CN113773064B - 一种多级孔结构的多孔陶瓷 - Google Patents
一种多级孔结构的多孔陶瓷 Download PDFInfo
- Publication number
- CN113773064B CN113773064B CN202010515637.XA CN202010515637A CN113773064B CN 113773064 B CN113773064 B CN 113773064B CN 202010515637 A CN202010515637 A CN 202010515637A CN 113773064 B CN113773064 B CN 113773064B
- Authority
- CN
- China
- Prior art keywords
- porous
- porous ceramic
- pores
- hierarchical
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
- B01J21/185—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/657—Pore diameter larger than 1000 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/695—Pore distribution polymodal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0038—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/069—Other materials, e.g. catalysts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/10—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种多级孔结构的多孔陶瓷,属于陶瓷技术领域,解决了现有多孔陶瓷的连通性较差导致过滤或催化效果较差,现有多孔陶瓷的强度较低,适用范围较窄的问题。本发明的多级孔结构的多孔陶瓷的原料组成包括:羧甲基纤维素钠、碳纳米管、水、溶胶、盐酸、十二烷基硫酸钠和氨水,制备得到的多级孔结构的多孔陶瓷的表面和内部均分布有毫米级的一级孔、微米级的二级孔和纳米级的三级孔;所述一级孔的孔壁上分布有二级孔和三级孔。本发明的多级孔结构的多孔陶瓷能用于过滤和催化领域。
Description
技术领域
本发明涉及多孔陶瓷技术领域,尤其涉及一种多级孔结构的多孔陶瓷。
背景技术
多孔陶瓷由于具有密度小,机械强度高和耐高温等优异性能而被广泛应用于各个领域。根据孔的连通性,它可以分为开孔和闭孔多孔陶瓷。根据孔径大小,多孔陶瓷的孔结构包括微孔,介孔和宏孔等。近年来,随着环保产业和化工工业等的快速发展,对多孔陶瓷的需求日益增多。多级孔结构的多孔陶瓷是一种具有两种或两种以上孔结构类型的多孔陶瓷。多级孔结构结合了多种类型孔结构的优点,它具有密度低,气孔率高和比表面积大的优点。当它用作吸水和保水性材料时,宏孔有利于水渗透,介孔和微孔有利于水吸附;当它用作催化剂或催化剂载体时,有利于提高物质扩散能力和反应效率;当它用作骨修复材料时,宏孔有利于细胞和组织再生以及营养物质传递,介孔和微孔可以提升它们的生物活性。虽然多孔陶瓷的制备取得了一定进展,但它的孔连通性较差,尤其对于纳米孔更是如此;此外,伴随着孔连通性的增加,陶瓷骨架强度会降低。
发明内容
鉴于上述的分析,本发明旨在提供一种多级孔结构的多孔陶瓷,至少能够解决以下技术问题之一:(1)现有多孔陶瓷的连通性较差导致过滤或催化效果较差;(2)现有多孔陶瓷的强度较低,适用范围较窄。
本发明的目的主要是通过以下技术方案实现的:
本发明提供了一种多级孔结构的多孔陶瓷,多级孔结构的多孔陶瓷的原料组成包括:羧甲基纤维素钠、碳纳米管、水、溶胶、盐酸、十二烷基硫酸钠和氨水。
在一种可能的设计中,多级孔结构的多孔陶瓷的原料组成的质量或体积比为:羧甲基纤维素钠:碳纳米管:水:溶胶:盐酸:十二烷基硫酸钠:氨水=0.03~0.06g:0.06~0.12g:10~20mL:15~28mL:3~8ml:0.15~0.3g:4~12mL。
在一种可能的设计中,多级孔结构的多孔陶瓷的表面和内部均分布有毫米级的一级孔、微米级的二级孔和纳米级的三级孔;一级孔的孔壁上分布有二级孔和三级孔。
在一种可能的设计中,二级孔的孔壁上也分布有三级孔。
在一种可能的设计中,一级孔的孔径范围为0.8~3mm,二级孔的孔径范围为2~15μm,三级孔的孔径范围为30~100nm。
在一种可能的设计中,多级孔结构的多孔陶瓷的气孔率为65.4%~82.2%。
在一种可能的设计中,多级孔结构的多孔陶瓷的抗弯强度为7~13.5MPa。
在一种可能的设计中,多级孔结构的多孔陶瓷采用如下方法制备:
步骤1、将羧甲基纤维素钠与碳纳米管加入水中,超声分散得到均匀的碳纳米管分散液;
步骤2、将溶胶加入到碳纳米管分散液中,然后按顺序依次加入盐酸、十二烷基硫酸钠后进行搅拌,得到有大小均匀的气泡的混合液,再加入氨水,进行搅拌得到凝胶体;
步骤3、将凝胶体烘干,然后将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷。
在一种可能的设计中,步骤3中,将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷的步骤包括:将烘干的凝胶体放入真空高温炉中,升温至氯化铵热解温度后保温进行预排除,然后继续升温至最终烧结温度并保温,得到多级孔结构的多孔陶瓷。
在一种可能的设计中,最终烧结温度为700~1500℃。
与现有技术相比,本发明至少可实现如下有益效果之一:
(1)本发明提供的多级孔结构的多孔陶瓷采用高韧性和高强度的碳纳米管为增强骨架,提升多孔陶瓷的强度,其次碳纳米管互相搭接,能够提高多级孔结构的多孔陶瓷的气孔率;本发明的多级孔结构的多孔陶瓷密度低,气孔率高,连通性好,抗弯强度可达7.2~13.5MPa,该多级孔结构的多孔陶瓷可用于多级过滤,且能够作为催化剂的载体,适用范围广泛。
(2)本发明选择盐酸和氨水为催化剂,利用溶胶凝胶法,促使溶胶迅速凝胶,使得盐酸和氨水反应生成氯化铵而在凝胶体中缓慢析晶,且在表面活性剂十二烷基硫酸钠的作用下,生成氯化铵纤维,在基体中穿插生长;烧结过程中,氯化铵的析晶和氯化铵纤维达到分解温度时候,分别原位留下不同孔径大小的孔,与发泡得到的孔共同构建了多级孔结构的多孔陶瓷,大大的提升了气孔率和比表面积。
(3)本发明由于碳纳米管作为陶瓷的骨架,又由于为了保留多级孔结构,所以采用了真空烧结,将凝胶体装入氧化铝坩埚后放于真空高温炉,700~1500℃烧结得到多孔陶瓷,这种真空烧结方法使得碳纳米管骨架不会被氧化,避免基体产生很多液相,从而保留住孔结构。
(4)本发明由于氯化铵析晶和氯化铵纤维的生成,所以需要在氯化铵热解温度300~350℃进行适当保温使得氯化铵充分分解,从而避免其排除过程中造成基体开裂或破碎,保证了基体结构的完整性。
(5)本发明采用的溶胶凝胶法,工艺简单,而且溶胶可为硅溶胶、铝溶胶、锆溶胶等其中一种或多种,成本较低,药品来源广泛;对设备的要求低,通用性强,可以工业化生产,应用前景广阔。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过说明书实施例以及附图中指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制。
图1为本发明的多级孔结构的多孔陶瓷的宏观图;
图2为本发明的多孔陶瓷的多级孔结构的示意图;
图3为本发明的一级孔的孔壁中存在的二级孔结构的SEM图;
图4为本发明的单个孔(二级孔)的孔壁壁上存在的三级孔结构的SEM图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本发明一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
本发明提供了一种多级孔结构的多孔陶瓷,多级孔结构的多孔陶瓷的原料组成包括:羧甲基纤维素钠、碳纳米管、水、溶胶、盐酸、十二烷基硫酸钠和氨水。
为了进一步提高上述多级孔结构的多孔陶瓷的综合性能,可以对上述多级孔结构的多孔陶瓷的原料组成进行限定。示例性地,其原料组成的质量或体积比为:羧甲基纤维素钠:碳纳米管:水:溶胶:盐酸:十二烷基硫酸钠:氨水=0.03~0.06g:0.06~0.12g:10~20mL:15~28mL:3~8ml:0.15~0.3g:4~9mL。
具体的,如图1至图4所示,多级孔结构的多孔陶瓷表面和内部均分布有毫米级的一级孔1、微米级的二级孔2和纳米级的三级孔3;一级孔1的孔壁上分布有二级孔2和三级孔3;多孔陶瓷的气孔率为65.4%~82.2%(例如,72.3%~82%)。
具体的,二级孔2的孔壁上也分布有三级孔3。
具体的,一级孔的孔径范围为0.8~3mm,二级孔的孔径范围为2~15μm,三级孔的孔径范围为30~100nm,一级孔、二级孔和三级孔的结构和大小均比较均匀。
具体的,多孔陶瓷的抗弯强度为7~13.5MPa。
与现有技术相比,本发明提供的多级孔结构的多孔陶瓷采用高韧性和高强度的碳纳米管为增强骨架,提升多孔陶瓷的强度,其次碳纳米管互相搭接,能够提高多级孔结构的多孔陶瓷的气孔率;本发明的多级孔结构的多孔陶瓷密度低,气孔率高,且一级孔的孔壁上分布有二级孔和三级孔,二级孔的孔壁上也分布有三级孔,使得产品的连通性好,抗弯强度可达7.2~13.5MPa,并且孔结构大小均匀,该多级孔结构的多孔陶瓷可用于多级过滤,且能够最为催化剂的载体,适用范围广泛。
具体的,本发明的多级孔结构的多孔陶瓷采用如下方法制备:利用溶胶凝胶法,以溶胶作原料,碳纳米管为增强材料,十二烷基硫酸钠为发泡剂,使用盐酸和氨水将溶胶变为凝胶并封存气泡,气泡作为一级造孔剂;并将盐酸和氨水生成的氯化铵在凝胶基体中原位析晶,再利用发泡剂诱导氯化铵在基体中长成纤维作为二级造孔剂,未成纤维的氯化铵晶体作为三级造孔剂,真空烧结得到多级孔结构的多孔陶瓷。
具体的,多级孔结构的多孔陶瓷的制备方法包括如下步骤:
步骤1、将羧甲基纤维素钠与碳纳米管加入水中,超声分散得到均匀的碳纳米管分散液;
步骤2、将溶胶加入到步骤1得到的碳纳米管分散液中,然后按顺序依次加入盐酸、十二烷基硫酸钠后进行第一次搅拌,得到有大小均匀的气泡的混合液,再加入氨水,进行搅拌得到凝胶体;
步骤3、将凝胶体烘干,然后将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷。
具体的,上述步骤1中,由于自来水或普通来源的水杂质较多,并且还有一部分游离性物质,会对本发明中碳纳米管的分散造成不良影响,而去离子水的化学纯度高,不含有其他杂质,因此,步骤1中的水采用去离子水。
具体的,上述步骤1中,超声分散的时间过短,碳纳米管分散液不够均匀;超声分散的时间过长,碳纳米管结构及长度被破坏而增强效果差、分散效果改善较小,且浪费时间。因此,控制超声分散的时间为40~120min。超声功率过大会破坏碳纳米管的结构;超声功率过小碳纳米管大部分仍团聚而达不到理想的分散效果。因此,控制超声功率为120~200w。
值得注意的是,上述步骤1中,碳纳米管的浓度过大会导致其分散效果差、团聚严重;浓度过小会导致其在基体中不能很好互相搭接、起不到增强效果。因此,控制控制碳纳米管分散液中碳纳米管的浓度为0.004~0.012g/mL。
需要说明的是,上述步骤1中,羧甲基纤维素钠的浓度过大会导致碳纳米管溶液过于黏稠、团聚更明显;过小会导致碳纳米管的悬浮效果差。因此,控制羧甲基纤维素钠的浓度为0.001~0.005g/ml。优选的,羧甲基纤维素钠的浓度为0.003g/ml。
需要说明的是,上述步骤2中,溶胶为硅溶胶、铝溶胶或锆溶胶等的其中一种或多种。
具体的,上述步骤2中,溶胶与碳纳米管分散液的体积比过大,即碳纳米管过少、导致碳纳米管在基体中起不到实质性增强作用;过小即溶胶过少,导致形成的凝胶网络不完整。因此,控制溶胶与碳纳米管分散液的体积比为1~3。
具体的,上述步骤2中,为了提供步骤3中氯化铵原位析晶和氯化铵长出纤维的条件,控制盐酸与氨水的体积比为1~2。
具体的,上述步骤2中,十二烷基硫酸钠的浓度过高会过于促进氯化铵纤维的长出,破坏基体强度和结构;过低会导致发泡量不足,降低气孔率以及不能很好的促进氯化铵纤维的长出。因此,控制混合液中的十二烷基硫酸钠的浓度为0.003~0.008g/ml。
具体的,上述步骤2中,为了保证得到有大小均匀的气泡的混合液,搅拌速度为200~350r/min,搅拌时间为10~60min。
具体的,上述步骤2中,必须依次加入盐酸、十二烷基硫酸钠,搅拌产生均匀气泡后,最后加氨水才能凝胶并封存气泡;盐酸和氨水可促进溶胶凝胶,十二烷基硫酸钠按此操作顺序也能够保证实验安全。
具体的,上述步骤3中,为了保证溶胶完全老化和氯化铵原位析晶,上述S3中,在凝胶体烘干之前包括步骤:将凝胶体室温下静置8-12h。
具体的,上述步骤3中,为了保证在凝胶体中完全长出氯化铵纤维,控制凝胶体烘干温度为60~80℃,烘干后凝胶体采用真空烧结得到多级孔结构的多孔陶瓷。
具体的,上述步骤3中,将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷的步骤包括:将烘干的凝胶体放入真空高温炉中,以速度V1升温至氯化铵热解温度后保温t1时间(排除氯化铵),然后继续以速度V2升温至最终烧结温度并保温t2时间,得到多级孔结构的多孔陶瓷。
具体的,上述步骤3中,速度V1过大会使氯化铵的分解速度过快,导致基体开裂,且对炉子质量要求较高;速度V1过小,效率较低。因此,控制速度V1为2~5℃/min,优选的,V1为3℃/min。
具体的,上述步骤3中,氯化铵热解温度为300~350℃。
具体的,上述步骤3中,为了保证氯化铵充分分解排除,从而不会在排除过程中造成基体开裂或破碎,保证基体结构的完整性。因此,控制t1为50~120min,优选的,t1为60min。
具体的,上述步骤3中,控制速度V2为3~5℃/min,优选的,V2为4℃/min。
具体的,上述步骤3中,最终烧结温度过高会导致因液相生成过多而坍塌;过低会造成制备的多孔陶瓷强度较低。因此,控制最终烧结温度为700~1200℃;t2过长会导致大量液相生成堵孔,降低气孔率;过短会导致多孔陶瓷强度低。因此,控制t2为1~3h,优选的,t2为2h。
与现有技术相比,本发明的多级孔结构的多孔陶瓷的制备方法中以高韧性和高强度的碳纳米管为增强骨架,从而在凝胶体中形成均匀的碳纳米管增强网络,提升多孔陶瓷的强度(首先制备得到分散性良好的碳纳米管分散液作为陶瓷的骨架,然后与溶胶均匀的混合,在后续的溶胶凝胶过程中,可以使碳纳米管原位地分布在陶瓷中充当增强骨架,提高多孔陶瓷的强度,其次碳纳米管互相搭接,也会提高气孔率)。
本发明选择盐酸和氨水为催化剂,利用溶胶凝胶法,促使溶胶迅速凝胶,使得盐酸和氨水反应生成氯化铵,氯化铵在凝胶体中缓慢析晶,且在表面活性剂十二烷基硫酸钠的作用下,生成氯化铵纤维,在基体中穿插生长;烧结过程中,氯化铵的析晶和氯化铵纤维达到热解温度时,分别原位留下约为30~100nm和2~15μm大小的孔,与发泡得到的孔共同构建了多级孔结构的多孔陶瓷,大大的提升了气孔率和比表面积。
本发明由于碳纳米管作为陶瓷的骨架,又由于为了保留多级孔结构,所以采用了真空或还原烧结,将凝胶体放入氧化铝坩埚后,一同放于高温炉,700~1500℃(示例性的,800~1300℃)烧结得到多孔陶瓷,这种烧结方法使得碳纳米管骨架不会被氧化,且避免产生很多液相,从而保留住孔结构。
本发明由于氯化铵析晶和氯化铵纤维的生成,所以需要在氯化铵热解温度300~350℃保温一定时间,使得氯化铵充分分解排除,从而不会由于排除过程中造成基体开裂或破碎,保证了基体结构的完整性。
本发明采用的溶胶凝胶法,工艺简单,而且溶胶可为硅溶胶、铝溶胶、锆溶胶中的其中一种或多种,成本较低,药品来源广泛。
本发明的多孔陶瓷的一级孔为发泡剂造孔,其孔径为0.8~3mm;二级孔为氯化铵纤维穿插于陶瓷基体造孔,在一定温度纤维分解后留下的孔,其孔径为2~15μm;三级孔为氯化铵晶体在凝胶体上析出,在达到氯化铵热解温度时得到的孔,其孔径为30~100nm,该多孔陶瓷的孔结构制备方法简单,对设备的要求低,通用性强,可以工业化生产,应用前景广阔。
以下实施例1-3的多级孔结构的多孔陶瓷的制备方法采用上述方法,区别仅在于具体参数不同。
实施例1
本实施例的多孔陶瓷的一级孔的孔径大小为0.9~2.5mm;二级孔大小为4~15μm;三级孔大小约为40-100nm;多孔陶瓷的气孔率为78.3%,抗弯强度约为9.3MPa。
本实施例的多级孔结构的多孔陶瓷的制备方法包括如下步骤:
步骤1、称取0.06g碳纳米管、0.03g羧甲基纤维素钠加入放有20mL水的烧杯中,细胞超声分散90min,超声功率为130w,得到均匀分散的碳纳米管分散液。
步骤2、将20mL硅溶胶加入到步骤1中的碳纳米管分散液中,按顺序加入5ml盐酸,0.15g十二烷基硫酸钠,以搅拌速度为200r/min,搅拌时间为15min,充分搅拌使溶胶均匀发泡后,再加入7mL氨水,边加边搅拌,直至凝胶并封存气泡,得到凝胶体。
步骤3、将步骤2得到的凝胶体室温下静置12h得到凝胶块体,将凝胶块体放入鼓风干燥箱60℃烘干,在表面活性剂十二烷基硫酸钠的诱导下,凝胶块体会长出大量的氯化铵纤维,待烘干后将凝胶块体放入高温炉,800℃烧结2h,升温速率V1为3℃/min,V2为4℃/min,得到多孔陶瓷(如图1所示)。其中,在350℃将氯化铵分解,预排除1h。
实施例2
本实施例的多孔陶瓷的一级孔的孔径大小为1.3~2.9mm,二级孔大小为2~8μm,三级孔大小约为30~100nm;多孔陶瓷的气孔率约为81%,抗弯强度约为7.5MPa。
本实施例的多级孔结构的多孔陶瓷的制备方法包括如下步骤:
步骤1、称取0.06g碳纳米管、0.03g羧甲基纤维素钠加入放有10mL水的烧杯中,细胞超声分散90min,超声功率为180w,得到均匀分散的碳纳米管分散液。
步骤2、将20mL硅溶胶加入到步骤1中的碳纳米管分散液中,按顺序加入5ml盐酸,0.3g十二烷基硫酸钠,以搅拌速度为225r/min,搅拌时间为15min,充分搅拌使溶胶均匀发泡后,再加入5mL氨水,边加边搅拌,直至凝胶并封存气泡,得到凝胶体。
步骤3、将步骤2得到的凝胶体室温下静置8h得到凝胶块体,将凝胶块体放入鼓风干燥箱60℃烘干,在表面活性剂十二烷基硫酸钠的诱导下,凝胶块体会长出大量的氯化铵纤维,待烘干后将凝胶块体放入高温炉,700℃烧结2h,升温速率V1为3℃/min,V2为4℃/min,得到多孔陶瓷。其中,在350℃将氯化铵分解,预排除1h。
实施例3
本实施例的多孔陶瓷的一级孔的孔径大小为1.1-2.7mm,二级孔大小为2-12μm,三级孔大小约为30-90nm;多孔陶瓷的气孔率为78.9%,抗弯强度约为9.6MPa。
本实施例的多级孔结构的多孔陶瓷的制备方法包括如下步骤:
步骤1、称取0.08g碳纳米管、0.06g羧甲基纤维素钠加入放有20mL水的烧杯中,细胞超声分散90min,超声功率为180w,得到均匀分散的碳纳米管分散液。
步骤2、将22mL铝溶胶加入到步骤1中的碳纳米管分散液中,按顺序加入4ml盐酸,0.3g十二烷基硫酸钠,以搅拌速度为300r/min,搅拌时间为60min,充分搅拌使溶胶均匀发泡后,再加入7mL氨水,边加边搅拌,直至凝胶并封存气泡,得到凝胶体。
步骤3、将步骤2得到的凝胶体室温下静置10h得到凝胶块体,将凝胶块体放入鼓风干燥箱80℃烘干,在表面活性剂十二烷基硫酸钠的诱导下,凝胶块体会长出大量的氯化铵纤维,待烘干后将凝胶块体放入高温炉,1200℃烧结2h,升温速率V1为3℃/min,V2为4℃/min,得到多孔陶瓷。其中,在330℃将氯化铵分解,预排除1h。
因此,本发明的多级孔结构的多孔陶瓷的气孔率高,连通性好,抗弯强度可达7.2~13.5MPa,该多级孔结构的多孔陶瓷可用于多级过滤,且能够作为催化剂的载体,适用范围广泛;且制备方法简单,对设备的要求低,通用性强,可以工业化生产,应用前景广阔。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
Claims (7)
1.一种多级孔结构的多孔陶瓷,其特征在于,所述多级孔结构的多孔陶瓷的原料组成包括:羧甲基纤维素钠、碳纳米管、水、溶胶、盐酸、十二烷基硫酸钠和氨水;
所述多级孔结构的多孔陶瓷的原料组成的质量或体积比为:羧甲基纤维素钠:碳纳米管:水:溶胶:盐酸:十二烷基硫酸钠:氨水=0.03~0.06g:0.06~0.12g:10~20mL:15~28mL:3~8ml:0.15~0.3g:4~12mL;
所述多级孔结构的多孔陶瓷采用如下方法制备:
步骤1、将羧甲基纤维素钠与碳纳米管加入水中,超声分散得到均匀的碳纳米管分散液;
步骤2、将溶胶加入到碳纳米管分散液中,然后按顺序依次加入盐酸、十二烷基硫酸钠后进行搅拌,得到有大小均匀的气泡的混合液,再加入氨水,进行搅拌得到凝胶体;
步骤3、将凝胶体烘干,然后将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷;
所述步骤3中,将烘干的凝胶体采用真空烧结得到多级孔结构的多孔陶瓷的步骤包括:将烘干的凝胶体放入真空高温炉中,升温至氯化铵热解温度后保温进行预排除,然后继续升温至最终烧结温度并保温,得到多级孔结构的多孔陶瓷。
2.根据权利要求1所述的多级孔结构的多孔陶瓷,其特征在于,所述多级孔结构的多孔陶瓷的表面和内部均分布有毫米级的一级孔(1)、微米级的二级孔(2)和纳米级的三级孔(3);所述一级孔(1)的孔壁上分布有二级孔(2)和三级孔(3)。
3.根据权利要求2所述的多级孔结构的多孔陶瓷,其特征在于,所述二级孔(2)的孔壁上也分布有三级孔(3)。
4.根据权利要求2所述的多级孔结构的多孔陶瓷,其特征在于,所述一级孔的孔径范围为0.8~3mm,二级孔的孔径范围为2~15μm,三级孔的孔径范围为30~100nm。
5.根据权利要求4所述的多级孔结构的多孔陶瓷,其特征在于,所述多级孔结构的多孔陶瓷的气孔率为65.4%~82.2%。
6.根据权利要求5所述的多级孔结构的多孔陶瓷,其特征在于,所述多级孔结构的多孔陶瓷的抗弯强度为7~13.5MPa。
7.根据权利要求1所述的多级孔结构的多孔陶瓷,其特征在于,所述最终烧结温度为700~1500℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515637.XA CN113773064B (zh) | 2020-06-09 | 2020-06-09 | 一种多级孔结构的多孔陶瓷 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515637.XA CN113773064B (zh) | 2020-06-09 | 2020-06-09 | 一种多级孔结构的多孔陶瓷 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113773064A CN113773064A (zh) | 2021-12-10 |
CN113773064B true CN113773064B (zh) | 2022-10-04 |
Family
ID=78834242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010515637.XA Active CN113773064B (zh) | 2020-06-09 | 2020-06-09 | 一种多级孔结构的多孔陶瓷 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113773064B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114516754B (zh) * | 2021-12-27 | 2023-04-07 | 湘潭顺络电子有限公司 | 一种超高强高韧低密度氧化锆陶瓷及其制备方法和应用 |
CN114671703B (zh) * | 2022-04-01 | 2023-05-12 | 东北大学 | 一种碳化硅等级孔陶瓷的制备方法 |
CN116673017B (zh) * | 2023-04-25 | 2024-02-13 | 中南大学 | 一种分级多孔压电陶瓷催化剂及其制备方法和应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1187292C (zh) * | 2003-05-30 | 2005-02-02 | 武汉理工大学 | 水基凝胶注模成型法制备多孔陶瓷的工艺 |
CN1260843C (zh) * | 2003-09-30 | 2006-06-21 | 华南理工大学 | 锌空气电池空气扩散电极的造孔方法及其造孔剂 |
CN102372305A (zh) * | 2010-08-13 | 2012-03-14 | 范晓星 | 介孔钨酸盐光催化材料及其制备方法 |
CN102294179B (zh) * | 2011-08-16 | 2013-07-17 | 上海交通大学 | 无机介孔膜的制备方法 |
CN107098352A (zh) * | 2016-02-20 | 2017-08-29 | 金承黎 | 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法 |
CN106512103B (zh) * | 2016-10-17 | 2019-04-26 | 西南交通大学 | 一种多孔结构陶瓷材料的制备方法 |
CN108299001B (zh) * | 2018-01-05 | 2021-07-13 | 江苏省陶瓷研究所有限公司 | 一种硅基陶瓷型芯成型方法 |
CN108585798B (zh) * | 2018-05-09 | 2022-02-18 | 安徽弘徽科技有限公司 | 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法 |
CN109627011B (zh) * | 2018-12-12 | 2022-02-18 | 萍乡学院 | 一种具有同心孔的多孔陶瓷的制备方法及多孔陶瓷 |
-
2020
- 2020-06-09 CN CN202010515637.XA patent/CN113773064B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113773064A (zh) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113773064B (zh) | 一种多级孔结构的多孔陶瓷 | |
CN112038648B (zh) | 一种中空结构过渡金属钴、氮共掺杂炭氧还原催化剂及其制备方法和应用 | |
CN103252253B (zh) | 一种多孔碳化硅载体表面梯度孔隙分子筛涂层及制备方法 | |
CN111005034B (zh) | 一种3d打印高强度石墨烯-酸化碳纳米管电极的方法、石墨烯-酸化碳纳米管电极及其应用 | |
CN104130004B (zh) | 高强度块状多孔氧化铝纳米陶瓷的制备方法 | |
CN101642589A (zh) | 一种生物活性玻璃/壳聚糖复合多孔支架材料的制备方法 | |
CN102718205A (zh) | 一种3维层次多孔碳的制备方法 | |
CN113981489B (zh) | 一种碳化钼/碳复合材料及基于熔融盐法的制备方法和应用 | |
CN106276958A (zh) | 一种具有蛋白石结构的有序大孔-介孔多级孔钛硅分子筛ts-1单晶及其合成方法 | |
CN107572509A (zh) | 一种氮掺杂空心碳/石墨球纳米材料及其制备方法 | |
CN105776170A (zh) | 一种块体含氮多级孔道炭材料的制备方法 | |
CN114835122B (zh) | 一种煤矸石制备碳化硅气凝胶粉体的方法 | |
CN107916452A (zh) | 一种形貌连续可控的碳酸钙晶须的制备方法 | |
CN114933485A (zh) | 一种晶须/纤维增强堇青石质多孔陶瓷及其制备方法和应用 | |
CN108147779A (zh) | 一种轻质多孔日用陶瓷的制备方法 | |
CN113773063B (zh) | 一种多孔陶瓷的制备方法 | |
CN115385593A (zh) | 全固废纳米水化硅酸钙凝胶早强剂及其制备方法和应用 | |
CN114956074A (zh) | 一种海藻基三维多孔碳筛及其制备方法 | |
CN105879800A (zh) | 掺钕的二氧化钛/炭杂化气凝胶材料及制备方法和应用 | |
CN116689002B (zh) | 一种具有自吸水性质的3d打印仿生多级光催化剂、制备方法及其在光催化氮还原中的应用 | |
CN109482191B (zh) | 一种泡沫镍负载钛酸锌/电气石光催化材料及其制备方法 | |
CN106111141A (zh) | 一种三维二氧化钛‑石墨烯复合材料及其制备方法 | |
CN112275258B (zh) | 一种稀土改性铝基吸附剂及其制备方法和应用 | |
CN115321525A (zh) | 一种具有大孔结构石墨烯纳米网的制备方法 | |
CN107383441A (zh) | 海藻酸钙/硼酸钙有机‑无机杂化耐火海绵体及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared |