CN114002821B - Optical lens, camera module, electronic equipment and car - Google Patents
Optical lens, camera module, electronic equipment and car Download PDFInfo
- Publication number
- CN114002821B CN114002821B CN202111464988.3A CN202111464988A CN114002821B CN 114002821 B CN114002821 B CN 114002821B CN 202111464988 A CN202111464988 A CN 202111464988A CN 114002821 B CN114002821 B CN 114002821B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- optical lens
- refractive power
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/006—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组、电子设备及汽车。The present application relates to the field of optical imaging technology, and in particular to an optical lens, a camera module, an electronic device and a car.
背景技术Background Art
近年来,随着车载行业的发展,ADAS(Advanced Driver Assistant System,高级驾驶辅助系统)、行车记录仪、倒车影像等车载用摄像头的技术要求越来越高。以ADAS镜头为例,ADAS镜头可准确、实时地抓取路面的信息(例如实现探测物体、探测光源、探测道路标识等)供给影像分析,用在行车记录方面可为驾驶员的驾驶提供清晰的视野,用在监控安防方面,也可以将细节信息清晰记录下来等,在实际应用各方面提供了相应的技术支撑与应用保障,所以市场对ADAS镜头的需求也日渐增大。但是,相关技术中的ADAS镜头的像素不够高,无法实现大像面成像,导致难以搭配超高像素的感光芯片。In recent years, with the development of the automotive industry, the technical requirements for vehicle-mounted cameras such as ADAS (Advanced Driver Assistant System), driving recorders, and reversing images have become increasingly higher. Taking ADAS lenses as an example, ADAS lenses can accurately and in real time capture road information (such as detecting objects, detecting light sources, detecting road signs, etc.) for image analysis. When used in driving records, they can provide drivers with a clear field of vision. When used in monitoring and security, they can also clearly record detailed information, etc., providing corresponding technical support and application guarantees in all aspects of practical applications, so the market demand for ADAS lenses is also increasing. However, the pixels of ADAS lenses in related technologies are not high enough to achieve large image plane imaging, which makes it difficult to match ultra-high pixel photosensitive chips.
发明内容Summary of the invention
本申请实施例公开了一种光学镜头、摄像模组、电子设备及汽车,能够实现大像面的成像效果。The embodiments of the present application disclose an optical lens, a camera module, an electronic device and a car, which can achieve an imaging effect with a large image surface.
为了实现上述目的,第一方面,本申请公开了一种光学镜头,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、第九透镜、第十透镜以及第十一透镜;In order to achieve the above-mentioned object, in a first aspect, the present application discloses an optical lens, wherein the optical lens comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens, a ninth lens, a tenth lens and an eleventh lens arranged in sequence from the object side to the image side along the optical axis;
所述第一透镜具有负屈折力,所述第一透镜的物侧面、像侧面于近光轴处分别为凸面、凹面;The first lens has negative refractive power, and the object side surface and image side surface of the first lens are convex and concave respectively at the near optical axis;
所述第二透镜具有负屈折力,所述第二透镜的像侧面于近光轴处为凹面;The second lens has negative refractive power, and the image side surface of the second lens is concave at the near optical axis;
所述第三透镜具有屈折力;The third lens has refractive power;
所述第四透镜具有屈折力;The fourth lens has refractive power;
所述第五透镜具有屈折力;The fifth lens has refractive power;
所述第六透镜具有正屈折力,所述第六透镜的物侧面于近光轴处为凸面;The sixth lens has positive refractive power, and the object side surface of the sixth lens is convex at the near optical axis;
所述第七透镜具有屈折力,所述第七透镜的物侧面于近光轴处为凸面;The seventh lens has refractive power, and the object side surface of the seventh lens is convex near the optical axis;
所述第八透镜具有屈折力;The eighth lens has refractive power;
所述第九透镜具有屈折力;The ninth lens has refractive power;
所述第十透镜具有屈折力,所述第十透镜的物侧面于近光轴处为凹面;The tenth lens has refractive power, and the object side surface of the tenth lens is concave at the near optical axis;
所述第十一透镜具有正屈折力,所述第十一透镜的物侧面于近光轴处为凸面;The eleventh lens has positive refractive power, and the object side surface of the eleventh lens is convex at the near optical axis;
其中,所述第二透镜、所述第六透镜以及所述第十透镜为非球面透镜,所述第八透镜的像侧面与所述第九透镜的物侧面胶合连接以形成胶合透镜,所述光学镜头还包括光阑,所述光阑位于所述第四透镜与所述第五透镜之间,或者,所述光阑位于所述第五透镜与所述第六透镜之间。Among them, the second lens, the sixth lens and the tenth lens are aspherical lenses, the image side surface of the eighth lens and the object side surface of the ninth lens are glued and connected to form a glued lens, and the optical lens also includes an aperture stop, which is located between the fourth lens and the fifth lens, or the aperture stop is located between the fifth lens and the sixth lens.
本申请提供的所述光学镜头中,当入射光线经过具有负屈折力的所述第一透镜,配合所述第一透镜的物侧面、像侧面于近光轴处分别为凸面、凹面的面型设计,有利于更多的入射光线进入第一透镜,从而有利于实现光学镜头的广角化以及大光圈的成像效果;于此同时,第一透镜的物侧面、像侧面于近光轴处分别为凸面、凹面的设计,有利于减小第一透镜的厚度,减小光学镜头的整体厚度;同时,设置具有负屈折力且为非球面的第二透镜,配合第二透镜的像侧面于近光轴处为凹面的设计,能够有利于降低经第一透镜大角度入射的光线的边缘像差,以降低场曲的发生;配合具有正屈折力且为非球面的第六透镜,同时第六透镜的物侧面于近光轴处为凸面的设计,有利于合理分配光学镜头的正屈折力,从而提供光学镜头对主要光线的汇聚能力。第七透镜的物侧面于近光轴处为凸面的设计有利于降低鬼影产生的风险,而非球面的第十透镜的物侧面于近光轴处为凹面的设计有利于增加光学镜头的进光量,从而加大光学镜头的边缘照度。第十一透镜具有正屈折力,且其物侧面于近光轴处为凸面的设计,有利于使得光线能够更加平缓地射入光学镜头的成像面,从而可扩大光学镜头的像高,实现大像高效果,有利于当将光学镜头应用于摄像模组时,能够与摄像模组的大尺寸的感光芯片相匹配,实现大像面成像效果。In the optical lens provided by the present application, when the incident light passes through the first lens with negative refractive power, the object side surface and image side surface of the first lens are convex and concave at the near optical axis, respectively, which is conducive to more incident light entering the first lens, thereby facilitating the realization of wide-angle and large aperture imaging effects of the optical lens; at the same time, the object side surface and image side surface of the first lens are convex and concave at the near optical axis, respectively, which is conducive to reducing the thickness of the first lens and reducing the overall thickness of the optical lens; at the same time, the second lens with negative refractive power and aspheric surface is provided, and the image side surface of the second lens is concave at the near optical axis, which can help reduce the edge aberration of the light incident at a large angle through the first lens, so as to reduce the occurrence of field curvature; the sixth lens with positive refractive power and aspheric surface is combined with the object side surface of the sixth lens being convex at the near optical axis, which is conducive to reasonably distributing the positive refractive power of the optical lens, thereby providing the optical lens with the ability to converge the main light. The object side of the seventh lens is convex at the near optical axis, which is conducive to reducing the risk of ghosting, while the object side of the aspherical tenth lens is concave at the near optical axis, which is conducive to increasing the amount of light entering the optical lens, thereby increasing the edge illumination of the optical lens. The eleventh lens has a positive refractive power, and its object side is convex at the near optical axis, which is conducive to allowing light to enter the imaging surface of the optical lens more smoothly, thereby expanding the image height of the optical lens and achieving a large image height effect. When the optical lens is applied to a camera module, it can match the large-size photosensitive chip of the camera module and achieve a large image surface imaging effect.
此外,本申请采用第二透镜、第六透镜、第十透镜为非球面透镜,而其他透镜为球面透镜的方式,即,采用球面透镜与非球面透镜结合,既能够降低光学镜头的加工难度,同时也有利于保证光学镜头的成像质量。而第八透镜与第九透镜胶合连接形成胶合透镜的方式,有利于降低光学镜头的色差以及校正光学镜头的球差,从而有利于提高光学镜头的分辨率,进而有利于提高光学镜头的成像质量。In addition, the present application adopts the method that the second lens, the sixth lens, and the tenth lens are aspherical lenses, and the other lenses are spherical lenses, that is, the combination of spherical lenses and aspherical lenses can not only reduce the processing difficulty of the optical lens, but also help to ensure the imaging quality of the optical lens. The method of gluing the eighth lens and the ninth lens to form a glued lens is conducive to reducing the chromatic aberration of the optical lens and correcting the spherical aberration of the optical lens, thereby helping to improve the resolution of the optical lens, and further to improve the imaging quality of the optical lens.
另外,采用光阑位于第四透镜与第五透镜之间,或者是光阑位于第五透镜与第六透镜之间,即,采用近似中置光阑的方式,能够减小光学镜头产生的畸变,同时有利于扩大光学镜头的视场角。In addition, by using an aperture located between the fourth lens and the fifth lens, or by using an aperture located between the fifth lens and the sixth lens, that is, by using an approximately central aperture, the distortion produced by the optical lens can be reduced, while at the same time helping to expand the field of view of the optical lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
35deg<(FOVm×f)/Ym<60deg;35deg<(FOVm×f)/Ym<60deg;
其中,FOVm是所述光学镜头的最大视场角,Ym是所述光学镜头的最大视场角对应的像高,f是所述光学镜头的有效焦距。Among them, FOVm is the maximum field of view angle of the optical lens, Ym is the image height corresponding to the maximum field of view angle of the optical lens, and f is the effective focal length of the optical lens.
满足上述关系式时,光学镜头具有较大的视场角,有利于实现光学镜头的大像高效果,从而当将光学镜头应用于摄像模组时,能够与摄像模组的大尺寸芯片相适配,进而有利于提高光学镜头的像面亮度。当低于关系式下限时,光学镜头的视场角变小,难以实现光学镜头的广角化效果;而超过关系式上限时,光学镜头的最大像高变小,导致光学镜头的视场范围缩小,不利于实现光学镜头的大像高效果。When the above relationship is satisfied, the optical lens has a larger field angle, which is conducive to achieving the large image height effect of the optical lens. Therefore, when the optical lens is applied to the camera module, it can be adapted to the large-size chip of the camera module, which is conducive to improving the image surface brightness of the optical lens. When it is lower than the lower limit of the relationship, the field angle of the optical lens becomes smaller, and it is difficult to achieve the wide-angle effect of the optical lens; when it exceeds the upper limit of the relationship, the maximum image height of the optical lens becomes smaller, resulting in a reduction in the field of view of the optical lens, which is not conducive to achieving the large image height effect of the optical lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
4<Ym/EPD<6;4<Ym/EPD<6;
其中,Ym是所述光学镜头的最大视场角对应的像高,EPD是所述光学镜头的入瞳直径。Wherein, Ym is the image height corresponding to the maximum field angle of the optical lens, and EPD is the entrance pupil diameter of the optical lens.
通过限定光学镜头的像高与入瞳直径的比值,有利于保证大靶面光学镜头的像面亮度的提升,从而实现大光圈成像。当超过上述关系式上限时,光学镜头的入瞳直径较小,缩小了光学镜头射入的光线束的宽度,不利于光学镜头的像面亮度的提升;而当超过上述关系式下限时,光学镜头的像面面积较小,导致光学镜头的视场范围缩小,不利于光学镜头与其应用的摄像模组的大尺寸芯片匹配,进而导致容易产生暗角,影响成像质量。By limiting the ratio of the image height to the entrance pupil diameter of the optical lens, it is beneficial to ensure the improvement of the image brightness of the large-target optical lens, thereby achieving large-aperture imaging. When the upper limit of the above relationship is exceeded, the entrance pupil diameter of the optical lens is small, which reduces the width of the light beam entering the optical lens, which is not conducive to the improvement of the image brightness of the optical lens; and when the lower limit of the above relationship is exceeded, the image area of the optical lens is small, resulting in a reduction in the field of view of the optical lens, which is not conducive to the matching of the optical lens with the large-size chip of the camera module used, which in turn leads to the easy generation of dark corners and affects the imaging quality.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
6deg/mm<CRA/SAGs111<18deg/mm;6deg/mm<CRA/SAGs111<18deg/mm;
其中,CRA是光学镜头的主光线入射角,SAGs111是第十一透镜的物侧面的最大有效口径处至所述第十一透镜的物侧面与所述光轴的交点于光轴方向上的距离,即第十一透镜的物侧面的矢高。Wherein, CRA is the incident angle of the main light of the optical lens, SAGs111 is the distance from the maximum effective aperture of the object side of the eleventh lens to the intersection of the object side of the eleventh lens and the optical axis in the direction of the optical axis, that is, the sagittal height of the object side of the eleventh lens.
通过控制第十一透镜的物侧面的矢高,能够有效控制第十一透镜的物侧面的面型,使得第十一透镜的物侧面不至于太弯曲,便于加工、生产的同时,也有利于减小光线射入光学镜头应用的摄像模组的感光芯片的角度,提高感光性能。当低于关系式下限时,第十一透镜的物侧面的矢高太大,导致十一透镜的物侧面面型过于弯曲,不利于加工、生产;而当超过关系式上限时,光学镜头的主光线入射角偏大,不利于与光学镜头所应用于的摄像模组的感光芯片匹配。By controlling the sagitta of the object side of the eleventh lens, the surface shape of the object side of the eleventh lens can be effectively controlled, so that the object side of the eleventh lens is not too curved, which is convenient for processing and production, and is also beneficial to reduce the angle at which light enters the photosensitive chip of the camera module used by the optical lens, thereby improving the photosensitivity. When it is lower than the lower limit of the relationship, the sagitta of the object side of the eleventh lens is too large, resulting in the surface shape of the object side of the eleventh lens being too curved, which is not conducive to processing and production; and when it exceeds the upper limit of the relationship, the incident angle of the main light of the optical lens is too large, which is not conducive to matching with the photosensitive chip of the camera module used by the optical lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
2.5<SD11/SAGs11<5;2.5<SD11/SAGs11<5;
其中,SD11是所述第一透镜的物侧面的最大有效半口径,SAGs11是所述第一透镜的物侧面的最大有效口径处至所述第一透镜的物侧面与所述光轴的交点于光轴方向上的距离,即第一透镜的物侧面的矢高。Among them, SD11 is the maximum effective semi-aperture of the object side surface of the first lens, and SAGs11 is the distance from the maximum effective aperture of the object side surface of the first lens to the intersection of the object side surface of the first lens and the optical axis in the direction of the optical axis, that is, the sagittal height of the object side surface of the first lens.
通过控制第一透镜的物侧面的最大有效半口径与第一透镜的物侧面的矢高的比值关系,有利于控制第一透镜的物侧面的面型,以及有利于控制光学镜头的头部透镜的口径大小,实现广角效果。当低于关系式下限时,第一透镜的物侧面的面型过于弯曲,增加第一透镜的加工、生产难度,同时也不利于大角度光线入射至光学镜头,影响光学镜头的成像质量;而当超过关系式上限时,第一透镜的物侧面的口径增大,不利于压缩光学镜头的整体透镜组的体积。By controlling the ratio of the maximum effective semi-aperture of the object side surface of the first lens to the sagittal height of the object side surface of the first lens, it is beneficial to control the surface shape of the object side surface of the first lens, and it is beneficial to control the aperture size of the head lens of the optical lens to achieve a wide-angle effect. When it is below the lower limit of the relationship, the surface shape of the object side surface of the first lens is too curved, which increases the difficulty of processing and production of the first lens, and is also not conducive to large-angle light incident on the optical lens, affecting the imaging quality of the optical lens; and when it exceeds the upper limit of the relationship, the aperture of the object side surface of the first lens increases, which is not conducive to compressing the volume of the overall lens group of the optical lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
1<Ym/SD11<2.5;1<Ym/SD11<2.5;
其中,Ym是所述光学镜头的最大视场角对应的像高,SD11为所述第一透镜物侧面的最大有效半口径。Among them, Ym is the image height corresponding to the maximum field angle of the optical lens, and SD11 is the maximum effective semi-aperture of the object side of the first lens.
通过控制光学镜头的最大视场角对应的像高与第一透镜物侧面的最大有效半口径的比值,可保证光学镜头前端头部口径的同时还能保证光学镜头的像高大小,实现大像高小头部效果。当低于关系式下限时,光学镜头的头部透镜的口径加大,由于受光学镜头的安装空间限制,头部透镜的口径加大不利于镜头满足前端小口径、小尺寸的安装需求;而当超过关系式上限时,光学镜头的最大视场角对应的像高过大,不利于与光学镜头所应用的摄像模组的感光芯片的匹配,影响成像效果,同时导致光学镜头的光学照度降低。By controlling the ratio of the image height corresponding to the maximum field angle of the optical lens to the maximum effective semi-aperture of the object side of the first lens, the aperture of the front end of the optical lens can be guaranteed while also ensuring the size of the image height of the optical lens, thus achieving the effect of large image height and small head. When it is below the lower limit of the relationship, the aperture of the head lens of the optical lens increases. Due to the limitation of the installation space of the optical lens, the increase in the aperture of the head lens is not conducive to the lens meeting the installation requirements of small aperture and small size at the front end; and when it exceeds the upper limit of the relationship, the image height corresponding to the maximum field angle of the optical lens is too large, which is not conducive to matching with the photosensitive chip of the camera module used by the optical lens, affecting the imaging effect, and at the same time causing the optical illumination of the optical lens to decrease.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
24mm<TTL/FNO<35mm;24mm<TTL/FNO<35mm;
其中,TTL是所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,即,光学镜头的总长,FNO是所述光学镜头的光圈数。Wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis, that is, the total length of the optical lens, and FNO is the aperture number of the optical lens.
通过合理控制光学镜头的总长和光学镜头的光圈数的比值关系,有利于加大光学镜头的光圈,实现大光圈以及小型化效果(总长短有利于实现小型化设计)。当超过关系式上限时,光学镜头的总长加大,不利于光学镜头的小型化设计;而当低于关系式下限时,光学镜头的光圈数减小,导致光学镜头的进光量不足,光学镜头的光学照度降低,影响光学镜头的成像效果,不利于光学镜头的大光圈成像。By reasonably controlling the ratio of the total length of the optical lens to the aperture number of the optical lens, it is beneficial to increase the aperture of the optical lens, achieve a large aperture and miniaturization effect (a short total length is beneficial to miniaturization design). When the upper limit of the relationship is exceeded, the total length of the optical lens increases, which is not conducive to the miniaturization design of the optical lens; and when it is lower than the lower limit of the relationship, the aperture number of the optical lens decreases, resulting in insufficient light entering the optical lens, reducing the optical illumination of the optical lens, affecting the imaging effect of the optical lens, and is not conducive to large aperture imaging of the optical lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
4.5<f/CT1<9;4.5<f/CT1<9;
其中,f是所述光学镜头的有效焦距,CT1是所述第一透镜于光轴上的厚度,即第一透镜的中心厚度。Wherein, f is the effective focal length of the optical lens, and CT1 is the thickness of the first lens on the optical axis, that is, the center thickness of the first lens.
通过控制光学镜头的有效焦距与第一透镜的中心厚度的比值关系,可以有效地控制第一透镜的中心厚度大小,同时结合焦距的合理分配,可压缩光学镜头的整体镜组体积,减小光学镜头的总长,实现光学镜头的小型化设计。当低于关系式下限时,光学镜头的有效焦距减小,不利于实现光学镜头的长焦效果;而当超过关系式上限时,第一透镜的中心厚度变小,影响光线平稳入射至第一透镜,不利于光学镜头的广角化,同时,第一透镜的中心厚度变小,导致第一透镜的中心太薄容易受力断裂,不利于第一透镜的加工、生产。By controlling the ratio of the effective focal length of the optical lens to the center thickness of the first lens, the center thickness of the first lens can be effectively controlled. At the same time, combined with the reasonable distribution of the focal length, the overall lens group volume of the optical lens can be compressed, the total length of the optical lens can be reduced, and the miniaturization design of the optical lens can be realized. When it is lower than the lower limit of the relationship, the effective focal length of the optical lens is reduced, which is not conducive to achieving the telephoto effect of the optical lens; and when it exceeds the upper limit of the relationship, the center thickness of the first lens becomes smaller, which affects the smooth incidence of light to the first lens, which is not conducive to the wide-angle of the optical lens. At the same time, the center thickness of the first lens becomes smaller, resulting in the center of the first lens being too thin and easy to break under stress, which is not conducive to the processing and production of the first lens.
作为一种可选的实施方式,在本申请第一方面的实施例中,所述光学镜头满足以下关系式:As an optional implementation manner, in an embodiment of the first aspect of the present application, the optical lens satisfies the following relationship:
0.5<f12/f<2.5;0.5<f12/f<2.5;
其中,f12是所述第一透镜与所述第二透镜的组合焦距,f是所述光学镜头的有效焦距。Wherein, f12 is the combined focal length of the first lens and the second lens, and f is the effective focal length of the optical lens.
通过控制第一透镜、第二透镜的组合焦距与光学镜头的有效焦距的比值关系,有利于控制光学镜头的前透镜组对光束的汇聚能力,同时也有利于大角度视场光线射入,实现光学镜头的广角化。当超过关系式上限时,第一透镜、第二透镜的屈折力不足,则大角度光线难以入射至光学镜头,不利于扩大光学镜头的视场角范围;当超过关系式的下限时,第一透镜、第二透镜的屈折力过强,易产生较强的像散和色差,不利于实现光学镜头的高分辨成像的特性。By controlling the ratio of the combined focal length of the first lens and the second lens to the effective focal length of the optical lens, it is beneficial to control the convergence ability of the front lens group of the optical lens on the light beam, and it is also beneficial to the injection of light with a large angle of view, so as to achieve a wide angle of the optical lens. When the upper limit of the relationship is exceeded, the refractive power of the first lens and the second lens is insufficient, and it is difficult for light with a large angle to enter the optical lens, which is not conducive to expanding the field angle range of the optical lens; when the lower limit of the relationship is exceeded, the refractive power of the first lens and the second lens is too strong, which is easy to produce strong astigmatism and chromatic aberration, which is not conducive to achieving the high-resolution imaging characteristics of the optical lens.
第二方面,本申请公开了一种摄像模组,所述摄像模组包括感光芯片以及如上述第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有该光学镜头的摄像模组能够实现大光圈、大像面的成像效果。In a second aspect, the present application discloses a camera module, the camera module comprising a photosensitive chip and the optical lens as described in the first aspect, the photosensitive chip being arranged on the image side of the optical lens. The camera module having the optical lens can achieve an imaging effect of a large aperture and a large image surface.
第三方面,本申请公开了一种电子设备,所述电子设备包括壳体以及如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有该摄像模组的电子设备能够实现大光圈、大像面的成像效果。In a third aspect, the present application discloses an electronic device, the electronic device comprising a housing and a camera module as described in the second aspect, the camera module being arranged in the housing. The electronic device having the camera module can achieve an imaging effect of a large aperture and a large image surface.
第四方面,本申请公开了一种汽车,所述汽车包括车体以及如上述第二方面所述的摄像模组,所述摄像模组设于所述车体。具有该摄像模组的汽车,能够实现大光圈、大像面的成像效果。In a fourth aspect, the present application discloses a car, comprising a car body and the camera module as described in the second aspect, wherein the camera module is arranged on the car body. The car with the camera module can achieve an imaging effect with a large aperture and a large image surface.
与现有技术相比,本申请的有益效果在于:Compared with the prior art, the beneficial effects of this application are:
本申请提供的所述光学镜头中,当入射光线经过具有负屈折力的所述第一透镜,配合所述第一透镜的物侧面、像侧面于近光轴处分别为凸面、凹面的面型设计,有利于更多的入射光线进入第一透镜,从而有利于实现光学镜头的广角化以及大光圈的成像效果;于此同时,第一透镜的物侧面、像侧面于近光轴处分别为凸面、凹面的设计,有利于减小第一透镜的厚度,减小光学镜头的整体厚度;同时,设置具有负屈折力且为非球面的第二透镜,配合第二透镜的像侧面于近光轴处为凹面的设计,能够有利于降低经第一透镜大角度入射的光线的边缘像差,以降低场曲的发生;配合具有正屈折力且为非球面的第六透镜,同时第六透镜的物侧面于近光轴处为凸面的设计,有利于合理分配光学镜头的正屈折力,从而提供光学镜头对主要光线的汇聚能力。第七透镜的物侧面于近光轴处为凸面的设计有利于降低鬼影产生的风险,而非球面的第十透镜的物侧面于近光轴处为凹面的设计有利于增加光学镜头的进光量,从而加大光学镜头的边缘照度。第十一透镜具有正屈折力,且其物侧面于近光轴处为凸面的设计,有利于使得光线能够更加平缓地射入光学镜头的成像面,从而可扩大光学镜头的像高,实现大像高效果,有利于当将光学镜头应用于摄像模组时,能够与摄像模组的大尺寸的感光芯片相匹配,实现大像面成像效果。In the optical lens provided by the present application, when the incident light passes through the first lens with negative refractive power, the object side surface and image side surface of the first lens are convex and concave at the near optical axis, respectively, which is conducive to more incident light entering the first lens, thereby facilitating the realization of wide-angle and large aperture imaging effects of the optical lens; at the same time, the object side surface and image side surface of the first lens are convex and concave at the near optical axis, respectively, which is conducive to reducing the thickness of the first lens and reducing the overall thickness of the optical lens; at the same time, the second lens with negative refractive power and aspheric surface is provided, and the image side surface of the second lens is concave at the near optical axis, which can help reduce the edge aberration of the light incident at a large angle through the first lens, so as to reduce the occurrence of field curvature; the sixth lens with positive refractive power and aspheric surface is combined with the object side surface of the sixth lens being convex at the near optical axis, which is conducive to reasonably distributing the positive refractive power of the optical lens, thereby providing the optical lens with the ability to converge the main light. The object side of the seventh lens is convex at the near optical axis, which is conducive to reducing the risk of ghosting, while the object side of the aspherical tenth lens is concave at the near optical axis, which is conducive to increasing the amount of light entering the optical lens, thereby increasing the edge illumination of the optical lens. The eleventh lens has a positive refractive power, and its object side is convex at the near optical axis, which is conducive to allowing light to enter the imaging surface of the optical lens more smoothly, thereby expanding the image height of the optical lens and achieving a large image height effect. When the optical lens is applied to a camera module, it can match the large-size photosensitive chip of the camera module and achieve a large image surface imaging effect.
此外,本申请采用第二透镜、第六透镜、第十透镜为非球面透镜,而其他透镜为球面透镜的方式,即,采用球面透镜与非球面透镜结合,既能够降低光学镜头的加工难度,同时也有利于保证光学镜头的成像质量。而第八透镜与第九透镜胶合连接形成胶合透镜的方式,有利于降低光学镜头的色差以及校正光学镜头的球差,从而有利于提高光学镜头的分辨率,进而有利于提高光学镜头的成像质量。In addition, the present application adopts the method that the second lens, the sixth lens, and the tenth lens are aspherical lenses, and the other lenses are spherical lenses, that is, the combination of spherical lenses and aspherical lenses can not only reduce the processing difficulty of the optical lens, but also help to ensure the imaging quality of the optical lens. The method of gluing the eighth lens and the ninth lens to form a glued lens is conducive to reducing the chromatic aberration of the optical lens and correcting the spherical aberration of the optical lens, thereby helping to improve the resolution of the optical lens, and further to improve the imaging quality of the optical lens.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1是本申请第一实施例公开的光学镜头的结构示意图;FIG1 is a schematic diagram of the structure of an optical lens disclosed in a first embodiment of the present application;
图2是本申请第一实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);FIG2 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm), and a distortion curve diagram (%) of the optical lens disclosed in the first embodiment of the present application;
图3是本申请第二实施例公开的光学镜头的结构示意图;FIG3 is a schematic diagram of the structure of an optical lens disclosed in a second embodiment of the present application;
图4是本申请第二实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);FIG4 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm), and a distortion curve diagram (%) of the optical lens disclosed in the second embodiment of the present application;
图5是本申请第三实施例公开的光学镜头的结构示意图;FIG5 is a schematic diagram of the structure of an optical lens disclosed in a third embodiment of the present application;
图6是本申请第三实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);FIG6 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm), and a distortion curve diagram (%) of the optical lens disclosed in the third embodiment of the present application;
图7是本申请第四实施例公开的光学镜头的结构示意图;FIG. 7 is a schematic diagram of the structure of an optical lens disclosed in a fourth embodiment of the present application;
图8是本申请第四实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);FIG8 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm), and a distortion curve diagram (%) of the optical lens disclosed in the fourth embodiment of the present application;
图9是本申请第五实施例公开的光学镜头的结构示意图;FIG9 is a schematic structural diagram of an optical lens disclosed in a fifth embodiment of the present application;
图10是本申请第五实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);FIG10 is a diagram of longitudinal spherical aberration (mm), astigmatism curve (mm), and distortion curve (%) of the optical lens disclosed in the fifth embodiment of the present application;
图11是本申请公开的镜头模组的结构示意图;FIG11 is a schematic structural diagram of a lens module disclosed in the present application;
图12是本申请公开的电子设备的结构示意图;FIG12 is a schematic diagram of the structure of an electronic device disclosed in the present application;
图13是本申请公开的汽车的结构示意图。FIG. 13 is a schematic structural diagram of the automobile disclosed in the present application.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In the present application, the terms "upper", "lower", "left", "right", "front", "back", "top", "bottom", "inner", "outer", "middle", "vertical", "horizontal", "lateral", "longitudinal" and the like indicate positions or positional relationships based on the positions or positional relationships shown in the drawings. These terms are mainly used to better describe the present application and its embodiments, and are not used to limit the indicated devices, elements or components to have a specific orientation, or to be constructed and operated in a specific orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。In addition, some of the above terms may be used to express other meanings in addition to indicating orientation or positional relationship. For example, the term "on" may also be used to express a certain dependency or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in this application can be understood according to specific circumstances.
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In addition, the terms "installed", "set", "provided with", "connected", and "connected" should be understood in a broad sense. For example, it can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be an internal connection between two devices, elements, or components. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。In addition, the terms "first", "second", etc. are mainly used to distinguish different devices, elements or components (the specific types and structures may be the same or different), and are not used to indicate or imply the relative importance and quantity of the indicated devices, elements or components. Unless otherwise specified, "plurality" means two or more.
下面将结合实施例和附图对本申请的技术方案作进一步的说明。The technical solution of the present application will be further described below in conjunction with embodiments and drawings.
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10以及第十一透镜L11。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6,并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有屈折力,例如正屈折力或负屈折力;第四透镜L4具有屈折力,例如正屈折力或负屈折力,第五透镜L5具有屈折力,例如正屈折力或负屈折力,第六透镜L6具有正屈折力;第七透镜L7具有屈折力,例如正屈折力或负屈折力,第八透镜L8具有正屈折力或负屈折力,第九透镜L9具有正屈折力或负屈折力,第十透镜L10具有正屈折力或负屈折力,第十一透镜L11具有正屈折力。Please refer to FIG. 1 . According to the first aspect of the present application, the present application discloses an
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3于近光轴处为凹面或凸面,第二透镜L2的像侧面S4于近光轴O处为凹面;第三透镜L3的物侧面S5于近光轴O处为凹面或凸面,第三透镜L3的像侧面S6于近光轴O处为凹面或凸面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处均可为凹面或凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处均可为凹面或凸面;第六透镜L6的物侧面S11于光轴O处为凸面,第六透镜L6的像侧面S12于光轴O处为凹面或凸面。第七透镜L7的物侧面S13于近光轴O处为凸面,第七透镜L7的像侧面S14于近光轴O处为凹面或凸面。第八透镜L8的物侧面S15于近光轴O处为凹面或凸面,第八透镜L8的像侧面S16于近光轴O处为凹面或凸面,第九透镜L9的物侧面S17于近光轴O处为凹面或凸面,第九透镜L9的像侧面S18于近光轴O处为凹面或凸面。第十透镜L10的物侧面S19于近光轴O处为凹面,第十透镜L10的像侧面S20于近光轴O处为凹面或凸面。第十一透镜L11的物侧面S21于近光轴O处为凸面,第十一透镜L11的像侧面S22于近光轴O处为凹面或凸面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 of the second lens L2 is concave or convex at the near optical axis, and the image-side surface S4 of the second lens L2 is concave at the near optical axis O; the object-side surface S5 of the third lens L3 is concave or convex at the near optical axis O, and the image-side surface S6 of the third lens L3 is concave or convex at the near optical axis O; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 may both be concave or convex at the near optical axis O; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 may both be concave or convex at the near optical axis O; the object-side surface S11 of the sixth lens L6 is convex at the optical axis O, and the image-side surface S12 of the sixth lens L6 is concave or convex at the optical axis O. The object-side surface S13 of the seventh lens L7 is convex at the near optical axis O, and the image-side surface S14 of the seventh lens L7 is concave or convex at the near optical axis O. The object-side surface S15 of the eighth lens L8 is concave or convex at the near optical axis O, the image-side surface S16 of the eighth lens L8 is concave or convex at the near optical axis O, the object-side surface S17 of the ninth lens L9 is concave or convex at the near optical axis O, and the image-side surface S18 of the ninth lens L9 is concave or convex at the near optical axis O. The object-side surface S19 of the tenth lens L10 is concave at the near optical axis O, and the image-side surface S20 of the tenth lens L10 is concave or convex at the near optical axis O. The object-side surface S21 of the eleventh lens L11 is convex at the near optical axis O, and the image-side surface S22 of the eleventh lens L11 is concave or convex at the near optical axis O.
一些实施例中,第一透镜L1至第十一透镜L11中,第二透镜L2、第六透镜L6以及第十透镜L10可为非球面透镜,剩余的透镜可为球面透镜。非球面透镜可降低透镜的加工难度,同时能够实现更复杂的面型设计,可见,本申请采用球面透镜和非球面透镜混合设计的方式,能够降低光学镜头100的透镜加工难度,进而有利于降低光学镜头100的加工成本。In some embodiments, among the first lens L1 to the eleventh lens L11, the second lens L2, the sixth lens L6 and the tenth lens L10 may be aspherical lenses, and the remaining lenses may be spherical lenses. Aspherical lenses can reduce the difficulty of lens processing and can achieve more complex surface design. It can be seen that the application adopts a hybrid design of spherical lenses and aspherical lenses, which can reduce the difficulty of lens processing of the
进一步地,考虑到光学镜头100多应用于车载装置、行车记录仪等电子设备中或者是应用于汽车上,作为汽车车体上的摄像头使用,因此,第一透镜L1至第十一透镜L11中可部分透镜为玻璃透镜,部分透镜为塑料透镜。具体地,由前述可知,第一透镜L1至第十一透镜L11中,第二透镜L2、第六透镜L6以及第十透镜L10为非球面透镜,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5、第七透镜L7、第八透镜L8、第九透镜L9以及第十一透镜L11均为球面透镜,因此,球面透镜的材质可为玻璃,非球面透镜的材质可为塑料或玻璃。优选地,第一透镜L1至第十一透镜L11中,所有的透镜均为玻璃透镜,以降低温度对透镜的影响,从而有效确保透镜的成像效果。Furthermore, considering that the
进一步地,第八透镜L8的像侧面S16与第九透镜L9的物侧面S17胶合连接以形成胶合透镜,从而有利于降低光学镜头100的色差以及校正光学镜头100的球差,从而有利于提高光学镜头100的分辨率,进而有利于提高光学镜头100的成像质量。Furthermore, the image-side surface S16 of the eighth lens L8 and the object-side surface S17 of the ninth lens L9 are cemented and connected to form a cemented lens, which is beneficial to reducing the chromatic aberration of the
一些实施例中,光学镜头100还包括光阑102,光阑102可为孔径光阑和/或视场光阑,其可设置在第四透镜L4和第五透镜L5之间,或者是设置在第五透镜L5和第六透镜L6之间,即,该光阑102为近似中置光阑。近似中置光阑的设置,能够减小光学镜头100产生的畸变,同时还有利于扩大光学镜头100的视场角。In some embodiments, the
一些实施例中,光学镜头100还包括红外滤光片12,红外滤光片12设置于第十一透镜L11与光学镜头100的成像面101之间。选用红外滤光片12,通过滤除红外光,提升成像品质,使成像更加符合人眼的视觉体验。可以理解的是,红外滤光片12可以是光学玻璃镀膜制成的,也可以是有色玻璃制成的,或者其他材质的红外滤光片12,可根据实际需要进行选择,在本实施例不作具体限定。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:35deg<(FOVm×f)/Ym<60deg;其中,FOVm是光学镜头100的最大视场角,Ym是光学镜头100的最大视场角对应的像高,f是光学镜头100的有效焦距。满足上述关系式时,光学镜头100具有较大的视场角,有利于实现光学镜头100的大像高效果,从而当将光学镜头100应用于摄像模组时,能够与摄像模组的大尺寸芯片相适配,进而有利于提高光学镜头100的像面亮度。当低于关系式下限时,光学镜头100的视场角变小,难以实现光学镜头100的广角化效果;而超过关系式上限时,光学镜头100的最大像高变小,导致光学镜头100的视场范围缩小,不利于实现光学镜头100的大像高效果。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:4<Ym/EPD<6;其中,Ym是光学镜头100的最大视场角对应的像高,EPD是光学镜头100的入瞳直径。通过限定光学镜头100的像高与入瞳直径的比值,有利于保证大靶面光学镜头100的像面亮度的提升,从而实现大光圈成像。当超过上述关系式上限时,光学镜头100的入瞳直径较小,缩小了光学镜头100射入的光线束的宽度,不利于光学镜头100的像面亮度的提升;而当超过上述关系式下限时,光学镜头100的像面面积较小,导致光学镜头100的视场范围缩小,不利于光学镜头100与其应用的摄像模组的大尺寸芯片匹配,进而导致容易产生暗角,影响成像质量。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:6deg/mm<CRA/SAGs111<18deg/mm;其中,CRA是光学镜头100的主光线入射角,SAGs111是第十一透镜L11的物侧面S21的最大有效口径处至第十一透镜L11的物侧面S21与光轴O的交点于光轴方向上的距离,即第十一透镜L11的物侧面S21的矢高。通过控制第十一透镜L11的物侧面S21的矢高,能够有效控制第十一透镜L11的物侧面S21的面型,使得第十一透镜L11的物侧面S21不至于太弯曲,便于加工、生产的同时,也有利于减小光线射入光学镜头100应用的摄像模组的感光芯片的角度,提高感光性能。当低于关系式下限时,第十一透镜L11的物侧面S21的矢高太大,导致第十一透镜L11的物侧面S21面型过于弯曲,不利于加工、生产;而当超过关系式上限时,光学镜头100的主光线入射角偏大,不利于与光学镜头100所应用于的摄像模组的感光芯片匹配。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:2.5<SD11/SAGs11<5;其中,SD11是第一透镜L1的物侧面S1的最大有效半口径,SAGs11是第一透镜L1的物侧面S1的最大有效口径处至第一透镜L1的物侧面S1与光轴O的交点于光轴方向上的距离,即第一透镜的物侧面S1的矢高。通过控制第一透镜L1的物侧面S1的最大有效半口径与第一透镜L1的物侧面S1的矢高的比值关系,有利于控制第一透镜L1的物侧面S1的面型,以及有利于控制光学镜头100的头部透镜的口径大小,实现广角效果。当低于关系式下限时,第一透镜L1的物侧面S1的面型过于弯曲,增加第一透镜L1的加工、生产难度,同时也不利于大角度光线入射至光学镜头100,影响光学镜头100的成像质量;而当超过关系式上限时,第一透镜L1的物侧面S1的口径增大,不利于压缩光学镜头100的整体透镜组的体积。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:1<Ym/SD11<2.5;其中,Ym是光学镜头100的最大视场角对应的像高,SD11为第一透镜L1的物侧面S1的最大有效半口径。In some embodiments, the
通过控制光学镜头100的最大视场角对应的像高与第一透镜L1的物侧面S1的最大有效半口径的比值,可保证光学镜头100前端头部口径的同时还能保证光学镜头100的像高大小,实现大像高小头部效果。当低于关系式下限时,光学镜头100的头部透镜的口径加大,由于受光学镜头100的安装空间限制,头部透镜的口径加大不利于光学镜头100满足前端小口径、小尺寸的安装需求;而当超过关系式上限时,光学镜头100的最大视场角对应的像高过大,不利于与光学镜头100所应用的摄像模组的感光芯片的匹配,影响成像效果,同时导致光学镜头的光学照度降低。By controlling the ratio of the image height corresponding to the maximum field angle of the
一些实施例中,光学镜头100满足以下关系式:24mm<TTL/FNO<35mm;其中,TTL是第一透镜L1的物侧面S1至光学镜头100的成像面101于光轴O上的距离,即,光学镜头100的总长,FNO是光学镜头100的光圈数。通过合理控制光学镜头100的总长和光学镜头100的光圈数的比值关系,有利于加大光学镜头100的光圈,实现大光圈以及小型化效果(总长短有利于实现小型化设计)。当超过关系式上限时,光学镜头100的总长加大,不利于光学镜头的小型化设计;而当低于关系式下限时,光学镜头100的光圈数减小,导致光学镜头100的进光量不足,光学镜头100的光学照度降低,影响光学镜头100的成像效果,不利于光学镜头100的大光圈成像。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:4.5<f/CT1<9;其中,f是光学镜头100的有效焦距,CT1是第一透镜L1于光轴O的厚度,即第一透镜L1的中心厚度。通过控制光学镜头100的有效焦距与第一透镜L1的中心厚度的比值关系,可以有效地控制第一透镜L1的中心厚度大小,同时结合焦距的合理分配,可压缩光学镜头100的整体镜组体积,减小光学镜头100的总长,实现光学镜头100的小型化设计。当低于关系式下限时,光学镜头100的有效焦距减小,不利于实现光学镜头100的长焦效果;而当超过关系式上限时,第一透镜L1的中心厚度变小,影响光线平稳入射至第一透镜L1,不利于光学镜头100的广角化,同时,第一透镜L1的中心厚度变小,导致第一透镜L1的中心太薄容易受力断裂,不利于第一透镜L1的加工、生产。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:0.5<f12/f<2.5;其中,f12是第一透镜L1与第二透镜L2的组合焦距,f是光学镜头100的有效焦距。通过控制第一透镜L1、第二透镜L2的组合焦距与光学镜头100的有效焦距的比值关系,有利于控制光学镜头100的前透镜组对光束的汇聚能力,同时也有利于大角度视场光线射入,实现光学镜头100的广角化。当超过关系式上限时,第一透镜L1、第二透镜L2的屈折力不足,则大角度光线难以入射至光学镜头100,不利于扩大光学镜头100的视场角范围;当超过关系式的下限时,第一透镜L1、第二透镜L2的屈折力过强,易产生较强的像散和色差,不利于实现光学镜头100的高分辨成像的特性。In some embodiments, the
以下将结合具体参数对本实施例的光学镜头100进行详细说明。The
第一实施例First embodiment
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10、第十一透镜L11以及红外滤光片12。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6可具有正屈折力。第七透镜L7可具有正屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力,第十透镜L10具有负屈折力,第十一透镜L11具有正屈折力。The structural schematic diagram of the
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面、凹面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面、凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凸面、凹面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处为凸面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凸面。第八透镜L8的物侧面S15、像侧面S16于近光轴O处分别为凹面、凸面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处均为凹面,第十透镜L10的物侧面S19、像侧面S20于近光轴O处分别为凹面、凸面,第十一透镜L11的物侧面S21、像侧面S22于近光轴O处均为凸面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 and the image-side surface S4 of the second lens L2 are convex and concave at the near optical axis O, respectively; the object-side surface S5 and the image-side surface S6 of the third lens L3 are convex and concave at the near optical axis O, respectively; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 are concave and convex at the near optical axis O, respectively; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 are convex and concave at the near optical axis O, respectively; the object-side surface S11 of the sixth lens L6 is convex at the near optical axis O, and the image-side surface S12 of the sixth lens L6 is convex at the near optical axis O. The object-side surface S13 and the image-side surface S14 of the seventh lens L7 are both convex at the near optical axis O. The object-side surface S15 and the image-side surface S16 of the eighth lens L8 are concave and convex respectively at the near optical axis O. The object-side surface S17 and the image-side surface S18 of the ninth lens L9 are both concave at the near optical axis O. The object-side surface S19 and the image-side surface S20 of the tenth lens L10 are respectively concave and convex at the near optical axis O. The object-side surface S21 and the image-side surface S22 of the eleventh lens L11 are both convex at the near optical axis O.
具体地,以光学镜头100的有效焦距f=8.062mm、光学镜头100的光圈数FNO=1.9,光学镜头100的最大视场角FOVm=144deg为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,表面编号较小的表面为该透镜的物侧面,表面编号较大的表面为该透镜的像侧面,如表面编号1和2分别对应第一透镜L1的物侧面S1和像侧面S2。表1中的Y半径为相应表面编号的物侧面或像侧面于光轴处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴上的距离。光阑于“厚度”参数列中的数值为光阑至后一表面顶点(顶点指表面与光轴的交点)于光轴上的距离,默认第一透镜物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑设置于后一表面顶点的像侧,若光阑厚度为正值时,光阑在后一表面顶点的物侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm。且表1中的折射率、阿贝数在参考波长587.6nm下得到,表1中的焦距在参考波长555nm下得到。Specifically, taking the effective focal length f=8.062mm, the aperture number FNO=1.9, and the maximum field of view FOVm=144deg of the
进一步地,第一透镜L1至第十一透镜L11中,第二透镜L2、第六透镜L6以及第十透镜L10均为非球面透镜,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:Furthermore, among the first lens L1 to the eleventh lens L11, the second lens L2, the sixth lens L6 and the tenth lens L10 are all aspherical lenses, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula:
其中,x为非球面沿光轴O方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的于光轴O处的曲率,c=1/Y(即,近轴曲率c为上表1中曲率半径Y的倒数);K为圆锥系数;Ai是非球面第i阶的修正系数。下表2给出了可用于第一实施例中各非球面透镜的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Wherein, x is the distance vector height from the vertex of the aspheric surface when the aspheric surface is at a height of h along the optical axis O; c is the curvature of the aspheric surface at the optical axis O, c=1/Y (i.e., the paraxial curvature c is the reciprocal of the curvature radius Y in the above Table 1); K is the cone coefficient; Ai is the correction coefficient of the i-th order of the aspheric surface. The following Table 2 lists the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspheric lens in the first embodiment.
表1Table 1
表2Table 2
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为435.0000nm、471.1327nm、510.0000nm、555.0000nm、610.0000以及650.0000nm下的纵向球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Please refer to (A) in FIG. 2 , which shows the longitudinal spherical aberration curve of the
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为555.0000nm下的像散曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 2 , which is an astigmatism curve of the
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为555.0000nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的矫正。Please refer to (C) in FIG. 2 , which is a distortion curve of the
第二实施例Second embodiment
本申请的第二实施例公开的光学镜头100的结构示意图如图3所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10、第十一透镜L11以及红外滤光片12。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6可具有正屈折力。第七透镜L7可具有正屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力,第十透镜L10具有负屈折力,第十一透镜L11具有正屈折力。The structural schematic diagram of the
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凹面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处均为凹面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处均为凸面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凸面。第八透镜L8的物侧面S15、像侧面S16于近光轴O处分别为凹面、凸面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处分别为凹面、凸面,第十透镜L10的物侧面S19、像侧面S20于近光轴O处分别为凹面、凸面,第十一透镜L11的物侧面S21、像侧面S22于近光轴O处分别为凸面、凹面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 and the image-side surface S4 of the second lens L2 are convex and concave respectively at the near optical axis O; the object-side surface S5 and the image-side surface S6 of the third lens L3 are both concave at the near optical axis O; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 are both convex at the near optical axis O; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 are both concave at the near optical axis O; the object-side surface S11 of the sixth lens L6 is convex at the near optical axis O, and the image-side surface S12 of the sixth lens L6 is both convex at the near optical axis O. The object-side surface S13 and the image-side surface S14 of the seventh lens L7 are both convex at the near optical axis O. The object-side surface S15 and the image-side surface S16 of the eighth lens L8 are respectively concave and convex at the near optical axis O. The object-side surface S17 and the image-side surface S18 of the ninth lens L9 are concave and convex surfaces respectively at the near optical axis O, the object-side surface S19 and the image-side surface S20 of the tenth lens L10 are concave and convex surfaces respectively at the near optical axis O, and the object-side surface S21 and the image-side surface S22 of the eleventh lens L11 are convex and concave surfaces respectively at the near optical axis O.
具体地,以光学镜头100的有效焦距f=7.455mm、光学镜头100的光圈数FNO=1.65,光学镜头100的视场角FOVm=138deg为例,光学镜头100的其他参数由下表3给出。且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm。且表3中的折射率、阿贝数在参考波长587.6nm下得到,焦距在参考波长555nm下得到。下表4给出了可用于第二实施例中各非球面透镜的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Specifically, taking the effective focal length f=7.455mm of the
表3Table 3
表4Table 4
请参阅图4,由图4中的(A)纵向球差曲线图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图4中的(A)、图4中的(B)以及图4中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 4 . It can be seen from the longitudinal spherical aberration curve (A), the astigmatism curve (B) and the distortion curve (C) in FIG. 4 that the longitudinal spherical aberration, astigmatism and distortion of the
第三实施例Third embodiment
本申请第三实施例公开的光学镜头100的结构示意图如图5所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10、第十一透镜L11以及红外滤光片12。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6可具有正屈折力。第七透镜L7可具有正屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力,第十透镜L10具有负屈折力,第十一透镜L11具有正屈折力。The structural schematic diagram of the
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凹面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面、凸面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处分别为凸面、凹面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凸面。第八透镜L8的物侧面S15、像侧面S16于近光轴O处均为凸面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处均为凹面,第十透镜L10的物侧面S19、像侧面S20于近光轴O处均为凹面,第十一透镜L11的物侧面S21、像侧面S22于近光轴O处均为凸面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 and the image-side surface S4 of the second lens L2 are convex and concave at the near optical axis O, respectively; the object-side surface S5 and the image-side surface S6 of the third lens L3 are both concave at the near optical axis O; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 are both convex at the near optical axis O; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 are concave and convex at the near optical axis O, respectively; the object-side surface S11 of the sixth lens L6 is convex at the near optical axis O, and the image-side surface S12 of the sixth lens L6 is convex and concave at the near optical axis O, respectively. The object-side surface S13 and the image-side surface S14 of the seventh lens L7 are both convex at the near optical axis O. The object-side surface S15 and the image-side surface S16 of the eighth lens L8 are both convex at the near optical axis O. The object-side surface S17 and the image-side surface S18 of the ninth lens L9 are both concave surfaces at the near optical axis O, the object-side surface S19 and the image-side surface S20 of the tenth lens L10 are both concave surfaces at the near optical axis O, and the object-side surface S21 and the image-side surface S22 of the eleventh lens L11 are both convex surfaces at the near optical axis O.
具体地,以光学镜头100的有效焦距f=6.5mm、光学镜头100的光圈数FNO=1.61,光学镜头100的视场角FOVm=134deg为例,光学镜头100的其他参数由下表5给出。且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm。且表5中的折射率、阿贝数在参考波长587.6nm下得到,焦距在参考波长555nm下得到。下表6给出了可用于第三实施例中各非球面透镜的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Specifically, taking the effective focal length f=6.5mm of the
表5Table 5
表6Table 6
请参阅图6,由图6中的(A)纵向球差曲线图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图6中的(A)、图6中的(B)以及图6中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 6 . It can be seen from the longitudinal spherical aberration curve (A), the astigmatism curve (B) and the distortion curve (C) in FIG. 6 that the longitudinal spherical aberration, astigmatism and distortion of the
第四实施例Fourth embodiment
本申请的第四实施例公开的光学镜头100的结构示意图如图7所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10、第十一透镜L11以及红外滤光片12。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6可具有正屈折力。第七透镜L7可具有正屈折力,第八透镜L8具有负屈折力,第九透镜L9具有正屈折力,第十透镜L10具有负屈折力,第十一透镜L11具有正屈折力。The structural schematic diagram of the
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凹面、凸面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处均为凸面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处均为凸面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凸面。第八透镜L8的物侧面S15、像侧面S16于近光轴O处均为凹面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处分别为凸面、凹面,第十透镜L10的物侧面S19、像侧面S20于近光轴O处均为凹面,第十一透镜L11的物侧面S21、像侧面S22于近光轴O处分别为凸面、凹面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 and the image-side surface S4 of the second lens L2 are convex and concave respectively at the near optical axis O; the object-side surface S5 and the image-side surface S6 of the third lens L3 are concave and convex respectively at the near optical axis O; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 are both convex at the near optical axis O; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 are both convex at the near optical axis O; the object-side surface S11 of the sixth lens L6 is convex at the near optical axis O, and the image-side surface S12 of the sixth lens L6 is both convex at the near optical axis O. The object-side surface S13 and the image-side surface S14 of the seventh lens L7 are both convex at the near optical axis O. The object-side surface S15 and the image-side surface S16 of the eighth lens L8 are both concave at the near optical axis O. The object-side surface S17 and the image-side surface S18 of the ninth lens L9 are convex and concave respectively at the near optical axis O, the object-side surface S19 and the image-side surface S20 of the tenth lens L10 are both concave at the near optical axis O, and the object-side surface S21 and the image-side surface S22 of the eleventh lens L11 are convex and concave respectively at the near optical axis O.
具体地,以光学镜头100的有效焦距f=7.759mm、光学镜头100的光圈数FNO=1.75,光学镜头100的视场角FOVm=145deg为例,光学镜头100的其他参数由下表7给出。且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm。且表7中的折射率、阿贝数在参考波长587.6nm下得到,焦距在参考波长555nm下得到。下表8给出了可用于第四实施例中各非球面透镜的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Specifically, taking the effective focal length f=7.759mm of the
表7Table 7
表8Table 8
请参阅图8,由图8中的(A)纵向球差曲线图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图8中的(A)、图8中的(B)以及图8中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG8 . It can be seen from the longitudinal spherical aberration curve (A), the astigmatism curve (B) and the distortion curve (C) in FIG8 that the longitudinal spherical aberration, astigmatism and distortion of the
第五实施例Fifth embodiment
本申请的第五实施例公开的光学镜头100的结构示意图如图9所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10、第十一透镜L11以及红外滤光片12。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6可具有正屈折力。第七透镜L7可具有负屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力,第十透镜L10具有正屈折力,第十一透镜L11具有正屈折力。The structural schematic diagram of the
进一步地,第一透镜L1的物侧面S1于近光轴O处为凸面,第一透镜L1的像侧面S2于近光轴O处为凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处均为凹面;第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凹面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凸面、凹面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凸面、凹面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处分别为凸面、凹面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处分别为凸面、凹面。第八透镜L8的物侧面S15、像侧面S16于近光轴O处均为凸面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处均为凹面,第十透镜L10的物侧面S19、像侧面S20于近光轴O处分别为凹面、凸面,第十一透镜L11的物侧面S21、像侧面S22于近光轴O处分别为凸面、凹面。Further, the object-side surface S1 of the first lens L1 is convex at the near optical axis O, and the image-side surface S2 of the first lens L1 is concave at the near optical axis O; the object-side surface S3 and the image-side surface S4 of the second lens L2 are both concave at the near optical axis O; the object-side surface S5 and the image-side surface S6 of the third lens L3 are both concave at the near optical axis O; the object-side surface S7 and the image-side surface S8 of the fourth lens L4 are convex and concave at the near optical axis O, respectively; the object-side surface S9 and the image-side surface S10 of the fifth lens L5 are convex and concave at the near optical axis O, respectively; the object-side surface S11 of the sixth lens L6 is convex at the near optical axis O, and the image-side surface S12 of the sixth lens L6 are convex and concave at the near optical axis O, respectively. The object-side surface S13 and the image-side surface S14 of the seventh lens L7 are convex and concave at the near optical axis O, respectively. The object-side surface S15 and the image-side surface S16 of the eighth lens L8 are both convex at the near optical axis O. The object-side surface S17 and the image-side surface S18 of the ninth lens L9 are both concave surfaces at the near optical axis O, the object-side surface S19 and the image-side surface S20 of the tenth lens L10 are concave surfaces and convex surfaces at the near optical axis O, respectively, and the object-side surface S21 and the image-side surface S22 of the eleventh lens L11 are convex surfaces and concave surfaces at the near optical axis O, respectively.
具体地,以光学镜头100的有效焦距f=8.022mm、光学镜头100的光圈数FNO=1.68,光学镜头100的视场角FOVm=135deg为例,光学镜头100的其他参数由下表9给出。且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm。且表9中的折射率、阿贝数在参考波长587.6nm下得到,焦距在参考波长555nm下得到。下表10给出了可用于第五实施例中各非球面透镜的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Specifically, taking the effective focal length f=8.022mm of the
表9Table 9
表10Table 10
请参阅图10,由图10中的(A)纵向球差曲线图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图10中的(A)、图10中的(B)以及图10中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 10 . It can be seen from the longitudinal spherical aberration curve (A), the astigmatism curve (B) and the distortion curve (C) in FIG. 10 that the longitudinal spherical aberration, astigmatism and distortion of the
请参阅表11,表11为本申请第一实施例至第五实施例中各关系式的比值汇总。Please refer to Table 11, which is a summary of the ratios of various relationship equations in the first to fifth embodiments of the present application.
表11Table 11
请参阅图11,本申请还公开了一种摄像模组200,该摄像模组包括感光芯片201以及如上述第一实施例至第六实施例中任一实施例的光学镜头100,该感光芯片201设于光学镜头100的像侧。该光学镜头100用于接收被摄物的光信号并投射到感光芯片201,感光芯片201用于将对应于被摄物的光信号转换为图像信号,这里不做赘述。可以理解,具有上述光学镜头100的摄像模组200能够实现大光圈、大像面、小型化设计的效果,以提升光学镜头100的成像品质。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Please refer to Figure 11. The present application also discloses a
请参阅图12,本申请还公开了一种电子设备300,该电子设备300包括壳体301和上述的摄像模组200,摄像模组200设于壳体301。其中,该电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器、行车记录仪、倒车影像仪等。可以理解,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,能够实现大光圈、大像面、小型化设计的效果,以提升光学镜头100的成像品质。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Please refer to Figure 12. The present application also discloses an
请参阅图13,本申请还公开了一种汽车400,该汽车400包括车体410和上述的摄像模组200,该摄像模组200设于车体410上以获取影像信息。可以理解,具有上述摄像模组200的汽车400,也具有上述光学镜头100的全部技术效果。即,具有该摄像模组的汽车能够有利于该汽车对车体周围的环境信息的获取,为驾驶员的驾驶提供清晰的视野,为驾驶员的安全驾驶提供保障。例如,当将本申请的摄像模组200应用于汽车的ADAS(Advanced DrivingAssistance System,高级驾驶辅助系统)时,该摄像模组可准确、实时地抓取路面的信息(例如探测物体、探测光源、探测道路标识等)供给ADAS分析判断,并及时作出响应,为自动驾驶安全提供保障。当摄像模组应用在行车记录系统时可为驾驶员的驾驶提供清晰的视野,为驾驶员的安全驾驶提供保障。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Please refer to Figure 13, the present application also discloses a
以上对本申请实施例公开的光学镜头、摄像模组、电子设备及汽车进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的光学镜头、摄像模组、电子设备及汽车及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。The optical lens, camera module, electronic device and automobile disclosed in the embodiments of the present application are introduced in detail above. Specific examples are used herein to illustrate the principles and implementation methods of the present application. The description of the above embodiments is only used to help understand the optical lens, camera module, electronic device and automobile of the present application and its core ideas. At the same time, for those skilled in the art, according to the ideas of the present application, there will be changes in the specific implementation methods and application scopes. In summary, the contents of this specification should not be understood as limiting the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111464988.3A CN114002821B (en) | 2021-12-03 | 2021-12-03 | Optical lens, camera module, electronic equipment and car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111464988.3A CN114002821B (en) | 2021-12-03 | 2021-12-03 | Optical lens, camera module, electronic equipment and car |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114002821A CN114002821A (en) | 2022-02-01 |
CN114002821B true CN114002821B (en) | 2023-07-04 |
Family
ID=79931245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111464988.3A Active CN114002821B (en) | 2021-12-03 | 2021-12-03 | Optical lens, camera module, electronic equipment and car |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114002821B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI412813B (en) * | 2010-11-05 | 2013-10-21 | Hon Hai Prec Ind Co Ltd | Zoom projection lens |
JP2017116679A (en) * | 2015-12-22 | 2017-06-29 | 株式会社タムロン | Zoom lens and imaging apparatus |
CN108957713B (en) * | 2017-05-19 | 2021-04-27 | 信泰光学(深圳)有限公司 | Projection lens |
CN209311771U (en) * | 2018-12-29 | 2019-08-27 | 深圳市点睛创视技术有限公司 | A kind of Miniature projection lens |
CN210109454U (en) * | 2019-07-29 | 2020-02-21 | 厦门力鼎光电股份有限公司 | Fisheye lens |
JP2021173923A (en) * | 2020-04-28 | 2021-11-01 | 株式会社ライトショー・テクノロジー | Image projection zoom lens and image projection device |
-
2021
- 2021-12-03 CN CN202111464988.3A patent/CN114002821B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114002821A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202003075U (en) | Wide-angle optical lens assembly | |
CN113552697B (en) | Optical lens, camera module and electronic equipment | |
CN113933968B (en) | Optical lens, camera module and electronic equipment | |
CN102955224A (en) | Optical image capturing lens | |
CN113433661B (en) | Optical lens, camera module, electronic equipment and automobile | |
CN113484984B (en) | Optical lens, camera module and electronic equipment | |
CN113433653B (en) | Optical lenses, camera modules and electronic equipment | |
CN113391433B (en) | Optical lens, camera module and electronic equipment | |
CN114002818B (en) | Optical system, camera module and electronic equipment | |
CN112180560A (en) | Optical lens, camera module, electronic equipment and automobile | |
CN114442271B (en) | Optical system, camera module and electronic equipment | |
CN114488474B (en) | Optical lenses, camera modules, electronic equipment and automobiles | |
CN114296213B (en) | Optical lens, camera module and electronic equipment | |
CN113933962B (en) | Optical lens, camera module and electronic equipment | |
CN113866940B (en) | Optical system, camera module and electronic equipment | |
CN218497241U (en) | Optical imaging system, camera and terminal equipment | |
CN114167582B (en) | Optical lens, camera module and electronic equipment | |
CN113960761B (en) | Optical lens, camera module, electronic equipment and car | |
CN113985581B (en) | Optical system, camera module, electronic equipment and vehicle system | |
CN114114655B (en) | Optical lens, camera module, electronic equipment and car | |
CN114002821B (en) | Optical lens, camera module, electronic equipment and car | |
CN115903191A (en) | Optical lens, camera module and terminal equipment | |
CN115166938A (en) | Optical lens, camera module and terminal | |
CN115586621A (en) | Optical lens, camera module and electronic equipment | |
CN113703132A (en) | Optical system, lens module and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Jiangxi Province Patentee after: Jiangxi Oufei Optics Co.,Ltd. Country or region after: China Address before: No. 699 Tianxiang North Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee before: Jiangxi Jingchao optics Co.,Ltd. Country or region before: China |