CN113782598B - A nanotube tunneling transistor with asymmetric double-gate structure - Google Patents
A nanotube tunneling transistor with asymmetric double-gate structure Download PDFInfo
- Publication number
- CN113782598B CN113782598B CN202110967348.8A CN202110967348A CN113782598B CN 113782598 B CN113782598 B CN 113782598B CN 202110967348 A CN202110967348 A CN 202110967348A CN 113782598 B CN113782598 B CN 113782598B
- Authority
- CN
- China
- Prior art keywords
- drain
- source
- overlapping region
- isolation layer
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/211—Gated diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/122—Nanowire, nanosheet or nanotube semiconductor bodies oriented at angles to substrates, e.g. perpendicular to substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域的场效应晶体管,尤其是一种非对称双栅结构的纳米管隧穿晶体管。The invention relates to a field effect transistor in the technical field of semiconductors, in particular to a nanotube tunneling transistor with an asymmetric double gate structure.
背景技术Background technique
半导体行业在摩尔定律的指导下对MOS器件的尺寸不断进行缩小,以达到降低功耗和提高集成电路集成度的目的。然而伴随着器件的特征尺寸的不断缩放,短沟道效应及漏电等问题使得摩尔定律已经接近物理极限。为改善这些问题,许多新型器件相继出现,基于载流子带间量子隧穿机制的隧穿晶体管因其低亚阈值摆幅及低功耗的性能优势,被认为是低压低功耗器件中最具潜力的研究方向之一,但其开态电流较低的问题有待解决。纳米线隧穿晶体管的电流受到沟道直径的限制,通过排列增大电流会引起寄生、功耗和芯片面积的问题。速度、功耗及面积是评价数字集成电路的重要指标。电路成本取决于芯片面积,因此高集成度是电路设计的主要目标之一。纳米管隧穿晶体管利用内外栅极提供了更大的有效隧穿面积,实现了良好的静电控制,但较小的饱和电流会引起驱动能力不足的问题。Under the guidance of Moore's Law, the semiconductor industry has continuously reduced the size of MOS devices in order to reduce power consumption and increase the integration level of integrated circuits. However, with the continuous scaling of the feature size of devices, problems such as short channel effects and leakage make Moore's law close to the physical limit. In order to improve these problems, many new devices have emerged one after another. Tunneling transistors based on the quantum tunneling mechanism between carrier bands are considered to be the best low-voltage and low-power devices because of their performance advantages of low sub-threshold swing and low power consumption. One of the potential research directions, but the problem of its low on-state current needs to be solved. The current of the nanowire tunneling transistor is limited by the channel diameter, and increasing the current through arrangement will cause problems of parasitic, power consumption and chip area. Speed, power consumption and area are important indicators for evaluating digital integrated circuits. Circuit cost depends on chip area, so high integration is one of the main goals of circuit design. The nanotube tunneling transistor uses the inner and outer gates to provide a larger effective tunneling area and achieve good electrostatic control, but the small saturation current will cause the problem of insufficient driving ability.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足而提供的一种非对称双栅结构的纳米管隧穿晶体管,通过对非对称双栅设置不同金属功函数和施加不同的电压偏置,在沟道重叠区中反型出的电子空穴双层之间发生隧穿。本发明不要求源极沟道结处具有陡峭的掺杂分布,降低工艺难度;可在同等面积上获得更大的电流密度,从而提高电流驱动能力;在大的电流范围内获得更加陡峭的亚阈值斜率,利于工作电压的进一步缩放。The purpose of the present invention is to provide a nanotube tunneling transistor with an asymmetric double gate structure in view of the deficiencies of the prior art. By setting different metal work functions and applying different voltage biases to the asymmetric double gate, the Tunneling occurs between the inversion electron-hole bilayers in the overlapping region. The present invention does not require a steep doping distribution at the source channel junction, which reduces the difficulty of the process; a larger current density can be obtained on the same area, thereby improving the current driving capability; a steeper sub-doping distribution can be obtained in a large current range. The threshold slope facilitates further scaling of the operating voltage.
实现本发明目的的具体技术方案是:The concrete technical scheme that realizes the object of the invention is:
一种非对称双栅结构的纳米管隧穿晶体管,其特点是它包括:A nanotube tunneling transistor with an asymmetric double-gate structure is characterized in that it includes:
自上而下堆叠的漏极一侧沟道非重叠区、沟道重叠区及源极一侧沟道非重叠区;The channel non-overlapping region on the drain side, the channel overlapping region and the channel non-overlapping region on the source side stacked from top to bottom;
设于沟道重叠区和源极一侧沟道非重叠区内侧的内部高介电常数栅极氧化物;an internal high-k gate oxide disposed inside the channel overlap region and the source side channel non-overlap region;
设于内部高介电常数栅极氧化物内侧的内部栅极;an inner gate disposed inside the inner high-k gate oxide;
包裹在漏极一侧沟道非重叠区和沟道重叠区外侧的外部高介电常数栅极氧化物;An external high dielectric constant gate oxide wrapped outside the channel non-overlapping region and the channel overlapping region on the drain side;
包裹在外部高介电常数栅极氧化物外侧的外部栅极;An external gate wrapped around an external high-k gate oxide;
设于漏极一侧沟道非重叠区顶部的漏极;The drain on the top of the channel non-overlapping region on the drain side;
设于源极一侧沟道非重叠区底部的源极;The source electrode located at the bottom of the non-overlapping region of the channel on the source side;
设于漏极和漏极一侧沟道非重叠区内侧的内部漏极介质隔离层;An internal drain dielectric isolation layer disposed inside the drain and the non-overlapping region of the channel on one side of the drain;
设于漏极外侧的外部漏极介质隔离层;an external drain dielectric isolation layer arranged outside the drain;
设于源极内侧的内部源极介质隔离层;an internal source dielectric isolation layer disposed inside the source;
设于源极一侧沟道非重叠区和源极外侧的外部源极介质隔离层;An external source dielectric isolation layer arranged on the channel non-overlapping region on the source side and outside the source;
设于上述结构底部的绝缘隔离层;an insulating barrier layer provided at the bottom of the structure;
设于绝缘隔离层底部的衬底。The substrate at the bottom of the insulating spacer.
所述漏极一侧沟道非重叠区、沟道重叠区及源极一侧沟道非重叠区由硅、锗、锗硅、砷化镓、氧化锌、氮化镓、磷化铟或碳材料制作;The channel non-overlapping region on the drain side, the channel overlapping region and the channel non-overlapping region on the source side are made of silicon, germanium, silicon germanium, gallium arsenide, zinc oxide, gallium nitride, indium phosphide or carbon material production;
所述漏极和源极由硅或锗硅材料制作;The drain and source are made of silicon or silicon germanium;
所述内部高介电常数栅极氧化物及外部高介电常数栅极氧化物由二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆材料制作;The inner high dielectric constant gate oxide and the outer high dielectric constant gate oxide are made of hafnium dioxide, titanium oxide, silicon nitride, aluminum oxide, tantalum pentoxide or zirconium dioxide;
所述内部栅极和外部栅极由钨、氮化钛、铝或多晶硅材料制作;The internal gate and the external gate are made of tungsten, titanium nitride, aluminum or polysilicon;
所述外部漏极介质隔离层、内部漏极介质隔离层、外部源极介质隔离层、内部源极介质隔离层及绝缘隔离层由二氧化硅、二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆材料制作;The outer drain dielectric isolation layer, the inner drain dielectric isolation layer, the outer source dielectric isolation layer, the inner source dielectric isolation layer and the insulating isolation layer are made of silicon dioxide, hafnium dioxide, titanium oxide, silicon nitride, oxide Made of aluminum, tantalum pentoxide or zirconia;
所述衬底由绝缘体上硅即SOI、二氧化硅、蓝宝石、硅、锗、砷化镓或氮化镓材料制作。The substrate is made of SOI, silicon dioxide, sapphire, silicon, germanium, gallium arsenide or gallium nitride material.
