如,左前轮和右前轮既可以大致同时地与台阶接触,也可以是左前轮接触到台阶的时刻与右前轮接触到台阶的时刻错开。此外,台阶80的越过动作开始后的驱动力的控制方法在后文描述。
然后,在步骤S4中,电动辅助行走车10进行了台阶80的越过动作。在步骤S4中,使右后轮的驱动力dpr以及左后轮的驱动力dpl的驱动力大于步骤S3以前的这些驱动力,以辅助台阶80的越过。
接着,说明电动辅助行走车10以相对于台阶具有角度的方式进入时的车轮的控制方法的例子。图18、图19是示出了电动辅助行走车10(电动车辆)的车轮的控制方法的例子的曲线图。图18、图19的横轴表示时刻。另一方面,图18、图19的纵轴表示车轮的驱动力。
图18的虚线c1表示连接于与被估计为接触到台阶的一侧的相反侧的车轮的驱动部的驱动力。另一方面,虚线c2表示连接于与被估计为未接触到台阶的一侧的车轮的驱动部的驱动力。例如,当假设使用图1、图2所示的结构的电动辅助行走车10,且右前轮先接触到台阶的情况时,虚线c1对应于与右后轮连结的驱动部的驱动部。另一方面,虚线c2对应于与左后轮连结的驱动部的驱动部。以下。以右前轮先接触到台阶的情况为例来说明图18的控制。
时刻t1以前的电动辅助行走车10前进,左后轮的驱动力dpl和右后轮的驱动力dpr被设定为相等。此外,在图18的例子中,在时刻t1以前为dpl>0、dpr>0,但是也可以是dpl=0、dpr=0。
然后,在时刻t1,电动辅助行走车10的右前轮接触到台阶。判断部16a基于测量部的测量值来估计为右前轮碰撞到台阶。然后,控制部16在时刻t1判定为检测到台阶,在时刻t1以后使左后轮的驱动力dpl和右后轮的驱动力dpr递增。在此,与被估计为接触到台阶的侧的车轮(在此为左后轮)连结的驱动部的驱动力dpl的每单位时间的增加率被设定为大于与被估计为未接触到台阶的一侧的车轮(在此为右后轮)连结的驱动部的驱动力dpr的每单位时间的增加率。
然后,在时刻t2,驱动力的每单位时间的增加率更大的左后轮的驱动力dpl达到目标值。在此,目标值既可以是驱动部的最大的驱动力,也可以不是最大的驱动力。控制部16将时刻t2之后的左前轮的驱动力dpl维持为目标值。另一方面,在时刻t2,驱动力的每单位时间的增加率更小的右后轮的驱动力dpr尚未达到目标值。控制部16在接下来的时刻t2以后也使右后轮的驱动力dpr递增。
在时刻t3,驱动力的每单位时间的增加率小的右后轮的驱动力dpr也达到目标值。然后,控制部16将时刻t3之后的左前轮的驱动力dpl维持为目标值。
例如,控制部16将左前轮的驱动力dpl和右后轮的驱动力dpr维持为目标值,直到判定为电动辅助行走车10成功越过台阶为止。控制部16例如能够基于倾斜探测传感器23的测量值来判定电动辅助行走车10是否成功越过台阶,但是不特别限制判定能否成功越过台阶的判定方法。如在上述的图7中说明那样,如果判定为电动辅助行走车10成功越过台阶,则控制部16能够减少左前轮的驱动力dpl和右后轮的驱动力dpr。
当参照图18时,在时刻t1与时刻t3之间,dpl>dpr的关系成立,左前轮的驱动力大于右后轮的驱动力的状态持续。因而,能够一边使电动辅助行走车10的车身登上台阶一边使车身向右方向转弯。由此,在越过台阶后,校正电动辅助行走车10的车身的朝向(角度θ),使用者能够以更安全的姿势进入台阶之上。
图19的虚线c3表示连结于与被估计为接触到台阶的一侧的相反侧的车轮的驱动部的驱动力。另一方面,虚线c4表示连结于与被估计为未接触到台阶的一侧的车轮的驱动部的驱动力。例如,当假设使用图1、图2所示的结构的电动辅助行走车10,且右前轮先接触到台阶的情况,则虚线c3对应于与右后轮连结的驱动部的驱动部。另一方面,虚线c4对应于与左后轮连结的驱动部的驱动部。以下。以右前轮先接触到台阶的情况为例来说明图19的控制。
然后,在时刻t1,电动辅助行走车10的右前轮接触到台阶。判断部16a基于测量部的测量值来估计为右前轮碰撞到台阶。然后,控制部16在时刻t1判定为检测到台阶,在时刻t1以后使左后轮的驱动力dpl和右后轮的驱动力dpr递增。在此,也连结于与被估计为接触到台阶的侧的车轮(在此为左后轮)的驱动部的驱动力dpl的每单位时间的增加率设定为大于与被估计为未接触到台阶的一侧的车轮(在此为右后轮)连结的驱动部的驱动力dpr的每单位时间的增加率。
右后轮的驱动力dpr的每单位时间的增加率被设定为固定值,相对于此,左后轮的驱动力dpl的每单位时间的增加率随着时间经过而减少。因而,时刻t1以后的虚线c4的倾斜平稳。
在时刻t3,右后轮的驱动力dpr和左后轮的驱动力dpl的驱动力中的任一方达到目标值。目标值既可以是驱动部的最大的驱动力,也可以不是最大的驱动力。然后,控制部16将时刻t3之后的右后轮的驱动力dpr和左后轮的驱动力dpl维持为目标值。
例如,控制部16将左前轮的驱动力dpl和右后轮的驱动力dpr维持为目标值,直到判定为电动辅助行走车10成功越过台阶为止。控制部16例如能够基于倾斜探测传感器23的测量值来判定电动辅助行走车10是否成功越过台阶,但是不特别限制判定能否成功越过台阶的判定方法。如在上述的图7中说明那样,如果判定为电动辅助行走车10成功越过台阶,则控制部16能够减少左前轮的驱动力dpl和右后轮的驱动力dpr。
当参照图19时,在时刻t1与时刻t3的期间,dpl>dpr的关系成立,左前轮的驱动力大于右后轮的驱动力的状态继续。因而,能够一边使电动辅助行走车10的车身登上台阶一边使车身向右方向转弯。由此,在台阶越过后,校正电动辅助行走车10的车身的朝向(角度θ),使用者能够以更安全的姿势进入台阶之上。
如图18、图19的控制方法中例示那样,控制部16也可以使位于车身的宽度方向上的与被估计为接触到台阶的前轮12相反侧的前轮12和后轮13中的至少任一方的驱动部的驱动力、以及被估计为接触到台阶的前轮12和位于车身的宽度方向上的与前轮12相同侧的后轮13中的至少任一方的驱动部的驱动力递增至规定的阈值(第四阈值或者目标值)。由此,能够防止车身过度转弯。
另外,在图18、图19的方法中,在时刻t1与时刻t3之间,向被估计为碰撞到台阶的一侧(接近台阶侧)的后轮也施加了驱动力。因此,能够一边使电动辅助行走车10的车身进行转弯,一边使用两个后轮登上台阶。在图18、图19的方法中,在两个后轮的驱动力达到目标值以前的过渡期(时刻t1~t3)内,向左右的后轮的驱动力存在差异,能够平滑地校正电动辅助行走车10的车身的方向。
此外,在图18、图19的方法中,也可以在检测到另一个前轮接触到台阶之后,将两个后轮的驱动力设定为相等。由此,在左前轮和右前轮均接触到台阶的阶段时,能够利用较大的驱动力(例如,上述的目标值的驱动力)登上台阶。
如上所述,由控制部16进行的越过动作也可以包含一边使电动辅助行走车10(电动车辆)的车身转弯一边使驱动部增加车轮的驱动力的动作、在使电动辅助行走车10(电动车辆)的车身进行转弯之后使驱动部增加车轮的驱动力的动作、以及使驱动部增加车轮的驱动力的动作中的任一方。
(双轮脚轮的使用)
如图20的俯视图所示,有时以电动辅助行走车10(电动车辆)的前轮12的转动方向与后轮13的转动方向不同的状态进入到台阶80。例如,当电动辅助行走车10在移动中进行方向转换(转弯)时,前轮12有时朝向与电动辅助行走车10的车身的行进方向不同的方向。
图20是示出了前轮相对于车身的行进方向具有角度的情况的第一例的俯视图。在图20的步骤S10中,电动辅助行走车10的两个前轮12(左前轮和右前轮)碰撞到台阶80。各个前轮12从台阶80受到阻力Fnl、Fnr作为后轮13的驱动力(dpl+dpr)的反作用。阻力Fnl、Fnr成为相对于各个前轮12的转动中心12r的力矩,使各个前轮12绕逆时针(左转)进行转动。
通过转动而前轮12成为侧面与台阶80大致平行的方向(步骤S11)。在步骤S11中,前轮12的能够转动的方向为与台阶80大致平行的方向。前轮12无法向台阶80的方向转动,因此即使利用后轮13的驱动力(dpl、dpr)进行辅助,电动辅助行走车10也难以越过台阶80。
此外,在图20的例子中,电动辅助行走车10的车身的行进方向与台阶80大致垂直,但是在此所示的问题也会发生在电动辅助行走车10的车身的行进方向上的矢量相对于台阶80的垂线具有角度θ(θ>0度)的情况下。
上述的例子中的电动辅助行走车的车轮均具备单轮的轮胎。但是,电动辅助行走车的车轮也可以不必是单轮的轮胎。例如,图21的电动辅助行走车10a的前轮12(右前轮和左前轮)是构成为能够转弯的双轮脚轮12a。
图21是示出了前轮相对于车身的行进方向具有角度的情况的第二例的俯视图。在图21的步骤S20中,电动辅助行走车10a的处于前方两侧的双轮脚轮12a碰撞到台阶80。各个双轮脚轮12a从台阶80受到阻力Fnl、Fnr作为后轮13的驱动力(dpl+dpr)的反作用。阻力Fnl、Fnr成为相对于各个双轮脚轮12a的转动中心12r的力矩,使各个双轮脚轮12a绕顺时针(右转)进行转动。
双轮脚轮12a的车轮整体的宽度大于图20的前轮12的车轮整体的宽度。因此,通过转动而使双轮脚轮12a的脚轮的接触面与台阶80大致平行(步骤S21)。因此,电动辅助行走车10a能够通过后轮13的驱动力(dpl、dpr)的辅助来越过台阶80。
如图21的例子所示,电动辅助行走车(电动车辆)的前轮也可以是构成为能够相对于铅垂轴转动的、双轮脚轮。此外,作为电动辅助行走车(电动车辆)的前轮,也可以不必使用双轮脚轮。例如,作为前轮,能够使用轮胎宽度比后轮大的轮胎,从而降低成为如图20那样难以使车身前进的状态的概率。
(使用双轮脚轮的情况下的台阶检测)
作为电动辅助行走车(电动车辆)的前轮,在使用双轮脚轮的情况下车轮与台阶的碰撞有可能是多阶段的。图22、图23是示出了电动辅助行走车10a与台阶之间的碰撞的例子的俯视图。以下,一边参照图22、图23一边说明与台阶的多阶段的碰撞。
在图22、图23的例子中,电动辅助行走车10a以相对于台阶80具有角度θ(θ>0度)的方式进入。即,台阶80的垂线与电动辅助行走车10a的行进方向呈角度θ。安装于电动辅助行走车10a的前方侧的双轮脚轮12a均相对于电动辅助行走车10a的行进方向具有角度。另外,左右的双轮脚轮12a的方向不同。
当参照步骤S30时,当将相对于电动辅助行走车10a的行进方向的角度的大小进行比较时,右侧的双轮脚轮12a的角度比左侧的双轮脚轮12a的该角度更大。首先,在步骤S30中,右侧的双轮脚轮12a的一端与台阶80碰撞。判断部16a基于测量部的测量值来检测右侧的双轮脚轮12a与台阶的碰撞。由此,控制部16判断为需要向电动辅助行走车10a的右方向转弯。然后,控制部16控制驱动部来将左后轮的驱动力dpl设定为大于右后轮的驱动力dpr。因此,在步骤S30中,电动辅助行走车10a开始右转弯。
在下一步骤S31中,左侧的双轮脚轮12a的一端与台阶80碰撞。判断部16a也可以基于测量部的测量值来检测左侧的双轮脚轮12a与台阶的碰撞。也可以是,在检测到该碰撞的情况下,控制部16判断为进行了车身的方向转换,将左后轮的驱动力dpl与右后轮的驱动力dpr之差设定为小于以前的该差。另外,控制部16也可以在步骤S31中不变更左后轮的驱动力dpl和右后轮的驱动力dpr。不管左后轮的驱动力dpl和右后轮的驱动力dpr如何,电动辅助行走车10a都在步骤S31中继续右转弯。
然后,在步骤S32中,右侧的双轮脚轮12a的另一端与台阶80碰撞。判断部16a也可以基于测量部的测量值来检测右侧的双轮脚轮12a与台阶的碰撞。也可以是,在检测到该碰撞的情况下,控制部16判断为进行了车身的方向转换,将左后轮的驱动力dpl与右后轮的驱动力dpr之差设定为小于以前的该差。另外,控制部16也可以在步骤S32中不变更左后轮的驱动力dpl和右后轮的驱动力dpr。不管左后轮的驱动力dpl和右后轮的驱动力dpr如何,电动辅助行走车10a都在步骤S31中继续右转弯。
最后,在步骤S33中,左侧的双轮的双轮脚轮12a的另一端与台阶80碰撞。判断部16a基于测量部的测量值来检测右侧的双轮脚轮12a与台阶的碰撞。由此,由于电动辅助行走车10a的前表面朝向台阶80的大致正面,因此控制部16判断为不需要向电动辅助行走车10a的右方向转弯。控制部16控制驱动部来将左后轮的驱动力dpl和右后轮的驱动力dpr设定为相等的值。在此,左后轮的驱动力dpl和右后轮的驱动力dpr也可以被设定为上述的图18、图19的目标值。
在步骤S33以后,电动辅助行走车10a能够通过左后轮的驱动力dpl和右后轮的驱动力dpr的辅助来进行台阶80的越过。
在上述的图22、图23的例子中,双轮脚轮12a错开时间,来与台阶碰撞多次。因而,对电动辅助行走车10a施加的冲击分散成多次。因此,加速度传感器22a检测的加速度有可能小于对前轮使用了单轮的轮胎的情况。同样地,在使用速度传感器22b进行碰撞的检测的情况下,在一次碰撞中产生的速度的变化有可能小于对前轮使用了单轮的轮胎的情况。因而,能够在电动辅助行走车(电动车辆)的前轮使用了双轮脚轮的情况下,将与台阶的碰撞的检测中使用的阈值的值设定为小于前轮为单轮的轮胎的情况的值。由此,能够进行台阶的检测。
(第二实施方式)
接着,说明本公开的第二实施方式。图24~图30所示的第二实施方式与上述的第一实施方式不同点在于后轮13以及马达20周边的结构,其它结构与上述的第一实施方式相同。在图24~图30中,对与第一实施方式相同的部分标注相同的附图标记并省略详细的说明。
在图24~图28所示的结构中,电动辅助行走车10的马达20经由行星齿轮机构50来与各后轮13连结。
如图26~图28所示,马达20具有:固定于管道框架31的壳体61、收容于壳体61内且相对于壳体61回转自如的输出轴支承部62、以及固定于输出轴支承部62且与输出轴支承部62成一体地进行回转的输出轴63。其中在壳体61中固定有凸缘64,输出轴63从壳体61的中央部突出。在壳体61与输出轴支承部62之间设置有轴承65。另外,在输出轴支承部62的外周设置有磁体66。并且,在磁体66的周围配置有线圈67,线圈67固定于壳体61。向线圈67供给来自电池21的电力,设置有磁体66的输出轴支承部62进行转动。此外,在壳体61的中央部设置有帽68。
后轮13具有轮辋71、设置于轮辋71的外周的轮胎72以及与轮辋71连结的轮辋压板73。轮辋71经由压板74固定于在凸缘64的周围设置的轴承75。
行星齿轮机构50具有:太阳齿轮51、配置在太阳齿轮51的周围的内齿轮52、与太阳齿轮51及内齿轮52啮合并且在输出轴63转动时一边自转一边公转的三个行星齿轮53、以及以能够转动的方式支承三个行星齿轮53并且被传递行星齿轮53的公转运动的行星架54。
其中太阳齿轮51与马达20的输出轴63连结,能够伴随输出轴63的回转而进行回转。另外,内齿轮52与后轮13的轮辋71连结。行星架54与马达20的凸缘64连结,并且经由凸缘64和壳体61固定于管道框架31。
接下来,在本实施方式中,说明控制马达20来使前轮12相对于后轮13抬起(后轮支撑)时的作用。
首先,假定前轮12不碰撞到台阶而电动辅助行走车10以通常的状态进行移动的情况。在该情况下,来自马达20的输出轴63的辅助力被从与马达20的输出轴63连结的太阳齿轮51经由行星齿轮53传递到内齿轮52,接下来被传递到与内齿轮52连结的后轮13。由此,利用马达20来辅助后轮13的活动。此时,与行星架54连结的管道框架31不会转动。
在此,当将太阳齿轮51、内齿轮52的齿数分别设为Za、Zc(Za<Zc)、将太阳齿轮51、内齿轮52、行星架54的角速度分别设为Wa、Wc、Wx时,以下的式(1)成立。
Zc(Wc-Wx)=-Za(Wa-Wx)···式(1)
在电动辅助行走车10以通常状态进行移动的情况下,行星架54被固定,因此Wx为0。因而,以下的式(2)成立。
Wc=(-Za/Zc)Wa···式(2)
即,来自马达20的输出轴63的转速被减速至-Za/Zc倍并被传递。
另一方面,在电动辅助行走车10的前轮12碰撞到台阶的情况下,前轮12被锁定,因此后轮13也不会转动。此时,与后轮13连结的行星齿轮机构50的内齿轮52也被锁定。另一方面,向与马达20的输出轴63连结的太阳齿轮51传递来自输出轴63的转动力。该转动力被从太阳齿轮51经由行星齿轮53传递至行星架54,转动力相对于与行星架54连结的管道框架31作用于箭头M(参照图25)的方向(与电动辅助行走车10的行进方向相反的方向)。
因而,在前轮12碰撞到台阶时,通过控制部16控制马达20,从而能够使电动辅助行走车10整体转动来使前轮12抬起到高于后轮13的位置。在该情况下,控制部16也可以控制为与例如向手柄14施加的操作力(握持力)相应地增加马达20的输出。具体地说,与通常时相比较,即使为相同的操作力,也以使马达20的输出相对变大的方式控制马达20(即,使马达输出相对于操作力的比例系数变大),由此能够将前轮12抬起到高于后轮13的位置。
这样,在电动辅助行走车10的前轮12碰撞到台阶的情况下,内齿轮52被固定,因此在上述式(1)中Wc为0。因而,以下的式(3)成立。
Wx={Za/(Zc+Za)}Wa···式(3)
即,来自马达20的输出轴63的转速被减速至Za/(Zc+Za)倍,与行星架54连结的电动辅助行走车10整体受到行进方向相反方向(前轮12悬浮侧)的转动力。
如以上那样,根据本实施方式,马达20经由行星齿轮机构50来与后轮13连结。由此,在电动辅助行走车10的前轮12碰撞到台阶时,能够使用行星齿轮机构50来将前轮12抬起到高于后轮13的位置。即,控制部16能够通过马达20的驱动力来利用行星齿轮机构50的反作用使前轮12相对于后轮13进行后轮支撑。
另外,根据本实施方式,行星齿轮机构50具有:与马达20的输出轴63连结的太阳齿轮51、配置在太阳齿轮51的周围的内齿轮52、与太阳齿轮51及内齿轮52啮合并且在输出轴63转动时一边自转一边公转的行星齿轮53、以及以能够转动的方式支承行星齿轮53并且被传递行星齿轮53的公转运动的行星架54,内齿轮52与后轮13连结,行星架54固定于管道框架31。由此,在前轮12碰撞到台阶时,来自马达20的输出轴63的转动力从太阳齿轮51经由行星齿轮53传递至行星架54,能够使转动力作用于与行星架54连结的管道框架31。由此,能够使电动辅助行走车10整体转动,使前轮12相对于后轮13抬起。
在本实施方式中,以控制部16使用行星齿轮机构50来使前轮12相对于后轮13抬起的情况为例进行了说明,但是不限于行星齿轮机构50,也可以使用偏心型减速机等、具有一边自转一边公转的齿轮的机构。
或者,也可以使用包括两个齿轮的机构来替代行星齿轮机构50。具体地说,如图29和图30所示,也可以是,使第一齿轮57与马达20直接连结,使第二齿轮58与后轮13直接连结,从而使这些第一齿轮57和第二齿轮58彼此啮合。如图29所示,在通常行走时,利用马达20辅助后轮13的活动,从而电动辅助行走车10进行行走。另一方面,如图30所示,例如在前轮12碰撞到台阶而前轮12被锁定时,后轮13也被锁定。当在该状态下马达20进一步进行转动时,产生将电动辅助行走车10整体抬起那样的力。此时,在与电动辅助行走车10的行进方向相反的方向上进行转动的力动作。由此,电动辅助行走车10的前轮12能够容易地越过台阶。
(第三实施方式)
接着,说明本公开的第三实施方式。图31和图32所示的第三实施方式与上述的第一实施方式的不同点在于产生用于抬起前轮12的驱动力的驱动部与马达20独立地设置,其它结构与上述的第一实施方式相同。在图15和图16中,对与第一实施方式相同部分标注相同的附图标记,并省略详细的说明。
在图31的(a)、图31的(b)中,产生用于抬起前轮12的驱动力的驱动部具备与马达20不同的追加的马达46。在该情况下,追加的马达46的转动轴可以设置在与后轮13的转动轴相同的轴上(图31的(a)),也可以设置在与后轮13的转动轴不同的轴上(图31的(b))。
在图32的(a)、图32的(b)中,产生用于抬起前轮12的驱动力的驱动部具备与马达20不同的致动器47。致动器47与框架11连结。在该情况下,致动器47既可以是通过伸缩来使前轮12相对于后轮13抬起的伸缩型的致动器(图32的(a)),也可以是通过摇动来使前轮12相对于后轮13抬起的摇动型的致动器(图32(b))。
此外,在图31和图32中,也可以不必设置有马达20。
(第四实施方式)
接着,使用图33和图34来说明本公开的第四实施方式。在图33和图34中,对与第一实施方式至第三实施方式相同的部分标注相同的附图标记,并省略详细的说明。
图33是示出本实施方式的电动辅助行走车(电动车辆)10的外观的一例的示意性立体图。
(电动辅助行走车的结构)
如图33所示,电动辅助行走车10具备:框架11、设置于框架11的一对前轮12及一对后轮(车轮)13、以及与框架11连接的一对手柄14。
在一对后轮13分别连结有用于辅助对应的后轮13的活动的马达20。在框架11分别装配有电池21以及控制部16。另外,在控制部16设置有倾斜探测传感器23。
在本实施方式中,在左右一对管道框架31的上端部设置有由使用者操作的一对手柄14。一对手柄14通过在水平方向延伸的把手17彼此连结。另外,一对手柄14和把手17呈大致U字形状。并且,在一对手柄14装配有能够放置使用者的手肘的臂支承部27。在臂支承部27中能够插入各手柄14的方式设置孔部,在该孔部能够装配手柄14。
在左右一对管道框架31之间根据需要设置有使用者能够就座的片材部37。
电池21向马达20、控制部16等、电动辅助行走车10的各要素供给电力。该电池21设置在位于一对管道框架31之间的片材部37的下方。
另外,速度传感器(与测量部有关的结构要素的一例)22b分别设置于一对后轮13。此外,速度传感器22b不限定于内置于一对前轮12和/或一对后轮13,也可以被装配于框架11、一对手柄14等其它任意的构件。或者,速度传感器22b也可以被配设在控制部16的附近。此外,在本实施方式中,电动辅助行走车10的行走速度基于后轮13的转动速度来判断出的,但不限于此,也可以基于前轮12的转动速度或者前轮12及后轮13双方的转动速度来判断。
测量部也可以具备加速度传感器22a。在该情况下,加速度传感器22a不使用后轮13的转动加速度而直接测量电动辅助行走车10的加速度,向控制部16发送该加速度的信号。然后,控制部16通过对加速度进行积分来计算速度。
另外,测量部也可以具备GPS(全球定位系统)。在该情况下,GPS不使用后轮13的转动加速度而探测电动辅助行走车10的位置。然后,控制部16也可以通过对来自GPS的位置信息进行微分来计算电动辅助行走车10的速度,通过对来自GPS的位置信息进行二次微分来计算加速度。
倾斜探测传感器23具备两轴以上的加速度传感器。倾斜探测传感器23设置在控制部16的附近。或者,倾斜探测传感器23也可以设置在电动辅助行走车10的上部。此外,作为倾斜探测传感器23,也可以使用陀螺传感器来替代使用加速度传感器,从而估计电动辅助行走车10的姿势。
此外,电动辅助行走车10的其它结构与第一实施方式中的电动辅助行走车10(图1和图2)相同。
另外,在本实施方式中,在电动辅助行走车10中未设置直接检测使用者是否把持一对手柄14的握持传感器、应变传感器、接近传感器或压力传感器等。然而,并不限于此,在本实施方式中,也可以与第一实施方式中的电动辅助行走车10(图1和图2)同样地在手柄14中设置把持传感器24。
以上说明了本公开的各实施方式及各变形例,但是各实施方式和各变形例出示为例子,不意图用来限定本发明的范围。各实施方式及各变形例能够通过其它各种方式来实施,能够在不脱离发明主旨的范围内进行各种省略、置换、变更。各实施方式及各变形例包含于本发明的范围、主旨,同样地,也包含于权利要求书所记载的发明及其均等的范围。
附图标记说明
10、10a:电动辅助行走车;11:框架;12:前轮;13:后轮;14:手柄;15:制动器单元;16:控制部;20:马达;21:电池;22a:加速度传感器;22b:速度传感器;23:倾斜探测传感器;24:把持传感器;25:脚部探测传感器;31:管道框架。
Claims (37)
1.一种电动车辆,具备:
驱动部,其对设置于车身的包括前轮和后轮中的至少任一方的车轮进行驱动;
控制部,其对所述驱动部进行使所述车轮越过台阶的台阶的越过控制;
测量部,其测量对设置有所述车轮的车身施加的速度和加速度中的至少任一方;以及
判断部,其基于所述测量部的测量值来判断是否使所述控制部进行台阶的越过控制。
2.根据权利要求1所述的电动车辆,其中,
在所述判断部基于所述测量部的测量值而判断为所述前轮接触到台阶时,使所述控制部进行所述台阶的越过控制。
3.根据权利要求1或2所述的电动车辆,其中,
所述台阶的越过控制包含增加所述驱动部对所述车轮进行驱动的驱动力的控制。
4.根据权利要求1至3中的任一项所述的电动车辆,其中,
所述台阶的越过控制包含使所述车身转弯的控制。
5.根据权利要求1至4中的任一项所述的电动车辆,其中,
所述台阶的越过控制包含一边使所述车身转弯一边增加驱动力的控制。
6.根据权利要求2所述的电动车辆,其中,
所述前轮包括在所述车身的宽度方向上分离地配置的左前轮和右前轮,
所述判断部基于所述测量部的测量值来判断左前轮和右前轮中的哪一者接触到所述台阶。
7.根据权利要求6所述的电动车辆,其中,
所述测量部至少测量向使所述车身减速的方向的加速度和所述车身的前后方向上的加速度中的任一方、以及所述车身的宽度方向上的加速度。
8.根据权利要求7所述的电动车辆,其中,
所述后轮包括在所述车身的宽度方向上分离地配置的左后轮和右后轮,
所述测量部至少计算所述左后轮的转动方向上的加速度与所述右后轮的转动方向上的加速度的平均值、或者所述左后轮的转动方向上的加速度与所述右后轮的转动方向上的加速度之差。
9.根据权利要求7或8所述的电动车辆,其中,
所述测量部至少计算所述左前轮的转动方向上的加速度与所述右前轮的转动方向上的加速度的平均值、或者所述左前轮的转动方向上的加速度与所述右前轮的转动方向上的加速度之差。
10.根据权利要求6至9中的任一项所述的电动车辆,其中,
所述测量部测定向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方、以及所述车身的宽度方向上的加速度,
在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第一阈值以上时,所述判断部估计所述左前轮和所述右前轮中的哪一者接触到台阶。
11.根据权利要求6至10中的任一项所述的电动车辆,其中,
所述测量部测定向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方、以及所述车身的宽度方向上的加速度,
在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第一阈值以上之后,在规定期间内测量到的所述车身的宽度方向上的加速度的绝对值的最大值成为第二阈值以上时,所述判断部估计所述左前轮和所述右前轮中的哪一者接触到所述台阶。
12.根据权利要求10或11所述的电动车辆,其中,
所述测量部测量向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方,
在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方成为第三阈值以上时,所述判断部估计为所述左前轮和所述右前轮均接触到台阶,所述第三阈值小于所述第一阈值。
13.根据权利要求6至12中的任一项所述的电动车辆,其中,
所述控制部仅使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相同侧的所述后轮的所述驱动部产生驱动力。
14.根据权利要求6至13中的任一项所述的电动车辆,其中,
所述控制部仅使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部产生驱动力。
15.根据权利要求6至14中的任一项所述的电动车辆,其中,
所述控制部使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部产生驱动力,该驱动力大于被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的驱动力。
16.根据权利要求6至15中的任一项所述的电动车辆,其中,
所述控制部使被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的相同侧的所述后轮中的至少任一方的所述驱动部的驱动力大于被估计为接触到所述台阶的一侧的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力。
17.根据权利要求6至16中的任一项所述的电动车辆,其中,
所述控制部使位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部的驱动力、以及被估计为接触到所述台阶的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力递增至第四阈值。
18.根据权利要求17所述的电动车辆,其中,
位于所述车身的宽度方向上的与被估计为接触到所述台阶的所述前轮相反侧的所述前轮和所述后轮中的至少任一方的所述驱动部的所述驱动力大于被估计为接触到所述台阶的所述前轮和位于所述车身的宽度方向上的与所述前轮相同侧的所述后轮中的至少任一方的所述驱动部的所述驱动力。
19.根据权利要求1至18中的任一项所述的电动车辆,其中,
在所述判断部基于所述测量部的测量值而估计为所述前轮两者均接触到台阶时,所述控制部使处于所述车身的宽度方向上的两侧的所述前轮和所述后轮中的至少任一方的所述驱动部的驱动力相等。
20.根据权利要求1至19中的任一项所述的电动车辆,其中,
在由所述测量部测定出的所述车身的宽度方向上的加速度的绝对值的最大值成为第二阈值以上时,所述控制部将作为执行所述台阶的所述越过动作的条件的、加速度的第五阈值设定得小。
21.根据权利要求1至20中的任一项所述的电动车辆,其中,
随着由所述测量部测量到的所述车身的速度变大,所述控制部将作为执行所述台阶的所述越过动作的条件的、加速度的绝对值的第六阈值设定得大。
22.根据权利要求2所述的电动车辆,其中,
所述测量部测量向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方,
在所述测量部所测量到的向使所述车身减速的方向的加速度和向所述车身的后方方向的加速度中的至少任一方大于第七阈值时,所述判断部估计为所述前轮接触到台阶。
23.根据权利要求22所述的电动车辆,其中,
在所述测量部所测量到的向使所述车身减速的方向的加速度和向车身的后方方向的加速度中的至少任一方为所述第七阈值以下时,所述判断部不估计为所述前轮接触到台阶。
24.根据权利要求22或23所述的电动车辆,其中,
具备存储部,所述存储部存储所述测量部的测量值,
所述判断部基于所述存储部中存储的所述测量值来调整所述第七阈值。
25.根据权利要求24所述的电动车辆,其中,
在所述控制部使所述前轮越过台阶之后,所述判断部在所述控制部进行所述前轮的台阶越过控制以前的规定期间内检测到小于所述第七阈值的加速度的情况下,所述判断部使所述第七阈值变更为更小的值。
26.根据权利要求24或25所述的电动车辆,其中,
在所述控制部使所述前轮越过台阶时所述测量部所测量到的所述加速度大于所述第七阈值、且所述加速度与所述第七阈值之差大于规定值的情况下,所述判断部使所述第七阈值变更为更大的值。
27.根据权利要求2所述的电动车辆,其中,
所述测量部测量所述车身的振动的频谱,
在所述测量部所测量到的值的代表值大于第八阈值时,所述判断部估计为所述前轮接触到台阶。
28.根据权利要求27所述的电动车辆,其中,
在所述测量部所测量到的值的代表值为规定的所述第八阈值以下时,所述判断部不估计为所述前轮接触到台阶。
29.根据权利要求27或28所述的电动车辆,其中,
所述车身的振动包含所述车身的前后方向上的振动。
30.根据权利要求1至29中的任一项所述的电动车辆,其中,
具备缓冲构件,所述缓冲构件覆盖所述车身的前方或者所述车身的宽度方向上的两个侧面中的至少一部分。
31.根据权利要求1至30中的任一项所述的电动车辆,其中,
所述前轮为构成为能够转弯的双轮脚轮。
32.一种电动车辆,具备:
驱动部,其对包括前轮和后轮中的至少任一方的车轮进行驱动;
控制部,其控制所述驱动部来进行台阶的越过控制;
测量部,其测量对设置有所述车轮的车身施加的速度和加速度中的至少任一方;以及
判断部,其基于所述测量部的测量值来判断是否使所述控制部进行台阶的越过控制,
其中,在所述判断部基于所述测量部的测量值而判断为所述前轮接触到台阶时,所述控制部进行增加所述驱动部对所述车轮进行驱动的驱动力的控制或者使所述车身转弯的控制。
33.一种电动车辆的控制方法,包括以下步骤:
测量对车身施加的速度和加速度中的至少任一方;以及
基于所述速度和所述加速度中的至少任一方来判断是否进行台阶的越过控制。
34.根据权利要求33所述的电动车辆的控制方法,其中,还包括以下步骤:
基于所述速度和所述加速度中的至少任一方来判断前轮是否接触到台阶;以及
在被估计为所述前轮接触到台阶时进行所述台阶的越过控制。
35.根据权利要求33或34所述的电动车辆的控制方法,其中,
所述台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使所述车身转弯的控制、以及一边使所述车身转弯一边增加所述驱动力的控制中的至少任一方。
36.一种电动车辆的控制程序,包括以下步骤:
测量对车身施加的速度和加速度中的至少任一方;
基于所述速度和所述加速度中的至少任一方来判断前轮是否接触到台阶;以及
在被估计为所述前轮接触到台阶时进行所述台阶的越过控制。
37.根据权利要求36所述的电动车辆的控制程序,其中,
所述台阶的越过控制包含增加对车轮进行驱动的驱动力的控制、使所述车身转弯的控制、以及一边使所述车身转弯一边增加所述驱动力的控制中的至少任一方。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-193820 | 2019-10-24 | ||
JP2019193820 | 2019-10-24 | ||
PCT/JP2020/039154 WO2021079835A1 (ja) | 2019-10-24 | 2020-10-16 | 電動車両、その制御方法、及びその制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114466637A true CN114466637A (zh) | 2022-05-10 |
Family
ID=75619406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080067456.3A Withdrawn CN114466637A (zh) | 2019-10-24 | 2020-10-16 | 电动车辆、电动车辆的控制方法以及电动车辆的控制程序 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4049646A1 (zh) |
JP (1) | JPWO2021079835A1 (zh) |
CN (1) | CN114466637A (zh) |
WO (1) | WO2021079835A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD940601S1 (en) * | 2020-08-28 | 2022-01-11 | Qingfeng Li | Rollator |
TWI833644B (zh) * | 2023-05-09 | 2024-02-21 | 緯創資通股份有限公司 | 電動輔具 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852009A (en) * | 1986-01-28 | 1989-07-25 | Robert Bosch Gmbh | Method of controlling braking of a vehicle operating in a curved path, and vehicle brake control system |
US5508919A (en) * | 1993-06-01 | 1996-04-16 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control system and control method for controlling power steering apparatus |
US5893896A (en) * | 1996-05-31 | 1999-04-13 | Unisia Jecs Corporation | Apparatus and method for stability controlling vehicular attitude using vehicular braking system |
US6543548B1 (en) * | 1994-05-17 | 2003-04-08 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle operating device using steering angle and vehicle speed to control pair of continuously variable transmissions |
JP2003291816A (ja) * | 2002-03-29 | 2003-10-15 | Sanyo Electric Co Ltd | 台 車 |
JP2009126495A (ja) * | 2007-11-28 | 2009-06-11 | Mitsubishi Electric Corp | 駐車支援装置 |
JP2010095135A (ja) * | 2008-10-16 | 2010-04-30 | Toyota Motor Corp | 車輪振動抽出装置及び路面状態推定装置 |
JP2011045184A (ja) * | 2009-08-20 | 2011-03-03 | Suzuki Motor Corp | 電動車駆動制御装置及び方法 |
CN102283749A (zh) * | 2011-06-27 | 2011-12-21 | 胡达广 | 多路况电动轮椅 |
US20130204503A1 (en) * | 2010-10-29 | 2013-08-08 | Toyota Jidosha Kabushiki Kaisha | Braking force control apparatus and braking force control method for vehicle |
JP2013193553A (ja) * | 2012-03-19 | 2013-09-30 | Fuji Heavy Ind Ltd | 車両の制御装置 |
EP3000456A1 (en) * | 2013-05-22 | 2016-03-30 | Nabtesco Corporation | Electric walking assistance device, program for controlling electric walking assistance device, and method of controlling electric walking assistance device |
CN205872142U (zh) * | 2016-07-06 | 2017-01-11 | 吉林农业大学 | 电动载物爬楼梯小车 |
JP2017043152A (ja) * | 2015-08-25 | 2017-03-02 | 株式会社アドヴィックス | 車両のブレーキ制御装置 |
JP2017052299A (ja) * | 2015-09-07 | 2017-03-16 | トヨタ自動車株式会社 | 車両用制御装置 |
JP2018061615A (ja) * | 2016-10-11 | 2018-04-19 | ナブテスコ株式会社 | 電動車両および電動車両の制動方法 |
JP2018061819A (ja) * | 2016-02-15 | 2018-04-19 | ナブテスコ株式会社 | 電動車両 |
CN108137043A (zh) * | 2015-11-06 | 2018-06-08 | 株式会社爱德克斯 | 车辆的行驶辅助装置 |
-
2020
- 2020-10-16 JP JP2021553405A patent/JPWO2021079835A1/ja active Pending
- 2020-10-16 CN CN202080067456.3A patent/CN114466637A/zh not_active Withdrawn
- 2020-10-16 WO PCT/JP2020/039154 patent/WO2021079835A1/ja unknown
- 2020-10-16 EP EP20879033.7A patent/EP4049646A1/en not_active Withdrawn
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852009A (en) * | 1986-01-28 | 1989-07-25 | Robert Bosch Gmbh | Method of controlling braking of a vehicle operating in a curved path, and vehicle brake control system |
US5508919A (en) * | 1993-06-01 | 1996-04-16 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control system and control method for controlling power steering apparatus |
US6543548B1 (en) * | 1994-05-17 | 2003-04-08 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle operating device using steering angle and vehicle speed to control pair of continuously variable transmissions |
US5893896A (en) * | 1996-05-31 | 1999-04-13 | Unisia Jecs Corporation | Apparatus and method for stability controlling vehicular attitude using vehicular braking system |
JP2003291816A (ja) * | 2002-03-29 | 2003-10-15 | Sanyo Electric Co Ltd | 台 車 |
JP2009126495A (ja) * | 2007-11-28 | 2009-06-11 | Mitsubishi Electric Corp | 駐車支援装置 |
JP2010095135A (ja) * | 2008-10-16 | 2010-04-30 | Toyota Motor Corp | 車輪振動抽出装置及び路面状態推定装置 |
JP2011045184A (ja) * | 2009-08-20 | 2011-03-03 | Suzuki Motor Corp | 電動車駆動制御装置及び方法 |
US20130204503A1 (en) * | 2010-10-29 | 2013-08-08 | Toyota Jidosha Kabushiki Kaisha | Braking force control apparatus and braking force control method for vehicle |
CN102283749A (zh) * | 2011-06-27 | 2011-12-21 | 胡达广 | 多路况电动轮椅 |
JP2013193553A (ja) * | 2012-03-19 | 2013-09-30 | Fuji Heavy Ind Ltd | 車両の制御装置 |
EP3000456A1 (en) * | 2013-05-22 | 2016-03-30 | Nabtesco Corporation | Electric walking assistance device, program for controlling electric walking assistance device, and method of controlling electric walking assistance device |
JP2017043152A (ja) * | 2015-08-25 | 2017-03-02 | 株式会社アドヴィックス | 車両のブレーキ制御装置 |
JP2017052299A (ja) * | 2015-09-07 | 2017-03-16 | トヨタ自動車株式会社 | 車両用制御装置 |
CN108137043A (zh) * | 2015-11-06 | 2018-06-08 | 株式会社爱德克斯 | 车辆的行驶辅助装置 |
JP2018061819A (ja) * | 2016-02-15 | 2018-04-19 | ナブテスコ株式会社 | 電動車両 |
CN205872142U (zh) * | 2016-07-06 | 2017-01-11 | 吉林农业大学 | 电动载物爬楼梯小车 |
JP2018061615A (ja) * | 2016-10-11 | 2018-04-19 | ナブテスコ株式会社 | 電動車両および電動車両の制動方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021079835A1 (ja) | 2021-04-29 |
EP4049646A1 (en) | 2022-08-31 |
JPWO2021079835A1 (zh) | 2021-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6901276B2 (ja) | 電動車両 | |
US9186992B2 (en) | Walking assistance moving vehicle | |
JP6199380B2 (ja) | 電動歩行補助装置、電動歩行補助装置の制御プログラムおよび電動歩行補助装置の制御方法 | |
JP7118607B2 (ja) | 電動補助歩行車、電動補助歩行車の制御方法、及びコンピュータプログラム | |
JP6812189B2 (ja) | 電動車両およびその制御方法 | |
JP6055020B2 (ja) | 歩行補助車 | |
US20210155278A1 (en) | Walking aid vehicle | |
JP6053059B2 (ja) | 操作力検出装置および当該操作力検出装置を備える歩行補助装置 | |
JP6059279B2 (ja) | 歩行補助車および歩行補助車を制御するためのプログラム | |
JP2009183407A (ja) | 歩行補助装置 | |
CN114466637A (zh) | 电动车辆、电动车辆的控制方法以及电动车辆的控制程序 | |
JP6794099B2 (ja) | 電動アシスト車、制御方法、およびプログラム | |
JP6964013B2 (ja) | 人力駆動車の制御装置、緩衝システム、および、人力駆動車 | |
JP2022094589A (ja) | 電動歩行補助車 | |
EP2783962B1 (en) | Inverted pendulum type vehicle | |
JP7083593B2 (ja) | 電動車両および電動車両の制動方法 | |
JP2000318587A (ja) | 自動車用運転操作装置 | |
WO2021132324A1 (ja) | 電気制御車両 | |
JP2021065468A (ja) | 電動車両、電動車両の制御方法および制御プログラム | |
EP4082509A1 (en) | Electric braking mechanism-equipped vehicle, wheel unit, and control program for wheel unit | |
JP7321055B2 (ja) | 電動車両 | |
JP2006054982A (ja) | 電動モータ式カート | |
JP7479146B2 (ja) | 電気制御車両 | |
JP4462413B2 (ja) | 電動車椅子 | |
JP2021045400A (ja) | 歩行支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220510 |
|
WW01 | Invention patent application withdrawn after publication |