CN102220301B - Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof - Google Patents
Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof Download PDFInfo
- Publication number
- CN102220301B CN102220301B CN201110142558A CN201110142558A CN102220301B CN 102220301 B CN102220301 B CN 102220301B CN 201110142558 A CN201110142558 A CN 201110142558A CN 201110142558 A CN201110142558 A CN 201110142558A CN 102220301 B CN102220301 B CN 102220301B
- Authority
- CN
- China
- Prior art keywords
- agaajb13
- ala
- asp
- galactosidase
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域 technical field
本发明涉及基因工程技术领域,具体地说是一种耐碱性低温α-半乳糖苷酶AgaAJB13及其基因。 The invention relates to the technical field of genetic engineering, in particular to an alkaline-resistant low-temperature α-galactosidase AgaAJB13 and its gene.
背景技术 Background technique
α-半乳糖苷酶即蜜二糖酶(1,6-α-d-galactoside galactohydrolase;α-galactosidase;melibiase;EC 3.2.1.22),可移除不同底物中α-连接的末端非还原性D-半乳糖,包括蜜二糖、棉子糖、水苏糖和毛蕊花糖等低聚糖底物及半乳甘露聚糖等多聚糖底物。这些多糖广泛存在于食品和饲料原料中,特别是豆类植物的种子中,如豆粕、棉粕和菜粕等(Karr-Lilienthal et al. Livest Prod Sci, 2005, 97: 1–12.)。 α-galactosidase, melibiase (1,6-α-d-galactoside galactohydrolase; α-galactosidase; melibiase; EC 3.2.1.22), removes α-linked terminal non-reducing properties in different substrates D-galactose, including oligosaccharide substrates such as melibiose, raffinose, stachyose and verbascose, and polysaccharide substrates such as galactomannan. These polysaccharides are widely found in food and feed ingredients, especially in the seeds of legume plants, such as soybean meal, cotton meal and rapeseed meal (Karr-Lilienthal et al. Livest Prod Sci, 2005, 97: 1–12.).
α-半乳糖苷酶可应用于饲料、食品、造纸和医疗行业中。在饲料业中,α-半乳糖苷酶制剂可以促进营养物质的消化并消除或减少饲料组成中的抗营养因子(棉子糖等低聚糖)对营养物质消化的副作用,从而改善了动物的生产性能,降低饲料成本;在食品业中,α-半乳糖苷酶制剂可以降低棉子糖等在豆奶中的含量,增加人类对豆类营养的吸收;α-半乳糖苷酶还可提高纸张的漂白效果及治疗Fabry疾病等(Cao et al. Appl Microbiol Biotechnol, 2009, 83: 875–884.)。 α-galactosidase can be used in feed, food, papermaking and medical industries. In the feed industry, α-galactosidase preparations can promote the digestion of nutrients and eliminate or reduce the side effects of anti-nutritional factors (oligosaccharides such as raffinose) in the feed composition on the digestion of nutrients, thereby improving animal health. production performance and reduce feed cost; in the food industry, α-galactosidase preparations can reduce the content of raffinose in soybean milk and increase the absorption of soybean nutrients by humans; α-galactosidase can also improve the quality of paper The bleaching effect and treatment of Fabry disease, etc. (Cao et al. Appl Microbiol Biotechnol, 2009, 83: 875–884.).
α-半乳糖苷酶广泛存在于细菌、放线菌、真菌和植物中。根据氨基酸序列相似性,α-半乳糖苷酶被划分到糖苷水解酶第4、27、36和57家族,绝大多数α-半乳糖苷酶属于糖苷水解酶第27和36家族。真核生物来源的α-半乳糖苷酶多数属于27家族,而原核生物来源α-半乳糖苷酶基本都属于36家族(Finn et al. Nucleic Acids Res, 2008, 36: D281–D288.)。但是,目前所报导的α-半乳糖苷酶多为中温或高温酶及耐酸性或耐中性pH酶,同时具有耐碱性和低温活性的(0–20℃)α-半乳糖苷酶还未曾报导。
α-galactosidase widely exists in bacteria, actinomycetes, fungi and plants. According to amino acid sequence similarity, α-galactosidases are divided into
发明内容 Contents of the invention
本发明的目的是提供一种耐碱性低温α-半乳糖苷酶。 The purpose of the present invention is to provide an alkaline-resistant low-temperature alpha-galactosidase.
本发明的再一目的是提供编码上述α-半乳糖苷酶的基因。 Another object of the present invention is to provide a gene encoding the above-mentioned α-galactosidase.
本发明的另一目的是提供包含上述基因的重组载体。 Another object of the present invention is to provide a recombinant vector comprising the above gene.
本发明的另一目的是提供包含上述基因的重组菌株。 Another object of the present invention is to provide recombinant strains containing the above genes.
本发明所述α-半乳糖苷酶AgaAJB13可得自鞘氨醇单胞菌(Sphingobium sp.),如Sphingobium estrogenivorans ATCC BAA-1367。 AgaAJB13的氨基酸序列如SEQ ID NO. 1所示。 The α-galactosidase AgaAJB13 of the present invention can be obtained from Sphingobium sp., such as Sphingobium estrogenivorans ATCC BAA-1367. The amino acid sequence of AgaAJB13 is shown in SEQ ID NO.1.
该酶总共含738个氨基酸,其中N端23个氨基酸为其预测的信号肽序列 “MVMRRWGAALAAATMLAAAPAHA”(SEQ ID NO. 2)。 The enzyme contains a total of 738 amino acids, of which the N-terminal 23 amino acids are its predicted signal peptide sequence "MVMRRWGAALAAATMLAAAPAHA" (SEQ ID NO. 2).
因此,成熟的α-半乳糖苷酶AgaAJB13的理论分子量为80.0kDa,其氨基酸序列如SEQ ID NO. 3所示。 Therefore, the theoretical molecular weight of the mature α-galactosidase AgaAJB13 is 80.0kDa, and its amino acid sequence is shown in SEQ ID NO.3.
本发明的α-半乳糖苷酶AgaAJB13的最适pH值为5.0,在pH4.5–6.0的范围内维持80%以上的酶活性;经pH4.0–11.0的缓冲液处理1h,酶活剩余35%以上;最适温度为60℃,在10℃和20℃分别具有10%和20%以上的酶活,具有低温酶的低温催化特性;在37℃和60℃下的半衰期>60min,具有良好的热稳定性;可水解豆粕、棉粕和棉籽糖;经胰蛋白酶和蛋白酶K处理1h后,AgaAJB13仍能分别保持102.1%和114.0%的酶活。 The optimal pH value of the α-galactosidase AgaAJB13 of the present invention is 5.0, and more than 80% of the enzyme activity is maintained in the range of pH 4.5-6.0; after being treated with a buffer solution of pH 4.0-11.0 for 1 hour, the enzyme activity remains More than 35%; the optimum temperature is 60°C, and it has more than 10% and 20% of the enzyme activity at 10°C and 20°C respectively, which has the low-temperature catalytic characteristics of low-temperature enzymes; the half-life at 37°C and 60°C is >60min, and has Good thermal stability; it can hydrolyze soybean meal, cotton meal and raffinose; AgaAJB13 can still maintain 102.1% and 114.0% of the enzyme activity after being treated with trypsin and proteinase K for 1 hour, respectively.
本发明提供了编码上述α-半乳糖苷酶的基因agaAJB13,该基因序列如 SEQ ID NO. 4所示。 The present invention provides the gene agaAJB13 encoding the above-mentioned α-galactosidase, the gene sequence of which is shown in SEQ ID NO.4.
DNA序列结构分析结果表明,α-半乳糖苷酶基因agaAJB13编码信号肽的核苷酸序列如SEQ ID NO. 5所示。 The results of DNA sequence structure analysis showed that the nucleotide sequence of the signal peptide encoded by the α-galactosidase gene agaAJB13 is shown in SEQ ID NO. 5.
α-半乳糖苷酶基因agaAJB13编码成熟肽的核苷酸序列如SEQ ID NO. 6所示。 The nucleotide sequence of the mature peptide encoded by the α-galactosidase gene agaAJB13 is shown in SEQ ID NO.
本发明通过PCR的方法分离克隆了α-半乳糖苷酶AgaAJB13的编码基因agaAJB13,其全长2217bp,起始密码为ATG,终止密码为TAG。经BLAST比对,该α-半乳糖苷酶基因agaAJB13编码的氨基酸序列与GenBank中Acidobacterium sp. MP5ACTX8来源的潜在α-半乳糖苷酶(EFI56085)具有最高的一致性,为59.2%;与确证活性的Lichtheimia corymbifera IFO 8084来源α-半乳糖苷酶(AAF68953)的一致性为40.1%。说明α-半乳糖苷酶AgaAJB13是一种新的α-半乳糖苷酶。 The present invention isolates and clones the coding gene agaAJB13 of α-galactosidase AgaAJB13 by PCR method, its full length is 2217bp, the start codon is ATG, and the stop codon is TAG. According to BLAST comparison, the amino acid sequence encoded by the α-galactosidase gene agaAJB13 has the highest identity of 59.2% with the potential α-galactosidase (EFI56085) derived from Acidobacterium sp. MP5ACTX8 in GenBank; The identity of the Lichtheimia corymbifera IFO 8084-derived α-galactosidase (AAF68953) was 40.1%. It shows that α-galactosidase AgaAJB13 is a new α-galactosidase.
本发明还提供了包含上述α-半乳糖苷酶基因agaAJB13的重组载体,优选为pET-agaAJB13。将本发明的α-半乳糖苷酶基因插入到表达载体合适的限制性酶切位点之间,使其核苷酸序列与表达调控序列相连接。作为本发明的一个最优选的实施方案,将本发明的α-半乳糖苷酶基因插入到质粒pET-28a(+)上的EcoRI和HindIII限制性酶切位点之间,得到重组大肠杆菌表达质粒pET-agaAJB13。 The present invention also provides a recombinant vector comprising the above-mentioned α-galactosidase gene agaAJB13 , preferably pET- agaAJB13 . The α-galactosidase gene of the present invention is inserted between suitable restriction enzyme cutting sites of the expression vector, and its nucleotide sequence is connected with the expression control sequence. As a most preferred embodiment of the present invention, the α-galactosidase gene of the present invention is inserted between the Eco RI and Hind III restriction enzyme sites on the plasmid pET-28a (+), to obtain the recombinant large intestine Bacillus expression plasmid pET- agaAJB13 .
本发明还提供了包含上述α-半乳糖苷酶基因agaAJB13的重组菌株,优选所述菌株为大肠杆菌、酵母菌、芽孢杆菌或乳酸杆菌,优选为重组菌株BL21(DE3)/agaAJB13。 The present invention also provides a recombinant strain comprising the above-mentioned α-galactosidase gene agaAJB13 , preferably the strain is Escherichia coli, yeast, Bacillus or Lactobacillus, preferably the recombinant strain BL21(DE3) / agaAJB13 .
本发明的制备α-半乳糖苷酶AgaAJB13的方法按以下步骤进行: The method for preparing α-galactosidase AgaAJB13 of the present invention is carried out according to the following steps:
1)用上述的重组载体转化宿主细胞,得重组菌株; 1) Transform host cells with the above-mentioned recombinant vectors to obtain recombinant strains;
2)培养重组菌株,诱导重组α-半乳糖苷酶表达; 2) Cultivate recombinant strains to induce the expression of recombinant α-galactosidase;
3)回收并纯化所表达的α-半乳糖苷酶AgaAJB13。 3) Recover and purify the expressed α-galactosidase AgaAJB13.
其中,优选所述宿主细胞为大肠杆菌细胞,优选将重组大肠杆菌表达质粒转化大肠杆菌细胞BL21(DE3),得到重组菌株BL21(DE3)/agaAJB13。 Wherein, the host cell is preferably an E. coli cell, and the recombinant E. coli expression plasmid is preferably transformed into an E. coli cell BL21(DE3) to obtain a recombinant strain BL21(DE3) / agaAJB13 .
本发明提供了一个新的α-半乳糖苷酶基因,其编码的α-半乳糖苷酶最适pH5.0;在10℃和20℃下分别具有10%和20%以上的酶活;经0.1M pH11.0缓冲液37℃处理1h,仍能保持约40%的活性,作用温度范围较广,良好的热稳定性和蛋白酶抗性;较好的水解各种自然底物的能力,可广泛的应用于饲料和食品等行业。 The present invention provides a new α-galactosidase gene, the optimal pH of the α-galactosidase encoded by it is 5.0; at 10°C and 20°C, the enzyme activity is above 10% and 20%; 0.1M pH11.0 buffer solution can maintain about 40% of its activity after being treated at 37°C for 1 hour. Widely used in feed and food industries.
附图说明 Description of drawings
图1:在大肠杆菌中表达的重组α-半乳糖苷酶的SDS-PAGE分析,其中,M:低分子量蛋白质Marker;1:纯化的重组α-半乳糖苷酶。 Figure 1: SDS-PAGE analysis of recombinant α-galactosidase expressed in Escherichia coli, wherein, M: low molecular weight protein marker; 1: purified recombinant α-galactosidase.
图2:重组α-半乳糖苷酶的最适pH。 Figure 2: Optimal pH of recombinant α-galactosidase.
图3:重组α-半乳糖苷酶的pH稳定性。 Figure 3: pH stability of recombinant α-galactosidase.
图4:重组α-半乳糖苷酶的最适温度。 Figure 4: Optimal temperature for recombinant α-galactosidase.
图5:重组α-半乳糖苷酶的热稳定性。 Figure 5: Thermostability of recombinant α-galactosidase.
具体实施方式 Detailed ways
试验材料和试剂 Test materials and reagents
1、菌株及载体:鞘氨醇单胞菌(Sphingobium sp.)同文献报道菌种性质,如Sphingobium estrogenivorans ATCC BAA-1367;大肠杆菌Escherichia coli BL21(DE3)和表达载体pET-28a(+)可购于Novagen公司。 1. Bacterial strains and vectors: Sphingobium sp. is the same as that reported in the literature, such as Sphingobium estrogenivorans ATCC BAA-1367; Escherichia coli BL21 (DE3) and expression vector pET-28a (+) can be Purchased from Novagen.
2、酶类及其它生化试剂:限制性内切酶、DNA聚合酶、连接酶和dNTP购自TaKaRa公司;pNPG(p-nitrophenyl-α-d-galactopyranoside)购自Sigma公司;其它都为国产试剂(均可从普通生化试剂公司购买得到)。 2. Enzymes and other biochemical reagents: restriction endonucleases, DNA polymerases, ligases and dNTPs were purchased from TaKaRa Company; p NPG ( p -nitrophenyl-α-d-galactopyranoside) was purchased from Sigma Company; others were domestically produced Reagents (both can be purchased from common biochemical reagent companies).
3、培养基: 3. Medium:
LB培养基:Peptone 10g,Yeast extract 5g,NaCl 10g,加蒸馏水至1000ml,pH自然(约为7)。固体培养基在此基础上加2.0%(w/v)琼脂。 LB medium: Peptone 10g, Yeast extract 5g, NaCl 10g, add distilled water to 1000ml, pH natural (about 7). On the basis of solid medium, add 2.0% (w/v) agar.
说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。 Note: For the molecular biology experiment methods not specifically described in the following examples, all refer to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) J. Sambrook, or follow the kit and product manual.
实施例1:α-半乳糖苷酶基因agaAJB13的克隆 Example 1: Cloning of α-galactosidase gene agaAJB13
提取鞘氨醇单胞菌基因组DNA:将液体培养2d的菌液离心取菌体,加入1mL溶菌酶,37℃处理60min,再加入裂解液,70℃水浴裂解60min,每隔10min混匀一次,在4℃下10000rpm离心5min。取上清于酚/氯仿中抽提除去杂蛋白,再取上清加入等体积异丙醇,于室温静置5min后,4℃下10000rpm离心10min。弃上清,沉淀用70%的乙醇洗涤两次,真空干燥,加入适量TE溶解,置于-20℃备用。 Extract the genomic DNA of Sphingomonas: centrifuge the 2-day cultured bacteria liquid to get the bacteria, add 1mL lysozyme, treat at 37°C for 60min, then add the lysate, lyse in a water bath at 70°C for 60min, and mix every 10min. Centrifuge at 10000 rpm for 5 min at 4°C. The supernatant was extracted in phenol/chloroform to remove impurity proteins, and then an equal volume of isopropanol was added to the supernatant. After standing at room temperature for 5 minutes, centrifuge at 10,000 rpm for 10 minutes at 4°C. The supernatant was discarded, the precipitate was washed twice with 70% ethanol, dried in vacuo, dissolved by adding an appropriate amount of TE, and stored at -20°C for later use.
根据糖苷水解酶第36家族的保守序列([F/L/V]-[L/V]-[L/M/V]-D-D-G-W-F和E-P-E-M-[V/I]-[N/S]-[P/E])设计合成了简并引物GH36F和GH36R(表1)。 According to the conserved sequence of the 36th family of glycoside hydrolases ([F/L/V]-[L/V]-[L/M/V]-D-D-G-W-F and E-P-E-M-[V/I]-[N/S]-[ P/E]) designed and synthesized degenerate primers GH36F and GH36R (Table 1).
以鞘氨醇单胞菌总DNA为模板进行PCR扩增。PCR反应参数为:94℃变性5min;然后94℃变性30sec,43℃退火30sec,72℃延伸30sec,30个循环后72℃保温10min。得到一约172bp片段,将该片段回收后与pMD 18-T载体相连,然后送北京六合华大基因科技股份有限公司广州分公司测序。 PCR amplification was performed using the total DNA of Sphingomonas as template. The PCR reaction parameters were: denaturation at 94°C for 5 min; then denaturation at 94°C for 30 sec, annealing at 43°C for 30 sec, extension at 72°C for 30 sec, and after 30 cycles, incubation at 72°C for 10 min. A fragment of about 172bp was obtained, which was recovered and connected to the pMD 18-T vector, and then sent to Guangzhou Branch of Beijing Liuhe Huada Gene Technology Co., Ltd. for sequencing. the
根据测序得到的核甘酸序列,分别设计上游和下游TAIL-PCR特异性引物各二条:设计方向为需要扩增的未知区域方向,sp2的位置设计在sp1的内侧。每两个引物之间的距离没有严格规定,引物长度一般为20–30nt,退火温度在65–70℃。并将它们分别命名为usp1和usp2(上游特异性引物)及dsp1和dsp2(下游特异性引物;表1)。 According to the nucleotide sequence obtained by sequencing, two upstream and downstream TAIL-PCR specific primers were respectively designed: the design direction was the direction of the unknown region to be amplified, and the position of sp2 was designed inside of sp1. The distance between each two primers is not strictly regulated, the primer length is generally 20–30nt, and the annealing temperature is 65–70°C. And they were named as usp1 and usp2 (upstream specific primers) and dsp1 and dsp2 (downstream specific primers; Table 1).
通过TAIL-PCR得到已知基因序列的侧翼序列,扩增产物送北京六合华大基因科技股份有限公司广州分公司测序。测序结果与已知基因序列片段相拼接,得到α-半乳糖苷酶基因agaAJB13,该基因序列如 SEQ ID NO. 4所示。 The flanking sequences of known gene sequences were obtained by TAIL-PCR, and the amplified products were sent to Guangzhou Branch of Beijing Liuhe Huada Gene Technology Co., Ltd. for sequencing. The sequencing results were spliced with known gene sequence fragments to obtain the α-galactosidase gene agaAJB13 , the gene sequence of which is shown in SEQ ID NO. 4.
实施例2: 重组α-半乳糖苷酶的制备 Embodiment 2: Preparation of recombinant α-galactosidase
将表达载体pET-28a(+)进行双酶切(EcoRI和HindIII),同时将编码α-半乳糖苷酶的基因agaAJB13进行双酶切(EcoRI和HindIII),将上述酶切的α-半乳糖苷酶agaAJB13与表达载体pET-28a(+)相连接,获得含有α-半乳糖苷酶基因agaAJB13的重组质粒pET-agaAJB13并转化大肠杆菌BL21(DE3),获得重组大肠杆菌菌株BL21(DE3)/agaAJB13。 The expression vector pET-28a (+) was subjected to double enzyme digestion ( Eco RI and Hind III), and the gene agaAJB13 encoding α-galactosidase was subjected to double enzyme digestion ( Eco RI and Hind III). The α-galactosidase agaAJB13 was connected with the expression vector pET-28a (+), and the recombinant plasmid pET- agaAJB13 containing the α-galactosidase gene agaAJB13 was obtained and transformed into Escherichia coli BL21 (DE3), and the recombinant Escherichia coli strain BL21 was obtained (DE3) / agaAJB13 .
取含有重组质粒pET-agaAJB13的E. coli BL21(DE3)菌株和只含有pET-28a(+)空质粒的E. coli BL21(DE3)菌株,以0.1%的接种量接种于LB(含50μg/mL Kan)培养液中,37℃快速振荡16h。然后将此活化的菌液以1%接种量接种到新鲜的LB(含50μg/mL Kan)培养液中,快速振荡培养约2–3h(OD600达到0.6–1.0)后,加入终浓度0.7mM的IPTG诱导,于20℃继续振荡培养约20h或26℃振荡培养约8h。12000rpm离心5min,收集菌体。用适量的pH7.0 Tris-Hcl缓冲液悬浮菌体后,于低温水浴下超声波破碎菌体。以上胞内浓缩的初酶液经13,000rpm离心10min后,吸取上清并用Nickel-NTA Agarose纯化目的蛋白。SDS-PAGE结果(图1)表明,重组α-半乳糖苷酶在大肠杆菌中得到了表达,经Nickel-NTA Agarose纯化后为单一条带。 Take the E. coli BL21 (DE3) strain containing the recombinant plasmid pET- agaAJB13 and the E. coli BL21 (DE3) strain containing only the pET-28a (+) empty plasmid, and inoculate it in LB (containing 50 μg/ mL Kan) culture medium, shake rapidly at 37°C for 16h. Then inoculate the activated bacterial solution into fresh LB (50 μg/mL Kan) culture solution with 1% inoculum, and after rapid shaking culture for about 2–3 hours (OD 600 reaches 0.6–1.0), add a final concentration of 0.7mM For IPTG induction, continue shaking culture at 20°C for about 20h or shake culture at 26°C for about 8h. Centrifuge at 12000rpm for 5min to collect the bacteria. After suspending the cells with an appropriate amount of pH7.0 Tris-Hcl buffer, the cells were ultrasonically disrupted in a low-temperature water bath. The above intracellular concentrated primary enzyme solution was centrifuged at 13,000rpm for 10min, the supernatant was aspirated and the target protein was purified with Nickel-NTA Agarose. The results of SDS-PAGE (Figure 1) showed that the recombinant α-galactosidase was expressed in Escherichia coli, and it was a single band after being purified by Nickel-NTA Agarose.
实施例3:重组α-半乳糖苷酶的活性分析 Example 3: Activity analysis of recombinant α-galactosidase
酶活性测定方法采用pNPG法。将pNPG溶于0.1M缓冲液中,使其终浓度为2mM。反应体系含50μL适量酶液,450μL的2mM底物。底物在反应温度下预热5min后,加入酶液再反应10min,然后加1.5mL 1M Na2CO3终止反应,冷却至室温后在405nm波长下测定释放出的pNP。1个酶活单位(U)定义为每分钟分解pNPG产生1μmolpNP所需的酶量。对底物棉籽糖、豆粕和棉粕的活性测定方法采用3,5-二硝基水杨酸(DNS)法:将底物溶于0.1M缓冲液中,使其终浓度为0.5%(w/v);反应体系含100μL适量酶液,900μL底物;底物在反应温度下预热5min后,加入酶液后再反应120min,然后加1.5mL DNS终止反应,沸水煮5min,冷却至室温后在540nm波长下测定OD值。1个酶活单位(U)定义为在给定的条件下每分钟分解底物产生1μmol半乳糖所需的酶量。 Enzyme activity was determined by the p NPG method. pNPG was dissolved in 0.1 M buffer to a final concentration of 2 mM. The reaction system contains 50 μL of appropriate enzyme solution and 450 μL of 2 mM substrate. After the substrate was preheated at the reaction temperature for 5 minutes, the enzyme solution was added to react for another 10 minutes, and then 1.5 mL of 1M Na 2 CO 3 was added to terminate the reaction. After cooling to room temperature, the released p NP was measured at a wavelength of 405 nm. 1 enzyme activity unit (U) is defined as the amount of enzyme required to decompose pNPG to produce 1 μmol pNP per minute. The method for determining the activity of the substrate raffinose, soybean meal and cotton meal is 3,5-dinitrosalicylic acid (DNS) method: the substrate is dissolved in 0.1M buffer to make the final concentration 0.5% (w /v); the reaction system contains 100 μL of appropriate enzyme solution and 900 μL of substrate; after the substrate is preheated at the reaction temperature for 5 minutes, add the enzyme solution and react for 120 minutes, then add 1.5mL DNS to terminate the reaction, boil in water for 5 minutes, and cool to room temperature Then measure the OD value at a wavelength of 540nm. One enzyme activity unit (U) is defined as the amount of enzyme required to decompose the substrate to produce 1 μmol of galactose per minute under the given conditions.
实施例4:重组α-半乳糖苷酶AgaAJB13的性质测定 Example 4: Determination of the properties of recombinant α-galactosidase AgaAJB13
1、重组α-半乳糖苷酶AgaAJB13的最适pH和pH稳定性的测定方法如下: 1. The optimum pH and pH stability determination methods of recombinant α-galactosidase AgaAJB13 are as follows:
酶的最适pH测定:将实施例2纯化的α-半乳糖苷酶AgaAJB13在37℃和pH3.0–8.0的缓冲液下进行酶促反应。酶的pH稳定性测定:将纯化的酶液置于pH2.0–12.0的0.1M缓冲液中,在37℃下处理1h以上,然后在pH5.0及37℃下进行酶促反应,以未处理的酶液作为对照。缓冲液为:0.1M McIlvaine buffer(pH2.0–8.0)和0.1M glycine-NaOH(pH9.0–12.0)。以pNPG为底物,反应10min,测定纯化的AgaAJB13的酶学性质。结果表明:AgaAJB13的最适pH为5.0,在pH4.5–6.0的范围内维持80%以上的酶活性(图2);经pH4.0–11.0的缓冲液处理1h,酶活剩余~40%或40%以上(图3)。 Determination of the optimal pH of the enzyme: The α-galactosidase AgaAJB13 purified in Example 2 was subjected to an enzymatic reaction at 37° C. and a buffer solution of pH 3.0–8.0. Determination of the pH stability of the enzyme: put the purified enzyme solution in a 0.1M buffer solution with a pH of 2.0–12.0, treat it at 37°C for more than 1 hour, and then carry out an enzymatic reaction at a pH of 5.0 and 37°C to ensure the stability of the enzyme. Treated enzyme solution was used as a control. The buffers are: 0.1M McIlvaine buffer (pH2.0–8.0) and 0.1M glycine-NaOH (pH9.0–12.0). Using pNPG as the substrate, reacted for 10min, and measured the enzymatic properties of the purified AgaAJB13. The results showed that the optimum pH of AgaAJB13 was 5.0, and more than 80% of the enzyme activity was maintained in the range of pH 4.5–6.0 (Figure 2); after being treated with pH 4.0–11.0 buffer for 1 hour, the remaining enzyme activity was ~40% Or more than 40% (Figure 3).
2、重组α-半乳糖苷酶AgaAJB13的最适温度及热稳定性测定方法如下: 2. The optimum temperature and thermostability determination methods of recombinant α-galactosidase AgaAJB13 are as follows:
酶的最适温度测定:在pH5.0的缓冲液中,于0–70℃下进行酶促反应。酶的热稳定性测定:将同样酶量的酶液置于设定的温度中(37℃,60℃或70℃)处理0–60min后,在pH5.0及37℃下进行酶促反应,以未处理的酶液作为对照。以pNPG为底物,反应10min,测定纯化的AgaAJB13的酶学性质。结果表明:AgaAJB13的最适温度为60℃,在10℃和20℃分别具有10%和20%以上的酶活(图4);60℃下AgaAJB13的半衰期>60min,70℃下很快失活(图5)。 Optimum temperature determination of enzymes: Enzyme-catalyzed reactions were carried out at 0–70°C in pH 5.0 buffer. Determination of thermal stability of enzyme: put the same amount of enzyme solution at the set temperature (37°C, 60°C or 70°C) for 0-60min, then carry out the enzymatic reaction at pH 5.0 and 37°C, Untreated enzyme solution was used as a control. Using pNPG as the substrate, reacted for 10min, and measured the enzymatic properties of the purified AgaAJB13. The results showed that the optimum temperature of AgaAJB13 was 60°C, and the enzyme activity was over 10% and 20% at 10°C and 20°C respectively (Figure 4); the half-life of AgaAJB13 at 60°C was >60min, and it was inactivated quickly at 70°C (Figure 5).
3、重组α-半乳糖苷酶AgaAJB13的动力学参数测定方法如下: 3. The kinetic parameter determination method of recombinant α-galactosidase AgaAJB13 is as follows:
酶的动力学参数一级反应时间测定:在pH5.0及60℃下,以0.5mM pNPG为底物,依次在酶促反应的1–30min内终止反应并测定酶活性,计算出酶活性与反应时间的比值,若在一定时间内该比值保持稳定,则此时间为一级反应时间。用0.05–0.5mM pNPG为底物,在pH5.0、60℃和一级反应时间下,根据Lineweaver-Burk方法测定Km、Vmax和kcat。经测定,在60℃ pH5.0条件下,AgaAJB13对pNPG的K m、V max和k cat分别为2.75 mM?1、1250.00μmol min?1 mg?1和1792.08 s?1。 Kinetic parameters of enzyme First-order reaction time determination: at pH 5.0 and 60°C, with 0.5mM pNPG as substrate, stop the reaction within 1-30min of the enzymatic reaction and measure the enzyme activity, calculate the enzyme The ratio of activity to reaction time, if the ratio remains stable within a certain period of time, this time is the first-order reaction time. Km , Vmax and kcat were determined according to the Lineweaver-Burk method using 0.05–0.5 mM pNPG as substrate at pH 5.0, 60°C and first order reaction time. It was determined that the K m , V max and k cat of AgaAJB13 to pNPG were 2.75 mM −1 , 1250.00 μmol min −1 mg −1 and 1792.08 s −1 at 60°C and pH 5.0, respectively.
4、不同金属离子及化学试剂对AgaAJB13酶活的影响测定方法如下: 4. The method for determining the effect of different metal ions and chemical reagents on the enzyme activity of AgaAJB13 is as follows:
在酶促反应体系中加入10mM的金属离子及化学试剂,研究其对酶活性的影响。在37℃、pH5.0条件下测定酶活性。结果(表2)表明,10mM的Ag+和Hg2+可完全抑制AgaAJB13;SDS对AgaAJB13的抑制较强(剩余酶活~7%);Fe2+对AgaAJB13的抑制较弱(剩余酶活~70%);Ca2+和Pb2+可使AgaAJB13的酶活分别提高约0.2倍和约0.3倍;其余金属离子和化学试剂对AgaAJB13的影响很小。 Add 10mM metal ions and chemical reagents to the enzymatic reaction system to study their influence on the enzyme activity. Enzyme activity was measured at 37°C, pH 5.0. The results (Table 2) showed that Ag + and Hg 2+ at 10 mM could completely inhibit AgaAJB13; SDS inhibited AgaAJB13 strongly (remaining enzyme activity ~7%); Fe 2+ inhibited AgaAJB13 weakly (remaining enzyme activity ~ 70%); Ca 2+ and Pb 2+ can increase the enzyme activity of AgaAJB13 by about 0.2 times and about 0.3 times, respectively; other metal ions and chemical reagents have little effect on AgaAJB13.
表2. 金属离子及化学试剂对重组α-半乳糖苷酶AgaAJB13活力的影响 Table 2. Effects of metal ions and chemical reagents on the activity of recombinant α-galactosidase AgaAJB13
5、α-半乳糖苷酶AgaAJB13的抗蛋白酶能力 5. Anti-protease ability of α-galactosidase AgaAJB13
酶的蛋白酶抗性:用相当于重组酶10倍(w/w)的胰蛋白酶(pH7.5)和蛋白酶K(pH7.5)在37℃对重组酶处理1h,然后在pH5.0及37℃下进行酶促反应,以在蛋白酶对应pH缓冲液中但未加蛋白酶的酶液作为对照。经胰蛋白酶和蛋白酶K处理1h后,AgaAJB13仍能分别保持102.1%和114.0%的酶活。 Protease resistance of the enzyme: Treat the recombinant enzyme with trypsin (pH7.5) and proteinase K (pH7.5) equivalent to 10 times (w/w) of the recombinant enzyme at 37 ° C for 1 h, then at pH 5.0 and 37 The enzymatic reaction was carried out at ℃, and the enzyme solution in the pH buffer corresponding to the protease but without protease was used as a control. After being treated with trypsin and proteinase K for 1 h, AgaAJB13 could still retain 102.1% and 114.0% of the enzyme activities, respectively.
6、α-半乳糖苷酶AgaAJB13对自然底物的降解 6. Degradation of natural substrates by α-galactosidase AgaAJB13
在37℃ pH5.0条件下,AgaAJB13对1.0%(w/v)的豆粕和棉粕的比活分别为6.99 ± 0.21和2.80 ± 0.21 U mg?1,对0.5%的棉籽糖的比活为1.67 ± 0.01 U mg?1 At 37℃ and pH5.0, the specific activities of AgaAJB13 to 1.0% (w/v) soybean meal and cotton meal were 6.99 ± 0.21 and 2.80 ± 0.21 U mg −1 , respectively, and the specific activities to 0.5% raffinose were 1.67 ± 0.01 U mg −1
序列表 sequence listing
the
<110> 云南师范大学 <110> Yunnan Normal University
<120> 一种耐碱性低温α-半乳糖苷酶AgaAJB13及基因 <120> An alkaline-resistant low-temperature α-galactosidase AgaAJB13 and its gene
the
<160> 6 <160> 6
the
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 738 <211> 738
<212> PRT <212> PRT
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 1 <400> 1
the
Met Val Met Arg Arg Trp Gly Ala Ala Leu Ala Ala Ala Thr Met Leu Met Val Met Arg Arg Trp Gly Ala Ala Leu Ala Ala Ala Thr Met Leu
1 5 10 15 1 5 10 15
the
the
Ala Ala Ala Pro Ala His Ala Ser Ala Gly Tyr Asp Ala Lys Thr Arg Ala Ala Ala Pro Ala His Ala Ser Ala Gly Tyr Asp Ala Lys Thr Arg
20 25 30 20 25 30
the
the
Met Phe Arg Leu Asp Gly Gly Gly Thr Thr Tyr Ala Phe Gly Val Thr Met Phe Arg Leu Asp Gly Gly Gly Thr Thr Tyr Ala Phe Gly Val Thr
35 40 45 35 40 45 45
the
the
Asp Asp Gly Tyr Leu Gln Ala Ala Tyr Trp Gly Gly Arg Leu Gly Ala Asp Asp Gly Tyr Leu Gln Ala Ala Tyr Trp Gly Gly Arg Leu Gly Ala
50 55 60 50 55 60 60
the
the
Asp Asp Pro Ile Arg Leu Thr Lys Ala Gln Gly Leu Ser Gly Phe Asp Asp Asp Pro Ile Arg Leu Thr Lys Ala Gln Gly Leu Ser Gly Phe Asp
65 70 75 80 65 70 75 80
the
the
Leu Val Asn Ser Ile Leu Pro Gln Glu Phe Pro Gly Gln Gly Ala Gly Leu Val Asn Ser Ile Leu Pro Gln Glu Phe Pro Gly Gln Gly Ala Gly
85 90 95 85 90 95
the
the
Leu Tyr Thr Glu Pro Ala Leu Lys Val Ala Trp Pro Asp Gly Asn Arg Leu Tyr Thr Glu Pro Ala Leu Lys Val Ala Trp Pro Asp Gly Asn Arg
100 105 110 100 105 110
the
the
Asp Leu Val Leu Lys Tyr Val Ser His Lys Met Ser Arg Asp His Val Asp Leu Val Leu Lys Tyr Val Ser His Lys Met Ser Arg Asp His Val
115 120 125 115 120 125
the
the
Glu Ile Val Leu Lys Asp Ile Glu Arg Pro Leu Phe Val Thr Leu Asp Glu Ile Val Leu Lys Asp Ile Glu Arg Pro Leu Phe Val Thr Leu Asp
130 135 140 130 135 140
the
the
Tyr Ser Ile Asp Pro Asp Thr Gly Val Val Gly Arg Ser Ala Arg Ile Tyr Ser Ile Asp Pro Asp Thr Gly Val Val Gly Arg Ser Ala Arg Ile
145 150 155 160 145 150 155 160
the
the
Glu Asn Arg Ser Asp Thr Asp Val Arg Ile Asp Gln Ala Glu Ala Gly Glu Asn Arg Ser Asp Thr Asp Val Arg Ile Asp Gln Ala Glu Ala Gly
165 170 175 165 170 175
the
the
Ala Leu Thr Leu Pro Val Ala His Asp Tyr Arg Leu His Tyr Leu Thr Ala Leu Thr Leu Pro Val Ala His Asp Tyr Arg Leu His Tyr Leu Thr
180 185 190 180 185 190
the
the
Gly Arg Trp Ala Ala Glu Trp Thr Leu Gln Asp Arg Pro Leu Thr Pro Gly Arg Trp Ala Ala Glu Trp Thr Leu Gln Asp Arg Pro Leu Thr Pro
195 200 205 195 200 205
the
the
Gly Ala Thr Val Leu Glu Ser Arg Arg Gly Ser Thr Gly Ser Glu Asn Gly Ala Thr Val Leu Glu Ser Arg Arg Gly Ser Thr Gly Ser Glu Asn
210 215 220 210 215 220
the
the
Asn Pro Trp Phe Ala Ile Thr Arg Asp His Asp Ala Gly Glu Glu Tyr Asn Pro Trp Phe Ala Ile Thr Arg Asp His Asp Ala Gly Glu Glu Tyr
225 230 235 240 225 230 235 240
the
the
Gly Pro Val Trp Phe Gly Ala Leu Ala Trp Ser Gly Ser Trp Arg Ile Gly Pro Val Trp Phe Gly Ala Leu Ala Trp Ser Gly Ser Trp Arg Ile
245 250 255 245 250 255
the
the
Thr Val Asp Gln Asp Pro Ala Gly Glu Val Arg Val Val Gly Gly Phe Thr Val Asp Gln Asp Pro Ala Gly Glu Val Arg Val Val Gly Gly Phe
260 265 270 260 265 270
the
the
Asn Pro Phe Asp Phe Ala Tyr Arg Leu Lys Pro Gly Glu Ser Leu Asp Asn Pro Phe Asp Phe Ala Tyr Arg Leu Lys Pro Gly Glu Ser Leu Asp
275 280 285 275 280 285
the
the
Thr Pro Thr Phe Tyr Ala Gly Tyr Ser Asp His Gly Met Gly Gly Ala Thr Pro Thr Phe Tyr Ala Gly Tyr Ser Asp His Gly Met Gly Gly Ala
290 295 300 290 295 300
the
the
Ser Arg Leu Leu His Arg Phe Glu Arg Asp Thr Ile Leu Pro His Asp Ser Arg Leu Leu His Arg Phe Glu Arg Asp Thr Ile Leu Pro His Asp
305 310 315 320 305 310 315 320
the
the
Ala Asp Gly Lys Leu Pro Leu Arg Pro Val Leu Tyr Asn Ser Trp Glu Ala Asp Gly Lys Leu Pro Leu Arg Pro Val Leu Tyr Asn Ser Trp Glu
325 330 335 325 330 335
the
the
Ala Thr Gly Phe Asp Val Asp Glu Ala Gly Gln Ile Ala Leu Ala Glu Ala Thr Gly Phe Asp Val Asp Glu Ala Gly Gln Ile Ala Leu Ala Glu
340 345 350 340 345 350
the
the
Lys Ala Ala Lys Ile Gly Val Glu Arg Phe Val Met Asp Asp Gly Trp Lys Ala Ala Lys Ile Gly Val Glu Arg Phe Val Met Asp Asp Gly Trp
355 360 365 355 360 365
the
the
Phe Gly Ala Arg Asn Asp Asp His Ala Gly Leu Gly Asp Trp Thr Val Phe Gly Ala Arg Asn Asp Asp His Ala Gly Leu Gly Asp Trp Thr Val
370 375 380 370 375 380
the
the
Asn Arg Thr Lys Phe Pro Asn Gly Leu Lys Pro Leu Ile Asp Lys Val Asn Arg Thr Lys Phe Pro Asn Gly Leu Lys Pro Leu Ile Asp Lys Val
385 390 395 400 385 390 395 400
the
the
His Gly Leu Gly Met Gln Phe Gly Leu Trp Val Glu Pro Glu Met Thr His Gly Leu Gly Met Gln Phe Gly Leu Trp Val Glu Pro Glu Met Thr
405 410 415 405 410 415
the
the
Asn Pro Asp Ser Asp Leu Tyr Arg Ala His Pro Asp Trp Val Met Asn Asn Pro Asp Ser Asp Leu Tyr Arg Ala His Pro Asp Trp Val Met Asn
420 425 430 420 425 430
the
the
Tyr Thr Gly Arg Pro Arg Thr Glu Gly Arg Asn Gln Leu Val Leu Asn Tyr Thr Gly Arg Pro Arg Thr Glu Gly Arg Asn Gln Leu Val Leu Asn
435 440 445 435 440 445
the
the
Leu Ala Arg Thr Asp Val Arg Asp Tyr Ile Phe Lys Val Leu Asp Asp Leu Ala Arg Thr Asp Val Arg Asp Tyr Ile Phe Lys Val Leu Asp Asp
450 455 460 450 455 460
the
the
Leu Leu Asp Glu Asn Asp Ile Gln Phe Leu Lys Trp Asp Tyr Asn Arg Leu Leu Asp Glu Asn Asp Ile Gln Phe Leu Lys Trp Asp Tyr Asn Arg
465 470 475 480 465 470 475 480
the
the
Asn Trp Ser Glu Pro Gly Trp Pro Glu Ala Asp Val Ala Asp Gln Gln Asn Trp Ser Glu Pro Gly Trp Pro Glu Ala Asp Val Ala Asp Gln Gln
485 490 495 485 490 495
the
the
Gln Ile Tyr Val Lys Tyr Val Arg Asn Leu Tyr Trp Ile Ile Asp Lys Gln Ile Tyr Val Lys Tyr Val Arg Asn Leu Tyr Trp Ile Ile Asp Lys
500 505 510 500 505 510
the
the
Leu Arg Ala Arg His Pro Lys Leu Glu Ile Glu Ser Cys Ser Gly Gly Leu Arg Ala Arg His Pro Lys Leu Glu Ile Glu Ser Cys Ser Gly Gly
515 520 525 515 520 525
the
the
Gly Gly Arg Val Asp Leu Gly Ile Met Ser Arg Thr Asp Glu Val Trp Gly Gly Arg Val Asp Leu Gly Ile Met Ser Arg Thr Asp Glu Val Trp
530 535 540 530 535 540
the
the
Pro Ser Asp Asn Thr Asp Pro Phe Asp Arg Leu Thr Ile Gln Asn Gly Pro Ser Asp Asn Thr Asp Pro Phe Asp Arg Leu Thr Ile Gln Asn Gly
545 550 555 560 545 550 555 560
the
the
Phe Thr Tyr Ala Tyr Pro Pro Ala Ala Met Met Ala Trp Val Thr Ala Phe Thr Tyr Ala Tyr Pro Pro Ala Ala Met Met Ala Trp Val Thr Ala
565 570 575 565 570 575
the
the
Ser Pro Asn Trp Val Asn Asn Arg Ala Thr Ser Leu Asp Tyr Arg Phe Ser Pro Asn Trp Val Asn Asn Arg Ala Thr Ser Leu Asp Tyr Arg Phe
580 585 590 580 585 590
the
the
Leu Ser Ala Met Gln Gly Gly Leu Gly Ile Gly Ala Asp Leu Asn Lys Leu Ser Ala Met Gln Gly Gly Leu Gly Ile Gly Ala Asp Leu Asn Lys
595 600 605 595 600 605
the
the
Trp Ser Asp Ala Glu Phe Ala Glu Ala Ser Arg Met Val Ala Ala Tyr Trp Ser Asp Ala Glu Phe Ala Glu Ala Ser Arg Met Val Ala Ala Tyr
610 615 620 610 615 620
the
the
Lys Arg Val Arg Ala Thr Val Gln Gln Gly Asp Leu Tyr Arg Leu Ile Lys Arg Val Arg Ala Thr Val Gln Gln Gly Asp Leu Tyr Arg Leu Ile
625 630 635 640 625 630 635 640
the
the
Ile Pro Asn Gly Ile Asp Arg Asp Asp Arg Val Ala Asn Leu Ser Val Ile Pro Asn Gly Ile Asp Arg Asp Asp Arg Val Ala Asn Leu Ser Val
645 650 655 645 650 655
the
the
Ser Pro Asp Lys Gln Gln Ala Val Leu Phe Ala Phe Leu His Ser Ser Ser Pro Asp Lys Gln Gln Ala Val Leu Phe Ala Phe Leu His Ser Ser
660 665 670 660 665 670
the
the
Gln Glu Leu Asp Arg Leu Ser Ala Ile Arg Leu Arg Gly Leu Ala Pro Gln Glu Leu Asp Arg Leu Ser Ala Ile Arg Leu Arg Gly Leu Ala Pro
675 680 685 675 680 685
the
the
Lys Lys Asn Tyr Arg Val Ala Arg Ile Asp Gly Arg Pro Leu Ala Asp Lys Lys Asn Tyr Arg Val Ala Arg Ile Asp Gly Arg Pro Leu Ala Asp
690 695 700 690 695 700
the
the
Asp Thr Pro Ala Lys Ala Ser Gly Ala Tyr Trp Met Ala Arg Gly Ile Asp Thr Pro Ala Lys Ala Ser Gly Ala Tyr Trp Met Ala Arg Gly Ile
705 710 715 720 705 710 715 720
the
the
Asp Val Pro Leu Ile Gly Asp Phe Asp Ala Ala Gly Tyr Ile Phe Gln Asp Val Pro Leu Ile Gly Asp Phe Asp Ala Ala Gly Tyr Ile Phe Gln
725 730 735 725 730 735
the
the
Ala Ile Ala Ile
the
the
<210> 2 <210> 2
<211> 23 <211> 23
<212> PRT <212> PRT
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 2 <400> 2
the
Met Val Met Arg Arg Trp Gly Ala Ala Leu Ala Ala Ala Thr Met Leu Met Val Met Arg Arg Trp Gly Ala Ala Leu Ala Ala Ala Thr Met Leu
1 5 10 15 1 5 10 15
the
the
Ala Ala Ala Pro Ala His Ala Ala Ala Ala Pro Ala His Ala
20
the
the
<210> 3 <210> 3
<211> 715 <211> 715
<212> PRT <212> PRT
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 3 <400> 3
the
Ser Ala Gly Tyr Asp Ala Lys Thr Arg Met Phe Arg Leu Asp Gly Gly Ser Ala Gly Tyr Asp Ala Lys Thr Arg Met Phe Arg Leu Asp Gly Gly
1 5 10 15 1 5 10 15
the
the
Gly Thr Thr Tyr Ala Phe Gly Val Thr Asp Asp Gly Tyr Leu Gln Ala Gly Thr Thr Tyr Ala Phe Gly Val Thr Asp Asp Gly Tyr Leu Gln Ala
20 25 30 20 25 30
the
the
Ala Tyr Trp Gly Gly Arg Leu Gly Ala Asp Asp Pro Ile Arg Leu Thr Ala Tyr Trp Gly Gly Arg Leu Gly Ala Asp Asp Pro Ile Arg Leu Thr
35 40 45 35 40 45 45
the
the
Lys Ala Gln Gly Leu Ser Gly Phe Asp Leu Val Asn Ser Ile Leu Pro Lys Ala Gln Gly Leu Ser Gly Phe Asp Leu Val Asn Ser Ile Leu Pro
50 55 60 50 55 60 60
the
the
Gln Glu Phe Pro Gly Gln Gly Ala Gly Leu Tyr Thr Glu Pro Ala Leu Gln Glu Phe Pro Gly Gln Gly Ala Gly Leu Tyr Thr Thr Glu Pro Ala Leu
65 70 75 80 65 70 75 80
the
the
Lys Val Ala Trp Pro Asp Gly Asn Arg Asp Leu Val Leu Lys Tyr Val Lys Val Ala Trp Pro Asp Gly Asn Arg Asp Leu Val Leu Lys Tyr Val
85 90 95 85 90 95
the
the
Ser His Lys Met Ser Arg Asp His Val Glu Ile Val Leu Lys Asp Ile Ser His Lys Met Ser Arg Asp His Val Glu Ile Val Leu Lys Asp Ile
100 105 110 100 105 110
the
the
Glu Arg Pro Leu Phe Val Thr Leu Asp Tyr Ser Ile Asp Pro Asp Thr Glu Arg Pro Leu Phe Val Thr Leu Asp Tyr Ser Ile Asp Pro Asp Thr
115 120 125 115 120 125
the
the
Gly Val Val Gly Arg Ser Ala Arg Ile Glu Asn Arg Ser Asp Thr Asp Gly Val Val Gly Arg Ser Ala Arg Ile Glu Asn Arg Ser Asp Thr Asp
130 135 140 130 135 140
the
the
Val Arg Ile Asp Gln Ala Glu Ala Gly Ala Leu Thr Leu Pro Val Ala Val Arg Ile Asp Gln Ala Glu Ala Gly Ala Leu Thr Leu Pro Val Ala
145 150 155 160 145 150 155 160
the
the
His Asp Tyr Arg Leu His Tyr Leu Thr Gly Arg Trp Ala Ala Glu Trp His Asp Tyr Arg Leu His Tyr Leu Thr Gly Arg Trp Ala Ala Glu Trp
165 170 175 165 170 175
the
the
Thr Leu Gln Asp Arg Pro Leu Thr Pro Gly Ala Thr Val Leu Glu Ser Thr Leu Gln Asp Arg Pro Leu Thr Pro Gly Ala Thr Val Leu Glu Ser
180 185 190 180 185 190
the
the
Arg Arg Gly Ser Thr Gly Ser Glu Asn Asn Pro Trp Phe Ala Ile Thr Arg Arg Gly Ser Thr Gly Ser Glu Asn Asn Pro Trp Phe Ala Ile Thr
195 200 205 195 200 205
the
the
Arg Asp His Asp Ala Gly Glu Glu Tyr Gly Pro Val Trp Phe Gly Ala Arg Asp His Asp Ala Gly Glu Glu Tyr Gly Pro Val Trp Phe Gly Ala
210 215 220 210 215 220
the
the
Leu Ala Trp Ser Gly Ser Trp Arg Ile Thr Val Asp Gln Asp Pro Ala Leu Ala Trp Ser Gly Ser Trp Arg Ile Thr Val Asp Gln Asp Pro Ala
225 230 235 240 225 230 235 240
the
the
Gly Glu Val Arg Val Val Gly Gly Phe Asn Pro Phe Asp Phe Ala Tyr Gly Glu Val Arg Val Val Gly Gly Phe Asn Pro Phe Asp Phe Ala Tyr
245 250 255 245 250 255
the
the
Arg Leu Lys Pro Gly Glu Ser Leu Asp Thr Pro Thr Phe Tyr Ala Gly Arg Leu Lys Pro Gly Glu Ser Leu Asp Thr Pro Thr Phe Tyr Ala Gly
260 265 270 260 265 270
the
the
Tyr Ser Asp His Gly Met Gly Gly Ala Ser Arg Leu Leu His Arg Phe Tyr Ser Asp His Gly Met Gly Gly Ala Ser Arg Leu Leu His Arg Phe
275 280 285 275 280 285
the
the
Glu Arg Asp Thr Ile Leu Pro His Asp Ala Asp Gly Lys Leu Pro Leu Glu Arg Asp Thr Ile Leu Pro His Asp Ala Asp Gly Lys Leu Pro Leu
290 295 300 290 295 300
the
the
Arg Pro Val Leu Tyr Asn Ser Trp Glu Ala Thr Gly Phe Asp Val Asp Arg Pro Val Leu Tyr Asn Ser Trp Glu Ala Thr Gly Phe Asp Val Asp
305 310 315 320 305 310 315 320
the
the
Glu Ala Gly Gln Ile Ala Leu Ala Glu Lys Ala Ala Lys Ile Gly Val Glu Ala Gly Gln Ile Ala Leu Ala Glu Lys Ala Ala Lys Ile Gly Val
325 330 335 325 330 335
the
the
Glu Arg Phe Val Met Asp Asp Gly Trp Phe Gly Ala Arg Asn Asp Asp Glu Arg Phe Val Met Asp Asp Asp Gly Trp Phe Gly Ala Arg Asn Asp Asp
340 345 350 340 345 350
the
the
His Ala Gly Leu Gly Asp Trp Thr Val Asn Arg Thr Lys Phe Pro Asn His Ala Gly Leu Gly Asp Trp Thr Val Asn Arg Thr Lys Phe Pro Asn
355 360 365 355 360 365
the
the
Gly Leu Lys Pro Leu Ile Asp Lys Val His Gly Leu Gly Met Gln Phe Gly Leu Lys Pro Leu Ile Asp Lys Val His Gly Leu Gly Met Gln Phe
370 375 380 370 375 380
the
the
Gly Leu Trp Val Glu Pro Glu Met Thr Asn Pro Asp Ser Asp Leu Tyr Gly Leu Trp Val Glu Pro Glu Met Thr Asn Pro Asp Ser Asp Leu Tyr
385 390 395 400 385 390 395 400
the
the
Arg Ala His Pro Asp Trp Val Met Asn Tyr Thr Gly Arg Pro Arg Thr Arg Ala His Pro Asp Trp Val Met Asn Tyr Thr Gly Arg Pro Arg Thr
405 410 415 405 410 415
the
the
Glu Gly Arg Asn Gln Leu Val Leu Asn Leu Ala Arg Thr Asp Val Arg Glu Gly Arg Asn Gln Leu Val Leu Asn Leu Ala Arg Thr Asp Val Arg
420 425 430 420 425 430
the
the
Asp Tyr Ile Phe Lys Val Leu Asp Asp Leu Leu Asp Glu Asn Asp Ile Asp Tyr Ile Phe Lys Val Leu Asp Asp Leu Leu Asp Glu Asn Asp Ile
435 440 445 435 440 445
the
the
Gln Phe Leu Lys Trp Asp Tyr Asn Arg Asn Trp Ser Glu Pro Gly Trp Gln Phe Leu Lys Trp Asp Tyr Asn Arg Asn Trp Ser Glu Pro Gly Trp
450 455 460 450 455 460
the
the
Pro Glu Ala Asp Val Ala Asp Gln Gln Gln Ile Tyr Val Lys Tyr Val Pro Glu Ala Asp Val Ala Asp Gln Gln Gln Ile Tyr Val Lys Tyr Val
465 470 475 480 465 470 475 480
the
the
Arg Asn Leu Tyr Trp Ile Ile Asp Lys Leu Arg Ala Arg His Pro Lys Arg Asn Leu Tyr Trp Ile Ile Asp Lys Leu Arg Ala Arg His Pro Lys
485 490 495 485 490 495
the
the
Leu Glu Ile Glu Ser Cys Ser Gly Gly Gly Gly Arg Val Asp Leu Gly Leu Glu Ile Glu Ser Cys Ser Gly Gly Gly Gly Arg Val Asp Leu Gly
500 505 510 500 505 510
the
the
Ile Met Ser Arg Thr Asp Glu Val Trp Pro Ser Asp Asn Thr Asp Pro Ile Met Ser Arg Thr Asp Glu Val Trp Pro Ser Asp Asn Thr Asp Pro
515 520 525 515 520 525
the
the
Phe Asp Arg Leu Thr Ile Gln Asn Gly Phe Thr Tyr Ala Tyr Pro Pro Phe Asp Arg Leu Thr Ile Gln Asn Gly Phe Thr Tyr Ala Tyr Pro Pro
530 535 540 530 535 540
the
the
Ala Ala Met Met Ala Trp Val Thr Ala Ser Pro Asn Trp Val Asn Asn Ala Ala Met Met Ala Trp Val Thr Ala Ser Pro Asn Trp Val Asn Asn
545 550 555 560 545 550 555 560
the
the
Arg Ala Thr Ser Leu Asp Tyr Arg Phe Leu Ser Ala Met Gln Gly Gly Arg Ala Thr Ser Leu Asp Tyr Arg Phe Leu Ser Ala Met Gln Gly Gly
565 570 575 565 570 575
the
the
Leu Gly Ile Gly Ala Asp Leu Asn Lys Trp Ser Asp Ala Glu Phe Ala Leu Gly Ile Gly Ala Asp Leu Asn Lys Trp Ser Asp Ala Glu Phe Ala
580 585 590 580 585 590
the
the
Glu Ala Ser Arg Met Val Ala Ala Tyr Lys Arg Val Arg Ala Thr Val Glu Ala Ser Arg Met Val Ala Ala Tyr Lys Arg Val Arg Ala Thr Val
595 600 605 595 600 605
the
the
Gln Gln Gly Asp Leu Tyr Arg Leu Ile Ile Pro Asn Gly Ile Asp Arg Gln Gln Gly Asp Leu Tyr Arg Leu Ile Ile Pro Asn Gly Ile Asp Arg
610 615 620 610 615 620
the
the
Asp Asp Arg Val Ala Asn Leu Ser Val Ser Pro Asp Lys Gln Gln Ala Asp Asp Arg Val Ala Asn Leu Ser Val Ser Pro Asp Lys Gln Gln Ala
625 630 635 640 625 630 635 640
the
the
Val Leu Phe Ala Phe Leu His Ser Ser Gln Glu Leu Asp Arg Leu Ser Val Leu Phe Ala Phe Leu His Ser Ser Gln Glu Leu Asp Arg Leu Ser
645 650 655 645 650 655
the
the
Ala Ile Arg Leu Arg Gly Leu Ala Pro Lys Lys Asn Tyr Arg Val Ala Ala Ile Arg Leu Arg Gly Leu Ala Pro Lys Lys Asn Tyr Arg Val Ala
660 665 670 660 665 670
the
the
Arg Ile Asp Gly Arg Pro Leu Ala Asp Asp Thr Pro Ala Lys Ala Ser Arg Ile Asp Gly Arg Pro Leu Ala Asp Asp Thr Pro Ala Lys Ala Ser
675 680 685 675 680 685
the
the
Gly Ala Tyr Trp Met Ala Arg Gly Ile Asp Val Pro Leu Ile Gly Asp Gly Ala Tyr Trp Met Ala Arg Gly Ile Asp Val Pro Leu Ile Gly Asp
690 695 700 690 695 700
the
the
Phe Asp Ala Ala Gly Tyr Ile Phe Gln Ala Ile Phe Asp Ala Ala Gly Tyr Ile Phe Gln Ala Ile
705 710 715 705 710 715
the
the
<210> 4 <210> 4
<211> 2217 <211> 2217
<212> DNA <212> DNA
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 4 <400> 4
atggtgatga ggcgatgggg ggcagccctt gcggccgcga cgatgctggc ggcggcgccg 60 atggtgatga ggcgatgggg ggcagccctt gcggccgcga cgatgctggc ggcggcgccg 60
the
gcgcatgcgt cggcgggcta cgacgcgaag acccgcatgt tccggctcga cggcggcggc 120 gcgcatgcgt cggcgggcta cgacgcgaag acccgcatgt tccggctcga cggcggcggc 120
the
accacctacg cgttcggggt gaccgacgac ggctatctcc aggccgccta ttggggcggg 180 accacctacg cgttcggggt gaccgacgac ggctatctcc aggccgccta ttggggcggg 180
the
cgactcggcg ccgacgaccc gatccggctg accaaggcgc aagggctgag cggcttcgat 240 cgactcggcg ccgacgaccc gatccggctg accaaggcgc aagggctgag cggcttcgat 240
the
ctggtcaact cgatcctgcc gcaggaattt cccgggcaag gcgccggcct ctataccgag 300 ctggtcaact cgatcctgcc gcaggaattt cccgggcaag gcgccggcct ctataccgag 300
the
ccggcgctca aggtcgcctg gcccgacggc aaccgcgatc tcgtgctcaa atacgtctcg 360 ccggcgctca aggtcgcctg gcccgacggc aaccgcgatc tcgtgctcaa atacgtctcg 360
the
cacaagatgt ccagggacca tgttgagatc gtgctcaagg atatcgagcg accgttgttc 420 cacaagatgt ccagggacca tgttgagatc gtgctcaagg atatcgagcg accgttgttc 420
the
gtcacgctcg actacagcat cgatcccgat accggcgtgg tcggccgctc ggcgcgtatc 480 gtcacgctcg actacagcat cgatcccgat accggcgtgg tcggccgctc ggcgcgtatc 480
the
gaaaaccgca gcgataccga cgtgcggatc gatcaggccg aggcgggcgc gctcaccctg 540 gaaaaccgca gcgataccga cgtgcggatc gatcaggccg aggcgggcgc gctcaccctg 540
the
cccgtcgcgc acgattaccg gctgcactat ctcaccggcc gctgggccgc cgagtggacg 600 cccgtcgcgc acgattaccg gctgcactat ctcaccggcc gctgggccgc cgagtggacg 600
the
ctgcaggatc gcccgctgac cccgggcgcg accgtcctcg aaagccgccg cggctcgacc 660 ctgcaggatc gcccgctgac cccgggcgcg accgtcctcg aaagccgccg cggctcgacc 660
the
ggctcggaaa acaacccctg gttcgcgatc acccgcgatc acgatgccgg cgaggagtac 720 ggctcggaaa acaacccctg gttcgcgatc acccgcgatc acgatgccgg cgaggagtac 720
the
gggcccgtct ggttcggcgc gctggcgtgg agcggatcgt ggcggatcac ggtcgaccag 780 gggcccgtct ggttcggcgc gctggcgtgg agcggatcgt ggcggatcac ggtcgaccag 780
the
gatccggccg gcgaggtccg cgtcgtcggc gggttcaacc cgttcgactt cgcctatcgc 840 gatccggccg gcgaggtccg cgtcgtcggc gggttcaacc cgttcgactt cgcctatcgc 840
the
ctcaagcccg gcgaatcgct cgacacgccg accttctacg ccggctattc ggatcacggc 900 ctcaagcccg gcgaatcgct cgacacgccg accttctacg ccggctattc ggatcacggc 900
the
atgggcggcg cctcgcggct gctccaccgc ttcgagcgcg acacgatcct gccccacgat 960 atgggcggcg cctcgcggct gctccaccgc ttcgagcgcg acacgatcct gccccacgat 960
the
gccgacggca agctgccgct gcgccccgtc ctctacaaca gctgggaagc gaccgggttc 1020 gccgacggca agctgccgct gcgccccgtc ctctacaaca gctgggaagc gaccgggttc 1020
the
gatgtcgacg aggccggcca gatcgcgctt gccgaaaagg cggcgaagat tggcgtcgag 1080 gatgtcgacg aggccggcca gatcgcgctt gccgaaaagg cggcgaagat tggcgtcgag 1080
the
cgcttcgtga tggacgacgg ctggttcggc gcgcgcaacg acgatcatgc cgggctcggc 1140 cgcttcgtga tggacgacgg ctggttcggc gcgcgcaacg acgatcatgc cgggctcggc 1140
the
gactggaccg tcaaccgcac caaattcccc aacggcctca aaccgctgat cgacaaggtc 1200 gactggaccg tcaaccgcac caaattcccc aacggcctca aaccgctgat cgacaaggtc 1200
the
cacggcctcg gcatgcagtt cgggctgtgg gtcgagcccg agatgaccaa tcccgacagc 1260 cacggcctcg gcatgcagtt cgggctgtgg gtcgagcccg agatgaccaa tcccgacagc 1260
the
gatctctatc gcgcgcatcc cgattgggtg atgaactata ccggccgccc gcgcaccgag 1320 gatctctatc gcgcgcatcc cgattgggtg atgaactata ccggccgccc gcgcaccgag 1320
the
gggcgtaacc agctcgtcct caatctcgcg cgaaccgacg tgcgcgatta catcttcaag 1380 gggcgtaacc agctcgtcct caatctcgcg cgaaccgacg tgcgcgatta catcttcaag 1380
the
gtgctcgacg acctgctcga cgagaacgac atccagttcc tcaaatggga ttacaaccgc 1440 gtgctcgacg acctgctcga cgagaacgac atccagttcc tcaaatggga ttacaaccgc 1440
the
aactggagcg agcccggctg gcccgaggcc gatgtcgccg accagcagca gatctacgtc 1500 aactggagcg agcccggctg gcccgaggcc gatgtcgccg accagcagca gatctacgtc 1500
the
aaatacgtcc gcaacctcta ttggatcatc gacaagctgc gcgccaggca tcccaagctc 1560 aaatacgtcc gcaacctcta ttggatcatc gacaagctgc gcgccaggca tcccaagctc 1560
the
gagatcgaat cgtgctcggg cggcggcggc cgcgtcgatc tcggcattat gagccgcacc 1620 gagatcgaat cgtgctcggg cggcggcggc cgcgtcgatc tcggcattat gagccgcacc 1620
the
gacgaggtgt ggccgtcgga caataccgat ccgttcgatc ggctgacgat ccagaacggc 1680 gacgaggtgt ggccgtcgga caataccgat ccgttcgatc ggctgacgat ccagaacggc 1680
the
tttacttacg cctatccgcc ggccgcgatg atggcgtggg tgacggcgtc gcccaattgg 1740 tttacttacg cctatccgcc ggccgcgatg atggcgtggg tgacggcgtc gcccaattgg 1740
the
gtcaataatc gcgctacctc gctcgattat cgcttcctgt cggcgatgca aggcgggctc 1800 gtcaataatc gcgctacctc gctcgattat cgcttcctgt cggcgatgca aggcgggctc 1800
the
ggtattggcg ccgacctcaa taaatggagc gatgcagaat ttgcggaggc gagtcgcatg 1860 ggtattggcg ccgacctcaa taaatggagc gatgcagaat ttgcggaggc gagtcgcatg 1860
the
gtggcggcct ataagcgtgt ccgagcgacg gtgcagcaag gcgacctgta tcggttgatt 1920 gtggcggcct ataagcgtgt ccgagcgacg gtgcagcaag gcgacctgta tcggttgatt 1920
the
atcccgaacg gaatcgatcg tgacgaccgc gtcgccaatc tctcggtatc tccagacaag 1980 atcccgaacg gaatcgatcg tgacgaccgc gtcgccaatc tctcggtatc tccagacaag 1980
the
cagcaggcgg tgctgttcgc gtttctgcac agcagccagg agctcgatcg gctttctgct 2040 cagcaggcgg tgctgttcgc gtttctgcac agcagccagg agctcgatcg gctttctgct 2040
the
atccgactgc gcgggctcgc tcctaagaag aactaccgcg tcgcccggat cgatggccgc 2100 atccgactgc gcgggctcgc tcctaagaag aactaccgcg tcgcccggat cgatggccgc 2100
the
ccgctggccg acgacacccc agctaaggcg agcggcgctt attggatggc gcgtggcatc 2160 ccgctggccg acgacacccc agctaaggcg agcggcgctt attggatggc gcgtggcatc 2160
the
gacgttccat taatcggcga cttcgacgcc gctggctata tctttcaggc catctag 2217 gacgttccat taatcggcga cttcgacgcc gctggctata tctttcaggc catctag 2217
the
the
<210> 5 <210> 5
<211> 69 <211> 69
<212> DNA <212> DNA
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 5 <400> 5
atggtgatga ggcgatgggg ggcagccctt gcggccgcga cgatgctggc ggcggcgccg 60 atggtgatga ggcgatgggg ggcagccctt gcggccgcga cgatgctggc ggcggcgccg 60
the
gcgcatgcg 69 gcgcatgcg 69
the
the
<210> 6 <210> 6
<211> 2145 <211> 2145
<212> DNA <212> DNA
<213> 鞘氨醇单胞菌(Sphingobium sp.) <213> Sphingobium sp.
the
<400> 6 <400> 6
tcggcgggct acgacgcgaa gacccgcatg ttccggctcg acggcggcgg caccacctac 60 tcggcgggct acgacgcgaa gacccgcatg ttccggctcg acggcggcgg caccacctac 60
the
gcgttcgggg tgaccgacga cggctatctc caggccgcct attggggcgg gcgactcggc 120 gcgttcgggg tgaccgacga cggctatctc caggccgcct attggggcgg gcgactcggc 120
the
gccgacgacc cgatccggct gaccaaggcg caagggctga gcggcttcga tctggtcaac 180 gccgacgacc cgatccggct gaccaaggcg caagggctga gcggcttcga tctggtcaac 180
the
tcgatcctgc cgcaggaatt tcccgggcaa ggcgccggcc tctataccga gccggcgctc 240 tcgatcctgc cgcaggaatt tcccgggcaa ggcgccggcc tctataccga gccggcgctc 240
the
aaggtcgcct ggcccgacgg caaccgcgat ctcgtgctca aatacgtctc gcacaagatg 300 aaggtcgcct ggcccgacgg caaccgcgat ctcgtgctca aatacgtctc gcacaagatg 300
the
tccagggacc atgttgagat cgtgctcaag gatatcgagc gaccgttgtt cgtcacgctc 360 tccagggacc atgttgagat cgtgctcaag gatatcgagc gaccgttgtt cgtcacgctc 360
the
gactacagca tcgatcccga taccggcgtg gtcggccgct cggcgcgtat cgaaaaccgc 420 gactacagca tcgatcccga taccggcgtg gtcggccgct cggcgcgtat cgaaaaccgc 420
the
agcgataccg acgtgcggat cgatcaggcc gaggcgggcg cgctcaccct gcccgtcgcg 480 agcgataccg acgtgcggat cgatcaggcc gaggcgggcg cgctcaccct gcccgtcgcg 480
the
cacgattacc ggctgcacta tctcaccggc cgctgggccg ccgagtggac gctgcaggat 540 cacgattacc ggctgcacta tctcaccggc cgctgggccg ccgagtggac gctgcaggat 540
the
cgcccgctga ccccgggcgc gaccgtcctc gaaagccgcc gcggctcgac cggctcggaa 600 cgcccgctga ccccgggcgc gaccgtcctc gaaagccgcc gcggctcgac cggctcggaa 600
the
aacaacccct ggttcgcgat cacccgcgat cacgatgccg gcgaggagta cgggcccgtc 660 aacaacccct ggttcgcgat cacccgcgat cacgatgccg gcgaggagta cgggcccgtc 660
the
tggttcggcg cgctggcgtg gagcggatcg tggcggatca cggtcgacca ggatccggcc 720 tggttcggcg cgctggcgtg gagcggatcg tggcggatca cggtcgacca ggatccggcc 720
the
ggcgaggtcc gcgtcgtcgg cgggttcaac ccgttcgact tcgcctatcg cctcaagccc 780 ggcgaggtcc gcgtcgtcgg cgggttcaac ccgttcgact tcgcctatcg cctcaagccc 780
the
ggcgaatcgc tcgacacgcc gaccttctac gccggctatt cggatcacgg catgggcggc 840 ggcgaatcgc tcgacacgcc gaccttctac gccggctatt cggatcacgg catgggcggc 840
the
gcctcgcggc tgctccaccg cttcgagcgc gacacgatcc tgccccacga tgccgacggc 900 gcctcgcggc tgctccaccg cttcgagcgc gacacgatcc tgccccacga tgccgacggc 900
the
aagctgccgc tgcgccccgt cctctacaac agctgggaag cgaccgggtt cgatgtcgac 960 aagctgccgc tgcgccccgt cctctacaac agctgggaag cgaccgggtt cgatgtcgac 960
the
gaggccggcc agatcgcgct tgccgaaaag gcggcgaaga ttggcgtcga gcgcttcgtg 1020 gaggccggcc agatcgcgct tgccgaaaag gcggcgaaga ttggcgtcga gcgcttcgtg 1020
the
atggacgacg gctggttcgg cgcgcgcaac gacgatcatg ccgggctcgg cgactggacc 1080 atggacgacg gctggttcgg cgcgcgcaac gacgatcatg ccgggctcgg cgactggacc 1080
the
gtcaaccgca ccaaattccc caacggcctc aaaccgctga tcgacaaggt ccacggcctc 1140 gtcaaccgca ccaaattccc caacggcctc aaaccgctga tcgacaaggt ccacggcctc 1140
the
ggcatgcagt tcgggctgtg ggtcgagccc gagatgacca atcccgacag cgatctctat 1200 ggcatgcagt tcgggctgtg ggtcgagccc gagatgacca atcccgacag cgatctctat 1200
the
cgcgcgcatc ccgattgggt gatgaactat accggccgcc cgcgcaccga ggggcgtaac 1260 cgcgcgcatc ccgattgggt gatgaactat accggccgcc cgcgcaccga ggggcgtaac 1260
the
cagctcgtcc tcaatctcgc gcgaaccgac gtgcgcgatt acatcttcaa ggtgctcgac 1320 cagctcgtcc tcaatctcgc gcgaaccgac gtgcgcgatt acatcttcaa ggtgctcgac 1320
the
gacctgctcg acgagaacga catccagttc ctcaaatggg attacaaccg caactggagc 1380 gacctgctcg acgagaacga catccagttc ctcaaatggg attacaaccg caactggagc 1380
the
gagcccggct ggcccgaggc cgatgtcgcc gaccagcagc agatctacgt caaatacgtc 1440 gagcccggct ggcccgaggc cgatgtcgcc gaccagcagc agatctacgt caaatacgtc 1440
the
cgcaacctct attggatcat cgacaagctg cgcgccaggc atcccaagct cgagatcgaa 1500 cgcaacctct attggatcat cgacaagctg cgcgccaggc atcccaagct cgagatcgaa 1500
the
tcgtgctcgg gcggcggcgg ccgcgtcgat ctcggcatta tgagccgcac cgacgaggtg 1560 tcgtgctcgg gcggcggcgg ccgcgtcgat ctcggcatta tgagccgcac cgacgaggtg 1560
the
tggccgtcgg acaataccga tccgttcgat cggctgacga tccagaacgg ctttacttac 1620 tggccgtcgg acaataccga tccgttcgat cggctgacga tccagaacgg ctttacttac 1620
the
gcctatccgc cggccgcgat gatggcgtgg gtgacggcgt cgcccaattg ggtcaataat 1680 gcctatccgc cggccgcgat gatggcgtgg gtgacggcgt cgcccaattg ggtcaataat 1680
the
cgcgctacct cgctcgatta tcgcttcctg tcggcgatgc aaggcgggct cggtattggc 1740 cgcgctacct cgctcgatta tcgcttcctg tcggcgatgc aaggcgggct cggtattggc 1740
the
gccgacctca ataaatggag cgatgcagaa tttgcggagg cgagtcgcat ggtggcggcc 1800 gccgacctca ataaatggag cgatgcagaa tttgcggagg cgagtcgcat ggtggcggcc 1800
the
tataagcgtg tccgagcgac ggtgcagcaa ggcgacctgt atcggttgat tatcccgaac 1860 tataagcgtg tccgagcgac ggtgcagcaa ggcgacctgt atcggttgat tatcccgaac 1860
the
ggaatcgatc gtgacgaccg cgtcgccaat ctctcggtat ctccagacaa gcagcaggcg 1920 ggaatcgatc gtgacgaccg cgtcgccaat ctctcggtat ctccagacaa gcagcaggcg 1920
the
gtgctgttcg cgtttctgca cagcagccag gagctcgatc ggctttctgc tatccgactg 1980 gtgctgttcg cgtttctgca cagcagccag gagctcgatc ggctttctgc tatccgactg 1980
the
cgcgggctcg ctcctaagaa gaactaccgc gtcgcccgga tcgatggccg cccgctggcc 2040 cgcgggctcg ctcctaagaa gaactaccgc gtcgcccgga tcgatggccg cccgctggcc 2040
the
gacgacaccc cagctaaggc gagcggcgct tattggatgg cgcgtggcat cgacgttcca 2100 gacgacaccc cagctaaggc gagcggcgct tattggatgg cgcgtggcat cgacgttcca 2100
the
ttaatcggcg acttcgacgc cgctggctat atctttcagg ccatc 2145 ttaatcggcg acttcgacgc cgctggctat atctttcagg ccatc 2145
the
the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110142558A CN102220301B (en) | 2011-05-30 | 2011-05-30 | Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110142558A CN102220301B (en) | 2011-05-30 | 2011-05-30 | Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102220301A CN102220301A (en) | 2011-10-19 |
CN102220301B true CN102220301B (en) | 2012-10-24 |
Family
ID=44777006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110142558A Expired - Fee Related CN102220301B (en) | 2011-05-30 | 2011-05-30 | Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102220301B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102321599B (en) * | 2011-10-25 | 2013-01-09 | 云南师范大学 | Low-temperature alpha-galactosidase AgaAGN14 and gene thereof |
EP3609909A1 (en) * | 2017-04-11 | 2020-02-19 | Chr. Hansen A/S | Lactase enzymes with improved activity at low temperatures |
CN110317820B (en) * | 2018-11-06 | 2023-08-01 | 东莞泛亚太生物科技有限公司 | Alpha-galactosidase Lrgala gene |
CN111440782B (en) * | 2020-04-22 | 2021-09-17 | 青岛大学 | Beta-galactosidase GalA and application thereof |
CN113106082B (en) * | 2021-05-27 | 2022-11-04 | 云南师范大学 | Animal waste metagenome-derived alanine racemase and preparation and application thereof |
CN113481185B (en) * | 2021-08-05 | 2022-12-02 | 云南师范大学 | Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof |
CN113637660B (en) * | 2021-08-05 | 2023-09-08 | 云南师范大学 | A kind of β-galactosidase GalNC3-89 and its preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1932004A (en) * | 2005-09-16 | 2007-03-21 | 新疆农业科学院微生物应用研究所 | Low-temperature β-galactosidase strain, low-temperature β-galactosidase and production process thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2751957C (en) * | 2009-02-10 | 2018-07-24 | Peter Stougaard | Cold-active beta-galactosidase, a method of producing same and use of such enzyme |
-
2011
- 2011-05-30 CN CN201110142558A patent/CN102220301B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1932004A (en) * | 2005-09-16 | 2007-03-21 | 新疆农业科学院微生物应用研究所 | Low-temperature β-galactosidase strain, low-temperature β-galactosidase and production process thereof |
Non-Patent Citations (2)
Title |
---|
刘文玉 等.低温β-半乳糖苷酶的研究进展.《新疆农业科学》.2007,第44卷(第5期),647-651. * |
范成明 等.根癌土壤杆菌C58 Cereon中分泌蛋白信号肽分析.《微生物学报》.2005,第45卷(第4期),561-566. * |
Also Published As
Publication number | Publication date |
---|---|
CN102220301A (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102220301B (en) | Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof | |
CN109652392B (en) | A kind of ferulic acid esterase and its preparation method and application | |
CN105950586A (en) | Low temperature xylosidase HJ14GH43 and salt-tolerant mutant thereof | |
CN102220303B (en) | Xylanase XynAHJ3 with protease resistance and gene thereof | |
CN116376875B (en) | N-acetylglucosaminidase mutants with improved thermostability and their applications | |
CN105950592A (en) | Salt-resistant ethanol-resistant trypsin-resistant xylosidase JB13GH39 and preparation method thereof | |
Zhu et al. | Cloning and overexpression of a new chitosanase gene from Penicillium sp. D-1 | |
CN113481185B (en) | Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof | |
CN104726434B (en) | A kind of zytase XynRBM26 and its encoding gene | |
CN113637660B (en) | A kind of β-galactosidase GalNC3-89 and its preparation method and application | |
CN102965361B (en) | Pullulanase XWPu2 and gene thereof | |
CN102220304B (en) | A low-temperature xylanase XynAHJ2 and its gene | |
CN102311944B (en) | Mannase with low-temperature activity and salt resistance and gene thereof | |
CN111849941A (en) | A novel β-galactosidase and its application in degrading lactose in milk | |
CN103194435B (en) | A kind of β-agarase and its application | |
CN101701213B (en) | Dual-function xylanase XYNBE18 and gene and application thereof | |
CN104726430B (en) | The α galactosidase As gaAHJ8 and its gene of salt tolerant resistant protease | |
CN103789287B (en) | There is the alpha-galactosidase A gaAJB07 and gene, recombinant vector, recombinant bacterial strain that turn glycosyl activity | |
CN101948854A (en) | Lactase mutator, secretory expression method and application thereof | |
CN102321599B (en) | Low-temperature alpha-galactosidase AgaAGN14 and gene thereof | |
CN101892207B (en) | Low-temperature alpha-galactosidase GalA17, gene thereof and application thereof | |
CN111394344B (en) | A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application | |
CN109251913B (en) | A kind of mannanase mutant DeP41P42 and its application | |
CN103667208B (en) | A kind of low temperature inscribe β-2,6-levanase LevAGN25 and encoding gene thereof | |
Patil et al. | Purification, characterization of α-galactosidase from a novel Bacillus megaterium VHM1, and its applications in the food industry. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121024 Termination date: 20180530 |
|
CF01 | Termination of patent right due to non-payment of annual fee |