本发明由自上而下堆叠的漏极一侧沟道非重叠区、沟道重叠区、源极一侧沟道非重叠区;设于沟道重叠区和源极一侧沟道非重叠区内侧的内部高介电常数栅极氧化物;设于内部高介电常数栅极氧化物内侧的内部栅极;包裹在漏极一侧沟道非重叠区和沟道重叠区外侧的外部高介电常数栅极氧化物;包裹在外部高介电常数栅极氧化物外侧的外部栅极;设于漏极一侧沟道非重叠区顶部的漏极;设于源极一侧沟道非重叠区底部的源极;漏极和漏极一侧沟道非重叠区内侧的内部漏极介质隔离层;漏极外侧的外部漏极介质隔离层;源极内侧的内部源极介质隔离层;源极一侧沟道非重叠区和源极外侧的外部源极介质隔离层;设于上述结构底部的绝缘隔离层;设于绝缘隔离层底部的衬底构成。The present invention consists of a top-down stacked channel non-overlapping region on the drain side, a channel overlapping region, and a source-side channel non-overlapping region; The internal high dielectric constant gate oxide on the inside; the internal gate located inside the internal high dielectric constant gate oxide; the external high dielectric constant wrapped around the drain side channel non-overlapping region and outside the channel overlapping region Permittivity gate oxide; external gate wrapped outside high-k gate oxide; drain on top of channel non-overlapping region on drain side; channel non-overlapping on source side The source at the bottom of the region; the internal drain dielectric isolation layer inside the channel non-overlapping region on the drain and drain side; the external drain dielectric isolation layer outside the drain; the internal source dielectric isolation layer inside the source; The channel non-overlapping region on the pole side and the external source dielectric isolation layer outside the source; the insulating isolation layer arranged at the bottom of the above structure; and the substrate arranged at the bottom of the insulating isolation layer.
本发明通过对非对称双栅设置不同金属功函数以及施加不同的电压偏置,在沟道重叠区中分别反型出电子层和空穴层,通过电子层和空穴层之间发生隧穿使器件开启。本发明的隧穿发生在沟道内部,不要求源极沟道结处具有陡峭的掺杂分布,降低工艺难度;可在同等面积上获得更大的电流密度,从而提高电流驱动能力;在大的电流范围内获得更加陡峭的亚阈值斜率,利于工作电压的进一步缩放。In the present invention, by setting different metal work functions and applying different voltage biases to the asymmetric double gate, the electron layer and the hole layer are respectively inverted in the channel overlapping region, and tunneling occurs between the electron layer and the hole layer. turn on the device. The tunneling of the present invention occurs inside the channel, and does not require a steep doping distribution at the source channel junction, which reduces the difficulty of the process; a larger current density can be obtained on the same area, thereby improving the current driving capability; A steeper subthreshold slope is obtained in the current range, which is conducive to further scaling of the working voltage.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为图1的A-A截面示意图;Fig. 2 is the A-A sectional schematic diagram of Fig. 1;
图3为图1的B-B截面示意图;Fig. 3 is the B-B sectional schematic diagram of Fig. 1;
图4为图1的C-C截面示意图;Fig. 4 is the C-C sectional schematic diagram of Fig. 1;
图5为图1的D-D截面示意图;Fig. 5 is the D-D sectional schematic diagram of Fig. 1;
图6为图1的E-E截面示意图;Fig. 6 is the E-E sectional schematic diagram of Fig. 1;
图7为本发明的转移特性图;Fig. 7 is the transfer characteristic figure of the present invention;
图8为本发明的亚阈值斜率特性图;Fig. 8 is a sub-threshold slope characteristic diagram of the present invention;
图9为本发明工作在关态和开态时的能带图;Fig. 9 is the energy band diagram when the present invention works in the off state and the on state;
图10为纳米管隧穿晶体管工作在关态和开态时的能带图;Fig. 10 is the energy band diagram when the nanotube tunneling transistor works in the off state and the on state;
图11为本发明的制备流程图。Fig. 11 is a preparation flow chart of the present invention.
具体实施方式Detailed ways
以下结合附图及实施例对本发明作详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
参阅图1,本发明包括自上而下堆叠的漏极一侧沟道非重叠区2、沟道重叠区3、源极一侧沟道非重叠区4;设于沟道重叠区3和源极一侧沟道非重叠区4内侧的内部高介电常数栅极氧化物7;设于内部高介电常数栅极氧化物内侧的内部栅极6;包裹在漏极一侧沟道非重叠区2和沟道重叠区3外侧的外部高介电常数栅极氧化物8;包裹在外部高介电常数栅极氧化物8外侧的外部栅极9;设于漏极一侧沟道非重叠区2顶部的漏极1;设于源极一侧沟道非重叠区4底部的源极5;漏极1和漏极一侧沟道非重叠区2内侧的内部漏极介质隔离层12;漏极1外侧的外部漏极介质隔离层10;源极5内侧的内部源极介质隔离层13;源极一侧沟道非重叠区4和源极5外侧的外部源极介质隔离层11;设于上述结构底部的绝缘隔离层14;设于绝缘隔离层底部的衬底15。Referring to Fig. 1, the present invention includes a drain side channel non-overlapping
所述漏极一侧沟道非重叠区2、沟道重叠区3及源极一侧沟道非重叠区4由硅、锗、锗硅、砷化镓、氧化锌、氮化镓、磷化铟或碳材料制作;The channel non-overlapping
所述漏极1和源极5由硅或锗硅材料制作;The
所述内部高介电常数栅极氧化物7及外部高介电常数栅极氧化物8由二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆材料制作;The inner high dielectric
所述内部栅极6和外部栅极9由钨、氮化钛、铝或多晶硅材料制作;The
所述外部漏极介质隔离层10、内部漏极介质隔离层12、外部源极介质隔离层11、内部源极介质隔离层13及绝缘隔离层14由二氧化硅、二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆材料制作;The outer drain
所述衬底15由绝缘体上硅即SOI、二氧化硅、蓝宝石、硅、锗、砷化镓或氮化镓材料制作。The
实施例1Example 1
参阅图1-6,本发明漏极一侧沟道非重叠区2、沟道重叠区3及源极一侧沟道非重叠区4选用硅材料,漏极1和源极5选用硅材料,内部高介电常数栅极氧化物7及外部高介电常数栅极氧化物8选用二氧化铪材料,内部栅极6和外部栅极9选用钨材料,外部漏极介质隔离层10、内部漏极介质隔离层12、外部源极介质隔离层11、内部源极介质隔离层13及绝缘隔离层14选用二氧化硅材料,衬底15选用硅材料。Referring to Figures 1-6, in the present invention, the channel
参阅图1-6、图11,本实施例的制作过程如下:Referring to Fig. 1-6, Fig. 11, the manufacturing process of present embodiment is as follows:
(1)在衬底15表面生长二氧化硅绝缘隔离层14;(1) growing a silicon dioxide insulating
(2)生长硅并向底部掺杂高浓度硼,向顶部掺杂高浓度磷,刻蚀形成漏极1、漏极一侧沟道非重叠区2、沟道重叠区3、源极一侧沟道非重叠区4及源极5;(2) Grow silicon and dope high-concentration boron to the bottom, dope high-concentration phosphorus to the top, etch to form
(3)淀积二氧化硅,形成外部源极介质隔离层11;(3) Depositing silicon dioxide to form an external source
(4)依次淀积二氧化铪和钨,形成外部高介电常数栅极氧化物8和外部栅极9;(4) Depositing hafnium dioxide and tungsten in sequence to form an external high dielectric
(5)淀积二氧化硅,形成外部漏极介质隔离层10;(5) Depositing silicon dioxide to form an external drain
(6)刻蚀形成圆柱型硅内部,在中心形成凹槽,淀积二氧化硅,形成内部源极介质隔离层13;(6) Etching to form the interior of the cylindrical silicon, forming a groove in the center, depositing silicon dioxide, and forming the internal source
(7)依次淀积二氧化铪和钨,形成内部高介电常数栅极氧化物7和内部栅极6;(7) Deposit hafnium dioxide and tungsten in sequence to form internal high dielectric
(8)淀积二氧化硅,形成内部漏极介质隔离层12。完成实施例1。(8) Deposit silicon dioxide to form the internal drain
实施例2Example 2
参阅图1-6,本发明漏极一侧沟道非重叠区2、沟道重叠区3及源极一侧沟道非重叠区4选用硅材料,漏极1和源极5选用硅材料,内部高介电常数栅极氧化物7及外部高介电常数栅极氧化物8选用二氧化钛材料,内部栅极6和外部栅极9选用氮化钛材料,外部漏极介质隔离层10、内部漏极介质隔离层12、外部源极介质隔离层11及内部源极介质隔离层13选用氮化硅材料,绝缘隔离层14选用二氧化硅材料,衬底15选用硅材料。Referring to Figures 1-6, in the present invention, the channel
参阅图1-6、图11,本实施例的制作过程如下:Referring to Fig. 1-6, Fig. 11, the manufacturing process of present embodiment is as follows:
(1)在衬底15表面生长二氧化硅绝缘隔离层14;(1) growing a silicon dioxide insulating
(2)生长硅并向底部掺杂高浓度硼,向顶部掺杂高浓度磷,刻蚀形成漏极1、漏极一侧沟道非重叠区2、沟道重叠区3、源极一侧沟道非重叠区4及源极5;(2) Grow silicon and dope high-concentration boron to the bottom, dope high-concentration phosphorus to the top, etch to form
(3)淀积氮化硅,形成外部源极介质隔离层11;(3) depositing silicon nitride to form an external source
(4)依次淀积二氧化钛和氮化钛,形成外部高介电常数栅极氧化物8和外部栅极9;(4) Depositing titanium dioxide and titanium nitride in sequence to form an external high dielectric
(5)淀积氮化硅,形成外部漏极介质隔离层10;(5) Depositing silicon nitride to form an external drain
(6)刻蚀形成圆柱型硅内部,在中心形成凹槽,淀积氮化硅,形成内部源极介质隔离层13;(6) Etching to form the inside of the cylindrical silicon, forming a groove in the center, depositing silicon nitride, and forming the internal source
(7)依次淀积二氧化钛和氮化钛,形成内部高介电常数栅极氧化物7和内部栅极6;(7) Depositing titanium dioxide and titanium nitride in sequence to form an internal high dielectric
(8)淀积氮化硅,形成内部漏极介质隔离层12。完成实施例2。(8) Deposit silicon nitride to form the internal drain
本发明是这样工作的:The invention works like this:
参阅图1-6,本发明基于垂直纳米管结构,通过对非对称的内外栅极设置不同金属功函数和施加不同的电压偏置,在源极一侧沟道非重叠区和沟道重叠区反型出空穴层,在漏极一侧沟道非重叠区和沟道重叠区反型出电子层,源极一侧沟道非重叠区的空穴层和漏极一侧沟道非重叠区的电子层分别将源极和漏极连接起来,沟道重叠区形成电子空穴双层。当外部栅极电压增大到一定电压值时,沟道重叠区中空穴层的价带高于电子层的导带,形成隧穿窗口,电子和空穴发生隧穿使器件开启。区别于在源极和沟道结出发生点隧穿的纳米管场效应晶体管,本发明是在整个沟道重叠区发生线隧穿,可以增大隧穿面积。Referring to Figures 1-6, the present invention is based on the vertical nanotube structure. By setting different metal work functions and applying different voltage biases to the asymmetric inner and outer gates, the channel non-overlapping area and channel overlapping area on the source side Inversion-type hole-exiting layer, inversion-type electron-exiting layer in the channel non-overlapping region on the drain side and the channel overlapping region, the hole layer in the channel non-overlapping region on the source side and the non-overlapping channel on the drain side The electron layer in the region connects the source and drain respectively, and the channel overlapping region forms an electron-hole double layer. When the external gate voltage increases to a certain voltage value, the valence band of the hole layer in the channel overlap region is higher than the conduction band of the electron layer, forming a tunneling window, and the electrons and holes tunnel to turn on the device. Different from the nanotube field effect transistor in which point tunneling occurs at the junction of the source and the channel, the present invention produces line tunneling in the entire channel overlapping region, which can increase the tunneling area.
参阅图7~图8:本发明的漏极5和外部栅极9设为工作电压0.5V,内部栅极6设为-0.1V。当栅极电压为0V时,器件的漏极电流为2.36×10-18A,此时器件关闭。当栅极电压上升到0.5V时,器件的漏极电流为4.59×10-9A,此时器件开启。相较于传统的纳米管隧穿晶体管8.03×10-11A的开态电流,本发明的开态电流提高了57.2倍,电流开关比提升了约265倍。本发明在漏极电流为3.7×10-18A到3×10-11A的范围内,其亚阈值斜率都小于60mV/dec,最小亚阈值斜率为2.1mV/dec。相较于传统的纳米管隧穿晶体管,本发明实现了更大漏极电流范围内的陡峭亚阈值斜率。Referring to Figures 7 to 8: the
本发明提升的开态电流和陡峭的亚阈值斜率特性可以从图9、图10中得出,图9为本发明沿垂直于沟道方向的沟道能带图,图10为纳米管隧穿晶体管沿平行于沟道方向的沟道能带图,其中,A代表关态导带能级,B代表开态导带能级,C代表关态价带能级,D代表开态价带能级。关态时,本发明沟道中导带和价带没有重叠区域,此时无隧穿发生。随着栅压增大,靠近外部栅极的能带被逐渐下拉,当能带开始对准时,沟道中发生线隧穿,电流剧烈增大,因此具有陡峭的亚阈值斜率。开态下,本发明和纳米管隧穿晶体管的隧穿距离分别为3.95纳米和5.48纳米,本发明隧穿发生在整个沟道中,具有更大的隧穿面积。由隧穿几率关系,本发明可以获得更大的隧穿电流,从而获得更高的开态电流。The on-state current and the steep subthreshold slope characteristics of the present invention can be drawn from Fig. 9 and Fig. 10, Fig. 9 is the channel energy band diagram of the present invention along the direction perpendicular to the channel, and Fig. 10 is nanotube tunneling The channel energy band diagram of the transistor along the direction parallel to the channel, where A represents the off-state conduction band energy level, B represents the on-state conduction band energy level, C represents the off-state valence band energy level, and D represents the on-state valence band energy level class. In the off state, there is no overlapping area between the conduction band and the valence band in the channel of the present invention, and no tunneling occurs at this time. As the gate voltage increases, the energy band near the outer gate is gradually pulled down, and when the energy bands start to align, line tunneling occurs in the channel, and the current increases sharply, thus having a steep subthreshold slope. In the on state, the tunneling distances of the present invention and the nanotube tunneling transistor are 3.95 nanometers and 5.48 nanometers respectively, and the tunneling of the present invention occurs in the entire channel, and has a larger tunneling area. According to the tunneling probability relationship, the present invention can obtain a larger tunneling current, thereby obtaining a higher on-state current.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110967348.8A CN113782598B (en) | 2021-08-23 | 2021-08-23 | A nanotube tunneling transistor with asymmetric double-gate structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110967348.8A CN113782598B (en) | 2021-08-23 | 2021-08-23 | A nanotube tunneling transistor with asymmetric double-gate structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113782598A CN113782598A (en) | 2021-12-10 |
CN113782598B true CN113782598B (en) | 2023-06-23 |
Family
ID=78838715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110967348.8A Active CN113782598B (en) | 2021-08-23 | 2021-08-23 | A nanotube tunneling transistor with asymmetric double-gate structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113782598B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110164958A (en) * | 2019-04-25 | 2019-08-23 | 华东师范大学 | A kind of asymmetric restructural field effect transistor |
CN110416311A (en) * | 2019-07-15 | 2019-11-05 | 华东师范大学 | A Dielectric Ring Field-Effect Transistor with Asymmetric Channel |
CN110690290A (en) * | 2019-09-18 | 2020-01-14 | 华东师范大学 | Nano-sheet ring gate field effect transistor with asymmetric gate oxide structure |
CN111048487A (en) * | 2018-10-11 | 2020-04-21 | 恩智浦美国有限公司 | Transistor with dual-orientation non-circular via connection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020197810A1 (en) * | 2001-06-21 | 2002-12-26 | International Business Machines Corporation | Mosfet having a variable gate oxide thickness and a variable gate work function, and a method for making the same |
-
2021
- 2021-08-23 CN CN202110967348.8A patent/CN113782598B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048487A (en) * | 2018-10-11 | 2020-04-21 | 恩智浦美国有限公司 | Transistor with dual-orientation non-circular via connection |
CN110164958A (en) * | 2019-04-25 | 2019-08-23 | 华东师范大学 | A kind of asymmetric restructural field effect transistor |
CN110416311A (en) * | 2019-07-15 | 2019-11-05 | 华东师范大学 | A Dielectric Ring Field-Effect Transistor with Asymmetric Channel |
CN110690290A (en) * | 2019-09-18 | 2020-01-14 | 华东师范大学 | Nano-sheet ring gate field effect transistor with asymmetric gate oxide structure |
Also Published As
Publication number | Publication date |
---|---|
CN113782598A (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106356405B (en) | Heterojunction carbon nanotube field effect transistor and preparation method thereof | |
JP6401027B2 (en) | Double-layer graphene tunnel field effect transistor | |
CN104617137B (en) | A kind of fieldtron and preparation method thereof | |
CN103594376B (en) | A kind of knot modulation type tunneling field-effect transistor and preparation method thereof | |
CN102543886B (en) | Manufacturing method of gated diode semiconductor memory device | |
CN110416311B (en) | An Asymmetric Channel Dielectric Ring Field Effect Transistor | |
CN110690290B (en) | A nanosheet gate ring field effect transistor with asymmetric gate oxide structure | |
WO2019015529A1 (en) | Gate extraction and injection field effect transistor and method for controlling number of channel carriers thereof | |
CN106601815A (en) | Ring-gate structure field effect transistor and preparation method thereof | |
CN102544094B (en) | Nanowire field effect transistor with split-gate structure | |
CN109037339B (en) | A Reconfigurable Field Effect Transistor with Asymmetric Structure | |
CN113782598B (en) | A nanotube tunneling transistor with asymmetric double-gate structure | |
CN103151390B (en) | A kind of tunneling field-effect transistor | |
CN110459541B (en) | Planar complementary type tunneling field effect transistor inverter | |
Kim et al. | Feedback and tunneling operations of a p+-i-n+ silicon nanowire field-effect transistor | |
CN109980015B (en) | Tunneling field effect transistor capable of effectively increasing on-state current | |
CN104538442B (en) | A kind of tunneling field-effect transistor and preparation method thereof | |
CN109560128B (en) | Tunneling field effect transistor | |
CN103681829A (en) | Silicon-based single electron transistor structure and preparation method thereof | |
CN102956709B (en) | Bi-material layers gate nano line tunneling field-effect device and manufacture method thereof | |
CN104465735B (en) | Embedded gate insulation tunnelling enhancing transistor | |
CN104282752B (en) | Drain electrode auxiliary control L-shaped gate type junction-free transistor | |
CN104485353B (en) | Insulated gate tunneling bipolar transistor with U-shaped tunneling insulating layer and manufacturing process | |
CN104952730B (en) | Semiconductor structure and forming method thereof | |
Batakala et al. | Development and Analysis of In GaAs Nanowire Junctionless MOSFET with 10 nm gate length |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |