CN113391433B - Optical lens, camera module and electronic equipment - Google Patents
Optical lens, camera module and electronic equipment Download PDFInfo
- Publication number
- CN113391433B CN113391433B CN202110615010.6A CN202110615010A CN113391433B CN 113391433 B CN113391433 B CN 113391433B CN 202110615010 A CN202110615010 A CN 202110615010A CN 113391433 B CN113391433 B CN 113391433B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- optical lens
- optical axis
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/008—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。The invention relates to the technical field of optical imaging, in particular to an optical lens, a camera module and an electronic device.
背景技术Background technique
目前,随着摄像技术的发展,人们对光学镜头的成像品质的要求越来越高,同时轻薄小型化的结构特点也逐渐成为光学镜头的发展趋势。相关技术中,在满足光学镜头轻薄小型化的设计趋势下,光学镜头的画质感较差、分辨率较低,且光学镜头的成像质量也不够清晰,难以满足人们对光学镜头的高清成像要求。At present, with the development of imaging technology, people have higher and higher requirements for the imaging quality of optical lenses, and the structural characteristics of light, thin and miniaturized optical lenses have gradually become the development trend of optical lenses. In the related art, under the design trend of light, thin and miniaturized optical lenses, the image quality of optical lenses is poor, the resolution is low, and the imaging quality of optical lenses is not clear enough, so it is difficult to meet people's high-definition imaging requirements for optical lenses. .
发明内容SUMMARY OF THE INVENTION
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够在实现光学镜头的轻薄、小型化设计的同时,改善光学镜头的画质感,提高光学镜头的分辨率和成像清晰度。The embodiment of the present invention discloses an optical lens, a camera module and an electronic device, which can improve the image quality of the optical lens, and improve the resolution and imaging clarity of the optical lens while realizing the light, thin and miniaturized design of the optical lens. .
为了实现上述目的,第一方面,本发明公开了一种光学镜头,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜;In order to achieve the above object, in a first aspect, the present invention discloses an optical lens, the optical lens includes a first lens, a second lens, a third lens, and a fourth lens arranged in sequence from the object side to the image side along the optical axis , the fifth lens and the sixth lens;
所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;The first lens has a positive refractive power, the object side of the first lens is convex at the near optical axis, and the image side of the first lens is concave at the near optical axis;
所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;The second lens has a negative refractive power, the object side of the second lens is convex at the near optical axis, and the image side of the second lens is concave at the near optical axis;
所述第三透镜具有屈折力;the third lens has refractive power;
所述第四透镜具有屈折力;the fourth lens has refractive power;
所述第五透镜具有屈折力;the fifth lens has refractive power;
所述第六透镜具有负屈折力,所述第六透镜的像侧面于近光轴处为凹面;The sixth lens has negative refractive power, and the image side surface of the sixth lens is concave at the near optical axis;
所述光学镜头满足以下关系式:The optical lens satisfies the following relationship:
1.3mm<Imgh^2/TTL/Fno<1.42mm;1.3mm<Imgh^2/TTL/Fno<1.42mm;
其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,Imgh为所述光学镜头的成像面上有效像素区域对角线长的一半,Fno为所述光学镜头的光圈数。Wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis, Imgh is half the diagonal length of the effective pixel area on the imaging surface of the optical lens, Fno is the aperture number of the optical lens.
本申请提供的光学镜头包括具有正曲折力的第一透镜以及负曲折力的第二透镜组合,有利于矫正光学镜头于光轴上的球差,提高分辨率;第一透镜和第二透镜的物侧面于光轴处均为凸面,以及二者的像侧面于光轴处均为凹面,有利于光学镜头光线的汇聚,提高光学镜头的光学性能;同时,该光学镜头还包括具有负曲折力的第六透镜,而且第六透镜的物侧面于光轴处为凸面,能够有利于矫正光学镜头的场曲,提高光学镜头的光学性能。The optical lens provided by the present application includes a combination of a first lens with a positive inflection force and a second lens with a negative inflection force, which is beneficial to correct the spherical aberration of the optical lens on the optical axis and improve the resolution; The object sides are convex at the optical axis, and the image sides of the two are concave at the optical axis, which is conducive to the convergence of the light of the optical lens and improves the optical performance of the optical lens; at the same time, the optical lens also includes a negative bending force. The sixth lens is provided, and the object side of the sixth lens is convex at the optical axis, which can help correct the field curvature of the optical lens and improve the optical performance of the optical lens.
也即是说,在本申请提供的光学镜头中,通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,同时使光学镜头满足以下关系式:1.3mm<Imgh^2/TTL/Fno<1.42mm时,能够在实现所述光学镜头的轻薄、小型化设计的同时,一方面,有利于使得所述光学镜头具有大像面的特点,改善所述光学镜头的画质感,以及提高所述光学镜头的分辨率和成像清晰度,使所述光学镜头具有更好的成像效果,满足人们对所述光学镜头的高清成像要求。另一方面,还有利于使所述光学镜头具有大孔径的特点,具有更大的进光量,不仅可以使所述光学镜头获取更多的场景内容,丰富所述光学镜头的成像信息,还可可以改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,有利于适用于夜景、雨天、星空等暗光环境拍摄,并且具有更好的虚化效果。That is to say, in the optical lens provided by this application, by selecting an appropriate number of lenses and rationally configuring the refractive power and surface shape of each lens, the optical lens can satisfy the following relationship: 1.3mm<Imgh^2/TTL/ When Fno<1.42mm, while realizing the light, thin and miniaturized design of the optical lens, on the one hand, it is beneficial to make the optical lens have the characteristics of a large image area, improve the picture quality of the optical lens, and The resolution and imaging clarity of the optical lens are improved, so that the optical lens has a better imaging effect and meets people's high-definition imaging requirements for the optical lens. On the other hand, it is also beneficial to make the optical lens have the characteristics of a large aperture and a larger amount of light entering, which not only enables the optical lens to obtain more scene content, enriches the imaging information of the optical lens, but also enables the optical lens to obtain more scene content. It can improve the shooting conditions in dark light, so that while achieving high-quality and high-definition shooting effects, it is suitable for shooting in dark light environments such as night scenes, rainy days, and starry sky, and has better blur effect.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:TTL/Imgh<1.3。As an optional implementation manner, in an embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: TTL/Imgh<1.3.
满足上述关系式时,有利于使得所述光学镜头的结构更加紧凑,具有超薄的特性,满足小型化的设计要求;而当超过关系式的上限时,所述光学镜头的光学总长(即第一透镜的物侧面至光学镜头的成像面于光轴上的距离)过长,不利于所述光学镜头的小型化。When the above relationship is satisfied, it is beneficial to make the structure of the optical lens more compact, have ultra-thin characteristics, and meet the design requirements for miniaturization; and when the upper limit of the relationship is exceeded, the total optical length of the optical lens (that is, the first The distance from the object side of a lens to the imaging surface of the optical lens on the optical axis) is too long, which is not conducive to the miniaturization of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.3<|f2/f6|<5;As an optional implementation manner, in an embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: 0.3<|f2/f6|<5;
其中,f2为所述第二透镜的有效焦距,f6为所述第六透镜的有效焦距。Wherein, f2 is the effective focal length of the second lens, and f6 is the effective focal length of the sixth lens.
通过合理地控制所述第二透镜和所述第六透镜的有效焦距的比值,能够合理分配所述第二透镜和所述第六透镜的球差贡献,从而使得所述光学镜头的成像面上有效像素区域具有良好的成像质量。By reasonably controlling the ratio of the effective focal lengths of the second lens and the sixth lens, the spherical aberration contribution of the second lens and the sixth lens can be reasonably distributed, so that the imaging surface of the optical lens can be The effective pixel area has good imaging quality.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:Fno<2.0。As an optional implementation manner, in an embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: Fno<2.0.
通过上述关系式限定,有利于保证所述光学镜头具有大孔径的特性,以使所述光学镜头具有足够的进光量,从而有利于使所述光学镜头的拍摄图像更加清晰,并有利于实现在夜景、星空等光亮度不大的物空间场景中的高质量拍摄和清晰成像。The above-mentioned relational formula is used to ensure that the optical lens has the characteristics of a large aperture, so that the optical lens has sufficient light input, which is conducive to making the captured image of the optical lens clearer, and is conducive to realizing the High-quality shooting and clear imaging in object space scenes with low brightness such as night scenes and starry sky.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.1<D5/CT6<0.7;As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: 0.1<D5/CT6<0.7;
其中,D5为所述第四透镜和所述第五透镜之间于所述光轴上的空气间隙,CT6为所述第六透镜于所述光轴上的厚度。Wherein, D5 is the air gap on the optical axis between the fourth lens and the fifth lens, and CT6 is the thickness of the sixth lens on the optical axis.
通过合理地控制所述第四、第五透镜之间于所述光轴上的空气间隙和所述第六透镜于所述光轴上的厚度的比值在一定的范围,可以有效地平衡所述光学镜头产生的高级像差,且有利于在工程制作中适当地调整所述光学镜头的场曲,提高所述光学镜头的成像质量。By reasonably controlling the ratio between the air gap between the fourth and fifth lenses on the optical axis and the thickness of the sixth lens on the optical axis within a certain range, the The high-level aberrations generated by the optical lens are beneficial to properly adjust the field curvature of the optical lens during engineering production, and improve the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:1.5<R4/R5<5;As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: 1.5<R4/R5<5;
其中,R4为所述第二透镜的物侧面于所述光轴处的曲率半径,R5为所述第二透镜的像侧面于所述光轴处的曲率半径。Wherein, R4 is the radius of curvature of the object side of the second lens at the optical axis, and R5 is the radius of curvature of the image side of the second lens at the optical axis.
通过合理地控制所述第二透镜的物侧面、像侧面于光轴处的曲率半径的比值,可以有效地平衡所述光学镜头的像差,降低所述光学镜头的敏感度,提高所述光学镜头的光学性能。By reasonably controlling the ratio of the curvature radius of the object side and the image side of the second lens at the optical axis, the aberration of the optical lens can be effectively balanced, the sensitivity of the optical lens can be reduced, and the optical lens can be improved. Optical performance of the lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.3<SAG51/CT5<1.0;As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: 0.3<SAG51/CT5<1.0;
其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面的最大有效半径处于光轴上的距离,CT5为所述第五透镜于光轴上的厚度。Wherein, SAG51 is the distance from the intersection of the object side of the fifth lens and the optical axis to the maximum effective radius of the object side of the fifth lens on the optical axis, and CT5 is the thickness of the fifth lens on the optical axis .
通过上述关系式限定,有利于第五透镜的加工成型,降低制造的敏感性,能够更好地实现制造。而当低于上述关系式的下限时,第五透镜的矢高较低,会对所述光学镜头的光学性能造成影响;而当超过上述关系式的上限时,会导致第五透镜的制造相对困难,从而会增加所述光学镜头的制造难度和制造成本。The above-mentioned relational expression is limited, which facilitates the processing and molding of the fifth lens, reduces the sensitivity of manufacturing, and enables better manufacturing. When it is lower than the lower limit of the above relationship, the sag height of the fifth lens is relatively low, which will affect the optical performance of the optical lens; and when the upper limit of the above relationship is exceeded, the fifth lens will be relatively difficult to manufacture. , thereby increasing the manufacturing difficulty and manufacturing cost of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:2<(R11+R12)/(R11-R12)<7;As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational formula: 2<(R11+R12)/(R11-R12)<7;
其中,R11为所述第六透镜的物侧面于所述光轴处的曲率半径,R12为所述第六透镜的像侧面于所述光轴处的曲率半径。Wherein, R11 is the radius of curvature of the object side of the sixth lens at the optical axis, and R12 is the radius of curvature of the image side of the sixth lens at the optical axis.
通过上述关系式限定,能够使所述第六透镜的物侧面于光轴处的曲率半径和其像侧面于所述光轴处的曲率半径较为合适,这样可以保证所述第六透镜的形状的可加工性,同时还可以有效地改善所述光学镜头的像散,提升所述光学镜头的光学性能。Through the above relationship, the radius of curvature of the object side of the sixth lens at the optical axis and the radius of curvature of the image side of the sixth lens at the optical axis can be more suitable, so that the shape of the sixth lens can be guaranteed. The astigmatism of the optical lens can also be effectively improved, and the optical performance of the optical lens can be improved.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.2<f6/(f1+f2)<3;As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: 0.2<f6/(f1+f2)<3;
其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f6为所述第六透镜的有效焦距。Wherein, f1 is the effective focal length of the first lens, f2 is the effective focal length of the second lens, and f6 is the effective focal length of the sixth lens.
通过上述关系式限定,以控制所述第六透镜的有效焦距与所述第一、第二透镜的有效焦距之和的比值在一定的范围,从而能够合理地分配所述第一透镜、所述第二透镜以及所述第六透镜的球差贡献,从而使得所述光学镜头的成像面上有效像素区域具有良好的成像质量。The above relationship is defined to control the ratio of the effective focal length of the sixth lens to the sum of the effective focal lengths of the first and second lenses within a certain range, so that the first lens, the The spherical aberration contribution of the second lens and the sixth lens enables the effective pixel area on the imaging surface of the optical lens to have good imaging quality.
第二方面,本发明公开了一种摄像模组,所述摄像模组包括感光芯片和如上述第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有所述光学镜头的摄像模组能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。In a second aspect, the present invention discloses a camera module. The camera module includes a photosensitive chip and the optical lens according to the first aspect above, and the photosensitive chip is disposed on the image side of the optical lens. The camera module with the optical lens can meet the requirements of light, thin and miniaturized design, and at the same time, it is beneficial to make the camera module have the characteristics of a large image surface, improve the picture quality, and improve the resolution and imaging clarity. At the same time, it is also beneficial to make the optical lens have the characteristics of a large aperture and a larger amount of light input, which can improve the shooting conditions in dark light, thereby effectively improving the shooting quality of the camera module in a dark light environment, which is conducive to being suitable for night scenes. , rainy days, starry sky and other dark light environments.
第三方面,本发明还公开了一种电子设备,所述电子设备包括壳体和如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有所述摄像模组的电子设备,能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。In a third aspect, the present invention further discloses an electronic device, the electronic device includes a casing and the camera module according to the second aspect above, and the camera module is arranged on the casing. The electronic device with the camera module can meet the requirements of light, thin and miniaturized design, and at the same time, it is beneficial to make the camera module have the characteristics of a large image area, improve the picture quality, and improve the resolution and imaging clarity. At the same time, it is also beneficial to make the optical lens have the characteristics of a large aperture and a larger amount of light input, which can improve the shooting conditions in dark light, thereby effectively improving the shooting quality of the camera module in a dark light environment, which is conducive to being suitable for night scenes. , rainy days, starry sky and other dark light environments.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明实施例提供的光学镜头、摄像模组及电子设备,所述光学镜头采用六片式透镜,使用的透镜的枚数相对较少,有利于实现光学镜头的轻薄、小型化设计,并且对各个透镜的屈折力、面型进行设计,同时使光学镜头满足以下关系式:1.3mm<Imgh^2/TTL/Fno<1.42mm时,能够在实现光学镜头的轻薄、小型化设计的同时,有利于使得光学镜头具有大像面的特点,改善光学镜头的画质感,以及提高光学镜头的分辨率和成像清晰度,使光学镜头具有更好的成像效果,满足人们对光学镜头的高清成像要求。进一步地,还有利于使光学镜头具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,适用于夜景、雨天、星空等暗光环境拍摄,并且具有更好的虚化效果。In the optical lens, camera module, and electronic equipment provided by the embodiments of the present invention, the optical lens adopts six-piece lenses, and the number of lenses used is relatively small, which is conducive to realizing the light, thin, and miniaturized design of the optical lens, and can be used for each lens. The refractive power and surface shape of the lens are designed, and at the same time, the optical lens satisfies the following relationship: 1.3mm<Imgh^2/TTL/Fno<1.42mm, it can realize the thin and small design of the optical lens, and at the same time, it is beneficial to The optical lens has the characteristics of a large image surface, improves the image quality of the optical lens, and improves the resolution and imaging clarity of the optical lens, so that the optical lens has a better imaging effect and meets people's high-definition imaging requirements for optical lenses. Further, it is also beneficial to make the optical lens have the characteristics of a large aperture, with a larger amount of light input, which can improve the shooting conditions in dark light, so that it can achieve high-quality and high-definition shooting effects, and is suitable for night scenes, rainy days, etc. Shooting in dark light environment such as starry sky, and has better blur effect.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the drawings required in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1是本申请第一实施例公开的光学镜头的结构示意图;1 is a schematic structural diagram of an optical lens disclosed in a first embodiment of the present application;
图2是本申请第一实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)及畸变曲线图(%);2 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the first embodiment of the present application;
图3是本申请第二实施例公开的光学镜头的结构示意图;3 is a schematic structural diagram of an optical lens disclosed in a second embodiment of the present application;
图4是本申请第二实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);4 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the second embodiment of the present application;
图5是本申请第三实施例公开的光学镜头的结构示意图;5 is a schematic structural diagram of an optical lens disclosed in a third embodiment of the present application;
图6是本申请第三实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);6 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the third embodiment of the present application;
图7是本申请第四实施例公开的光学镜头的结构示意图;7 is a schematic structural diagram of an optical lens disclosed in a fourth embodiment of the present application;
图8是本申请第四实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);8 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fourth embodiment of the present application;
图9是本申请第五实施例公开的光学镜头的结构示意图;9 is a schematic structural diagram of an optical lens disclosed in a fifth embodiment of the present application;
图10是本申请第五实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);10 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fifth embodiment of the present application;
图11是本申请第五实施例公开的光学镜头的结构示意图;11 is a schematic structural diagram of an optical lens disclosed in a fifth embodiment of the present application;
图12是本申请第五实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);12 is a ray spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fifth embodiment of the present application;
图13是本申请公开的摄像模组的结构示意图;13 is a schematic structural diagram of a camera module disclosed in the present application;
图14是本申请公开的电子设备的结构示意图。FIG. 14 is a schematic structural diagram of the electronic device disclosed in the present application.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In the present invention, the terms "upper", "lower", "left", "right", "front", "rear", "top", "bottom", "inner", "outer", "middle", The orientation or positional relationship indicated by "vertical", "horizontal", "horizontal", "longitudinal", etc. is based on the orientation or positional relationship shown in the drawings. These terms are primarily used to better describe the invention and its embodiments, and are not intended to limit the fact that the indicated device, element or component must have a particular orientation, or be constructed and operated in a particular orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。In addition, some of the above-mentioned terms may be used to express other meanings besides orientation or positional relationship. For example, the term "on" may also be used to express a certain attachment or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the present invention can be understood according to specific situations.
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。Furthermore, the terms "installed", "arranged", "provided", "connected", "connected" should be construed broadly. For example, it may be a fixed connection, a detachable connection, or a unitary structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。In addition, the terms "first", "second", etc. are mainly used to distinguish different devices, elements or components (the specific types and configurations may be the same or different), and are not used to indicate or imply the indicated devices, elements, etc. or the relative importance and number of components. Unless stated otherwise, "plurality" means two or more.
下面将结合实施例和附图对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below with reference to the embodiments and the accompanying drawings.
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,所述光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3、第四透镜L4和第五透镜L5具有屈折力(例如正屈折力或负屈折力),第六透镜L6具有负屈折力。Referring to FIG. 1 , according to a first aspect of the present application, the present application discloses an
进一步地,第一透镜L1的物侧面S1于近光轴O处可为凸面,第一透镜L1的像侧面S2于近光轴O处可为凹面,第二透镜L2的物侧面S3于近光轴O处可为凸面,第二透镜L2的像侧面S4于近光轴O处可为凹面或者是凹面,第三透镜L3的物侧面S5于近光轴O处可为凸面或凹面,第三透镜L3的像侧面S6于近光轴O处可为凸面或凹面,第四透镜L4的物侧面S7于近光轴O处可为凸面或凹面,第四透镜L4的像侧面S8于近光轴O处可为凸面或凹面,第五透镜L5的物侧面S9于近光轴O处可为凸面或凹面,第五透镜L5的像侧面S10于近光轴O处可为凸面或凹面,第六透镜L6的物侧面S11于近光轴O处可为凸面或凹面,第六透镜L6的像侧面S12于近光轴O处可为凹面。Further, the object side S1 of the first lens L1 can be convex at the near optical axis O, the image side S2 of the first lens L1 can be concave at the near optical axis O, and the object side S3 of the second lens L2 can be at the low beam. The axis O can be convex, the image side S4 of the second lens L2 can be concave or concave at the near optical axis O, the object side S5 of the third lens L3 can be convex or concave at the near optical axis O, and the third lens L3 can be convex or concave. The image side S6 of the lens L3 can be convex or concave at the near optical axis O, the object side S7 of the fourth lens L4 can be convex or concave at the near optical axis O, and the image side S8 of the fourth lens L4 is at the near optical axis. O can be convex or concave, the object side S9 of the fifth lens L5 can be convex or concave at the near optical axis O, the image side S10 of the fifth lens L5 can be convex or concave at the near optical axis O, and the sixth lens L5 can be convex or concave. The object side S11 of the lens L6 may be convex or concave at the near optical axis O, and the image side S12 of the sixth lens L6 may be concave at the near optical axis O.
由上述可知,所述光学镜头100包括具有正曲折力的第一透镜L1以及负曲折力的第二透镜L2组合,有利于矫正光学镜头100于光轴O处的球差;还包括具有正负屈折力的第三透镜L3和第四透镜L4,有利于矫正光学镜头100的象散和彗差;还包括具有正曲折力的第五透镜L5,有利于实现光学镜头100的小型化要求;还包括具有负曲折力的第六透镜L6,有利于矫正光学镜头100的场曲。It can be seen from the above that the
进一步地,第一透镜L1的物侧面S1、第二透镜L2的物侧面S3于近光轴O处均为凸面,以及第一透镜L1的像侧面S2、第二透镜L2的像侧面S4于近光轴O处均为凹面,有利于光学镜头光线的汇聚,提高光学镜头100的光学性能;第三透镜L3的物侧面S5和第四透镜L4的物侧面S7于近光轴O处可均为凹面,有利于降低光学镜头100的敏感度,有利于光学镜头100的工程制造;第五透镜L5的物侧面S9和第六透镜L6的物侧面S11于近光轴O处均可为凸面,有利于矫正光学镜头100的场曲,提高光学镜头100的光学性能。Further, the object side S1 of the first lens L1 and the object side S3 of the second lens L2 are convex surfaces at the near optical axis O, and the image side S2 of the first lens L1 and the image side S4 of the second lens L2 are near the optical axis O. The optical axis O is all concave, which is conducive to the convergence of the optical lens light and improves the optical performance of the
考虑到光学镜头100多应用于车载装置、行车记录仪等电子设备中或者是应用于汽车上。当光学镜头100作为汽车车体上的摄像头使用时,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5和第六透镜L6的材质均可为塑料,从而使得光学镜头100具有良好的光学效果的同时,还可减轻光学镜头100的整体重量。同时,前述的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6均可为非球面。Considering that the
此外,可以理解的是,在其他实施例中,当光学镜头100可应用于智能手机、智能平板等电子设备时,则所述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材质也可选用塑料或玻璃,同时各个透镜也可采用非球面或球面。In addition, it can be understood that in other embodiments, when the
一些实施例中,光学镜头100还包括光阑102,光阑102可为孔径光阑或视场光阑,其可设置在光学镜头100的物侧与第一透镜L1的物侧面S1之间。可以理解的是,在其他实施例中,该光阑102也可设置在相邻的两个透镜之间,例如设置在第二透镜L2和第三透镜L3之间,根据实际情况调整设置,本实施例对此不作具体限定。In some embodiments, the
一些实施例中,光学镜头100还包括滤光片L7,例如红外滤光片,红外滤光片设于第六透镜L6的像侧面S12与光学镜头100的成像面101之间,从而可滤除诸如可见光等其他波段的光线,而仅让红外光通过,因此,所述光学镜头100可作为红外光学镜头使用,即,光学镜头100能够在昏暗的环境及其他特殊的应用场景下也能成像并能获得较好的影像效果。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:1.3mm<Imgh^2/TTL/Fno<1.42mm;其中,TTL为第一透镜L1的物侧面S1至光学镜头100的成像面101于光轴O上的距离,Imgh为光学镜头100的成像面101上有效像素区域对角线长的一半,Fno为光学镜头100的光圈数。满足上述关系式时,能够在满足超薄小型化设计的基础上,一方面,有利于使得光学镜头100具有大像面的特点,改善光学镜头100的画质感,以及提高光学镜头100的分辨率和成像清晰度,使光学镜头100具有更好的成像效果,满足人们对光学镜头100的高清成像要求;另一方面,不仅可以使光学镜头100获取更多的场景内容,丰富光学镜头100的成像信息,还有利于使光学镜头100具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,有利于适用于夜景、雨天、星空等暗光环境拍摄,并且具有更好的虚化效果。In some embodiments, the
而当低于上述关系式的下限时,不利于光学镜头100的超薄小型化设计,以及不利于使光学镜头100具有大孔径的特点,而当超过上述关系式的上限时,光学镜头100难以获得较好的光学性能,难以使得光学镜头100满足高像素的成像要求,不利于捕捉被摄物体的细节。However, when it is lower than the lower limit of the above relationship, it is not conducive to the ultra-thin and miniaturized design of the
一些实施例中,光学镜头100满足以下关系式:TTL/Imgh<1.3。通过上述关系式限定,有利于使得光学镜头100的结构更加紧凑,具有超薄的特性,满足小型化的设计要求;而当超过关系式的上限时,光学镜头100的光学总长(即第一透镜L1的物侧面S1至光学镜头100的成像面于光轴上的距离)过长,不利于光学镜头100的小型化。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:0.3<|f2/f6|<5;其中,f2为第二透镜L2的有效焦距,f6为第六透镜L6的有效焦距。通过合理地控制第二透镜L2和第六透镜L6的有效焦距的比值,能够合理分配第二透镜L2和第六透镜L6的球差贡献,从而使得光学镜头100的成像面100上有效像素区域具有良好的成像质量。当低于上述关系式的下限时,会增大光学镜头100对像差的修正难度;而当超过上述关系式的上限时,不利于光学镜头100对物空间光学信息的获取,使得成像效果难以达到预想的要求。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:Fno<2.0。通过上述关系式限定,有利于保证光学镜头100具有大孔径的特性,以使光学镜头100具有足够的进光量,从而有利于使光学镜头100的拍摄图像更加清晰,并有利于实现在夜景、星空等光亮度不大的物空间场景中的高质量拍摄和清晰成像。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:0.1<D5/CT6<0.7;其中,D5为第四透镜L4和第五透镜L5之间于光轴O上的空气间隙,CT6为第六透镜L6于光轴O上的厚度。In some embodiments, the
通过合理地控制第四透镜L4和第五透镜L5之间于光轴O上的空气间隙和第六透镜L6于光轴O上的厚度的比值在一定的范围,可以有效地平衡光学镜头100产生的高级像差,且有利于在工程制作中适当地调整光学镜头100的场曲,提高光学镜头100的成像质量。而当低于上述关系式的下限时,光学镜头100的高级像差难以平衡,影响成像品质;而当超过关系式的上限时,光学镜头100的主光线角度难以与成像面上感光芯片的主光线角度匹配。By reasonably controlling the ratio of the air gap between the fourth lens L4 and the fifth lens L5 on the optical axis O to the thickness of the sixth lens L6 on the optical axis O within a certain range, the
一些实施例中,光学镜头1满足以下关系式:1.5<R4/R5<5;其中,R4为第二透镜L2的物侧面S3于光轴O处的曲率半径,R5为第二透镜L2的像侧面S4于光轴O处的曲率半径。In some embodiments, the
通过合理地控制第二透镜L2的物侧面S3和第二透镜L2的像侧面S4于光轴O处的曲率半径的比值,可以有效地平衡光学镜头100的像差,降低光学镜头100的敏感度,提高光学镜头100的光学性能。而当低于上述关系式的下限时,光学镜头100的敏感度会增大,不利于工程制造;而当超过关系式的上限时,难以矫正光学镜头100的场曲像差,从而使光学镜头100的光学性能不佳。By reasonably controlling the ratio of the curvature radius of the object side S3 of the second lens L2 and the image side S4 of the second lens L2 at the optical axis O, the aberration of the
一些实施例中,光学镜头100满足以下关系式:1.0<TTL/f<1.5;其中,TTL为第一透镜L1的物侧面S1至光学镜头100的成像面100于光轴O上的距离,f为光学镜头100的有效焦距。In some embodiments, the
通过上述关系式限定,有利于缩短光学镜头100的光学总长,使得光学镜头100的结构更加紧凑,同时还有利于避免光学镜头100的视场角过大,使光学镜头100能够在小型化设计以及降低大视场所带来的像差之间取得平衡。而当低于上述关系式的下限时,光学镜头100的光学总长过短,会使得光学镜头100的敏感度加大,导致光学镜头100的像差修正困难;或者会导致光学镜头100的视场角过小,难以满足大视场的特性。而当超过关系式的上限时,光学镜头100的光学总长过长,不利于小型化设计,而且边缘视场的光线难以成像在成像面101的有效成像区域上,从而会造成成像信息不全,影响成像质量。By the above relationship, it is beneficial to shorten the total optical length of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
0.3<SAG51/CT5<1.0;其中,SAG51为第五透镜L5的物侧面S9与光轴O的交点至第五透镜L5的物侧面S9的最大有效半径处之间于光轴O上的距离,CT5为第五透镜L5于光轴O上的厚度。通过上述关系式限定,有利于第五透镜L5的加工成型,降低制造的敏感性,能够更好地实现工程制造。当低于上述关系式的下限时,第五透镜L5的矢高较低,会对所述光学镜头100的光学性能造成影响,例如易造成光学镜头100曝光过大、光亮度太高,易影响光学镜头100的成像解析能力,最终影响画面质量;而当超过关系式的上限时,不仅会导致第五透镜L5的制造相对困难,而且也会造成光学镜头100进光量不足,光线相对亮度不够,从而造成画面清晰度下降。0.3<SAG51/CT5<1.0; wherein, SAG51 is the distance on the optical axis O from the intersection of the object side S9 of the fifth lens L5 and the optical axis O to the maximum effective radius of the object side S9 of the fifth lens L5, CT5 is the thickness of the fifth lens L5 on the optical axis O. The above-mentioned relational expression is limited, which facilitates the processing and molding of the fifth lens L5, reduces the sensitivity of manufacturing, and can better realize engineering manufacturing. When it is lower than the lower limit of the above relationship, the sag height of the fifth lens L5 is low, which will affect the optical performance of the
一些实施例中,光学镜头100满足以下关系式:In some embodiments, the
2<(R12+R13)/(R12-R13)<7;其中,R12为第六透镜L6的物侧面S11于光轴O处的曲率半径,R13为第六透镜L6的像侧面S12于光轴O处的曲率半径。2<(R12+R13)/(R12-R13)<7; wherein, R12 is the curvature radius of the object side S11 of the sixth lens L6 at the optical axis O, and R13 is the image side S12 of the sixth lens L6 at the optical axis Radius of curvature at O.
通过上述关系式限定,能够使第六透镜L6的物侧面S11于光轴O处的曲率半径和其像侧面S12于光轴O处的曲率半径较为合适,这样可以保证第六透镜L6的形状的可加工性,同时还可以有效地改善光学镜头100的像散,提升光学镜头100的光学性能。而当低于上述关系式的下限时,第六透镜L6产生的像差难以矫正,影响光学镜头100的光学性能,当超过上述关系式的上限时,会增加光学镜头100的敏感度,影响各个透镜组装的稳定性。By the above-mentioned relational formula, the radius of curvature of the object side surface S11 of the sixth lens L6 at the optical axis O and the radius of curvature of the image side surface S12 at the optical axis O can be more suitable, so that the shape of the sixth lens L6 can be guaranteed. In addition, the astigmatism of the
一些实施例中,光学镜头100满足以下关系式:0.2<f6/(f1+f2)<3;其中,f1为第一透镜L1的有效焦距,f2为第二透镜L2的有效焦距,f6为第六透镜L6的有效焦距。In some embodiments, the
通过上述关系式限定,以控制第六透镜L6的有效焦距与第一透镜L1、第二透镜L2的有效焦距之和的比值在一定的范围,从而能够合理地分配第一透镜L1、第二透镜L2以及第六透镜L6的球差贡献,从而使得光学镜头100的成像面101上有效像素区域具有良好的成像质量。Through the above relationship, the ratio of the effective focal length of the sixth lens L6 to the sum of the effective focal lengths of the first lens L1 and the second lens L2 can be controlled within a certain range, so that the first lens L1 and the second lens can be allocated reasonably The spherical aberration contribution of L2 and the sixth lens L6 makes the effective pixel area on the
以下将结合具体参数对本实施例的光学镜头100进行详细说明。The
第一实施例first embodiment
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。A schematic structural diagram of an
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力。Further, the first lens L1 has a positive refractive power, the second lens L2 has a negative refractive power, the third lens L3 has a positive refractive power, the fourth lens L4 has a negative refractive power, the fifth lens L5 has a positive refractive power, and the sixth lens L5 has a positive refractive power. Lens L6 has negative refractive power.
更进一步地,第一透镜L1的物侧面S1、像侧面S2于近光轴O处分别为凸面和凹面;第一透镜L1的物侧面S1、像侧面S2于圆周处均为凸面。第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面S3、像侧面S4于圆周处分别为凹面和凸面。第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凸面;第三透镜L3的物侧面S5、像侧面S6于圆周处分别为凹面和凸面。第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凸面和凹面;四透镜L4的物侧面S7、像侧面S8于圆周处分别为凹面和凸面。第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凸面和凹面;第五透镜L5的物侧面S9、像侧面S10于圆周处分别为凹面和凸面。第六透镜L6的物侧面S11、像侧面S12于近光轴O处分别为凸面和凹面;第六透镜L6的物侧面S11、像侧面S12于圆周处分别为凹面和凸面。Further, the object side S1 and the image side S2 of the first lens L1 are convex and concave respectively at the near optical axis O; the object side S1 and the image side S2 of the first lens L1 are convex at the circumference. The object side S3 and the image side S4 of the second lens L2 are convex and concave respectively at the near optical axis O; the object side S3 and the image side S4 of the second lens L2 are concave and convex respectively at the circumference. The object side S5 and the image side S6 of the third lens L3 are convex at the near optical axis O; the object side S5 and the image side S6 of the third lens L3 are concave and convex respectively at the circumference. The object side S7 and the image side S8 of the fourth lens L4 are convex and concave respectively at the near optical axis O; the object side S7 and the image side S8 of the fourth lens L4 are concave and convex respectively at the circumference. The object side S9 and the image side S10 of the fifth lens L5 are convex and concave respectively at the near optical axis O; the object side S9 and the image side S10 of the fifth lens L5 are concave and convex respectively at the circumference. The object side S11 and the image side S12 of the sixth lens L6 are convex and concave respectively at the near optical axis O; the object side S11 and the image side S12 of the sixth lens L6 are concave and convex respectively at the circumference.
具体地,以所述光学镜头100的有效焦距f=3.49mm、所述光学镜头100的视场角FOV=87.4°、所述光学镜头100的光学总长TTL=4.2mm、光圈大小FNO=1.95为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号2和3分别对应第一透镜L1的物侧面S1和像侧面S2。表1中的Y半径为相应面序号的物侧面或像侧面于近光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑102于“厚度”参数列中的数值为光阑102至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴O的正方向,当该值为负时,表明光阑102设置于后一表面顶点的右侧,若光阑102厚度为正值时,光阑102在后一表面顶点的左侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm。且表1中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Specifically, the effective focal length of the
表1Table 1
在第一实施例中,第一透镜L1至第六透镜L6的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:In the first embodiment, the object side and the image side of any one of the first lens L1 to the sixth lens L6 are aspherical surfaces, and the surface type x of each aspherical lens can be defined by, but not limited to, the following aspherical surface formulas :
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中Y半径R的倒数);k为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2给出了可用于第一实施例中各个非球面镜面S1-S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 1 is the reciprocal of the Y radius R); k is the conic coefficient; Ai is the correction coefficient corresponding to the higher-order term of the i-th term of the aspheric surface. Table 2 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the respective aspheric mirror surfaces S1-S16 in the first embodiment.
表2Table 2
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Please refer to (A) in FIG. 2 , which shows the spherical aberration curves of the
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 2 . (B) in FIG. 2 is a light astigmatism diagram of the
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 2 . (C) in FIG. 2 is a distortion curve diagram of the
第二实施例Second Embodiment
请参照图3,图3为本申请第二实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。Please refer to FIG. 3 , which is a schematic structural diagram of an
进一步地,在第二实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第三透镜L3具有负屈折力。同时,在第二实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面。Further, in the second embodiment, the refractive power of each lens differs from the refractive power of each lens in the first embodiment in that the third lens L3 has a negative refractive power. Meanwhile, in the second embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Convex and Concave.
在第二实施例中,以光学镜头100的有效焦距f=3.54mm、光学镜头100的视场角的FOV=86.6°、光学镜头100的光学总长TTL=4.2mm、光圈大小FNO=1.94为例。In the second embodiment, the effective focal length of the
该第二实施例中的其他各项参数由下列表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm。且表3中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Other parameters in the second embodiment are given in Table 3 below, and the definitions of the parameters can be obtained from the descriptions of the foregoing embodiments, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 3 are all mm. In addition, the reference wavelength of the refractive index and Abbe number of each lens in Table 3 is 587.6 nm, and the reference wavelength of the effective focal length is 555 nm.
表3table 3
在第二实施例中,表4给出了可用于第二实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the second embodiment, Table 4 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the second embodiment, wherein each aspherical surface type can be defined by the formula given in the first embodiment.
表4Table 4
进一步地,请参阅图4中的(A),示出了第二实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图4中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图4中的(A)可以看出,第二实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Further, please refer to FIG. 4(A) , which shows the spherical aberration curves of the
请参阅图4中的(B),图4中的(B)为第二实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图4中的(B)可以看出,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 4 . (B) in FIG. 4 is a light astigmatism diagram of the
请参阅图4中的(C),图4中的(C)为第二实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图4中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 4 . (C) in FIG. 4 is a distortion curve diagram of the
第三实施例Third Embodiment
请参照图5,图5示出了本申请第三实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。Please refer to FIG. 5 , which is a schematic structural diagram of an
进一步地,在第三实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第四透镜L4具有正屈折力。同时,在第三实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面。Further, in the third embodiment, the refractive power of each lens differs from the refractive power of each lens in the first embodiment in that the fourth lens L4 has a positive refractive power. Meanwhile, in the third embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Convex and Concave.
在第三实施例中,以光学镜头100的有效焦距f=3.5mm、光学镜头100的视场角的FOV=87.4°、光学镜头100的光学总长TTL=4.24mm、光圈大小FNO=1.95为例。In the third embodiment, the effective focal length of the
该第三实施例中的其他各项参数由下列表5给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm。且表5中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Other parameters in the third embodiment are given in the following Table 5, and the definitions of the parameters can be obtained from the foregoing description, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 5 are all mm. In addition, the reference wavelength of the refractive index and Abbe number of each lens in Table 5 is 587.6 nm, and the reference wavelength of the effective focal length is 555 nm.
表5table 5
在第三实施例中,表6给出了可用于第三实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the third embodiment, Table 6 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the third embodiment, wherein each aspherical surface type can be defined by the formula given in the first embodiment.
表6Table 6
进一步地,请参阅图6中的(A),示出了第三实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图6中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图6中的(A)可以看出,第三实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Further, please refer to (A) in FIG. 6 , which shows the spherical aberration curve of light of the
请参阅图6中的(B),图6中的(B)为第三实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图6中的(B)可以看出,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 6 . (B) in FIG. 6 is a light astigmatism diagram of the
请参阅图6中的(C),图6中的(C)为第三实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图6中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 6 . (C) in FIG. 6 is a distortion curve diagram of the
第四实施例Fourth Embodiment
请参阅图7,为本申请第四实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。Please refer to FIG. 7 , which is a schematic structural diagram of an
进一步地,在第四实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第五透镜L5具有正屈折力。同时,在第四实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面,第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面。Further, in the fourth embodiment, the refractive power of each lens differs from the refractive power of each lens in the first embodiment in that the fifth lens L5 has a positive refractive power. Meanwhile, in the fourth embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Convex and concave, the object side S7 and the image side S8 of the fourth lens L4 are concave and convex at the near optical axis O, respectively.
在第四实施例中,以光学镜头100的焦距f=3.58mm、光学镜头100的视场角的FOV=86°、光学镜头100的光学总长TTL=4.3mm、光圈大小FNO=1.94为例。In the fourth embodiment, the focal length of the
该第四实施例中的其他各项参数由下列表7给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm。且表7中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Other parameters in the fourth embodiment are given in Table 7 below, and the definitions of the parameters can be obtained from the foregoing descriptions, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 7 are all mm. In addition, the reference wavelength of the refractive index and Abbe number of each lens in Table 7 is 587.6 nm, and the reference wavelength of the effective focal length is 555 nm.
表7Table 7
在第四实施例中,表8给出了可用于第四实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the fourth embodiment, Table 8 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the fourth embodiment, wherein each aspherical surface type can be defined by the formula given in the first embodiment.
表8Table 8
进一步地,请参阅图8中的(A),示出了第四实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图8中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图8中的(A)可以看出,第四实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Further, please refer to FIG. 8(A) , which shows the spherical aberration curves of the
请参阅图8中的(B),图8中的(B)为第四实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图8中的(B)可以看出,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 8 . (B) in FIG. 8 is a light astigmatism diagram of the
请参阅图8中的(C),图8中的(C)为第四实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图8中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 8 . (C) in FIG. 8 is a distortion curve diagram of the
第五实施例Fifth Embodiment
请参阅图9,为本申请第五实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。Please refer to FIG. 9 , which is a schematic structural diagram of an
进一步地,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的屈折力可参见上述第一实施例的说明,这里不再赘述。同时,在第五实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面。Further, the refractive power of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 can be referred to the description of the above-mentioned first embodiment, which will not be repeated here. Meanwhile, in the fifth embodiment, the difference between the surface shape of each lens and the surface shape of each lens in the first embodiment is that the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Convex and Concave.
在第五实施例中,以光学镜头100的焦距f=3.52mm、光学镜头100的视场角的FOV=87°、光学镜头100的光学总长TTL=4.25mm、光圈大小FNO=1.89为例。In the fifth embodiment, the focal length f=3.52mm of the
该第五实施例中的其他各项参数由下列表9给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm。且表9中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Other parameters in the fifth embodiment are given in the following Table 9, and the definitions of the parameters can be obtained from the foregoing descriptions, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 9 are all mm. In addition, the reference wavelength of the refractive index and Abbe number of each lens in Table 9 is 587.6 nm, and the reference wavelength of the effective focal length is 555 nm.
表9Table 9
在第四实施例中,表10给出了可用于第五实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the fourth embodiment, Table 10 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the fifth embodiment, wherein each aspherical surface type can be defined by the formula given in the first embodiment.
表10Table 10
进一步地,请参阅图10中的(A),示出了第五实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图10中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图10中的(A)可以看出,第五实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Further, please refer to FIG. 10(A) , which shows the spherical aberration curves of the
请参阅图10中的(B),图10中的(B)为第五实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图10中的(B)可以看出,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 10 . (B) in FIG. 10 is a light astigmatism diagram of the
请参阅图10中的(C),图10中的(C)为第五实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图10中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 10 . (C) in FIG. 10 is a distortion curve diagram of the
第六实施例Sixth Embodiment
请参阅图11,为本申请第五实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、光阑102、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和滤光片L7。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材料可参见上述具体实施方式所述,此处不再赘述。Please refer to FIG. 11 , which is a schematic structural diagram of an
进一步地,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的屈折力可参见上述第一实施例的说明,这里不再赘述。同时,在第五实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凹面和凸面。Further, the refractive power of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 can be referred to the description of the above-mentioned first embodiment, which will not be repeated here. Meanwhile, in the fifth embodiment, the difference between the surface shape of each lens and the surface shape of each lens in the first embodiment is that the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Concave and convex.
在第六实施例中,以光学镜头100的焦距f=3.5mm、光学镜头100的视场角的FOV=87.4°、光学镜头100的光学总长TTL=4.2mm、光圈大小FNO=1.97为例。In the sixth embodiment, the focal length f=3.5mm of the
该第六实施例中的其他各项参数由下列表11给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表11中的Y半径、厚度、焦距的单位均为mm。表11中各个透镜的折射率、阿贝数的参考波长为587.6nm,有效焦距的参考波长为555nm。Other parameters in the sixth embodiment are given in Table 11 below, and the definitions of the parameters can be obtained from the foregoing descriptions, which will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 11 are all mm. The reference wavelength of the refractive index and Abbe number of each lens in Table 11 is 587.6 nm, and the reference wavelength of the effective focal length is 555 nm.
表11Table 11
在第六实施例中,表12给出了可用于第六实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the sixth embodiment, Table 12 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in the sixth embodiment, wherein each aspherical surface type can be defined by the formula given in the first embodiment.
表12Table 12
进一步地,请参阅图12中的(A),示出了第五实施例中的光学镜头100在波长为435nm、470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图12中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图10中的(A)可以看出,第五实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Further, please refer to FIG. 12(A) , which shows the spherical aberration curve of the
请参阅图12中的(B),图10中的(B)为第五实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图12中的(B)可以看出,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 12 , and (B) in FIG. 10 is a light astigmatism diagram of the
请参阅图12中的(C),图10中的(C)为第五实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图12中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 12 , and (C) in FIG. 10 is a distortion curve diagram of the
请参阅表13,表13为本申请第一实施例至第六实施例中各关系式的比值汇总。Please refer to Table 13. Table 13 is a summary of the ratios of the relational expressions in the first to sixth embodiments of the present application.
表13Table 13
请参阅图13,本申请还公开了一种摄像模组,摄像模组200包括感光芯片201和如上述第一实施例至第六实施例中任一实施例所述的光学镜头100,所述感光芯片201设置于光学镜头100的像侧。光学镜头100可用于接收被摄物的光信号并投射到感光芯片201,感光芯片201可用于将对应于被摄物的光信号转换为图像信号。这里不做赘述。可以理解的,具有上述光学镜头100的摄像模组200能够在使得光学镜头100在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Please refer to FIG. 13 , the present application also discloses a camera module, the
请参阅图14,本申请还公开了一种电子设备,所述电子设备300包括壳体301和如上述的摄像模组200,摄像模组200设于壳体301以获取影像信息。其中,电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器等。可以理解的,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,所述电子设备300能够在使得光学镜头100在满足轻薄、小型化设计的同时,能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大孔径的特点,具有更大的进光量,可以改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。Referring to FIG. 14 , the present application also discloses an electronic device. The
以上对本发明实施例公开的一种光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。An optical lens, a camera module and an electronic device disclosed in the embodiments of the present invention have been described in detail above. The principles and implementations of the present invention are described with specific examples in this paper. The descriptions of the above embodiments are only used to help Understand the optical lens, camera module, electronic device and its core idea of the present invention; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. Above, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110615010.6A CN113391433B (en) | 2021-06-02 | 2021-06-02 | Optical lens, camera module and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110615010.6A CN113391433B (en) | 2021-06-02 | 2021-06-02 | Optical lens, camera module and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113391433A CN113391433A (en) | 2021-09-14 |
CN113391433B true CN113391433B (en) | 2022-08-30 |
Family
ID=77619936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110615010.6A Active CN113391433B (en) | 2021-06-02 | 2021-06-02 | Optical lens, camera module and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113391433B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113960759B (en) * | 2021-11-05 | 2023-07-04 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
CN113791488B (en) * | 2021-11-15 | 2022-03-11 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
CN114114618B (en) * | 2021-11-15 | 2023-09-05 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
CN116500760B (en) * | 2023-06-27 | 2023-09-19 | 江西欧菲光学有限公司 | Optical lens, camera module and electronic equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107219613A (en) * | 2017-07-31 | 2017-09-29 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN108254855A (en) * | 2016-12-28 | 2018-07-06 | 三星电机株式会社 | Optical imaging system |
CN110221413A (en) * | 2019-06-30 | 2019-09-10 | 瑞声科技(新加坡)有限公司 | Camera optical camera lens |
CN111308655A (en) * | 2018-12-26 | 2020-06-19 | 浙江舜宇光学有限公司 | Optical imaging lens |
JP2022022633A (en) * | 2020-06-30 | 2022-02-07 | 東京晨美光学電子株式会社 | Image capturing lens |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6191820B2 (en) * | 2013-10-04 | 2017-09-06 | コニカミノルタ株式会社 | Imaging lens, imaging device, and portable terminal |
JP5894696B1 (en) * | 2015-05-28 | 2016-03-30 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | Imaging lens |
WO2017195503A1 (en) * | 2016-05-13 | 2017-11-16 | シャープ株式会社 | Imaging lens |
JP6014783B1 (en) * | 2016-07-19 | 2016-10-25 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | Imaging lens |
WO2018153012A1 (en) * | 2017-02-23 | 2018-08-30 | 浙江舜宇光学有限公司 | Camera lens |
JP6529616B1 (en) * | 2017-11-18 | 2019-06-12 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | Shooting optical lens |
CN109656005A (en) * | 2018-05-04 | 2019-04-19 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111781706A (en) * | 2020-08-05 | 2020-10-16 | 惠州萨至德光电科技有限公司 | A large aperture high pixel ultra-thin imaging lens |
CN112099189B (en) * | 2020-09-10 | 2022-08-30 | 江西晶超光学有限公司 | Optical lens, camera module and electronic equipment |
CN113391430B (en) * | 2021-05-26 | 2024-01-09 | 江西欧菲光学有限公司 | Optical system, lens module and electronic equipment |
-
2021
- 2021-06-02 CN CN202110615010.6A patent/CN113391433B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108254855A (en) * | 2016-12-28 | 2018-07-06 | 三星电机株式会社 | Optical imaging system |
CN107219613A (en) * | 2017-07-31 | 2017-09-29 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111308655A (en) * | 2018-12-26 | 2020-06-19 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN110221413A (en) * | 2019-06-30 | 2019-09-10 | 瑞声科技(新加坡)有限公司 | Camera optical camera lens |
JP2022022633A (en) * | 2020-06-30 | 2022-02-07 | 東京晨美光学電子株式会社 | Image capturing lens |
Non-Patent Citations (1)
Title |
---|
800万像素手机镜头的设计;李广等;《应用光学》;20110515;第32卷(第03期);420-425 * |
Also Published As
Publication number | Publication date |
---|---|
CN113391433A (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113391433B (en) | Optical lens, camera module and electronic equipment | |
CN113933968B (en) | Optical lens, camera module and electronic equipment | |
CN113534407B (en) | Optical lenses, camera modules and electronic equipment | |
CN113933960B (en) | Optical lenses, camera modules, electronic equipment and automobiles | |
CN113946038B (en) | Optical lens, camera module and electronic equipment | |
CN114296213B (en) | Optical lens, camera module and electronic equipment | |
CN114415343B (en) | Optical system, camera module and electronic equipment | |
CN114488474B (en) | Optical lenses, camera modules, electronic equipment and automobiles | |
CN113156612B (en) | Optical system, imaging module and electronic equipment | |
CN114578515A (en) | Optical lens, camera module and electronic equipment | |
CN114578512A (en) | Optical systems, camera modules and electronic equipment | |
WO2022120678A1 (en) | Optical system, image capturing module and electronic device | |
CN111983786A (en) | Optical imaging system, imaging module and electronic device | |
CN113933967B (en) | Optical lens, camera module and electronic equipment | |
CN114815154B (en) | Optical lens, camera module and electronic equipment | |
CN113484985B (en) | Optical lens, camera module and electronic equipment | |
CN113933966B (en) | Optical lens, camera module and electronic equipment | |
CN113866961B (en) | Optical lens, camera module and electronic equipment | |
CN113933969B (en) | Optical lens, camera module and electronic equipment | |
CN214151201U (en) | Optical system, image capturing module and electronic equipment | |
CN115586621A (en) | Optical lens, camera module and electronic equipment | |
CN115166938A (en) | Optical lens, camera module and terminal | |
CN114721126A (en) | Optical lens, camera module and electronic equipment | |
CN115268021A (en) | Optical system, image capturing module and terminal equipment | |
CN114755803A (en) | Optical lens, camera module and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Jiangxi Province Patentee after: Jiangxi Oufei Optics Co.,Ltd. Country or region after: China Address before: No. 699 Tianxiang North Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee before: Jiangxi Jingchao optics Co.,Ltd. Country or region before: China |