[go: up one dir, main page]

CN113481185B - Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof - Google Patents

Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof Download PDF

Info

Publication number
CN113481185B
CN113481185B CN202110897489.7A CN202110897489A CN113481185B CN 113481185 B CN113481185 B CN 113481185B CN 202110897489 A CN202110897489 A CN 202110897489A CN 113481185 B CN113481185 B CN 113481185B
Authority
CN
China
Prior art keywords
galactosidase
galnc2
salt
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110897489.7A
Other languages
Chinese (zh)
Other versions
CN113481185A (en
Inventor
许波
范琴
黄遵锡
吴倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202110897489.7A priority Critical patent/CN113481185B/en
Publication of CN113481185A publication Critical patent/CN113481185A/en
Application granted granted Critical
Publication of CN113481185B publication Critical patent/CN113481185B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
    • A23C21/00Whey; Whey preparations
    • A23C21/02Whey; Whey preparations containing, or treated with, microorganisms or enzymes
    • A23C21/023Lactose hydrolysing enzymes, e.g. lactase, B-galactosidase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1206Lactose hydrolysing enzymes, e.g. lactase, beta-galactosidase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a salt-tolerant beta-galactosidase GalNC2-13 and a preparation method and application thereof, wherein the amino acid sequence of the beta-galactosidase GalNC2-13 is shown as SEQ ID NO.1, the amino acid sequence is 592 amino acids in total, the theoretical molecular weight is 67.83kDa, and the coding gene is shown as SEQ ID NO. 2. The beta-galactosidase GalNC2-13 has good NaCl stability, and has good application potential in food industry, synthesis of Galactooligosaccharides (GOS), report gene and the like.

Description

一种耐盐β-半乳糖苷酶GalNC2-13及其制备方法和应用A salt-tolerant β-galactosidase GalNC2-13 and its preparation method and application

技术领域technical field

本发明属于基因工程技术领域,具体涉及一种耐盐β-半乳糖苷酶GalNC2-13及其制备方法和应用。The invention belongs to the technical field of genetic engineering, and in particular relates to a salt-tolerant beta-galactosidase GalNC2-13 and its preparation method and application.

背景技术Background technique

β-半乳糖苷酶(EC 3.2.1.23)能够催化乳糖水解生成半乳糖和葡萄糖;其次该酶具有将乳糖催化形成低聚半乳糖的转糖基活性。乳糖是一种二糖,在哺乳动物的乳汁中含量丰富,对新生儿的营养至关重要;可被肠道中的乳糖酶水解成可吸收的葡萄糖和半乳糖。耐盐β-半乳糖苷酶在高盐浓度中具有较高的酶活,在高盐工艺的食品工业中消化植物多糖。此外,还可合成低聚半乳糖(GOS)及作为报告基因。GOS由β-半乳糖苷酶通过乳糖水解过程中的转糖基化活性产生的,为食品中不可消化的益生元的成分,对人体健康至关重要,且酶法制备GOS具有简单、高效、量大、副反应较少等优势。β-galactosidase (EC 3.2.1.23) can catalyze the hydrolysis of lactose to generate galactose and glucose; secondly, the enzyme has the transglycosylation activity of catalyzing lactose to form galactooligosaccharides. Lactose is a disaccharide that is abundant in mammalian milk and is essential for neonatal nutrition; it is hydrolyzed by lactase in the gut into absorbable glucose and galactose. Salt-tolerant β-galactosidase has higher enzyme activity in high-salt concentration, and digests plant polysaccharides in the food industry with high-salt processes. In addition, galacto-oligosaccharides (GOS) can be synthesized and used as reporter genes. GOS is produced by β-galactosidase through the transglycosylation activity in the process of lactose hydrolysis. It is an indigestible prebiotic component in food and is essential to human health. The enzymatic preparation of GOS is simple, efficient and effective. Large amount, less side effects and other advantages.

目前主要采取β-半乳糖苷酶水解乳糖的方法制备GOS。GOS具有促进益生菌增殖预防和治疗便秘等功能;其次,在食品工业中用作发酵乳产品、面包和饮料等低热量甜味剂;在婴幼儿配方奶粉、烘焙食品和宠物食品等诸多领域有着广泛的应用。此外,可解决乳糖不耐的问题。此外,在酸性条件下可于室温下长时间保存并应用于各种产品而不会分解,故其在乳清和牛奶加工市场应用前景非常广阔。因此开发多功能的β-半乳糖苷酶具有重要意义。At present, the method of hydrolyzing lactose with β-galactosidase is mainly used to prepare GOS. GOS has the functions of promoting the proliferation of probiotics, preventing and treating constipation; secondly, it is used in the food industry as a low-calorie sweetener for fermented milk products, bread and beverages; it is used in many fields such as infant formula milk powder, baked food and pet food. Wide range of applications. In addition, the problem of lactose intolerance can be solved. In addition, it can be stored at room temperature for a long time under acidic conditions and can be applied to various products without decomposing, so its application prospects in the whey and milk processing markets are very broad. Therefore, it is of great significance to develop multifunctional β-galactosidase.

发明内容Contents of the invention

本发明的目的在于提供一种耐盐β-半乳糖苷酶GalNC2-13及其制备方法和应用,同时还提供了该水解酶的构建方法,本发明耐盐β-半乳糖苷酶GalNC2-13不仅具有良好的耐盐特性,还具有高效转糖基活性和高效水解乳糖活性。The object of the present invention is to provide a salt-tolerant β-galactosidase GalNC2-13 and its preparation method and application, and also provide the construction method of the hydrolase, the salt-tolerant β-galactosidase GalNC2-13 of the present invention Not only has good salt tolerance, but also has high-efficiency transglycosylation activity and high-efficiency lactose hydrolysis activity.

为了实现上述技术目的,本发明具体采用以下技术方案:In order to achieve the above-mentioned technical purpose, the present invention specifically adopts the following technical solutions:

一种耐盐β-半乳糖苷酶GalNC2-13,所述β-半乳糖苷酶GalNC2-13来源于动物粪便微生物宏基因组,其氨基酸序列如SEQ ID NO.1所示,共592个氨基酸,理论分子量为67.83kDa。A salt-tolerant β-galactosidase GalNC2-13, the β-galactosidase GalNC2-13 is derived from the metagenome of animal feces microorganisms, its amino acid sequence is shown in SEQ ID NO.1, a total of 592 amino acids, The theoretical molecular weight is 67.83kDa.

所述β-半乳糖苷酶GalNC2-13最适作用pH为6.5,在pH 6.0、pH 6.5下处理1h,其剩余酶活分别为130%、132%;最适作用温度为37℃,在37℃条件下耐受0.5h达到半衰期;该酶具有较好的NaCl稳定性,在NaCl浓度为0.5mol/L时酶活性达到最大(约2倍)。在0.5-1.0mol/LNaCl浓度下可达200%以上;1.5mol/L NaCl浓度下维持190%活性;在2.0-2.5mol/L浓度下均保持在130%以上;即使在3.0-5.0mol/LNaCl下也能维持在65%-95%。The optimum action pH of the β-galactosidase GalNC2-13 is 6.5, and the remaining enzyme activity is 130% and 132% respectively after being treated at pH 6.0 and pH 6.5 for 1 hour; the optimum action temperature is 37°C, at 37 The half-life of the enzyme can be tolerated for 0.5 h at ℃; the enzyme has good NaCl stability, and the enzyme activity reaches the maximum (about 2 times) when the NaCl concentration is 0.5 mol/L. It can reach more than 200% at the concentration of 0.5-1.0mol/L NaCl; maintain 190% activity at the concentration of 1.5mol/L NaCl; maintain more than 130% at the concentration of 2.0-2.5mol/L; even at the concentration of 3.0-5.0mol/L It can also be maintained at 65%-95% under LNaCl.

在本发明的另一方面,提供了所述耐盐β-半乳糖苷酶GalNC2-13的编码基因,其核苷酸序列如SEQ ID NO.2所示,基因大小为1779bp。In another aspect of the present invention, the gene encoding the salt-tolerant β-galactosidase GalNC2-13 is provided, its nucleotide sequence is shown in SEQ ID NO.2, and the gene size is 1779bp.

在本发明的另一方面,提供了包含所述耐盐β-半乳糖苷酶GalNC2-13编码基因的重组表达载体,所述重组表达载体为pEASY-E2/GalNC2-13。In another aspect of the present invention, a recombinant expression vector comprising the gene encoding the salt-tolerant β-galactosidase GalNC2-13 is provided, and the recombinant expression vector is pEASY-E2/GalNC2-13.

在本发明的另一方面,提供了包含所述耐盐β-半乳糖苷酶GalNC2-13编码基因的重组菌株,所述菌株包括但不限于大肠杆菌、酵母菌、芽孢杆菌或乳酸杆菌,优选为重组菌株BL21(DE3)/GalNC2-13。In another aspect of the present invention, there is provided a recombinant strain comprising the gene encoding the salt-tolerant β-galactosidase GalNC2-13, the strain includes but not limited to Escherichia coli, yeast, bacillus or lactobacillus, preferably It is a recombinant strain BL21(DE3)/GalNC2-13.

本发明通过PCR的方法克隆到β-半乳糖苷酶编码基因,将β-半乳糖苷酶编码基因GalNC2-13与质粒pEASY-E2连接得到重组表达载体,然后转化大肠杆菌BL21(DE3)获得重组菌。The present invention clones the β-galactosidase coding gene by the method of PCR, connects the β-galactosidase coding gene GalNC2-13 with the plasmid pEASY-E2 to obtain a recombinant expression vector, and then transforms Escherichia coli BL21 (DE3) to obtain a recombinant expression vector. bacteria.

在本发明的另一方面,提供了所述耐盐β-半乳糖苷酶GalNC2-13的制备方法,包括以下步骤:In another aspect of the present invention, a preparation method of the salt-tolerant β-galactosidase GalNC2-13 is provided, comprising the following steps:

1)以西黑冠长臂猿粪便微生物宏基因组DNA为模板,设计引物F和R进行PCR扩增,得到β-半乳糖苷酶基因;1) Using the fecal microbial metagenomic DNA of the western black crested gibbon as a template, design primers F and R for PCR amplification to obtain the β-galactosidase gene;

2)将β-半乳糖苷酶基因与表达载体重组后转化到宿主细胞,得到重组菌株,培养重组菌株并诱导重组β-半乳糖苷酶表达;2) recombining the β-galactosidase gene with the expression vector and transforming it into a host cell to obtain a recombinant strain, culturing the recombinant strain and inducing the expression of the recombinant β-galactosidase;

3)回收并纯化所表达的β-半乳糖苷酶,得到β-半乳糖苷酶GalNC2-13。3) recovering and purifying the expressed β-galactosidase to obtain β-galactosidase GalNC2-13.

所述引物F和R核苷酸序列如SEQ ID NO.3~4所示。The nucleotide sequences of the primers F and R are shown in SEQ ID NO.3-4.

在本发明的另一方面,所述耐盐β-半乳糖苷酶GalNC2-13所具有的良好的耐盐特性,在食品工业加工中具有较好的应用潜力,具体为可用于高盐工艺来消化植物多糖、合成低聚半乳糖(GOS)及作为报告基因。In another aspect of the present invention, the salt-tolerant β-galactosidase GalNC2-13 has good salt-tolerant characteristics, and has good application potential in food industry processing, specifically, it can be used in high-salt processes to Digest plant polysaccharides, synthesize galacto-oligosaccharides (GOS) and serve as reporter genes.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明所述的耐盐β-半乳糖苷酶GalNC2-13的最适pH为6.5,在pH 6.0、pH 6.5下处理1h,其剩余酶活分别为130%、132%;最适作用温度为37℃,在37℃条件下耐受0.5h达到半衰期;该酶具有较好的NaCl稳定性,在NaCl浓度为0.5mol/L时酶活性达到最大(约2倍)。在0.5-1.0mol/LNaCl浓度下可达200%以上;1.5mol/LNaCl浓度下维持190%活性;在2.0-2.5mol/L浓度下均保持在130%以上;即使在3.0-5.0mol/L NaCl下也能维持在65%-95%。该酶的Km、和Vmax分别为4.796mmol/L和1.022mmol/min;Pb2+、Tween80、DTT和β-巯基乙醇对其有激活作用,分别将酶活性提高25%、12%和65%、32%;Sn2+、Na+、K+、Fe3+、Mg2+和丙三醇对其酶活性几乎无影响。以上性质表明,本发明制备的耐盐β-半乳糖苷酶GalNC2-13在食品工业(如乳制品行业),其次,在合成低聚半乳糖(GOS)及作为报告基因等具有较好的应用前景。The optimal pH of the salt-tolerant β-galactosidase GalNC2-13 of the present invention is 6.5, and it is treated at pH 6.0 and pH 6.5 for 1 hour, and its remaining enzyme activity is 130% and 132% respectively; the optimal action temperature is 37°C, tolerate 0.5h at 37°C to achieve a half-life; the enzyme has good NaCl stability, and the enzyme activity reaches the maximum (about 2 times) when the NaCl concentration is 0.5mol/L. It can reach more than 200% at the concentration of 0.5-1.0mol/L NaCl; maintain 190% activity at the concentration of 1.5mol/L NaCl; maintain more than 130% at the concentration of 2.0-2.5mol/L; even at 3.0-5.0mol/L It can also be maintained at 65%-95% under NaCl. The Km and Vmax of the enzyme are 4.796mmol/L and 1.022mmol/min respectively; Pb 2+ , Tween80, DTT and β-mercaptoethanol can activate it, increasing the enzyme activity by 25%, 12% and 65% respectively , 32%; Sn 2+ , Na + , K + , Fe 3+ , Mg 2+ and glycerol had almost no effect on its enzyme activity. The above properties show that the salt-tolerant β-galactosidase GalNC2-13 prepared by the present invention has good applications in the food industry (such as the dairy industry), and secondly, in the synthesis of galacto-oligosaccharides (GOS) and as reporter genes. prospect.

附图说明Description of drawings

图1是本发明实施例提供的在大肠杆菌中表达的重组β-半乳糖苷酶GalNC2-13的SDS-PAGE分析,其中,M:低分子量蛋白质Mark er;1:仅含有pEASY-E2载体的大肠杆菌诱导后的粗酶;2:未纯化的重组β-半乳糖苷酶;3:纯化的重组β-半乳糖苷酶;Fig. 1 is the SDS-PAGE analysis of the recombinant β-galactosidase GalNC2-13 expressed in Escherichia coli provided by the embodiment of the present invention, wherein, M: low molecular weight protein Marker; 1: contains only pEASY-E2 vector Crude enzyme induced by Escherichia coli; 2: Unpurified recombinant β-galactosidase; 3: Purified recombinant β-galactosidase;

图2是本发明实施例提供的重组β-半乳糖苷酶的最适pH;Fig. 2 is the optimal pH of the recombinant β-galactosidase provided by the embodiment of the present invention;

图3是本发明实施例提供的重组β-半乳糖苷酶的pH稳定性;Fig. 3 is the pH stability of the recombinant β-galactosidase provided by the embodiment of the present invention;

图4是本发明实施例提供的重组β-半乳糖苷酶的最适温度;Fig. 4 is the optimum temperature of the recombinant β-galactosidase provided by the embodiment of the present invention;

图5是本发明实施例提供的重组β-半乳糖苷酶的温度稳定性;Fig. 5 is the temperature stability of the recombinant β-galactosidase provided by the embodiment of the present invention;

图6是本发明实施例提供的重组β-半乳糖苷酶NaCl的影响。Fig. 6 is the effect of the recombinant β-galactosidase NaCl provided by the embodiment of the present invention.

图7是本发明实施例提供的重组β-半乳糖苷酶NaCl的稳定性;Fig. 7 is the stability of the recombinant β-galactosidase NaCl provided by the embodiment of the present invention;

图8是本发明实施例β-半乳糖苷酶合成低聚半乳糖的UPLC分析,其中,A为GOS标准品,B为GalNC2-13的转糖苷产物GOS;Figure 8 is the UPLC analysis of galacto-oligosaccharides synthesized by β-galactosidase in the embodiment of the present invention, wherein, A is the GOS standard product, and B is the transglycoside product GOS of GalNC2-13;

图9是本发明实施例β-半乳糖苷酶水解乳糖的UPLC分析,其中,A为葡萄糖标准品,B为GalNC2-13的水解产物。Fig. 9 is a UPLC analysis of lactose hydrolyzed by β-galactosidase according to an embodiment of the present invention, wherein A is a glucose standard and B is a hydrolyzate of GalNC2-13.

具体实施方式Detailed ways

下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而费全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with specific embodiments of the present invention. Apparently, the described embodiments are only a part of the embodiments of the present invention and not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

试验材料和试剂Test materials and reagents

1、菌株及载体:菌株Escherichia coli BL21(DE3)购于擎科生物科技有限公司,E.coli表达载体pEASY-E2购于北京全式金生物技术有限公司。1. Strains and vectors: the strain Escherichia coli BL21 (DE3) was purchased from Qingke Biotechnology Co., Ltd., and the E.coli expression vector pEASY-E2 was purchased from Beijing Quanshijin Biotechnology Co., Ltd.

2、基因工程操作酶类、试剂盒及其它生化试剂:限制性内切酶、DNA聚合酶、连接酶和dNTP购自TaKaRa公司,DNA纯化试剂盒为OMEGA BIO-TEK公司公司;其它均为国产试剂(均可从普通生化试剂公司购买得到)。2. Enzymes, kits and other biochemical reagents for genetic engineering operations: restriction endonucleases, DNA polymerases, ligases and dNTPs were purchased from TaKaRa Company, DNA purification kits were from OMEGA BIO-TEK Company; others were domestically produced Reagents (both can be purchased from common biochemical reagent companies).

3、LB培养基:Peptone 10g,Yeast extract 5g,NaCl 10g,加蒸馏水至1000mL,pH自然(约为7)。固体培养基在以上基础上加2.0%(w/v)琼脂。3. LB medium: Peptone 10g, Yeast extract 5g, NaCl 10g, add distilled water to 1000mL, pH natural (about 7). The solid medium was added with 2.0% (w/v) agar on the basis of the above.

说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。Explanation: For the molecular biology experimental methods not specifically described in the following examples, all refer to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) J. Sambrook, or follow the kit and product manual.

实施例1β-半乳糖苷酶基因GalNC2-13的获得The acquisition of embodiment 1β-galactosidase gene GalNC2-13

1)β-半乳糖苷酶基因GalNC2-13的克隆1) Cloning of β-galactosidase gene GalNC2-13

以GalNC2-13 DNA F:5’-taagaaggagatatacatatggaattgatgcttgaaattaaaaataaag-3’和GalNC2-13 DNA R:5’-gtggtggtggtggtgctcgagtcctaaatcgtgcttatcaag-3’为上下游引物,用西黑冠长臂猿粪便微生物宏基因组为模板进行PCR扩增。PCR反应参数为:98℃变性30s,55℃退火15s,72℃延伸90s,30个循环。PCR结果得到目的基因GalNC2-13。Using GalNC2-13 DNA F: 5’-taagaaggagatatacatatggaattgatgcttgaaattaaaaataaag-3’ and GalNC2-13 DNA R: 5’-gtggtggtggtggtgctcgagtcctaaatcgtgcttatcaag-3’ as upstream and downstream primers, PCR amplification was performed using the fecal microbial metagenome of the western black crested gibbon as a template. The PCR reaction parameters were: denaturation at 98°C for 30s, annealing at 55°C for 15s, extension at 72°C for 90s, 30 cycles. The PCR results obtained the target gene GalNC2-13.

实施例2β-半乳糖苷酶GalNC2-13的制备Preparation of embodiment 2β-galactosidase GalNC2-13

将实施例1制备的β-半乳糖苷酶基因GalNC2-13与质粒pEASY-E2连接得到重组表达载体pEASY-E2/GalNC2-13,转化大E.coli BL21(DE3)获得重组大肠杆菌菌株BL21(DE3)/GalNC2-13。取含有重组表达载体pEASY-E2/GalNC2-13的大肠杆菌菌株BL21(DE3)/GalNC2-13,按0.1%V/V)的量接种于LB(含100μg/mL Amp)培养液中,37℃、180rpm培养12-16h。然后将活化的菌液以1%(V/V)量接种到新鲜的LB(含100μg/mL Amp)培养液中,37℃、180rpm 37℃、180r/min摇床培养约4-5h(OD600=0.6-0.8)后,加入终浓度为0.7mmol/L的IPTG于20℃、180r/min摇床下培养16h以诱导重组蛋白产生后。4℃、5000r/min离心10min收集菌体。用适量无菌水悬浮菌体后,高压破碎细胞(35KPSI)。上述破碎细胞液经4℃、12000r/min冷冻离心10min后,取上清并用Nickel-NTA Agarose纯化目的蛋白,得到耐盐β-半乳糖苷酶GalNC2-13。The β-galactosidase gene GalNC2-13 prepared in Example 1 was connected to the plasmid pEASY-E2 to obtain the recombinant expression vector pEASY-E2/GalNC2-13, and transformed into large E. coli BL21 (DE3) to obtain recombinant E. coli strain BL21 ( DE3)/GalNC2-13. Take the Escherichia coli strain BL21(DE3)/GalNC2-13 containing the recombinant expression vector pEASY-E2/GalNC2-13, and inoculate it in LB (containing 100 μg/mL Amp) culture medium according to the amount of 0.1% V/V), at 37°C , 180rpm culture 12-16h. Then inoculate the activated bacterial solution into fresh LB (containing 100 μg/mL Amp) culture solution with 1% (V/V) amount, and culture it on a shaker at 37°C, 180rpm, 180r/min for about 4-5h (OD 600 =0.6-0.8), after adding IPTG with a final concentration of 0.7mmol/L and culturing for 16h at 20°C under a shaker at 180r/min to induce the production of recombinant protein. The cells were collected by centrifugation at 5000 r/min for 10 min at 4°C. After suspending the cells with an appropriate amount of sterile water, the cells were crushed under high pressure (35KPSI). After the broken cell liquid was refrigerated and centrifuged at 12000r/min for 10min at 4°C, the supernatant was taken and the target protein was purified with Nickel-NTA Agarose to obtain the salt-tolerant β-galactosidase GalNC2-13.

对所述纯化蛋白GalNC2-13进行SDS-PAGE分析,结果参见图1,图1是本发明实施例提供的在大肠杆菌中表达的重组β-半乳糖苷酶的SDS-PAGE分析,其中,M:低分子量蛋白质Marker;1:仅含有pE ASY-E2载体的大肠杆菌诱导后的粗酶;2:未纯化的重组β-半乳糖苷酶;3:纯化的重组β-半乳糖苷酶。由图1可知,重组β-半乳糖苷酶在大肠杆菌中得到了表达,经Nickel-NTA Agarose纯化后为单一条带。Carry out SDS-PAGE analysis to described purified protein GalNC2-13, see Fig. 1 for the result, Fig. 1 is the SDS-PAGE analysis of the recombinant β-galactosidase expressed in Escherichia coli provided by the embodiment of the present invention, wherein, M : low molecular weight protein marker; 1: crude enzyme induced by Escherichia coli containing only pE ASY-E2 vector; 2: unpurified recombinant β-galactosidase; 3: purified recombinant β-galactosidase. It can be seen from Figure 1 that the recombinant β-galactosidase was expressed in Escherichia coli, and purified by Nickel-NTA Agarose into a single band.

