CN114296213B - Optical lens, camera module and electronic equipment - Google Patents
Optical lens, camera module and electronic equipment Download PDFInfo
- Publication number
- CN114296213B CN114296213B CN202111410384.0A CN202111410384A CN114296213B CN 114296213 B CN114296213 B CN 114296213B CN 202111410384 A CN202111410384 A CN 202111410384A CN 114296213 B CN114296213 B CN 114296213B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- optical axis
- object side
- image side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Lenses (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。The invention relates to the technical field of optical imaging, in particular to an optical lens, a camera module and electronic equipment.
背景技术Background technique
随着科技的进步,具有摄像功能的电子产品快速发展,消费者们对电子产品的成像质量要求也越来越高,同时轻薄小型化的结构特点也逐渐成为光学镜头的发展趋势。然而,随着光学镜头中感光芯片的像素尺寸不断减小,对光学镜头的小型化和高品质成像提出了进一步的设计需求。With the advancement of science and technology, electronic products with camera functions are developing rapidly, and consumers have higher and higher requirements for the imaging quality of electronic products. At the same time, the structural characteristics of lightness, thinness and miniaturization have gradually become the development trend of optical lenses. However, as the pixel size of the photosensitive chip in the optical lens continues to decrease, further design requirements are put forward for the miniaturization and high-quality imaging of the optical lens.
发明内容Contents of the invention
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够在满足光学镜头高质量成像的同时,实现光学镜头的小型化设计。The embodiment of the invention discloses an optical lens, a camera module and an electronic device, which can realize the miniaturization design of the optical lens while satisfying high-quality imaging of the optical lens.
为了实现上述目的,第一方面,本发明公开了一种光学镜头,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜;所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;所述第二透镜具有屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;所述第三透镜具有屈折力,所述第三透镜的物侧面于近光轴处为凸面;所述第四透镜具有屈折力,所述第四透镜的像侧面于近光轴处为凸面;所述第五透镜具有屈折力,所述第五透镜的物侧面于近光轴处为凹面;所述第六透镜具有屈折力,所述第六透镜的物侧面于近光轴处为凹面;所述第七透镜具有正屈折力,所述第七透镜的物侧面于近光轴处为凸面,所述第七透镜的像侧面于近光轴处为凹面,且所述第七透镜的物侧面和像侧面中均设置有至少一个反曲点;所述第八透镜具有负屈折力,所述第八透镜的物侧面于近光轴处为凸面,所述第八透镜的像侧面于近光轴处为凹面,且所述第八透镜的物侧面和像侧面中均设置有至少一个反曲点;In order to achieve the above object, in the first aspect, the present invention discloses an optical lens, which includes a first lens, a second lens, a third lens, and a fourth lens arranged in sequence along the optical axis from the object side to the image side , the fifth lens, the sixth lens, the seventh lens and the eighth lens; the first lens has positive refractive power, the object side of the first lens is convex at the near optical axis, and the image of the first lens The side surface is concave at the near optical axis; the second lens has a refractive power, the object side of the second lens is convex at the near optical axis, and the image side of the second lens is concave at the near optical axis; The third lens has refractive power, and the object side of the third lens is convex at the near optical axis; the fourth lens has refractive power, and the image side of the fourth lens is convex at the near optical axis; The fifth lens has refractive power, and the object side of the fifth lens is concave at the near optical axis; the sixth lens has refractive power, and the object side of the sixth lens is concave at the near optical axis; The seventh lens has positive refractive power, the object side of the seventh lens is convex at the near optical axis, the image side of the seventh lens is concave at the near optical axis, and the object of the seventh lens Both the side and the image side are provided with at least one inflection point; the eighth lens has a negative refractive power, the object side of the eighth lens is a convex surface at the near optical axis, and the image side of the eighth lens is at the near optical axis. The optical axis is concave, and the eighth lens is provided with at least one inflection point on both the object side and the image side;
所述光学镜头满足以下关系式:1<TTL/ImgH<1.12;其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,ImgH为光学镜头的最大有效成像圆的半径。The optical lens satisfies the following relational formula: 1<TTL/ImgH<1.12; wherein, TTL is the distance from the object side of the first lens to the imaging plane of the optical lens on the optical axis, and ImgH is the distance of the optical lens The radius of the largest effective imaging circle of .
本申请提供的光学镜头,第一透镜具有正屈折力,且第一透镜和第二透镜的物侧面于光轴处均为凸面,以及二者的像侧面于光轴处均为凹面,将有利于与光轴呈大角度的入射光线进入光学镜头,有利于光学镜头光线的汇聚,提高光学镜头的光学性能,此外,由于第一透镜与第二透镜于近光轴处的面型均为凸凹结构,且第三透镜的物侧面于近光轴处为凸面,采用此种面型结构搭配形式,可以增加前透镜组(即第一透镜、第二透镜和第三透镜)的面型适配程度,可以减小入射光线的入射角度,进一步降低了色差的产生,提高了光学镜头的成像品质。第四透镜、第五透镜的面型设计能够配合物方透镜以进一步汇聚入射光线,以压缩光学镜头的总长,而搭配第六透镜提供的屈折力及相应面型设计,则能够平衡物方各透镜在会聚入射光线时所带来的难以校正的像差,降低后透镜组的校正压力。第七透镜、第八透镜的物侧面、像侧面均至少设置有一个反曲点,有利于使边缘视场的光线获得较小的光线偏转角,同时第七透镜的正屈折力结合第八透镜提供的负屈折力,正负屈折力的透镜将相互抵消彼此产生的像差,以及二者物侧面和像侧面于光轴处的凸凹面面型设计,能够进一步会聚中心视场的光线,可以缩短光学镜头的总长,以及校正像差,同时还可压制光线的出射角度,提高感光芯片的光线接收效率,能够进一步校正像差,提高成像品质。In the optical lens provided by the present application, the first lens has a positive refractive power, and the object sides of the first lens and the second lens are convex at the optical axis, and both image sides are concave at the optical axis, there will be It is beneficial for the incident light with a large angle to the optical axis to enter the optical lens, which is conducive to the convergence of the light rays of the optical lens and improves the optical performance of the optical lens. In addition, because the first lens and the second lens have convex and concave surfaces at the near optical axis structure, and the object side of the third lens is convex at the near optical axis, adopting this surface structure matching form can increase the surface adaptation of the front lens group (namely the first lens, the second lens and the third lens) To a certain extent, the incident angle of the incident light can be reduced, the generation of chromatic aberration can be further reduced, and the imaging quality of the optical lens can be improved. The surface design of the fourth lens and the fifth lens can cooperate with the object-side lens to further gather the incident light to compress the total length of the optical lens, while the refractive power provided by the sixth lens and the corresponding surface design can balance all aspects of the object-side. The difficult-to-correct aberrations brought about by the lens when converging the incident light reduce the correction pressure of the rear lens group. The object side and the image side of the seventh lens and the eighth lens are provided with at least one inflection point, which is beneficial to obtain a smaller light deflection angle for the light rays in the peripheral field of view. At the same time, the positive refractive power of the seventh lens combined with the eighth lens Provided with negative refractive power, lenses with positive and negative refractive power will offset each other’s aberrations, and the convex-concave surface design on the object side and image side at the optical axis can further converge the light in the central field of view, and can Shortening the total length of the optical lens and correcting aberrations can also suppress the outgoing angle of light, improve the light receiving efficiency of the photosensitive chip, further correct aberrations, and improve imaging quality.
此外,通过使所述光学镜头满足以下关系式:1<TTL/ImgH<1.12,能够控制光学镜头的总长,降低光学镜头的组装敏感度,同时,有利于光学镜头在小型化设计和大成像面之间取得平衡,以使光学镜头在尺寸较小的情况下,还具备较大的成像面,以匹配更高像素的传感器,进而能够拍摄出物体更多的细节。In addition, by making the optical lens satisfy the following relationship: 1<TTL/ImgH<1.12, the total length of the optical lens can be controlled, and the assembly sensitivity of the optical lens can be reduced. To achieve a balance between the optical lens in the case of a small size, it also has a larger imaging surface to match the sensor with higher pixels, so that it can capture more details of the object.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:fno/tan(HFOV)<2;其中,FNO为所述光学镜头的光圈数,HFOV为所述光学镜头的最大视场角的一半。满足上述关系式时,有利于光学镜头具有较大的光通量,有利于提升光学镜头的像面亮度,改善成像清晰度,从而可提高图像传感器的感光性能,抑制暗角现象;此外,在具有足够光通量的前提下,光学镜头的视场范围不会被过度压缩,利于实现大视场角特征,提高光学镜头的成像质量。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational expression: fno/tan(HFOV)<2; wherein, FNO is the aperture number of the optical lens, HFOV is half of the maximum field of view of the optical lens. When the above relationship is satisfied, it is beneficial for the optical lens to have a larger luminous flux, which is beneficial to improve the image surface brightness of the optical lens and improve the imaging definition, thereby improving the photosensitive performance of the image sensor and suppressing the vignetting phenomenon; Under the premise of the luminous flux, the field of view of the optical lens will not be overly compressed, which is conducive to realizing the characteristics of a large field of view and improving the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:tan(HFOV)/(distim*10)>6.5;其中,HFOV为所述光学镜头的最大视场角的一半,distim为所述光学镜头的最大光学畸变值。满足上述关系式时,有利于减弱具备广角特性的光学镜头在实际成像时的变形程度,对广角特性所带来的场曲、畸变等像差实现有效抑制,同时配合各透镜的面型设计,可有效压制离轴视场光线入射于图像传感器上的角度,提升图像传感器的响应效率,有助于修正影像周边畸变,保证光学镜头性能较佳,进而提升光学镜头的成像品质。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: tan(HFOV)/(distim*10)>6.5; wherein, HFOV is the optical lens half of the maximum field of view, and distim is the maximum optical distortion value of the optical lens. When the above relationship is satisfied, it is beneficial to reduce the degree of deformation of the optical lens with wide-angle characteristics during actual imaging, and effectively suppress the field curvature, distortion and other aberrations caused by wide-angle characteristics. It can effectively suppress the angle of off-axis field of view light incident on the image sensor, improve the response efficiency of the image sensor, help to correct the peripheral distortion of the image, ensure better performance of the optical lens, and then improve the imaging quality of the optical lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:1<f1/f<2;其中,f1为所述第一透镜的焦距,f为所述光学镜头的有效焦距。配置第一透镜的屈折力在合理范围内,即,满足上述关系式时,第一透镜能够提供合适的正屈折力,能够对入射光线实现合理会聚以压缩光学镜头的总长,同时也可防止第一透镜产生难以校正的像差,此外,第一透镜的正屈折力还可对相对光轴呈大角度入射的光线实现合理偏折,从而利于扩大光学镜头的视场角,并有效降低光学镜头的头部尺寸,缩短光学镜头的总长,为提高成像面的大小提供足够的空间。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational expression: 1<f1/f<2; wherein, f1 is the focal length of the first lens, and f is the effective focal length of the optical lens. The refractive power of the first lens is configured within a reasonable range, that is, when the above relationship is satisfied, the first lens can provide a suitable positive refractive power, and can reasonably converge the incident light to compress the total length of the optical lens, and at the same time prevent the second The first lens produces aberrations that are difficult to correct. In addition, the positive refractive power of the first lens can also achieve reasonable deflection of light incident at a large angle relative to the optical axis, thereby helping to expand the field of view of the optical lens and effectively reduce the optical lens. The head size is shortened, the total length of the optical lens is shortened, and enough space is provided for increasing the size of the imaging surface.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:1.5<r72/f7<5.5;其中,f7为所述第七透镜的焦距;r72为所述第七透镜的像侧面于光轴处的曲率半径。满足上述关系式时,能够合理地控制第七透镜的形状,使得第七透镜具有合适的偏折程度,在提供合适的正屈折力的情况下,第七透镜的形状更加可控,且配合第七透镜的物侧面、像侧面分别为凸面、凹面的设计,能够缩短光学镜头的总长,实现小型化设计,此外,配合第七透镜的像侧面的曲率和反曲,可有效压制离轴视场光线入射至第八透镜的角度,减小第八透镜的校正压力,同时有助于修正前透镜组产生的影像周边畸变,另外也能够补正轴外像差与改善相对照度,提升光学镜头的成像质量。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: 1.5<r72/f7<5.5; wherein, f7 is the focal length of the seventh lens; r72 is the radius of curvature of the image side of the seventh lens at the optical axis. When the above relational expression is satisfied, the shape of the seventh lens can be reasonably controlled, so that the seventh lens has a suitable degree of deflection, and under the condition of providing a suitable positive refractive power, the shape of the seventh lens is more controllable, and cooperates with the first The object side and image side of the seven lenses are designed with convex and concave surfaces respectively, which can shorten the total length of the optical lens and realize a miniaturized design. In addition, with the curvature and recursion of the image side of the seventh lens, it can effectively suppress the off-axis field of view The angle at which light is incident on the eighth lens reduces the correction pressure of the eighth lens, and at the same time helps to correct the peripheral distortion of the image produced by the front lens group. It can also correct off-axis aberrations and improve the relative illumination, improving the imaging of the optical lens quality.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:-2.5<r81/f8<-0.5;其中,r81为所述第八透镜的物侧面于光轴处的曲率半径,f8为所述第八透镜的焦距。满足上述关系式时,有利于第八透镜提供合理的负屈折力,配合第八透镜的物侧面的曲率和反曲,可有效压制离轴视场光线入射于图像传感器上的角度,以调整光线射入成像面的角度,更好地匹配感光芯片,提升图像传感器的响应效率,同时有助于修正影像周边畸变与改善相对照度,另外也有利于矫正光学镜头的像散,减小光学镜头的畸变。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: -2.5<r81/f8<-0.5; wherein, r81 is the object of the eighth lens The radius of curvature of the side surface at the optical axis, f8 is the focal length of the eighth lens. When the above relationship is satisfied, it is beneficial for the eighth lens to provide a reasonable negative refractive power. Cooperating with the curvature and inflection of the object side of the eighth lens, it can effectively suppress the angle at which the off-axis field of view light is incident on the image sensor, so as to adjust the light The angle of the incident imaging surface better matches the photosensitive chip and improves the response efficiency of the image sensor. At the same time, it helps to correct the peripheral distortion of the image and improve the relative illumination. It is also conducive to correcting the astigmatism of the optical lens and reducing the optical lens distortion.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:1<r31/r22<5.5;其中,r31为所述第三透镜的物侧面于光轴处的曲率半径;r22为所述第二透镜的像侧面于光轴处的曲率半径。满足上述关系式时,第三透镜的物侧面和第二透镜的像侧面具有足够的弯曲自由度,便于光线的平滑传递,有利于校正光学镜头的像散和场曲等像差。当低于上述关系式的下限时,第三透镜的物侧面弯曲自由度不足,而第二透镜的像侧面过于弯曲,易产生边缘视场像差,不利于矫正光学镜头的像差;当超出上述关系式的上限时,第二透镜的像侧面弯曲自由度不足,而第三透镜的物侧面过于弯曲,同样易产生边缘视场像差,且第三透镜的物侧面面型复杂,不利于第三透镜的加工成型。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: 1<r31/r22<5.5; wherein, r31 is the object side of the third lens at The radius of curvature at the optical axis; r22 is the radius of curvature of the image side of the second lens at the optical axis. When the above relationship is satisfied, the object side of the third lens and the image side of the second lens have sufficient degrees of freedom to bend, which facilitates the smooth transmission of light and is beneficial to correct aberrations such as astigmatism and field curvature of the optical lens. When it is lower than the lower limit of the above relational expression, the object side of the third lens has insufficient bending freedom, and the image side of the second lens is too curved, which is easy to produce marginal field of view aberration, which is not conducive to correcting the aberration of the optical lens; When the upper limit of the above relationship is reached, the image side of the second lens has insufficient bending freedom, and the object side of the third lens is too curved, which is also prone to produce marginal field aberrations, and the object side of the third lens has a complex shape, which is not conducive to Processing and molding of the third lens.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:at14/TTL≤0.11;其中,at14为所述第一透镜至所述第五透镜于所述光轴上的空气间隙的总和。通过控制第一透镜至第五透镜之间的空气间隙总和与光学镜头总长的比值,即,满足上述关系式时,有利于光学镜头具有足够的空气间隙,保证光学镜头的稳定性和良好的成像品质。同时,还有利于缩短光学镜头的总长,便于小型化设计,并可降低各透镜的组装难度,提高组装的稳定性。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relational expression: at14/TTL≤0.11; wherein, at14 is the first lens to the fifth lens The sum of the air gaps on the optical axis. By controlling the ratio of the sum of the air gaps between the first lens to the fifth lens to the total length of the optical lens, that is, when the above relationship is satisfied, it is beneficial for the optical lens to have sufficient air gaps to ensure the stability and good imaging of the optical lens quality. At the same time, it is also beneficial to shorten the total length of the optical lens, facilitate miniaturization design, reduce the difficulty of assembling each lens, and improve the stability of assembly.
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:sd82/ct8<8.9;其中,sd82为所述第八透镜的像侧面的最大有效半口径,ct8为所述第八透镜于所述光轴上的厚度。满足上述关系式时,第八透镜的厚度能够得到合理配置,进而透镜面型得以合理配置,从而使大角度光线入射于图像传感器上,有利于实现光学镜头的大像面特征,以匹配更高像素的芯片,另外可降低第八透镜的公差敏感度,可以减小镜筒结构排布的压力,有利于第八透镜的成型组装。当超出上述关系式的上限时,第八透镜的外径过大,使得第八透镜的组装稳定性降低,在成型组装过程中易导致不良,增加成本。As an optional implementation manner, in the embodiment of the first aspect of the present invention, the optical lens satisfies the following relationship: sd82/ct8<8.9; wherein, sd82 is the maximum effective Semi-diameter, ct8 is the thickness of the eighth lens on the optical axis. When the above relationship is satisfied, the thickness of the eighth lens can be reasonably configured, and then the lens surface shape can be reasonably configured, so that large-angle light rays are incident on the image sensor, which is conducive to realizing the large image surface characteristics of the optical lens to match higher The pixel chip can also reduce the tolerance sensitivity of the eighth lens, reduce the pressure of the arrangement of the lens barrel structure, and facilitate the molding and assembly of the eighth lens. When the upper limit of the above relational expression is exceeded, the outer diameter of the eighth lens is too large, so that the assembly stability of the eighth lens is reduced, which is likely to cause defects during the molding and assembly process and increase the cost.
第二方面,本发明公开了一种摄像模组,所述摄像模组包括感光芯片和如上述第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有所述光学镜头的摄像模组,能够提高成像品质,减少光学镜头的总长,实现小型化设计,并降低光学镜头的敏感度,同时,还能够具备较大的成像面,以匹配更高像素的感光芯片。In a second aspect, the present invention discloses a camera module. The camera module includes a photosensitive chip and the optical lens as described in the first aspect above, and the photosensitive chip is arranged on the image side of the optical lens. The camera module with the optical lens can improve the imaging quality, reduce the total length of the optical lens, realize miniaturization design, and reduce the sensitivity of the optical lens. At the same time, it can also have a larger imaging surface to match higher pixels. photosensitive chip.
第三方面,本发明公开了一种电子设备,所述电子设备包括壳体和如第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有所述摄像模组的电子设备,能够提高光学镜头的成像品质,减少光学镜头的总长,实现小型化设计,并降低光学镜头的敏感度,同时,还能够具备较大的成像面,以匹配更高像素的感光芯片。In a third aspect, the present invention discloses an electronic device, the electronic device includes a casing and the camera module according to the second aspect, and the camera module is arranged in the casing. The electronic device with the camera module can improve the imaging quality of the optical lens, reduce the total length of the optical lens, realize a miniaturized design, and reduce the sensitivity of the optical lens. At the same time, it can also have a larger imaging surface to match Higher pixel photosensitive chip.
与现有技术相比,本发明的有益效果在于:本发明实施例提供的一种光学镜头、摄像模组及电子设备,所述光学镜头采用八片透镜,并通过合理配置各个透镜的屈折力以及面型,并使得光学镜头满足关系式:1<TTL/ImgH<1.12,能够校正光学镜头的像差,提高光学镜头的成像品质,减少光学镜头的总长,降低光学镜头的敏感度,同时,有利于光学镜头在小型化设计和大成像面之间取得平衡,以使光学镜头在尺寸较小的情况下,还具备较大的成像面,以匹配更高像素的感光芯片,进而能够拍摄出物体更多的细节。Compared with the prior art, the beneficial effect of the present invention lies in: an optical lens, a camera module and an electronic device provided by the embodiment of the present invention, the optical lens adopts eight lenses, and by rationally configuring the refractive power of each lens And the surface shape, and make the optical lens satisfy the relationship: 1<TTL/ImgH<1.12, which can correct the aberration of the optical lens, improve the imaging quality of the optical lens, reduce the total length of the optical lens, and reduce the sensitivity of the optical lens. At the same time, It is beneficial for the optical lens to achieve a balance between miniaturized design and large imaging surface, so that the optical lens has a larger imaging surface in the case of a small size, so as to match the photosensitive chip with higher pixels, and then be able to shoot Objects with more detail.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without making creative efforts.
图1是本申请第一实施例公开的光学镜头的结构示意图;FIG. 1 is a schematic structural view of the optical lens disclosed in the first embodiment of the present application;
图2是本申请第一实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);Fig. 2 is the longitudinal spherical aberration diagram (mm), astigmatism curve diagram (mm) and distortion curve diagram (%) of the optical lens disclosed in the first embodiment of the present application;
图3是本申请第二实施例公开的光学镜头的结构示意图;FIG. 3 is a schematic structural view of the optical lens disclosed in the second embodiment of the present application;
图4是本申请第二实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);Fig. 4 is the longitudinal spherical aberration diagram (mm), astigmatism curve diagram (mm) and distortion curve diagram (%) of the optical lens disclosed in the second embodiment of the present application;
图5是本申请第三实施例公开的光学镜头的结构示意图;Fig. 5 is a schematic structural diagram of the optical lens disclosed in the third embodiment of the present application;
图6是本申请第三实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);Fig. 6 is the longitudinal spherical aberration diagram (mm), astigmatism curve diagram (mm) and distortion curve diagram (%) of the optical lens disclosed in the third embodiment of the present application;
图7是本申请第四实施例公开的光学镜头的结构示意图;Fig. 7 is a schematic structural view of the optical lens disclosed in the fourth embodiment of the present application;
图8是本申请第四实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);8 is a diagram of longitudinal spherical aberration (mm), astigmatism curve (mm) and distortion curve (%) of the optical lens disclosed in the fourth embodiment of the present application;
图9是本申请第五实施例公开的光学镜头的结构示意图;FIG. 9 is a schematic structural view of the optical lens disclosed in the fifth embodiment of the present application;
图10是本申请第五实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);Fig. 10 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the fifth embodiment of the present application;
图11是本申请第六实施例公开的光学镜头的结构示意图;Fig. 11 is a schematic structural view of the optical lens disclosed in the sixth embodiment of the present application;
图12是本申请第六实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);12 is a diagram of longitudinal spherical aberration (mm), astigmatism curve (mm) and distortion curve (%) of the optical lens disclosed in the sixth embodiment of the present application;
图13是本申请第七实施例公开的光学镜头的结构示意图;Fig. 13 is a schematic structural view of the optical lens disclosed in the seventh embodiment of the present application;
图14是本申请第七实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);Fig. 14 is a longitudinal spherical aberration diagram (mm), an astigmatism curve diagram (mm) and a distortion curve diagram (%) of the optical lens disclosed in the seventh embodiment of the present application;
图15是本申请公开的摄像模组的结构示意图;Fig. 15 is a schematic structural view of the camera module disclosed in the present application;
图16是本申请公开的电子设备的结构示意图。FIG. 16 is a schematic structural diagram of an electronic device disclosed in the present application.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In the present invention, the terms "upper", "lower", "left", "right", "front", "rear", "top", "bottom", "inner", "outer", "middle", The orientations or positional relationships indicated by "vertical", "horizontal", "horizontal", and "longitudinal" are based on the orientations or positional relationships shown in the drawings. These terms are mainly used to better describe the present invention and its embodiments, and are not intended to limit that the indicated device, element or component must have a specific orientation, or be constructed and operated in a specific orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term "upper" may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in the present invention according to specific situations.
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。Furthermore, the terms "installed", "disposed", "provided", "connected", "connected" are to be interpreted broadly. For example, it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary; internal connectivity. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。In addition, the terms "first", "second", etc. are mainly used to distinguish different devices, elements or components (the specific types and structures may be the same or different), and are not used to indicate or imply that the indicated devices, elements Or the relative importance and number of components. Unless otherwise specified, "plurality" means two or more.
下面将结合实施例和附图对本发明的技术方案作进一步的说明。The technical solution of the present invention will be further described below in conjunction with the embodiments and the accompanying drawings.
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,所述光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6具有屈折力(例如正屈折力或负屈折力)、第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。Please refer to Fig. 1, according to the first aspect of the present application, the present application discloses an
进一步地,第一透镜L1的物侧面S1、像侧面S2于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5于近光轴O处为凸面,第三透镜L3的像侧面S6于近光轴O处为凸面或凹面;第四透镜L4的物侧面S7于近光轴O处为凸面或凹面,第四透镜L4的像侧面S8于近光轴O处为凸面;第五透镜L5的物侧面S9于近光轴O处为凸面,第五透镜L5的像侧面S10于近光轴O处为凹面;第六透镜L6的物侧面S11于近光轴O处为凸面,第六透镜L6的像侧面S12于近光轴O处为凹面;第七透镜L7的物侧面S13、像侧面S14于近光轴O处分别为凸面和凹面,且第七透镜L7的物侧面S13和像侧面S14中均设置有至少一个反曲点。第八透镜L8的物侧面S15、像侧面S16于近光轴O处分别为凸面和凹面,且第八透镜L8的物侧面S15和像侧面S16中均设置有至少一个反曲点。Further, the object side S1 and image side S2 of the first lens L1 are respectively convex and concave at the near optical axis O; the object side S3 and image side S4 of the second lens L2 are respectively convex and concave at the near optical axis O The object side S5 of the third lens L3 is convex at the near optical axis O, and the image side S6 of the third lens L3 is convex or concave at the near optical axis O; the object side S7 of the fourth lens L4 is at the near optical axis O The image side S8 of the fourth lens L4 is convex at the near optical axis O; the object side S9 of the fifth lens L5 is convex at the near optical axis O, and the image side S10 of the fifth lens L5 is at the near optical axis O. The optical axis O is a concave surface; the object side S11 of the sixth lens L6 is a convex surface at the near optical axis O, and the image side S12 of the sixth lens L6 is concave at the near optical axis O; the object side S13 of the seventh lens L7, The image side S14 is respectively convex and concave at the near optical axis O, and at least one inflection point is provided on both the object side S13 and the image side S14 of the seventh lens L7. The object side S15 and the image side S16 of the eighth lens L8 are respectively convex and concave at the near optical axis O, and at least one inflection point is provided on the object side S15 and the image side S16 of the eighth lens L8.
由上述可知,光学镜头100的第一透镜L1具有正屈折力,且第一透镜L1和第二透镜L2的物侧面于光轴O处均为凸面,以及二者的像侧面于光轴O处均为凹面,将有利于与光轴呈大角度的入射光线进入光学镜头100,有利于光学镜头100光线的汇聚,提高光学镜头100的光学性能,此外,由于第一透镜L1与第二透镜L2于近光轴O处的面型均为凸凹结构,且第三透镜L3的物侧面S5于近光轴O处为凸面,采用此种面型结构搭配形式,可以增加前透镜组(即第一透镜L1、第二透镜L2和第三透镜L3)的面型适配程度,可以减小入射光线的入射角度,进一步降低了色差的产生,提高了光学镜头100的成像品质。第四透镜L4、第五透镜L5的面型设计能够配合物方透镜以进一步汇聚入射光线,以压缩光学镜头100的总长,而搭配第六透镜L6提供的屈折力及相应面型设计,则能够平衡物方各透镜在汇聚入射光线时所带来的难以校正的像差,降低后透镜组的校正压力。第七透镜L7、第八透镜L8的物侧面、像侧面均至少设置有一个反曲点,有利于使边缘视场的光线获得较小的光线偏转角,同时第七透镜L7的正屈折力结合第八透镜L8提供的负屈折力,正负屈折力的透镜将相互抵消彼此产生的像差,以及二者物侧面S15和像侧面S16于光轴O处的凸凹面面型设计,能够进一步汇聚中心视场的光线,可以缩短光学镜头100的总长,以及校正像差,同时还可压制光线的出射角度,提高感光芯片的光线接收效率,能够进一步校正像差,提高成像品质。It can be known from the above that the first lens L1 of the
一些实施例中,光学镜头100可应用于智能手机、智能平板等电子设备,则所述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8的材质可选用塑料,从而使得光学镜头100具有良好的光学效果的同时,还具有良好的轻便性。此外,塑料材质更易于透镜的加工,从而可降低光学镜头100的加工成本。In some embodiments, the
一些实施例中,光学镜头100还包括光阑102,光阑102可为孔径光阑或视场光阑,其可设置在光学镜头100的物侧与第一透镜L1的物侧面S1之间。可以理解的是,在其他实施例中,该光阑102也可设置在相邻的两个透镜之间,例如设置在第二透镜L2和第三透镜L3之间,根据实际情况调整设置,本实施例对此不作具体限定。In some embodiments, the
一些实施例中,光学镜头100还包括滤光片L9,例如红外滤光片,红外滤光片设于第八透镜L8的像侧面S16与光学镜头100的成像面101之间,从而可滤除诸如可见光等其他波段的光线,而仅让红外光通过,因此,光学镜头100可作为红外光学镜头使用,即,光学镜头100能够在昏暗的环境及其他特殊的应用场景下也能成像并能获得较好的影像效果。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式:1<TTL/ImgH<1.12,能够控制光学镜头100的总长,降低光学镜头100的组装敏感度,同时,有利于光学镜头100在小型化设计和大成像面101之间取得平衡,以使光学镜头100在尺寸较小的情况下,还具备较大的成像面101,以匹配更高像素的传感器,进而能够拍摄出物体更多的细节。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式fno/tan(HFOV)<2;其中,FNO为光学镜头100的光圈数,HFOV为光学镜头100的最大视场角的一半。满足上述关系式时,有利于光学镜头100具有较大的光通量,有利于提升光学镜头100的像面亮度,改善成像清晰度,从而可提高感光芯片的感光性能,抑制暗角现象;此外,在具有足够光通量的前提下,光学镜头100的视场范围不会被过度压缩,利于实现大视场角特征,提高光学镜头100的成像质量。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式tan(HFOV)/(distim*10)>6.5;其中,HFOV为光学镜头100的最大视场角的一半,distim为光学镜头100的最大光学畸变值。满足上述关系式时,有利于减弱具备广角特性的光学镜头100在实际成像时的变形程度,对广角特性所带来的场曲、畸变等像差实现有效抑制,同时配合各透镜的面型设计,可有效压制离轴视场光线入射于感光芯片上的角度,提升感光芯片的响应效率,有助于修正影像周边畸变,保证光学镜头100性能较佳,进而提升光学镜头100的成像品质。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式1<f1/f<2;其中,f1为第一透镜L1的焦距,f为光学镜头100的有效焦距。配置第一透镜L1的屈折力在合理范围内,即,满足上述关系式时,第一透镜L1能够提供合适的正屈折力,能够对入射光线实现合理汇聚以压缩光学镜头的总长,同时也可防止第一透镜产生难以校正的像差,此外,第一透镜的正屈折力还可对相对光轴呈大角度入射的光线实现合理偏折,从而利于扩大光学镜头的视场角,并有效降低光学镜头100的头部尺寸,缩短光学镜头100的总长,为提高成像面101的大小提供足够的空间。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式1.5<r72/f7<5.5;其中,f7为第七透镜L7的焦距;r72为第七透镜L7的像侧面于光轴O处的曲率半径。满足上述关系式时,能够合理地控制第七透镜L7的形状,使得第七透镜L7具有合适的偏折程度,在提供合适的正屈折力的情况下,第七透镜L7的形状更加可控,且配合第七透镜L7的物侧面S13、像侧面S14分别为凸面、凹面的设计,能够缩短光学镜头100的总长,实现小型化设计,此外,配合第七透镜L7的像侧面S14的曲率和反曲,可有效压制离轴视场光线入射至第八透镜L8的角度,减小第八透镜L8的校正压力,同时有助于修正前透镜组产生的影像周边畸变,另外也能够补正轴外像差与改善相对照度,提升光学镜头100的成像质量。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式-2.5<r81/f8<-0.5;其中,r81为第八透镜L8的物侧面S15于光轴O处的曲率半径,f8为第八透镜L8的焦距。满足上述关系式时,有利于第八透镜L8提供合理的负屈折力,配合第八透镜L8的物侧面S15的曲率和反曲,可有效压制离轴视场光线入射于感光芯片上的角度,以调整光线射入成像面101的角度,更好地匹配感光芯片,同时有利于矫正光学镜头100的像散,减小光学镜头100的畸变。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式1<r31/r22<5.5;其中,r31为第三透镜L3的物侧面S5于光轴O处的曲率半径;r22为第二透镜L2的像侧面于光轴O处的曲率半径。满足上述关系式时,第三透镜L3的物侧面S5和第二透镜L2的像侧面S4具有足够的弯曲自由度,便于光线的平滑传递,有利于校正光学镜头100的像散和场曲等像差。当低于上述关系式的下限时,第三透镜L3的物侧面S5弯曲自由度不足,而第二透镜L2的像侧面S4过于弯曲,易产生边缘视场像差,不利于矫正光学镜头100的像差;当超出上述关系式的上限时,第二透镜L2的像侧面S4弯曲自由度不足,而第三透镜L3的物侧面S5过于弯曲,同样易产生边缘视场像差,且第三透镜L3的物侧面S5面型复杂,不利于第三透镜L3的加工成型。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式at14/TTL≤0.11;其中,at14为第一透镜L1至第五透镜L5于光轴O上的空气间隙的总和。通过控制第一透镜L1至第五透镜L5之间的空气间隙总和与光学镜头100总长的比值,即,满足上述关系式时,有利于光学镜头100具有足够的空气间隙,保证光学镜头100的稳定性和良好的成像品质。同时,还有利于缩短光学镜头100的总长,便于小型化设计,并可降低各透镜的组装难度,提高组装的稳定性。In some embodiments, the
一些实施例中,光学镜头100满足以下关系式sd82/ct8<8.9;其中,sd82为第八透镜L8的像侧面的最大有效半口径,ct8为第八透镜L8于光轴O上的厚度。满足上述关系式时,第八透镜L8的厚度能够得到合理配置,进而透镜面型得以合理配置,从而使大角度光线入射于感光芯片上,有利于实现光学镜头100的大像面特征,以匹配更高像素的芯片,另外可降低第八透镜的公差敏感度,可以减小镜筒结构排布的压力,有利于第八透镜L8的成型组装。当超出上述关系式的上限时,第八透镜L8的外径过大,使得第八透镜L8的组装稳定性降低,在成型组装过程中易导致不良,增加成本。In some embodiments, the
以下将结合具体参数对本实施例的光学镜头100进行详细说明。The
第一实施例first embodiment
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3和第四透镜L4具有正屈折力,第五透镜L5和第六透镜L6具有负屈折力,第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。The structure schematic diagram of the
进一步地,第一透镜L1的物侧面S1、像侧面S2于近光轴O处分别为凸面和凹面,第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面S5、像侧面S6于近光轴O处均为凸面,第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处均为凹面,第六透镜L6的物侧面S11、像侧面S12于近光轴O处分别为凹面和凸面,第七透镜L7的物侧面S13、像侧面S14于近光轴O处分别为凸面和凹面,第八透镜L8的物侧面S15、像侧面S16于近光轴O处分别为凸面和凹面。第一透镜L1的物侧面S1、像侧面S2于圆周处分别为凹面和凸面,第二透镜L2的物侧面S3、像侧面S4于圆周处分别为凸面和凹面,第三透镜L3的物侧面S5、像侧面S6于圆周处均为凸面,第四透镜L4的物侧面S7、像侧面S8于圆周处均为凹面,第五透镜L5的物侧面S9、像侧面S10于圆周处分别为凸面和凹面,第六透镜L6的物侧面S11、像侧面S12于圆周处分别为凸面和凹面,第七透镜L7的物侧面S13、像侧面S14于圆周处分别为凸面和凹面,第八透镜L8的物侧面S15、像侧面S16于圆周处分别为凹面和凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, the object side S1 and the image side S2 of the first lens L1 are respectively convex and concave at the near optical axis O, and the object side S3 and image side S4 of the second lens L2 are respectively convex and concave at the near optical axis O , the object side S5 and the image side S6 of the third lens L3 are convex at the near optical axis O, the object side S7 and the image side S8 of the fourth lens L4 are respectively concave and convex at the near optical axis O, and the fifth lens The object side S9 and image side S10 of L5 are both concave at the near optical axis O, the object side S11 and image side S12 of the sixth lens L6 are concave and convex at the near optical axis O, respectively, and the object side of the seventh lens L7 S13 and the image side S14 are respectively convex and concave at the near optical axis O, and the object side S15 and image side S16 of the eighth lens L8 are respectively convex and concave at the near optical axis O. The object side S1 and the image side S2 of the first lens L1 are respectively concave and convex at the circumference, the object side S3 and the image side S4 of the second lens L2 are respectively convex and concave at the circumference, and the object side S5 of the third lens L3 , the image side S6 is convex at the circumference, the object side S7 and the image side S8 of the fourth lens L4 are concave at the circumference, the object side S9 and the image side S10 of the fifth lens L5 are convex and concave respectively at the circumference The object side S11 and the image side S12 of the sixth lens L6 are respectively convex and concave at the circumference, the object side S13 and image side S14 of the seventh lens L7 are respectively convex and concave at the circumference, and the object side of the eighth lens L8 S15 and image side S16 are respectively concave and convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.738mm、光学镜头100的最大视场角FOV=96.35°°、光学镜头100的光学总长TTL=5.8mm、光圈大小FNO=2.1为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号2和3分别对应第一透镜L1的物侧面S1和像侧面S2。表1中的Y半径为相应面序号的物侧面或像侧面于近光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑102于“厚度”参数列中的数值为光阑102至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴O的正方向,当该值为负时,表明光阑102设置于后一表面顶点的像侧,若光阑102厚度为正值时,光阑102在后一表面顶点的物侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm。且表1中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.738mm of the
表1Table 1
在第一实施例中,第一透镜L1至第八透镜L8的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:In the first embodiment, the object side and the image side of any one of the first lens L1 to the eighth lens L8 are aspheric surfaces, and the surface type x of each aspheric lens can be defined by but not limited to the following aspheric surface formula :
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中Y半径R的倒数);k为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2给出了可用于第一实施例中各个非球面镜面S1-S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。Among them, x is the distance vector height of the aspheric surface from the apex of the aspheric surface at the position of height h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 1 in the reciprocal of the Y radius R); k is the cone coefficient; Ai is the correction coefficient corresponding to the high-order item of the i-th item of the aspheric surface. Table 2 shows the high-order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspheric mirror surface S1-S16 in the first embodiment.
表2Table 2
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为650nm、610nm、555nm、510nm以及470nm下的纵向球差图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。Please refer to (A) in FIG. 2 . (A) in FIG. 2 shows longitudinal spherical aberration diagrams of the
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为555nm下的像散曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。Please refer to (B) in FIG. 2 . (B) in FIG. 2 is an astigmatism curve of the
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。Please refer to (C) in FIG. 2 . (C) in FIG. 2 is a distortion curve of the
第二实施例second embodiment
本申请的第二实施例公开的光学镜头100的结构示意图如图3所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力一致。The structure schematic diagram of the
进一步地,在第二实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面和凸面,第三透镜L3的物侧面S5、像侧面S6于圆周处分别为凹面和凸面,第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面,第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the second embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S5 and the image side S6 of the third lens L3 are respectively at the near optical axis O. are convex and concave, the object side S9 and image side S10 of the fifth lens L5 are respectively concave and convex at the near optical axis O, the object side S5 and image side S6 of the third lens L3 are respectively concave and convex at the circumference, The object side S9 and the image side S10 of the fifth lens L5 are concave at the circumference, and the object side S11 and the image side S12 of the sixth lens L6 are convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.601mm、光学镜头100的最大视场角FOV=97.85°、光学镜头100的光学总长TTL=5.999mm、光圈大小FNO=1.73为例,光学镜头100的其他参数由下表3给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm。且表3中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.601mm of the
表3table 3
在第二实施例中,表4给出了可用于第二实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the second embodiment, Table 4 shows the high-order term coefficients that can be used for each aspheric mirror surface in the second embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表4Table 4
请参阅图4,由图4中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图4中的(A)、图4中的(B)以及图4中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 4, from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in FIG. control, so that the
第三实施例third embodiment
本申请的第三实施例公开的光学镜头100的结构示意图如图5所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力一致。The structural diagram of the
进一步地,在第三实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the third embodiment, the surface shape of each lens differs from that in the first embodiment in that: both the object side S9 and the image side S10 of the fifth lens L5 are concave at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.368mm、光学镜头100的最大视场角FOV=101°、光学镜头100的光学总长TTL=5.44mm、光圈大小FNO=2.2为例,光学镜头100的其他参数由下表5给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm。且表5中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.368mm of the
表5table 5
在第三实施例中,表6给出了可用于第三实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the third embodiment, Table 6 shows the high-order term coefficients that can be used for each aspheric mirror surface in the third embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表6Table 6
请参阅图6,由图6中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图6中的(A)、图6中的(B)以及图6中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to Fig. 6, from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in Fig. control, so that the
第四实施例Fourth embodiment
本申请的第四实施例公开的光学镜头100的结构示意图如图7所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力区别在于:第六透镜L6具有正屈折力。The structural diagram of the
进一步地,在第四实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第一透镜L1的物侧面S1和像侧面S2于圆周处均为凹面,第三透镜L3的物侧面S5和像侧面S6于圆周处分别为凸面和凹面,第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面,第六透镜L6的物侧面S11和像侧面S12于圆周处均为凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the fourth embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S1 and the image side S2 of the first lens L1 are concave at the circumference, The object side S5 and the image side S6 of the third lens L3 are respectively convex and concave at the circumference, the object side S9 and the image side S10 of the fifth lens L5 are concave at the circumference, and the object side S11 and the image of the sixth lens L6 are concave. The side surfaces S12 are convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.738mm、光学镜头100的最大视场角FOV=96.202°、光学镜头100的光学总长TTL=5.9mm、光圈大小FNO=2.05为例,光学镜头100的其他参数由下表7给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm。且表7中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.738mm of the
表7Table 7
在第四实施例中,表8给出了可用于第四实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the fourth embodiment, Table 8 shows the high-order term coefficients that can be used for each aspheric mirror surface in the fourth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表8Table 8
请参阅图8,由图8中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图8中的(A)、图8中的(B)以及图8中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 8 , from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in FIG. control, so that the
第五实施例fifth embodiment
本申请的第五实施例公开的光学镜头100的结构示意图如图9所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第三透镜L3具有负屈折力,第五透镜L5具有正屈折力。The structural diagram of the
进一步地,在第五实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面,第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面和凸面,第二透镜L2的物侧面S3、像侧面S4于圆周处均为凹面,第三透镜L3的物侧面S5、像侧面S6于圆周处分别为凹面和凸面,第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面,第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the fifth embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S5 and the image side S6 of the third lens L3 are respectively at the near optical axis O. The object side S7 and the image side S8 of the fourth lens L4 are convex at the near optical axis O, and the object side S9 and image side S10 of the fifth lens L5 are concave and convex at the near optical axis O, respectively. , the object side S3 and image side S4 of the second lens L2 are both concave surfaces at the circumference, the object side S5 and image side S6 of the third lens L3 are respectively concave and convex at the circumference, the object side S9 and the fifth lens L5 are The image side S10 is concave at the circumference, and the object side S11 and the image side S12 of the sixth lens L6 are convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.707mm、光学镜头100的最大视场角FOV=96.808°、光学镜头100的光学总长TTL=5.85mm、光圈大小FNO=2.15为例,光学镜头100的其他参数由下表9给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm。且表9中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.707mm of the
表9Table 9
在第五实施例中,表10给出了可用于第五实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the fifth embodiment, Table 10 shows the high-order term coefficients that can be used for each aspheric mirror surface in the fifth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表10Table 10
请参阅图10,由图10中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图10中的(A)、图10中的(B)以及图10中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to Fig. 10, from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in Fig. 10, it can be seen that the longitudinal spherical aberration, astigmatism and distortion of the
第六实施例Sixth embodiment
本申请的第六实施例公开的光学镜头100的结构示意图如图11所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第二透镜L2具有正屈折力。The structure schematic diagram of the
进一步地,在第六实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面和凸面,第六透镜L6的物侧面S11、像侧面S12于近光轴O处均为凹面,第一透镜L1的物侧面S1、像侧面S2于圆周处均为凹面,第三透镜L3的物侧面S5、像侧面S6于圆周处分别为凸面和凹面,第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面,第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the sixth embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S5 and the image side S6 of the third lens L3 are respectively at the near optical axis O. The object side S9 and the image side S10 of the fifth lens L5 are respectively concave and convex at the near optical axis O, and the object side S11 and image side S12 of the sixth lens L6 are concave at the near optical axis O. The object side S1 and the image side S2 of the first lens L1 are both concave surfaces at the circumference, the object side S5 and the image side S6 of the third lens L3 are respectively convex and concave at the circumference, and the object side S9 and the fifth lens L5 are The image side S10 is concave at the circumference, and the object side S11 and the image side S12 of the sixth lens L6 are convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.592mm、光学镜头100的最大视场角FOV=98.056°、光学镜头100的光学总长TTL=5.95mm、光圈大小FNO=1.85为例,光学镜头100的其他参数由下表11给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表11中的Y半径、厚度、焦距的单位均为mm。且表11中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.592mm of the
表11Table 11
在第六实施例中,表12给出了可用于第六实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the sixth embodiment, Table 12 shows the high-order term coefficients that can be used for each aspheric mirror surface in the sixth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表12Table 12
请参阅图12,由图12中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图12中的(A)、图12中的(B)以及图12中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 12, from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in FIG. control, so that the
第七实施例Seventh embodiment
本申请的第七实施例公开的光学镜头100的结构示意图如图13所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和滤光片L9,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第四透镜L4具有负屈折力。The structural diagram of the
进一步地,在第七实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第二透镜L2的物侧面S3、像侧面S4于圆周处均为凹面,第五透镜L5的物侧面S9和像侧面S10于圆周处均为凹面,第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面,第七透镜L7的物侧面S13、像侧面S14于圆周处均为凹面,第八透镜L8的物侧面S15、像侧面S16于圆周处均为凸面。值得说明的是,第七透镜L7和第八透镜L8的物侧面和像侧面均具有反曲点。Further, in the seventh embodiment, the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S3 and the image side S4 of the second lens L2 are concave at the circumference, The object side S9 and the image side S10 of the fifth lens L5 are concave at the circumference, the object side S11 and the image side S12 of the sixth lens L6 are convex at the circumference, and the object side S13 and image S14 of the seventh lens L7 are concave. Both are concave at the circumference, and the object side S15 and the image side S16 of the eighth lens L8 are both convex at the circumference. It should be noted that both the object side and the image side of the seventh lens L7 and the eighth lens L8 have inflection points.
具体地,以光学镜头100的有效焦距f=4.542mm、光学镜头100的最大视场角FOV=98.598°、光学镜头100的光学总长TTL=5.65mm、光圈大小FNO=2.2为例,光学镜头100的其他参数由下表13给出,且其中各参数的定义可由前述实施例的说明中得出。可以理解的是,表13中的Y半径、厚度、焦距的单位均为mm。且表13中透镜的有效焦距的参考波长为555nm,透镜材料的折射率和阿贝数的参考波长为587.6nm。Specifically, taking the effective focal length f=4.542mm of the
表13Table 13
在第七实施例中,表14给出了可用于第七实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。In the seventh embodiment, Table 14 shows the high-order term coefficients that can be used for each aspheric mirror surface in the seventh embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
表14Table 14
请参阅图14,由图14中的(A)纵向球差图,(B)像散曲线图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图14中的(A)、图14中的(B)以及图14中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。Please refer to FIG. 14, from the (A) longitudinal spherical aberration diagram, (B) astigmatism curve diagram and (C) distortion curve diagram in FIG. control, so that the
请参阅表15,表15为本申请第一实施例至第七实施例中各关系式的比值汇总。Please refer to Table 15. Table 15 is a summary of the ratios of the relational expressions in the first embodiment to the seventh embodiment of the present application.
表15Table 15
请参阅图15,本发明公开了一种摄像模组200,摄像模组200包括感光芯片201和上述的光学镜头100,感光芯片201设置于光学镜头100的像侧。光学镜头100可用于接收被摄物的光信号并投射到感光芯片201,感光芯片201可用于将对应于被摄物的光信号转换为图像信号。具有光学镜头100的摄像模组200,能够提高光学镜头100的成像品质,减少光学镜头100的总长,实现小型化设计,并降低光学镜头100的敏感度,同时,还能够具备较大的成像面,以匹配更高像素的感光芯片。Referring to FIG. 15 , the present invention discloses a
请参阅图16,本发明公开了一种电子设备300,电子设备300包括壳体301和上述的摄像模组200,摄像模组200设于壳体301以获取影像信息。其中,电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器等。具有摄像模组200的电子设备300,能够提高光学镜头100的成像品质,减少光学镜头100的总长,实现小型化设计,并降低光学镜头100的敏感度,同时,还能够具备较大的成像面,以匹配更高像素的感光芯片。Please refer to FIG. 16 , the present invention discloses an
以上对本发明实施例公开的光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The optical lens, camera module and electronic equipment disclosed in the embodiments of the present invention have been introduced in detail above. In this paper, specific examples have been used to illustrate the principles and implementation methods of the present invention. The descriptions of the above embodiments are only used to help understand the present invention. Invented optical lens, camera module and electronic equipment and their core ideas; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application range. In summary, The contents of this description should not be construed as limiting the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111410384.0A CN114296213B (en) | 2021-11-25 | 2021-11-25 | Optical lens, camera module and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111410384.0A CN114296213B (en) | 2021-11-25 | 2021-11-25 | Optical lens, camera module and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114296213A CN114296213A (en) | 2022-04-08 |
CN114296213B true CN114296213B (en) | 2023-07-04 |
Family
ID=80965483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111410384.0A Active CN114296213B (en) | 2021-11-25 | 2021-11-25 | Optical lens, camera module and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114296213B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114942513B (en) * | 2022-05-06 | 2023-08-11 | 福建福光股份有限公司 | f25mm high resolution low distortion semi-group moving industrial lens |
CN114624867B (en) * | 2022-05-16 | 2022-08-30 | 江西晶超光学有限公司 | Optical systems, camera modules and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209690597U (en) * | 2019-04-02 | 2019-11-26 | 浙江舜宇光学有限公司 | Imaging lens system group |
CN110515183A (en) * | 2019-08-19 | 2019-11-29 | 瑞声通讯科技(常州)有限公司 | Camera optical camera lens |
CN111007621A (en) * | 2019-12-10 | 2020-04-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
JP2021096437A (en) * | 2019-12-13 | 2021-06-24 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | Image capturing optical lens |
CN113138456A (en) * | 2020-01-20 | 2021-07-20 | 大立光电股份有限公司 | Photographing optical lens assembly, image capturing device and electronic device |
WO2021179207A1 (en) * | 2020-03-11 | 2021-09-16 | 江西晶超光学有限公司 | Optical system, camera module and electronic device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6653111B2 (en) * | 2018-05-07 | 2020-02-26 | カンタツ株式会社 | Imaging lens |
-
2021
- 2021-11-25 CN CN202111410384.0A patent/CN114296213B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209690597U (en) * | 2019-04-02 | 2019-11-26 | 浙江舜宇光学有限公司 | Imaging lens system group |
CN110515183A (en) * | 2019-08-19 | 2019-11-29 | 瑞声通讯科技(常州)有限公司 | Camera optical camera lens |
CN111007621A (en) * | 2019-12-10 | 2020-04-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
JP2021096437A (en) * | 2019-12-13 | 2021-06-24 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | Image capturing optical lens |
CN113138456A (en) * | 2020-01-20 | 2021-07-20 | 大立光电股份有限公司 | Photographing optical lens assembly, image capturing device and electronic device |
WO2021179207A1 (en) * | 2020-03-11 | 2021-09-16 | 江西晶超光学有限公司 | Optical system, camera module and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN114296213A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113933968B (en) | Optical lens, camera module and electronic equipment | |
CN113946038B (en) | Optical lens, camera module and electronic equipment | |
CN113741006A (en) | Optical lens, camera module and electronic equipment | |
CN114296213B (en) | Optical lens, camera module and electronic equipment | |
CN115480364B (en) | Optical lenses, camera modules and electronic equipment | |
CN114415343B (en) | Optical system, camera module and electronic equipment | |
CN114167583B (en) | Optical lens, camera module and electronic equipment | |
CN113625425B (en) | Optical lens, camera module and electronic equipment | |
WO2022266902A1 (en) | Optical lens, camera module, and electronic device | |
CN114114645A (en) | Optical lens, camera module and electronic equipment | |
CN114355579A (en) | Optical lens, camera module and electronic equipment | |
CN114578515A (en) | Optical lens, camera module and electronic equipment | |
CN114578512A (en) | Optical systems, camera modules and electronic equipment | |
CN114815154B (en) | Optical lens, camera module and electronic equipment | |
CN114755803B (en) | Optical lens, camera module and electronic equipment | |
CN114415353B (en) | Optical system, camera module and electronic equipment | |
CN114167582B (en) | Optical lens, camera module and electronic equipment | |
CN114002822B (en) | Optical lens, camera module and electronic equipment | |
CN114371547B (en) | Optical lens, camera module and electronic equipment | |
CN113933966B (en) | Optical lens, camera module and electronic equipment | |
CN113866961B (en) | Optical lens, camera module and electronic equipment | |
CN114326052B (en) | Optical system, image capturing module and electronic equipment | |
CN113484985B (en) | Optical lens, camera module and electronic equipment | |
CN114740593B (en) | Optical lens, camera module and electronic equipment | |
CN114967075B (en) | Optical lens, camera module and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Jiangxi Province Patentee after: Jiangxi Oufei Optics Co.,Ltd. Country or region after: China Address before: No. 699 Tianxiang North Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee before: Jiangxi Jingchao optics Co.,Ltd. Country or region before: China |