实施例3耐盐β-半乳糖苷酶GalNC2-13的性质测定Example 3 Determination of properties of salt-tolerant β-galactosidase GalNC2-13

酶活性测定方法参照张文洪(张文洪,2019):以对硝基苯基-β-D-吡喃半乳糖苷(pNPGal)测定其余重组β-半乳糖苷酶酶活性。将对硝基苯基-β-D-吡喃半乳糖苷(pNPGal)溶解于pH6.5缓冲液中,配制成终浓度为2mmol/L的底物溶液。取450μL pNPGal溶液,37℃下预热5min,加入50μL稀释适当倍数的酶液,准确反应10min后,立即加入1mL 1mol/L的Na2CO3终止反应并显色。取200μL上述反应液加到96孔板中,用酶标仪测定反应液的OD420,并以加入50μL已失活的酶液作为空白对照。酶活单位定义:一个酶活单位(U)即在酶的最适反应条件下,每分钟水解pNPGal释放1μmol pNP所需的酶量。The enzyme activity determination method refers to Zhang Wenhong (Zhang Wenhong, 2019): p-nitrophenyl-β-D-galactopyranoside (pNPGal) was used to determine the enzymatic activity of the remaining recombinant β-galactosidase. p-Nitrophenyl-β-D-galactopyranoside (pNPGal) was dissolved in pH 6.5 buffer to prepare a substrate solution with a final concentration of 2 mmol/L. Take 450 μL of pNPGal solution, preheat at 37°C for 5 minutes, add 50 μL of enzyme solution diluted to an appropriate multiple, and react accurately for 10 minutes, immediately add 1 mL of 1mol/L Na 2 CO 3 to terminate the reaction and develop color. Add 200 μL of the above reaction solution to a 96-well plate, measure the OD 420 of the reaction solution with a microplate reader, and add 50 μL of inactivated enzyme solution as a blank control. Definition of enzyme activity unit: One enzyme activity unit (U) is the amount of enzyme required to hydrolyze pNPGal to release 1 μmol pNP per minute under the optimal reaction conditions of the enzyme.

1)耐盐β-半乳糖苷酶GalNC2-13的最适pH和pH稳定性的测定1) Determination of optimum pH and pH stability of salt-tolerant β-galactosidase GalNC2-13

酶的最适pH测定:将实施例2纯化的耐盐β-半乳糖苷酶GalNC2-13在37℃下测定pH3.0-12.0(pH3.0-7.0:0.1mol/L柠檬酸-磷酸氢二钠缓冲液;pH8.0-12.0:0.2mol/L甘氨酸-氢氧化钠缓冲液)缓冲液中的酶活力。Determination of the optimal pH of the enzyme: the salt-tolerant β-galactosidase GalNC2-13 purified in Example 2 was measured at 37°C for pH 3.0-12.0 (pH 3.0-7.0: 0.1mol/L citric acid-hydrogen phosphate Disodium buffer; pH8.0-12.0: 0.2mol/L glycine-sodium hydroxide buffer) Enzyme activity in the buffer.

酶的pH稳定性测定:将酶于37℃下在不同pH 3.0-12.0缓冲溶液中保温1h。按照酶活测定方法,在最适反应条件下测定残余的酶活力。以最高活力作为100%,计算各个pH值下该酶的相对活力。Determination of the pH stability of the enzyme: the enzyme was incubated at 37° C. for 1 hour in buffer solutions with different pH values ranging from 3.0 to 12.0. According to the enzyme activity assay method, the residual enzyme activity was determined under the optimum reaction conditions. Taking the highest activity as 100%, calculate the relative activity of the enzyme at each pH value.

结果参见图2和图3,图2为本发明实施例提供的耐盐β-半乳糖苷酶最适pH,图3为本发明实施例提供的耐盐β-半乳糖苷酶的pH稳定性。由图2和图3可知,本发明提供的耐盐β-半乳糖苷酶的最适pH为6.5;在pH 6.0、pH 6.5下处理1h,其剩余酶活分别为130%、132%。The results are shown in Fig. 2 and Fig. 3, Fig. 2 is the optimal pH of the salt-tolerant β-galactosidase provided by the embodiment of the present invention, and Fig. 3 is the pH stability of the salt-tolerant β-galactosidase provided by the embodiment of the present invention . It can be seen from Fig. 2 and Fig. 3 that the optimum pH of the salt-tolerant β-galactosidase provided by the present invention is 6.5; when treated at pH 6.0 and pH 6.5 for 1 hour, the remaining enzyme activities are 130% and 132% respectively.

2)耐盐β-半乳糖苷酶的最适温度及温度稳定性测定2) Determination of optimum temperature and temperature stability of salt-tolerant β-galactosidase

酶的最适温度测定:在pH6.5下,测定不同温度(0-60℃)条件下的β-半乳糖苷酶活力,并以最高活力100%计算各个温度下该酶的相对活力。Determination of the optimal temperature of the enzyme: at pH 6.5, the activity of β-galactosidase at different temperatures (0-60° C.) was measured, and the relative activity of the enzyme at each temperature was calculated based on the highest activity of 100%.

酶的温度稳定性测定:在pH6.5条件下,测定30℃、37℃和40℃下放置1h,每隔10分钟在pH6.5及30℃下进行酶促反应,以未处理的酶液作为对照。Determination of the temperature stability of the enzyme: under the condition of pH 6.5, measure at 30°C, 37°C and 40°C for 1 hour, carry out enzymatic reaction at pH 6.5 and 30°C every 10 minutes, use untreated enzyme solution as comparison.

结果参见图4、图5。图4是本发明实施例提供的耐盐β-半乳糖苷酶的最适温度,图5是本发明实施例提供的耐盐β-半乳糖苷酶的温度稳定性。结果表明:耐盐β-半乳糖苷酶的最适温度为37℃,在30℃、37℃条件下保持稳定。See Figure 4 and Figure 5 for the results. Figure 4 shows the optimum temperature of the salt-tolerant β-galactosidase provided by the examples of the present invention, and Figure 5 shows the temperature stability of the salt-tolerant β-galactosidase provided by the examples of the present invention. The results showed that the optimum temperature of salt-tolerant β-galactosidase was 37℃, and it remained stable at 30℃ and 37℃.

3)耐盐β-半乳糖苷酶的NaCl影响及NaCl耐受性测定3) NaCl influence of salt-tolerant β-galactosidase and determination of NaCl tolerance

酶的NaCl影响测定:在37℃、pH 6.5,0.5-5mol/L NaCl条件下进行酶促反应。Determination of the effect of NaCl on the enzyme: the enzymatic reaction was carried out at 37°C, pH 6.5, and 0.5-5mol/L NaCl.

酶的NaCl稳定性测定:在酶的最适作用条件下及标准酶反应体系中加入不同浓度的NaCl,使其终浓度为0.5-5mol/L,于37℃下恒温水浴1h后,于37℃、pH 6.5条件下测定其剩余酶活力。以未处理的酶液作为对照。Determination of the NaCl stability of the enzyme: Add different concentrations of NaCl to the standard enzyme reaction system under the optimal action conditions of the enzyme so that the final concentration is 0.5-5mol/L. , pH 6.5 conditions to determine the remaining enzyme activity. Untreated enzyme solution was used as a control.

结果参见图6、图7。图6是本发明实施例提供的耐盐β-半乳糖苷酶的NaCl影响,图7是本发明实施例提供的耐盐β-半乳糖苷酶的NaCl耐受。结果表明:在NaCl浓度为0.5mol/L时酶活性达到最大(约2倍)。在0.5-1.0mol/L NaCl浓度下可达200%以上;1.5mol/L Na Cl浓度下维持190%活性;在2.0-2.5mol/L浓度下均保持在130%以上;即使在3.0-5.0mol/LNaCl下也能维持在65%-95%。See Figure 6 and Figure 7 for the results. Fig. 6 shows the effect of NaCl on the salt-tolerant β-galactosidase provided by the example of the present invention, and Fig. 7 shows the NaCl tolerance of the salt-tolerant β-galactosidase provided by the example of the present invention. The results showed that the enzyme activity reached the maximum (about 2 times) when the NaCl concentration was 0.5mol/L. At a concentration of 0.5-1.0mol/L NaCl, it can reach more than 200%; at a concentration of 1.5mol/L NaCl, it can maintain 190% activity; at a concentration of 2.0-2.5mol/L, it can maintain above 130%; even at a concentration of 3.0-5.0 It can also be maintained at 65%-95% under mol/LNaCl.

4)重组β-半乳糖苷酶的动力学参数测定4) Determination of kinetic parameters of recombinant β-galactosidase

动力学参数在pH 6.5、温度37℃和一级反应时间下以不同浓度的pNPGal为底物(0.2-5.2mmol/L)进行测定,根据Lineweaver-Burk法计算出Km和Vmax值。经测定,在37℃、pH 6.5条件下该酶的Km和Vmax分别为4.796mmol/L和1.022mmol/min。Kinetic parameters were measured at pH 6.5, temperature 37°C and first-order reaction time with different concentrations of pNPGal as substrate (0.2-5.2mmol/L). Km and Vmax values were calculated according to the Lineweaver-Burk method. It was determined that the Km and Vmax of the enzyme were 4.796mmol/L and 1.022mmol/min at 37°C and pH 6.5, respectively.

5)不同金属离子及化学试剂对重组β-半乳糖苷酶活力影响测定5) Determination of the influence of different metal ions and chemical reagents on the activity of recombinant β-galactosidase

将各种金属离子(Na+、K+、Fe2+、Fe3+、Cu2+、Ag+、Ca2+、Zn2+、Co2+、Mn2+、Ni2+、Al3+、Li+、Mg2+、Sn2+、Pb2+、Hg2+)和化学试剂(SDS、EDTA、盐酸胍、Tween80、Triton X100、DTT、丙三醇、乙酸、乙醇、甲醇、PEG4000、乙酸乙酯、尿素、β-巯基乙醇)加入到酶促反应体系中,使其终浓度分别为10mmol/L、1%(V/V),在酶最适作用条件下测定β-半乳糖苷酶活力。以不加金属离子和化学试剂的酶活力为参照。结果参见表1。Various metal ions (Na + , K + , Fe 2+ , Fe 3+ , Cu 2+ , Ag + , Ca 2+ , Zn 2+ , Co 2+ , Mn 2+ , Ni2 + , Al3 + , Li + , Mg 2+ , Sn 2+ , Pb 2+ , Hg 2+ ) and chemical reagents (SDS, EDTA, guanidine hydrochloride, Tween80, Triton X100, DTT, glycerol, acetic acid, ethanol, methanol, PEG4000, ethyl acetate Esters, urea, β-mercaptoethanol) were added to the enzymatic reaction system, so that the final concentrations were 10mmol/L and 1% (V/V) respectively, and the activity of β-galactosidase was measured under the optimal enzyme action conditions . Take the enzyme activity without adding metal ions and chemical reagents as a reference. See Table 1 for the results.

表1化学试剂对重组β-半乳糖苷酶的活力影响The influence of table 1 chemical reagent on the activity of recombinant β-galactosidase

Figure BDA0003198442700000101
Figure BDA0003198442700000101

由表1可知,Pb2+、Tween80、DTT和β-巯基乙醇对其有激活作用,分别将酶活性提高25%、12%和65%、32%;Sn2+、Na+、K+、Fe3+、Mg2+和丙三醇对其酶活性几乎无影响。Zn2+和Mn2+完全抑制其活性,其余金属离子或化学试剂对其有不同程度抑制作用。It can be seen from Table 1 that Pb 2+ , Tween80, DTT and β-mercaptoethanol can activate it, increasing the enzyme activity by 25%, 12% and 65%, 32% respectively; Sn 2+ , Na + , K + , Fe 3+ , Mg 2+ and glycerol had almost no effect on its enzyme activity. Zn 2+ and Mn 2+ completely inhibited its activity, and other metal ions or chemical reagents inhibited it to varying degrees.

6)重组β-半乳糖苷酶转糖基活性的UPLC测定6) UPLC determination of transglycosylation activity of recombinant β-galactosidase

将重组β-半乳糖苷酶添加到25%(W/V)乳糖溶液中,于37℃、pH 6.5反应条件下反应24h,立即煮沸5min终止反应,后于12000r/min离心10min,取上清进行UPLC分析。Add recombinant β-galactosidase to 25% (W/V) lactose solution, react at 37°C and pH 6.5 for 24 hours, immediately boil for 5 minutes to stop the reaction, then centrifuge at 12000r/min for 10 minutes, and take the supernatant Perform UPLC analysis.

结果参见图8,重组β-半乳糖苷酶能在24h时将乳糖全部转化为GOS。The results are shown in Figure 8, the recombinant β-galactosidase can completely convert lactose into GOS within 24 hours.

7)重组β-半乳糖苷酶水解乳糖产物的UPLC测定7) UPLC determination of lactose products hydrolyzed by recombinant β-galactosidase

将重组β-半乳糖苷酶添加到5%(W/V)乳糖溶液中,于37℃、pH 6.5反应条件下反应12h,立即煮沸5min终止反应,后于12000r/min离心10min,取上清进行UPLC分析。Add recombinant β-galactosidase to 5% (W/V) lactose solution, react at 37°C and pH 6.5 for 12 hours, immediately boil for 5 minutes to terminate the reaction, then centrifuge at 12000r/min for 10 minutes, and take the supernatant Perform UPLC analysis.

结果参见图9,重组β-半乳糖苷酶能在12h时将乳糖全部水解为葡萄糖。The results are shown in Figure 9, the recombinant β-galactosidase can completely hydrolyze lactose into glucose within 12 hours.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, substitutions and variants, the scope of the invention is defined by the appended claims and their equivalents.

序列表sequence listing

<110> 云南师范大学<110> Yunnan Normal University

<120> 一种耐盐β-半乳糖苷酶GalNC2-13及其制备方法和应用<120> A salt-tolerant β-galactosidase GalNC2-13 and its preparation method and application

<160> 4<160> 4

<170> SIPOSequenceListing 1.0<170> SIP Sequence Listing 1.0

<210> 1<210> 1

<211> 592<211> 592

<212> PRT<212> PRT

<213> β-半乳糖苷(GalNC2-13)<213> β-galactoside (GalNC2-13)

<400> 1<400> 1

Met Leu Glu Ile Lys Asn Lys Glu Phe Tyr Met Asp Gly Lys Pro PheMet Leu Glu Ile Lys Asn Lys Glu Phe Tyr Met Asp Gly Lys Pro Phe

1 5 10 151 5 10 15

Lys Ile Tyr Ser Gly Ala Met His Tyr Phe Arg Ile Leu Pro Glu TyrLys Ile Tyr Ser Gly Ala Met His Tyr Phe Arg Ile Leu Pro Glu Tyr

20 25 30 20 25 30

Trp Glu Asp Arg Leu Thr Lys Leu Lys Leu Ala Gly Phe Asn Thr ValTrp Glu Asp Arg Leu Thr Lys Leu Lys Leu Ala Gly Phe Asn Thr Val

35 40 45 35 40 45

Glu Thr Tyr Val Cys Trp Asn Leu His Glu Pro Lys Pro Asn Glu PheGlu Thr Tyr Val Cys Trp Asn Leu His Glu Pro Lys Pro Asn Glu Phe

50 55 60 50 55 60

Cys Phe Asp Gly Met Leu Asp Ile Val Arg Phe Val Glu Thr Ala LysCys Phe Asp Gly Met Leu Asp Ile Val Arg Phe Val Glu Thr Ala Lys

65 70 75 8065 70 75 80

Lys Val Gly Leu Tyr Cys Ile Val Arg Pro Gly Pro Tyr Ile Cys AlaLys Val Gly Leu Tyr Cys Ile Val Arg Pro Gly Pro Tyr Ile Cys Ala

85 90 95 85 90 95

Glu Trp Asp Phe Gly Gly Leu Pro Ala Trp Leu Leu Lys Asp Lys AsnGlu Trp Asp Phe Gly Gly Leu Pro Ala Trp Leu Leu Lys Asp Lys Asn

100 105 110 100 105 110

Met Gln Ile Arg Cys Cys Tyr Pro Asp Tyr Leu Ala Cys Val Glu ArgMet Gln Ile Arg Cys Cys Tyr Pro Asp Tyr Leu Ala Cys Val Glu Arg

115 120 125 115 120 125

Phe Tyr Lys Ala Leu Leu Pro Arg Leu Val Ser Leu Leu Glu Thr AsnPhe Tyr Lys Ala Leu Leu Pro Arg Leu Val Ser Leu Leu Glu Thr Asn

130 135 140 130 135 140

Gly Gly Asn Ile Ile Ala Met Gln Val Glu Asn Glu Tyr Gly Ser TyrGly Gly Asn Ile Ile Ala Met Gln Val Glu Asn Glu Tyr Gly Ser Tyr

145 150 155 160145 150 155 160

Gly Asn Asp Lys Asp Tyr Leu Arg Phe Val Glu Lys Leu Met Met AspGly Asn Asp Lys Asp Tyr Leu Arg Phe Val Glu Lys Leu Met Met Asp

165 170 175 165 170 175

Cys Gly Ile Asp Val Leu Tyr Phe Thr Ser Asp Gly Asn Trp Lys AsnCys Gly Ile Asp Val Leu Tyr Phe Thr Ser Asp Gly Asn Trp Lys Asn

180 185 190 180 185 190

Met Leu Ser Gly Gly Ser Leu Pro His Ile Tyr Lys Val Leu Asn PheMet Leu Ser Gly Gly Ser Leu Pro His Ile Tyr Lys Val Leu Asn Phe

195 200 205 195 200 205

Gly Ser Lys Ala Lys Thr Ala Phe Gly Cys Leu Lys Asp Phe Glu AsnGly Ser Lys Ala Lys Thr Ala Phe Gly Cys Leu Lys Asp Phe Glu Asn

210 215 220 210 215 220

Asp Gly Pro Asn Met Cys Gly Glu Phe Trp Cys Gly Trp Phe Asp HisAsp Gly Pro Asn Met Cys Gly Glu Phe Trp Cys Gly Trp Phe Asp His

225 230 235 240225 230 235 240

Trp Arg Asp Ile His His Thr Arg Asp Ala Ala Ser Val Gly Lys GluTrp Arg Asp Ile His His Thr Arg Asp Ala Ala Ser Val Gly Lys Glu

245 250 255 245 250 255

Ile Lys Asp Phe Leu Asp Ile Gly Ala Ser Phe Asn Phe Tyr Met PheIle Lys Asp Phe Leu Asp Ile Gly Ala Ser Phe Asn Phe Tyr Met Phe

260 265 270 260 265 270

His Gly Gly Thr Asn Phe Gly Phe Thr Ala Gly Ala Asn His Asn ProHis Gly Gly Thr Asn Phe Gly Phe Thr Ala Gly Ala Asn His Asn Pro

275 280 285 275 280 285

Gly Lys Gly Tyr Glu Pro Thr Ile Thr Ser Tyr Asp Tyr Cys Ala LeuGly Lys Gly Tyr Glu Pro Thr Ile Thr Ser Tyr Asp Tyr Cys Ala Leu

290 295 300 290 295 300

Leu Asn Glu Trp Gly Asp Tyr Thr Pro Ala Tyr His Glu Val Arg LysLeu Asn Glu Trp Gly Asp Tyr Thr Pro Ala Tyr His Glu Val Arg Lys

305 310 315 320305 310 315 320

Ile Leu Cys Glu Asn Gln Gly Ile Glu Met Arg Gln Leu Pro Pro SerIle Leu Cys Glu Asn Gln Gly Ile Glu Met Arg Gln Leu Pro Pro Ser

325 330 335 325 330 335

Pro Ala Leu Gln Ser Ile Gly Glu Val Lys Leu Thr Glu Phe Ala ProPro Ala Leu Gln Ser Ile Gly Glu Val Lys Leu Thr Glu Phe Ala Pro

340 345 350 340 345 350

Leu Phe Gly Asn Leu Asp Asn Ile Ala Glu Lys His Arg Ala Ala ValLeu Phe Gly Asn Leu Asp Asn Ile Ala Glu Lys His Arg Ala Ala Val

355 360 365 355 360 365

Pro Glu Ser Met Glu Tyr Phe Asp Gln Asn Phe Gly Leu Ile Tyr TyrPro Glu Ser Met Glu Tyr Phe Asp Gln Asn Phe Gly Leu Ile Tyr Tyr

370 375 380 370 375 380

Glu Thr Ile Leu Ser Gly Lys Tyr Asp Ile Ser Pro Ile Glu Phe LysGlu Thr Ile Leu Ser Gly Lys Tyr Asp Ile Ser Pro Ile Glu Phe Lys

385 390 395 400385 390 395 400

Asn Val His Asp Phe Gly Tyr Val Tyr Phe Asp Ser Lys Leu Lys LysAsn Val His Asp Phe Gly Tyr Val Tyr Phe Asp Ser Lys Leu Lys Lys

405 410 415 405 410 415

Arg Ile Asp Arg Thr Gln Tyr Thr Glu Pro Lys Lys Gly Leu Lys AlaArg Ile Asp Arg Thr Gln Tyr Thr Glu Pro Lys Lys Gly Leu Lys Ala

420 425 430 420 425 430

Leu Leu Gly Leu Lys Lys Glu Asp Lys Phe Leu Met Pro Ala Leu LysLeu Leu Gly Leu Lys Lys Glu Asp Lys Phe Leu Met Pro Ala Leu Lys

435 440 445 435 440 445

Gly Glu Arg Lys Ile Gly Val Leu Val Asp Ala Met Gly Arg Val AsnGly Glu Arg Lys Ile Gly Val Leu Val Asp Ala Met Gly Arg Val Asn

450 455 460 450 455 460

Tyr Gly Glu His Met Ile Asp Arg Lys Gly Met Thr Asp Ile Tyr IleTyr Gly Glu His Met Ile Asp Arg Lys Gly Met Thr Asp Ile Tyr Ile

465 470 475 480465 470 475 480

Gly Asn Gln Arg Gln Met Gly Tyr Asp Val Tyr Thr Met Pro Leu AspGly Asn Gln Arg Gln Met Gly Tyr Asp Val Tyr Thr Met Pro Leu Asp

485 490 495 485 490 495

Asn Leu Glu Lys Leu Val Tyr Gly Ser Ala Ser Asp Ser Leu Pro ValAsn Leu Glu Lys Leu Val Tyr Gly Ser Ala Ser Asp Ser Leu Pro Val

500 505 510 500 505 510

Phe Met Lys Gly Glu Phe Thr Ala Asp Ser Lys Ala Asp Cys Phe ValPhe Met Lys Gly Glu Phe Thr Ala Asp Ser Lys Ala Asp Cys Phe Val

515 520 525 515 520 525

His Leu Asp Gly Phe Lys Lys Gly Tyr Val Trp Val Asn Gly Phe AsnHis Leu Asp Gly Phe Lys Lys Gly Tyr Val Trp Val Asn Gly Phe Asn

530 535 540 530 535 540

Leu Gly Arg Tyr Trp Ser Val Gly Pro Gln Lys Ser Leu Tyr Leu ProLeu Gly Arg Tyr Trp Ser Val Gly Pro Gln Lys Ser Leu Tyr Leu Pro

545 550 555 560545 550 555 560

Gly Ala Leu Leu Lys Asp Glu Asn Glu Ile Ile Val Leu Glu Met GluGly Ala Leu Leu Lys Asp Glu Asn Glu Ile Ile Val Leu Glu Met Glu

565 570 575 565 570 575

Gly Phe Asn Lys Pro Ala Val Ser Ile Leu Asp Lys His Asp Leu GlyGly Phe Asn Lys Pro Ala Val Ser Ile Leu Asp Lys His Asp Leu Gly

580 585 590 580 585 590

<210> 2<210> 2

<211> 1779<211> 1779

<212> DNA<212>DNA

<213> β-半乳糖苷酶编码基因(GalNC2-13)<213> β-galactosidase encoding gene (GalNC2-13)

<400> 2<400> 2

atgcttgaaa ttaaaaataa agaattttat atggacggta agccctttaa aatatactca 60atgcttgaaa ttaaaaataa agaattttat atggacggta agccctttaa aatatactca 60

ggtgctatgc actattttcg catcctgccc gaatattggg aggatagatt aacaaagctt 120ggtgctatgc actattttcg catcctgccc gaatattggg agatagatt aacaaagctt 120

aagcttgccg gttttaatac agtagaaacc tatgtctgtt ggaatctgca cgagccaaag 180aagcttgccg gttttaatac agtagaaacc tatgtctgtt ggaatctgca cgagccaaag 180

ccgaatgaat tttgctttga cggaatgctt gatatcgtaa gatttgttga aactgcaaaa 240ccgaatgaat tttgctttga cggaatgctt gatatcgtaa gatttgttga aactgcaaaa 240

aaggtcggtt tatactgtat tgtccgtccc ggtccctaca tatgtgccga gtgggatttc 300aaggtcggtt tatactgtat tgtccgtccc ggtccctaca tatgtgccga gtgggatttc 300

ggaggcctgc ctgcgtggct tttaaaggac aagaatatgc agattcgctg ctgctatcct 360ggaggcctgc ctgcgtggct tttaaaggac aagaatatgc agattcgctg ctgctatcct 360

gattatcttg cttgtgttga gagattttat aaggcacttc tgccaaggct tgtttcgctg 420gattatcttg cttgtgttga gagattttat aaggcacttc tgccaaggct tgtttcgctg 420

cttgaaacaa atggcggcaa tattattgca atgcaggttg aaaatgagta cggttcttac 480cttgaaacaa atggcggcaa tattattgca atgcaggttg aaaatgagta cggttcttac 480

ggcaatgata aggattatct gcgctttgtt gaaaagctga tgatggactg cggtattgat 540ggcaatgata aggattatct gcgctttgtt gaaaagctga tgatggactg cggtattgat 540

gttctgtatt ttacatcaga cggcaattgg aagaatatgc tttcaggcgg ttcactcccg 600gttctgtatt ttacatcaga cggcaattgg aagaatatgc tttcaggcgg ttcactcccg 600

catatttata aggtgctgaa tttcggctct aaggcgaaaa cggcttttgg ctgtctgaag 660catatttata aggtgctgaa tttcggctct aaggcgaaaa cggcttttgg ctgtctgaag 660

gattttgaaa atgacggacc gaatatgtgc ggcgaattct ggtgcggctg gtttgaccat 720gattttgaaa atgacggacc gaatatgtgc ggcgaattct ggtgcggctg gtttgaccat 720

tggagagata ttcaccatac aagagatgca gcatccgttg gcaaagagat taaggatttt 780tggagagata ttcaccatac aagagatgca gcatccgttg gcaaagagat taaggatttt 780

cttgatattg gtgcaagctt taatttctat atgttccatg gcggtacgaa ttttggcttt 840cttgatattg gtgcaagctt taatttctat atgttccatg gcggtacgaa ttttggcttt 840

actgcaggtg caaaccataa tcccggcaag ggttatgagc ctaccattac gagctatgat 900actgcaggtg caaaccataa tcccggcaag ggttatgagc ctaccatac gagctatgat 900

tattgtgcac tgcttaatga atggggtgat tatacccccg cttatcacga ggtgagaaaa 960tattgtgcac tgcttaatga atggggtgat tatacccccg cttatcacga ggtgagaaaa 960

atactctgtg aaaatcaggg catagaaatg agacagctgc cgccgtcacc tgctttgcag 1020atactctgtg aaaatcaggg catagaaatg agacagctgc cgccgtcacc tgctttgcag 1020

tcaatcggtg aggtaaagct tactgaattt gcgccgcttt ttggtaatct tgacaatatt 1080tcaatcggtg aggtaaagct tactgaattt gcgccgcttt ttggtaatct tgacaatatt 1080

gccgaaaagc acagagcagc tgtgcctgag agtatggaat atttcgacca gaatttcggc 1140gccgaaaagc acagcagc tgtgcctgag agtatggaat atttcgacca gaatttcggc 1140

ctgatttatt atgaaaccat tctgagcgga aaatatgata tttcaccgat tgaattcaag 1200ctgaatttatt atgaaaccat tctgagcgga aaatatgata tttcaccgat tgaattcaag 1200

aatgttcacg atttcggtta tgtatacttc gattcaaaac tgaaaaagag aattgacaga 1260aatgttcacg atttcggtta tgtatacttc gattcaaaac tgaaaaagag aattgacaga 1260

acacaatata cggagccgaa aaaaggtctc aaggctcttt tgggtttgaa gaaagaagat 1320acacaatata cggagccgaa aaaaggtctc aaggctcttt tgggtttgaa gaaagaagat 1320

aaattcctta tgcctgcact gaaaggtgaa aggaaaatcg gtgtgcttgt tgatgctatg 1380aaattcctta tgcctgcact gaaaggtgaa aggaaaatcg gtgtgcttgt tgatgctatg 1380

ggcagagtga attacggtga gcatatgatt gaccgaaagg gtatgacaga tatctatatc 1440ggcagagtga attacggtga gcatatgatt gaccgaaagg gtatgacaga tatctatatc 1440

ggcaatcaaa gacagatggg ctatgatgtt tacacaatgc cgcttgataa tcttgaaaag 1500ggcaatcaaa gacagatggg ctatgatgtt tacacaatgc cgcttgataa tcttgaaaag 1500

cttgtatatg gctcagcatc agacagcctg cctgtattta tgaagggcga atttactgct 1560cttgtatatg gctcagcatc agacagcctg cctgtattta tgaagggcga atttactgct 1560

gattcaaagg cagattgctt tgttcatctt gacggcttta aaaagggcta tgtctgggtt 1620gattcaaagg cagattgctt tgttcatctt gacggcttta aaaagggcta tgtctgggtt 1620

aacggcttta atctcggcag atattggagt gtcggaccgc agaaatcttt atatcttccg 1680aacggcttta atctcggcag atattggagt gtcggaccgc agaaatcttt atatcttccg 1680

ggtgcacttc tcaaggatga aaatgagatt atagttcttg aaatggaggg ctttaacaag 1740ggtgcacttc tcaaggatga aaatgagatt atagttcttg aaatggaggg ctttaacaag 1740

cctgcggttt ctattcttga taagcacgat ttaggataa 1779cctgcggttt ctattcttga taagcacgat ttaggataa 1779

<210> 3<210> 3

<211> 49<211> 49

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

taagaaggag atatacatat ggaattgatg cttgaaatta aaaataaag 49taagaaggag atatacatat ggaattgatg cttgaaatta aaaataaag 49

<210> 4<210> 4

<211> 42<211> 42

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

gtggtggtgg tggtgctcga gtcctaaatc gtgcttatca ag 42gtggtggtgg tggtgctcga gtcctaaatc gtgcttatca ag 42

Claims (5)

1.一种耐盐β-半乳糖苷酶GalNC2-13,其特征在于,所述β-半乳糖苷酶GalNC2-13氨基酸序列如SEQ ID NO.1所示。1. A salt-tolerant β-galactosidase GalNC2-13, characterized in that the amino acid sequence of the β-galactosidase GalNC2-13 is shown in SEQ ID NO.1. 2.权利要求1所述耐盐β-半乳糖苷酶GalNC2-13的编码基因,其特征在于,所述编码基因如SEQ ID NO.2所示。2. The coding gene of the salt-tolerant β-galactosidase GalNC2-13 according to claim 1, characterized in that, the coding gene is as shown in SEQ ID NO.2. 3.一种重组载体,其特征在于,包含权利要求2所述的编码基因。3. A recombinant vector, characterized in that it comprises the coding gene according to claim 2. 4.一种重组菌,其特征在于,包含权利要求2所述的编码基因。4. A recombinant bacterium, characterized in that it comprises the coding gene according to claim 2. 5.权利要求1所述的耐盐β-半乳糖苷酶GalNC2-13在食品加工中的应用。5. The application of the salt-tolerant β-galactosidase GalNC2-13 according to claim 1 in food processing.
CN202110897489.7A 2021-08-05 2021-08-05 Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof Active CN113481185B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110897489.7A CN113481185B (en) 2021-08-05 2021-08-05 Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110897489.7A CN113481185B (en) 2021-08-05 2021-08-05 Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113481185A CN113481185A (en) 2021-10-08
CN113481185B true CN113481185B (en) 2022-12-02

Family

ID=77945604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110897489.7A Active CN113481185B (en) 2021-08-05 2021-08-05 Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113481185B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852597B (en) * 2019-03-21 2022-11-18 云南师范大学 A kind of β-galactosidase galRBM20_1 and its preparation method and application
CN113106082B (en) * 2021-05-27 2022-11-04 云南师范大学 Animal waste metagenome-derived alanine racemase and preparation and application thereof
CN113637660B (en) * 2021-08-05 2023-09-08 云南师范大学 A kind of β-galactosidase GalNC3-89 and its preparation method and application
CN113774073B (en) * 2021-10-25 2023-03-17 中国水产科学研究院黄海水产研究所 Deep sea metagenome-derived beta-galactosidase, encoding gene and application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169179A (en) * 1997-12-17 1999-06-29 Yakult Honsha Co Ltd β-galactosidase, method for producing the same, and fermented milk containing the β-galactosidase
WO2000029435A1 (en) * 1998-10-28 2000-05-25 Human Genome Sciences, Inc. 12 human secreted proteins
US6077692A (en) * 1995-02-14 2000-06-20 Human Genome Sciences, Inc. Keratinocyte growth factor-2
CN101074435A (en) * 2006-05-16 2007-11-21 中国农业科学院饲料研究所 Alpha-galactosidase gene, its coding protein, production and use
CN102154239A (en) * 2011-01-06 2011-08-17 中山大学 New gene of beta-galactosidase with high glycosyl transfer efficiency and application thereof
CN107988185A (en) * 2018-01-14 2018-05-04 中国农业科学院饲料研究所 Alpha-galactoside enzyme mutant Gal27B-A16 and its encoding gene and application
CN109295038A (en) * 2018-10-25 2019-02-01 安徽大学 β -galactosidase, coding gene and application thereof
CN110938614A (en) * 2019-12-06 2020-03-31 宁波希诺亚海洋生物科技有限公司 High-activity β -galactosidase, plasmid for high-throughput screening of same and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401657A (en) * 1990-08-06 1995-03-28 Gist-Brocades, N.V. Gram-positive alkaliphilic microorganisms
GB9922346D0 (en) * 1999-09-21 1999-11-24 Zeneca Ltd Improvements in or relating to organic compounds
EP1478750B1 (en) * 1999-11-23 2012-08-08 Mayo Foundation For Medical Education And Research Gene expression by positive feedback activation of a cell type-specific promoter
EP1373477B1 (en) * 2001-02-07 2011-07-20 Cryptic Afflictions, LLC A novel virus (cryptovirus) within the rubulavirus genus and uses therefor
WO2004065551A2 (en) * 2003-01-21 2004-08-05 Bristol-Myers Squibb Company Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (mgat3), and uses thereof
CN102220301B (en) * 2011-05-30 2012-10-24 云南师范大学 Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof
EP2530148B1 (en) * 2011-05-30 2015-04-29 B.R.A.I.N. Biotechnology Research And Information Network AG Novel beta-galactosidases useful for the production of lactose depleted milk products
CN102321599B (en) * 2011-10-25 2013-01-09 云南师范大学 Low-temperature alpha-galactosidase AgaAGN14 and gene thereof
JP6330240B2 (en) * 2014-12-12 2018-05-30 本田技研工業株式会社 Thermostable β-glucosidase
CN104726430B (en) * 2015-03-31 2018-01-19 云南师范大学 The α galactosidase As gaAHJ8 and its gene of salt tolerant resistant protease
CN104894022B (en) * 2015-06-10 2018-10-19 南京工业大学 Organic solvent-resistant galactosidase high-producing strain, and gene and application of galactosidase
ES2662617T3 (en) * 2015-11-20 2018-04-09 4D Pharma Research Limited Compositions comprising bacterial strains
JP6677554B2 (en) * 2016-03-28 2020-04-08 本田技研工業株式会社 Thermostable cellobiohydrolase
US20190226005A1 (en) * 2018-01-19 2019-07-25 S2M Enterprises, LLC Multidifferential Agar with Chromogenic Substrates
US20190309269A1 (en) * 2018-03-20 2019-10-10 Rubius Therapeutics, Inc. Therapeutic cell systems and methods for treating hyperuricemia and gout
EP3847197A1 (en) * 2018-09-05 2021-07-14 Poseida Therapeutics, Inc. Allogeneic cell compositions and methods of use
CN110904082B (en) * 2019-12-11 2021-06-04 云南师范大学 Salt-tolerant xylosidase mutant T326DH328D and its preparation and use
CN110904075B (en) * 2019-12-11 2021-03-23 云南师范大学 Salt-tolerant xylosidase mutant K321D and preparation method and application thereof
CN113637660B (en) * 2021-08-05 2023-09-08 云南师范大学 A kind of β-galactosidase GalNC3-89 and its preparation method and application
CN113774073B (en) * 2021-10-25 2023-03-17 中国水产科学研究院黄海水产研究所 Deep sea metagenome-derived beta-galactosidase, encoding gene and application

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077692A (en) * 1995-02-14 2000-06-20 Human Genome Sciences, Inc. Keratinocyte growth factor-2
JPH11169179A (en) * 1997-12-17 1999-06-29 Yakult Honsha Co Ltd β-galactosidase, method for producing the same, and fermented milk containing the β-galactosidase
WO2000029435A1 (en) * 1998-10-28 2000-05-25 Human Genome Sciences, Inc. 12 human secreted proteins
CN101074435A (en) * 2006-05-16 2007-11-21 中国农业科学院饲料研究所 Alpha-galactosidase gene, its coding protein, production and use
CN102154239A (en) * 2011-01-06 2011-08-17 中山大学 New gene of beta-galactosidase with high glycosyl transfer efficiency and application thereof
CN107988185A (en) * 2018-01-14 2018-05-04 中国农业科学院饲料研究所 Alpha-galactoside enzyme mutant Gal27B-A16 and its encoding gene and application
CN109295038A (en) * 2018-10-25 2019-02-01 安徽大学 β -galactosidase, coding gene and application thereof
CN110938614A (en) * 2019-12-06 2020-03-31 宁波希诺亚海洋生物科技有限公司 High-activity β -galactosidase, plasmid for high-throughput screening of same and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
天山1号冰川底部沉积层产β-半乳糖苷酶低温菌株的系统发育分析及生理多样性;张明等;《微生物学报》;20111204(第12期);第40-50页 *

Also Published As

Publication number Publication date
CN113481185A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
CN113481185B (en) Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof
CN113637660B (en) A kind of β-galactosidase GalNC3-89 and its preparation method and application
CN109337846B (en) Deep sea derived bacterial strain, beta-galactosidase gene coded by same and application of beta-galactosidase gene
CN102559637B (en) Exoinulinase Z2-5 with low-temperature activity and gene of exoinulinase Z2-5
WO2021232840A1 (en) TRUNCATION MUTANT OF α-L-RHAMNOSIDASE AND APPLICATION THEREOF
CN116376875B (en) N-acetylglucosaminidase mutants with improved thermostability and their applications
CN108794635B (en) A kind of bovine lactoferrin peptide-human lysozyme fusion protein, gene and application thereof
CN102220303B (en) Xylanase XynAHJ3 with protease resistance and gene thereof
CN102220301B (en) Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof
CN109852597B (en) A kind of β-galactosidase galRBM20_1 and its preparation method and application
CN107217043B (en) Lactobacillus plantarum D-lactate dehydrogenase, and coding gene and application thereof
CN105238797B (en) Mutant gene of gshF gene of streptococcus agalactiae and application thereof
He et al. Cloning, purification, and characterization of a heterodimeric β-galactosidase from Lactobacillus kefiranofaciens ZW3
CN102220304B (en) A low-temperature xylanase XynAHJ2 and its gene
CN108118037A (en) The glucose oxidase mutant that a kind of heat resistance improves
CN109468288A (en) Novel copper-rich oxidase for efficiently degrading histamine
CN101701213B (en) Dual-function xylanase XYNBE18 and gene and application thereof
CN101768578B (en) Eosinophilic lactase BGALA, gene and application thereof
CN107475222B (en) Genetically engineered thermostable human lysozyme
WO2015054947A1 (en) Application of n-acetylneuraminic acid lyase in catalyzed synthesis of n-acetylneuraminic acid
CN102311944A (en) Mannase with low-temperature activity and salt resistance and gene thereof
CN102719417A (en) High-temperature resistance arabinfuranosidease Abf51B8, as well as gene and application thereof
CN104561059B (en) Cold esterase and its encoding gene E40 are fitted with application in a kind of ocean
CN115161304A (en) Rhizomucor miehei lipase variant and its application
CN110904077B (en) Low temperature-improved xylosidase mutant MutLK10 and its preparation and use

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant