[go: up one dir, main page]

CN111394344B - A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application - Google Patents

A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application Download PDF

Info

Publication number
CN111394344B
CN111394344B CN202010323988.0A CN202010323988A CN111394344B CN 111394344 B CN111394344 B CN 111394344B CN 202010323988 A CN202010323988 A CN 202010323988A CN 111394344 B CN111394344 B CN 111394344B
Authority
CN
China
Prior art keywords
hyl
ynlx
ser
leu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010323988.0A
Other languages
Chinese (zh)
Other versions
CN111394344A (en
Inventor
周峻沛
黄遵锡
张蕊
雷曦
韩楠玉
唐湘华
吴倩
慕跃林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202010323988.0A priority Critical patent/CN111394344B/en
Publication of CN111394344A publication Critical patent/CN111394344A/en
Application granted granted Critical
Publication of CN111394344B publication Critical patent/CN111394344B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02001Hyaluronate lyase (4.2.2.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种低温耐硫酸盐的透明质酸裂解酶YNLX‑HYL及其应用,其氨基酸序列如SEQ NO.1所示。透明质酸裂解酶YNLX‑HYL具有以下性质:最适pH5.5,最适温度35℃,在0℃、10℃和20℃分别具有10%、39%和55%的酶活,在高浓度(NH4)2SO4和Na2SO4中具有良好的活性和稳定性,可裂解透明质酸钠制备不饱和的透明质酸寡糖,不饱和的透明质酸寡糖具有良好的抗氧化性,可清除羟自由基、氮自由基、超氧阴离子自由基以及抗2,2'‑联氮双(3‑乙基苯并噻唑啉‑6‑磺酸)二铵盐(ABTS)被氧化的能力。本发明的透明质酸裂解酶可应用于美容、医药、制革等行业。The invention discloses a low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL and an application thereof, the amino acid sequence of which is shown in SEQ NO.1. The hyaluronan lyase YNLX‑HYL has the following properties: optimum pH 5.5, optimum temperature 35°C, 10%, 39% and 55% enzymatic activity at 0°C, 10°C and 20°C, respectively, at high concentrations (NH 4 ) 2 SO 4 and Na 2 SO 4 have good activity and stability, and can split sodium hyaluronate to prepare unsaturated hyaluronic acid oligosaccharides. Unsaturated hyaluronic acid oligosaccharides have good antioxidant properties It can scavenge hydroxyl radicals, nitrogen radicals, superoxide anion radicals and resist the oxidation of 2,2'-azidobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). Ability. The hyaluronan lyase of the present invention can be applied to industries such as beauty, medicine, and leather making.

Description

一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL及其应用A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application

技术领域technical field

本发明属于基因工程技术领域,具体涉及一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL及其应用。The invention belongs to the technical field of genetic engineering, in particular to a low-temperature sulfate-resistant hyaluronic acid lyase YNLX-HYL and an application thereof.

背景技术Background technique

透明质酸又名玻尿酸,是一种天然存在于生物体内的糖胺聚糖。D-葡萄糖醛酸和N-乙酰-D-葡萄糖胺以β-1,3糖苷键相连构成二糖单元,该二糖单元再以β-1,4糖苷键连接形成的多糖即为透明质酸。Hyaluronic acid, also known as hyaluronic acid, is a naturally occurring glycosaminoglycan in living organisms. D-glucuronic acid and N-acetyl-D-glucosamine are connected by β-1,3 glycosidic bond to form a disaccharide unit, and the polysaccharide formed by the disaccharide unit connected by β-1,4 glycosidic bond is hyaluronic acid .

透明质酸酶能降解透明质酸。第一类透明质酸酶是透明质酸4-糖基水解酶(EC3.2.1.35),通过水解1,4-糖苷键来降解透明质酸,以四糖分子为主要产物。第二类透明质酸酶是透明质酸3-糖基水解酶(EC 3.2.1.36),通过水解1,3-糖苷键来降解透明质酸,以四糖和六糖分子为主要产物。第三类透明质酸酶是透明质酸裂解酶(EC 4.2.2.1),通过β-消除机制降解透明质酸,生成不饱和透明质酸二糖(El-Safory et al.CarbohydratePolymers,2010,81:165–181.)。Hyaluronidase can degrade hyaluronic acid. The first class of hyaluronidases are hyaluronic acid 4-glycosyl hydrolases (EC 3.2.1.35), which degrade hyaluronic acid by hydrolyzing 1,4-glycosidic bonds, with tetrasaccharide molecules as the main product. The second class of hyaluronidases are hyaluronan 3-glycosyl hydrolases (EC 3.2.1.36), which degrade hyaluronic acid by hydrolyzing 1,3-glycosidic bonds, with tetrasaccharide and hexasaccharide molecules as the main products. The third class of hyaluronidases are hyaluronan lyases (EC 4.2.2.1), which degrade hyaluronic acid through a β-elimination mechanism to generate unsaturated hyaluronan disaccharides (El-Safory et al. Carbohydrate Polymers, 2010, 81 :165–181.).

透明质酸酶可应用于美容、医药、制革等行业中。例如,透明质酸酶可作为药物注射添加剂以增强机体对药物的吸收效率;在眼科手术中,透明质酸酶作为辅助剂可减少麻药的使用量;透明质酸酶可作为药物用于治疗注射透明质酸的美容术后并发症;透明质酸酶可作为加工皮革的酶,改进制革工艺,降低制革过程对环境的污染。Hyaluronidase can be used in beauty, medicine, leather and other industries. For example, hyaluronidase can be used as a drug injection additive to enhance the body's absorption efficiency of drugs; in ophthalmic surgery, hyaluronidase can be used as an adjuvant to reduce the use of anesthetics; hyaluronidase can be used as a drug for therapeutic injection Post-cosmetic complications of hyaluronic acid; hyaluronidase can be used as an enzyme for processing leather to improve the tanning process and reduce the environmental pollution caused by the tanning process.

低温酶可应用于低温环境要求下的生物技术领域,可防止微生物的污染及减少高温下底物降解导致的副产物,低温反应相对高温反应来说能耗更低(Cavicchioli etal.Microbial Biotechnology,2011,4(4):449–460.)。盐对酶的性质能产生巨大的影响。在中性盐中,酶会发生盐析作用,导致大部分的酶在高盐浓度下不具有良好的催化活性。盐广泛存在于在自然界和各种生产实践中,包括污水、洗涤、制革、食品、造纸等,例如,在皮革软化过程中,需要添加硫酸钠。具有耐盐性的酶可更好地应用于高盐环境生物技术领域,在高盐环境下反应还可以防止微生物的污染、节省灭菌等所消耗的能源(Madern etal.Extremophiles,2000,4:91–98)。因此,低温耐硫酸盐的透明质酸裂解酶在制革等行业中具有应用的优势。Low-temperature enzymes can be used in the field of biotechnology under low-temperature environments, which can prevent microbial contamination and reduce by-products caused by substrate degradation at high temperatures. Low-temperature reactions have lower energy consumption than high-temperature reactions (Cavicchioli et al. Microbial Biotechnology, 2011 , 4(4):449–460.). Salt can have a dramatic effect on the properties of enzymes. In neutral salts, enzymes will undergo salting out, resulting in most enzymes not having good catalytic activity at high salt concentrations. Salt is widely present in nature and in various production practices, including sewage, washing, tanning, food, paper, etc. For example, in the process of leather softening, sodium sulfate needs to be added. Enzymes with salt tolerance can be better used in the field of biotechnology in high-salt environments, and reactions in high-salt environments can also prevent microbial contamination and save energy consumed by sterilization (Madern et al. Extremophiles, 2000, 4: 91–98). Therefore, low-temperature sulfate-resistant hyaluronan lyase has advantages in applications such as tanning.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL及其应用。The purpose of the present invention is to provide a low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL and its application.

本发明技术目的具体通过以下技术方案实现:The technical purpose of the present invention is specifically realized through the following technical solutions:

一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL,其氨基酸序列如SEQ ID NO.1所示。A low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL, the amino acid sequence of which is shown in SEQ ID NO.1.

本发明透明质酸裂解酶YNLX-HYL总共含799个氨基酸,理论分子量为88kDa,其中N端20个氨基酸为预测信号肽序列“MKKTNLAFSLLCLSMGSVHA”。与已实验研究过功能的透明质酸裂解酶进行比对,透明质酸裂解酶YNLX-HYL与Streptococcus pneumoniae来源的透明质酸裂解酶(Genbank ID:CTD38391)具有最高的氨基酸序列一致性,仅为30.9%。The hyaluronan lyase YNLX-HYL of the present invention contains a total of 799 amino acids, the theoretical molecular weight is 88kDa, and the 20 amino acids at the N-terminal are the predicted signal peptide sequence "MKKTNLAFSLLCLSMGSVHA". Compared with the hyaluronan lyases whose functions have been studied experimentally, the hyaluronan lyase YNLX-HYL has the highest amino acid sequence identity with the hyaluronan lyase derived from Streptococcus pneumoniae (Genbank ID: CTD38391), which is only 30.9%.

所述的透明质酸裂解酶YNLX-HYL具有以下性质:最适pH5.5,最适温度35℃,在0℃、10℃和20℃分别具有10%、39%和55%的酶活,在高浓度(NH4)2SO4和Na2SO4中具有良好的活性和稳定性,可裂解透明质酸钠制备不饱和的透明质酸寡糖,不饱和的透明质酸寡糖具有良好的抗氧化性,可清除羟自由基、氮自由基、超氧阴离子自由基以及抗2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)被氧化的能力。The hyaluronan lyase YNLX-HYL has the following properties: the optimum pH is 5.5, the optimum temperature is 35°C, and the enzyme activities are respectively 10%, 39% and 55% at 0°C, 10°C and 20°C, It has good activity and stability in high concentrations of (NH4)2SO4 and Na2SO4, and can split sodium hyaluronate to prepare unsaturated hyaluronic acid oligosaccharides. The ability to scavenge hydroxyl radicals, nitrogen radicals, superoxide anion radicals and anti-oxidation of 2,2'-azidobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS).

所述的低温耐硫酸盐透明质酸裂解酶YNLX-HYL的编码基因ynlx-hyl,所述的编码基因ynlx-hyl的核苷酸序列如SEQ ID NO.2所示。其全长2400bp,起始密码为ATG,终止密码为TAG。The encoding gene ynlx-hyl of the low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL, the nucleotide sequence of the encoding gene ynlx-hyl is shown in SEQ ID NO.2. Its full length is 2400bp, the start code is ATG, and the stop code is TAG.

在本发明的另一方面,将本发明的透明质酸裂解酶基因插入到表达载体中,使其核苷酸序列与表达调控序列相连接。提供了一种包含所述的透明质酸裂解酶基因ynlx-hyl的重组载体。优选为pEasy-E2-ynlx-hyl。In another aspect of the present invention, the hyaluronan lyase gene of the present invention is inserted into an expression vector, and its nucleotide sequence is linked to an expression control sequence. Provided is a recombinant vector comprising the hyaluronan lyase gene ynlx-hyl. Preferred is pEasy-E2-ynlx-hyl.

作为本发明的一个最优选的实施方案,将本发明的透明质酸裂解酶基因和表达载体pEasy-E2相连接,得到重组大肠杆菌表达质粒pEasy-E2-ynlx-hyl。As a most preferred embodiment of the present invention, the hyaluronan lyase gene of the present invention is connected with the expression vector pEasy-E2 to obtain the recombinant E. coli expression plasmid pEasy-E2-ynlx-hyl.

在本发明的另一方面,还提供了一种包含所述的透明质酸裂解酶基因ynlx-hyl的重组菌株。In another aspect of the present invention, there is also provided a recombinant strain comprising the hyaluronan lyase gene ynlx-hyl.

优选的所述重组菌株为大肠杆菌、酵母菌、芽孢杆菌或乳酸杆菌,更优选的为重组菌株BL21(DE3)/ynlx-hyl。Preferably, the recombinant strain is Escherichia coli, yeast, Bacillus or Lactobacillus, more preferably recombinant strain BL21(DE3)/ynlx-hyl.

在本发明的另一方面,还提供了一种利用透明质酸裂解酶YNLX-HYL制备不饱和透明质酸寡糖的方法。In another aspect of the present invention, a method for preparing unsaturated hyaluronic acid oligosaccharide using hyaluronan lyase YNLX-HYL is also provided.

在本发明的另一方面,还提供了一种制备透明质酸裂解酶YNLX-HYL的方法,包括以下步骤:In another aspect of the present invention, there is also provided a method for preparing hyaluronan lyase YNLX-HYL, comprising the following steps:

1)用上述的重组载体转化宿主细胞,得重组菌株;1) transform host cell with above-mentioned recombinant vector, obtain recombinant strain;

2)培养重组菌株,诱导重组透明质酸裂解酶YNLX-HYL表达;2) Cultivate the recombinant strain to induce the expression of recombinant hyaluronan lyase YNLX-HYL;

3)回收并纯化所表达的透明质酸裂解酶YNLX-HYL。3) Recovery and purification of the expressed hyaluronan lyase YNLX-HYL.

其中,所述宿主细胞为大肠杆菌细胞,优选的,将重组大肠杆菌表达质粒转化大肠杆菌细胞BL21(DE3),得到重组菌株BL21(DE3)/ynlx-hyl。Wherein, the host cell is an Escherichia coli cell, preferably, the recombinant Escherichia coli expression plasmid is transformed into an Escherichia coli cell BL21(DE3) to obtain a recombinant strain BL21(DE3)/ynlx-hyl.

在本发明的另一方面,还提供了所述的透明质酸裂解酶YNLX-HYL可用作美容、医药领域用以降解透明质酸的应用,还可用以皮革的制备中。In another aspect of the present invention, the hyaluronic acid lyase YNLX-HYL can be used for degrading hyaluronic acid in the fields of beauty and medicine, and can also be used in the preparation of leather.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明提供了一个新的透明质酸裂解酶基因,其编码的透明质酸裂解酶YNLX-HYL具有低温耐硫酸盐的特性,YNLX-HYL可裂解透明质酸钠制备不饱和的透明质酸寡糖,不饱和的透明质酸寡糖具有优良的抗氧化性。本发明的透明质酸裂解酶可应用于美容、医药、制革等行业。The present invention provides a new hyaluronan lyase gene, the encoded hyaluronan lyase YNLX-HYL has the characteristics of low temperature sulfate resistance, and YNLX-HYL can cleave sodium hyaluronate to prepare unsaturated hyaluronan oligosaccharides Sugar, unsaturated hyaluronic acid oligosaccharide with excellent antioxidant properties. The hyaluronic acid lyase of the invention can be applied to industries such as beauty, medicine, leather making and the like.

附图说明Description of drawings

图1是在大肠杆菌中表达的透明质酸裂解酶YNLX-HYL的SDS-PAGE分析,其中,M:蛋白质Marker;HYL:纯化的重组透明质酸裂解酶YNLX-HYL;Figure 1 is the SDS-PAGE analysis of the hyaluronan lyase YNLX-HYL expressed in Escherichia coli, wherein, M: protein Marker; HYL: purified recombinant hyaluronan lyase YNLX-HYL;

图2是纯化的重组透明质酸裂解酶YNLX-HYL的pH活性;Figure 2 is the pH activity of purified recombinant hyaluronan lyase YNLX-HYL;

图3是纯化的重组透明质酸裂解酶YNLX-HYL的pH稳定性;Figure 3 is the pH stability of purified recombinant hyaluronan lyase YNLX-HYL;

图4是纯化的重组透明质酸裂解酶YNLX-HYL的热活性;Figure 4 is the thermal activity of purified recombinant hyaluronan lyase YNLX-HYL;

图5是纯化的重组透明质酸裂解酶YNLX-HYL的热稳定性;Figure 5 is the thermostability of purified recombinant hyaluronan lyase YNLX-HYL;

图6是纯化的重组透明质酸裂解酶YNLX-HYL在(NH4)2SO4中的活性;Figure 6 is the activity of purified recombinant hyaluronan lyase YNLX-HYL in (NH4)2SO4;

图7是纯化的重组透明质酸裂解酶YNLX-HYL在(NH4)2SO4中的稳定性;Figure 7 is the stability of purified recombinant hyaluronan lyase YNLX-HYL in (NH4)2SO4;

图8是纯化的重组透明质酸裂解酶YNLX-HYL在Na2SO4中的活性;Figure 8 is the activity of purified recombinant hyaluronan lyase YNLX-HYL in Na2SO4;

图9是纯化的重组透明质酸裂解酶YNLX-HYL在Na2SO4中的稳定性;Figure 9 is the stability of purified recombinant hyaluronan lyase YNLX-HYL in Na2SO4;

图10是纯化的重组透明质酸裂解酶YNLX-HYL裂解透明质酸钠的产物分析,其中,R:乳糖;4h:反应4h的产物;1h:反应1h的产物;20min:反应20min的产物;Figure 10 is the analysis of the product of purified recombinant hyaluronan lyase YNLX-HYL cleaving sodium hyaluronate, wherein, R: lactose; 4h: product of reaction 4h; 1h: product of reaction 1h; 20min: product of reaction 20min;

图11是纯化的重组透明质酸裂解酶YNLX-HYL裂解透明质酸钠产物的氮自由基清除率,其中,HA:透明质酸钠的氮自由基清除率;HAM:反应1h的产物的氮自由基清除率;HAD:反应5h的产物的氮自由基清除率;Figure 11 is the nitrogen free radical scavenging rate of purified recombinant hyaluronate lyase YNLX-HYL cleaving sodium hyaluronate product, wherein, HA: nitrogen free radical scavenging rate of sodium hyaluronate; HAM: nitrogen free radical of the product of reaction 1h Free radical scavenging rate; HAD: nitrogen free radical scavenging rate of the product of reaction 5h;

图12是纯化的重组透明质酸裂解酶YNLX-HYL裂解透明质酸钠产物的羟自由基清除率,其中,HA:透明质酸钠的羟自由基清除率;HAM:反应1h的产物的羟自由基清除率;HAD:反应5h的产物的羟自由基清除率;Figure 12 is the hydroxyl radical scavenging rate of purified recombinant hyaluronan lyase YNLX-HYL cleavage product of sodium hyaluronate, wherein HA: the hydroxyl radical scavenging rate of sodium hyaluronate; HAM: the hydroxyl radical scavenging rate of the product of reaction 1h Free radical scavenging rate; HAD: hydroxyl radical scavenging rate of the product of reaction 5h;

图13是纯化的重组透明质酸裂解酶YNLX-HYL裂解透明质酸钠产物的超氧阴离子自由基清除率,其中,HA:透明质酸钠的超氧阴离子自由基清除率;HAM:反应1h的产物的超氧阴离子自由基清除率;HAD:反应5h的产物的超氧阴离子自由基清除率;Figure 13 is the superoxide anion free radical scavenging rate of purified recombinant hyaluronan lyase YNLX-HYL cleavage of sodium hyaluronate, wherein, HA: superoxide anion free radical scavenging rate of sodium hyaluronate; HAM: reaction 1h The superoxide anion free radical scavenging rate of the product; HAD: the superoxide anion free radical scavenging rate of the product of the reaction for 5h;

图14是纯化的重组透明质酸裂解酶YNLX-HYL裂解透明质酸钠产物的相对总抗氧化率,其中,HA:透明质酸钠的相对总抗氧化率;HAM:反应1h的产物的相对总抗氧化率;HAD:反应5h的产物的相对总抗氧化率。Figure 14 is the relative total antioxidant rate of purified recombinant hyaluronate lyase YNLX-HYL cleavage of sodium hyaluronate products, wherein, HA: the relative total antioxidant rate of sodium hyaluronate; HAM: the relative total antioxidant rate of the product of reaction 1h Total antioxidant rate; HAD: the relative total antioxidant rate of the product of reaction 5h.

具体实施方式Detailed ways

下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to specific embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

试验材料和试剂Test Materials and Reagents

1、菌株及载体:弗氏柠檬酸杆菌(Citrobacterfreundii)同文献报道菌种性质,如中国普通微生物菌种保藏管理中心菌株Citrobacter freundii CGMCC NO.1.12836;大肠杆菌Escherichia coliBL21(DE3)和表达载体pEasy-E2购于北京全式金生物技术有限公司。1. Strain and vector: Citrobacter freundii has the same properties as reported in the literature, such as Citrobacter freundii CGMCC NO.1.12836 of China General Microorganism Culture Collection and Management Center; Escherichia coliBL21 (DE3) and expression vector pEasy- E2 was purchased from Beijing Quanshijin Biotechnology Co., Ltd.

2、试剂:DNA聚合酶和dNTP购自TaKaRa公司,透明质酸钠购自上海源叶生物科技有限公司,Nickel-NTAAgarose购自QIAGEN公司,

Figure GDA0003407767110000071
II试剂盒购自南京诺维赞公司,氮自由基清除能力测试试剂盒购于上海聪羿生物公司,超氧阴离子和羟自由基清除能力检测试剂盒购于索莱宝生物科技有限公司,总抗氧化能力检测试剂盒购于南京建成生物,其它试剂均可从普通生化试剂公司购买得到。2. Reagents: DNA polymerase and dNTP were purchased from TaKaRa company, sodium hyaluronate was purchased from Shanghai Yuanye Biotechnology Co., Ltd., Nickel-NTAAgarose was purchased from QIAGEN company,
Figure GDA0003407767110000071
The II kit was purchased from Nanjing Novizan Company, the nitrogen free radical scavenging ability test kit was purchased from Shanghai Congyi Biological Company, and the superoxide anion and hydroxyl free radical scavenging ability test kit was purchased from Soleibo Biotechnology Co., Ltd. Antioxidant ability detection kit was purchased from Nanjing Jiancheng Bio, and other reagents can be purchased from general biochemical reagent company.

3、培养基:3. Culture medium:

LB培养基:Peptone 10g,Yeast extract 5g,NaCl 10g,加蒸馏水至1000ml,pH自然(约为7)。固体培养基在此基础上加2.0%(w/v)琼脂。LB medium: Peptone 10g, Yeast extract 5g, NaCl 10g, add distilled water to 1000ml, pH is natural (about 7). The solid medium was supplemented with 2.0% (w/v) agar on this basis.

说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。Note: The molecular biology experimental methods that are not specifically described in the following examples are all carried out with reference to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) by J. Sambrook, or according to the kit and product manual.

实施例1透明质酸裂解酶基因ynlx-hyl的克隆Example 1 Cloning of hyaluronan lyase gene ynlx-hyl

提取弗氏柠檬酸杆菌基因组DNA:将培养2d的液体菌液离心取菌体,加入1mL溶菌酶,37℃处理60min,再加入裂解液,裂解液组成为:50mM Tris,20mM EDTA,NaCl 500mM,2%SDS(w/v),pH8.0,70℃水浴裂解60min,每隔10min混匀一次,在4℃下10000rpm离心5min。取上清于酚/氯仿中抽提除去杂蛋白,再取上清加入等体积异丙醇,于室温静置5min后,4℃下10000rpm离心10min。弃上清,沉淀用70%的乙醇洗涤两次,真空干燥,加入适量TE溶解,置于-20℃备用。Extraction of the genomic DNA of Citrobacter freundii: centrifuge the 2-day-culturing liquid bacterial solution to take the bacterial cells, add 1 mL of lysozyme, treat at 37°C for 60 min, and then add the lysate. The lysate consists of: 50mM Tris, 20mM EDTA, NaCl 500mM, 2% SDS (w/v), pH 8.0, lysed in a water bath at 70°C for 60 min, mixed every 10 min, and centrifuged at 10000 rpm for 5 min at 4°C. The supernatant was extracted in phenol/chloroform to remove impurity proteins, and then the supernatant was added with an equal volume of isopropanol, and after standing at room temperature for 5 min, centrifuged at 10,000 rpm for 10 min at 4°C. The supernatant was discarded, the precipitate was washed twice with 70% ethanol, dried under vacuum, dissolved by adding an appropriate amount of TE, and placed at -20°C for later use.

将弗氏柠檬酸杆菌基因组DNA送至武汉未来组生物科技有限公司进行基因组测序。基因组测序得到的数据经读码框预测和数据库序列比对后,对弗氏柠檬酸杆菌基因组进行功能注释,得到透明质酸裂解酶基因ynlx-hyl,该基因序列如SEQ ID NO.2所示。The genome DNA of Citrobacter freundii was sent to Wuhan Future Group Biotechnology Co., Ltd. for genome sequencing. After the data obtained by genome sequencing is predicted by the reading frame and the database sequence is compared, the genome of Citrobacter freundii is functionally annotated, and the hyaluronan lyase gene ynlx-hyl is obtained. The gene sequence is shown in SEQ ID NO.2 .

实施例2重组透明质酸裂解酶YNLX-HYL的制备Example 2 Preparation of recombinant hyaluronan lyase YNLX-HYL

以5'TAAGAAGGAGATATACATATGCAGATCGCTACCGAAAATGTAAAT 3'和5'GTGGTGGTGGTGGTGCTCGAGTTTATTTTTAGATAATTCAAAAGAATAACTACTG 3'为引物对,弗氏柠檬酸杆菌基因组DNA为模板,进行PCR扩增。PCR反应参数为:95℃变性5min;然后95℃变性30sec,60℃退火30sec,72℃延伸1min 30sec,30个循环后72℃保温10min。PCR结果得到透明质酸裂解酶基因ynlx-hyl,并在该基因5'端和3'端引入与载体pEasy-E2重组的区域。Using 5'TAAGAAGGAGATATACATATGCAGATCGCTACCGAAAATGTAAAT 3' and 5'GTGGTGGTGGTGGTGCTCGAGTTTATTTTTAGATAATTCAAAAGAATAACTACTG 3' as primer pairs and Citrobacter freundii genomic DNA as a template, PCR amplification was performed. The PCR reaction parameters were: denaturation at 95°C for 5 min; then denaturation at 95°C for 30 sec, annealing at 60°C for 30 sec, extension at 72°C for 1 min 30 sec, and incubation at 72°C for 10 min after 30 cycles. As a result of PCR, the hyaluronan lyase gene ynlx-hyl was obtained, and the recombination region with the vector pEasy-E2 was introduced into the 5' and 3' ends of the gene.

用限制性内切酶Nde I和Xho I对质粒pEasy-E2进行双酶切,酶切后对产物进行琼脂糖凝胶电泳胶回收,获得线性化载体pEasy-E2。The plasmid pEasy-E2 was double digested with restriction enzymes Nde I and Xho I, and the product was recovered by agarose gel electrophoresis to obtain the linearized vector pEasy-E2.

利用

Figure GDA0003407767110000081
II试剂盒,将透明质酸裂解酶基因ynlx-hyl和线性化载体pEasy-E2重组连接,获得含有ynlx-hyl的重组表达质粒pEasy-E2-ynlx-hyl。use
Figure GDA0003407767110000081
II kit, the hyaluronan lyase gene ynlx-hyl and the linearized vector pEasy-E2 were recombined to obtain the recombinant expression plasmid pEasy-E2-ynlx-hyl containing ynlx-hyl.

通过热激方式,将pEasy-E2-ynlx-hyl转化大肠杆菌BL21(DE3),获得重组大肠杆菌菌株BL21(DE3)/ynlx-hyl。By heat shock, pEasy-E2-ynlx-hyl was transformed into E. coli BL21(DE3) to obtain recombinant E. coli strain BL21(DE3)/ynlx-hyl.

取含有重组质粒pEasy-E2-ynlx-hyl的重组大肠杆菌菌株BL21(DE3)/ynlx-hyl,以0.1%的接种量接种于LB(含100μg mL-1Amp)培养液中,37℃快速振荡16h。然后将此活化的菌液以1%接种量接种到新鲜的LB(含100μg mL-1Amp)培养液中,快速振荡培养约2–3h(OD600达到0.6–1.0)后,加入终浓度0.7mM的IPTG进行诱导,于20℃继续振荡培养约20h或26℃振荡培养约8h。12000rpm离心5min,收集菌体。用适量的pH7.0 McIlvaine缓冲液悬浮菌体后,于低温水浴下超声波破碎菌体。以上胞内浓缩的粗酶液经12,000rpm离心10min后,吸取上清并用Nickel-NTA Agarose和0–500mM的咪唑分别亲和和洗脱目的蛋白。SDS-PAGE结果(图1)表明,重组透明质酸裂解酶YNLX-HYL得到了纯化,产物为单一条带。Take the recombinant Escherichia coli strain BL21(DE3)/ynlx-hyl containing the recombinant plasmid pEasy-E2-ynlx-hyl, inoculate it in LB (containing 100 μg mL-1Amp) medium with 0.1% inoculum, and shake rapidly at 37°C for 16h . Then the activated bacterial solution was inoculated into fresh LB (containing 100μg mL-1Amp) culture solution at 1% inoculum, and after rapid shaking culture for about 2-3h (OD600 reached 0.6-1.0), the final concentration of 0.7mM was added. IPTG was induced, and the shaking culture was continued at 20°C for about 20 hours or at 26°C for about 8 hours. The cells were collected by centrifugation at 12000 rpm for 5 min. After suspending the cells with an appropriate amount of pH7.0 McIlvaine buffer, the cells were disrupted by ultrasonic waves in a low temperature water bath. After the above intracellular concentrated crude enzyme solution was centrifuged at 12,000 rpm for 10 min, the supernatant was aspirated and the target protein was affinity and eluted with Nickel-NTA Agarose and 0–500 mM imidazole, respectively. SDS-PAGE results (Fig. 1) showed that the recombinant hyaluronan lyase YNLX-HYL was purified and the product was a single band.

实施例3纯化的重组透明质酸裂解酶YNLX-HYL的性质测定Example 3 Characterization of the purified recombinant hyaluronan lyase YNLX-HYL

1、纯化的重组透明质酸裂解酶YNLX-HYL的活性分析:1. Activity analysis of purified recombinant hyaluronan lyase YNLX-HYL:

实施例2纯化的重组透明质酸裂解酶YNLX-HYL的活性测定方法采用紫外法:将透明质酸钠溶于缓冲液中,使其终浓度为0.5%(w/v);反应体系含50μL适量酶液,450μL的0.5%(w/v)透明质酸钠;底物在反应温度下预热5min后,加入酶液再反应10min,然后加3.5mL 0.2M HCl终止反应,在232nm波长下测定吸光值;1个酶活单位(U)定义为每分钟降解透明质酸钠形成1μmol不饱和双键所需的酶量。不饱和双键消光系数为5.5/mM/cm。Example 2 The method for measuring the activity of the purified recombinant hyaluronan lyase YNLX-HYL adopts the ultraviolet method: dissolving sodium hyaluronate in the buffer to make the final concentration 0.5% (w/v); the reaction system contains 50 μL Appropriate amount of enzyme solution, 450μL of 0.5% (w/v) sodium hyaluronate; after the substrate is preheated at the reaction temperature for 5min, add the enzyme solution and react for another 10min, then add 3.5mL of 0.2M HCl to stop the reaction, at a wavelength of 232nm Absorbance value was determined; 1 unit of enzyme activity (U) was defined as the amount of enzyme required to degrade sodium hyaluronate to form 1 μmol of unsaturated double bonds per minute. The unsaturated double bond extinction coefficient is 5.5/mM/cm.

2、纯化的重组透明质酸裂解酶YNLX-HYL的pH活性和pH稳定性测定:2. Determination of pH activity and pH stability of purified recombinant hyaluronan lyase YNLX-HYL:

酶的pH活性测定:将透明质酸裂解酶YNLX-HYL在37℃下和pH3.0–10.0的缓冲液中进行酶促反应。Enzyme pH activity assay: The hyaluronan lyase YNLX-HYL was enzymatically reacted at 37°C in buffer pH 3.0–10.0.

酶的pH稳定性测定:将纯化的酶液置于pH3.0–9.0的缓冲液中,在20℃下处理60min,然后在pH5.5及37℃下进行酶促反应,以未处理的酶液作为对照。Determination of pH stability of the enzyme: The purified enzyme solution was placed in a buffer of pH 3.0–9.0, treated at 20 °C for 60 min, and then enzymatically reacted at pH 5.5 and 37 °C, and the untreated enzyme was used. liquid as a control.

缓冲液为:McIlvaine buffer(pH3.0–8.0)和0.1M glycine–NaOH(pH9.0–10.0)。以透明质酸钠为底物,反应10min,测定纯化的透明质酸裂解酶YNLX-HYL的酶学性质。The buffers were: McIlvaine buffer (pH3.0–8.0) and 0.1M glycine–NaOH (pH9.0–10.0). Using sodium hyaluronate as the substrate, the reaction was carried out for 10 min to determine the enzymatic properties of the purified hyaluronan lyase YNLX-HYL.

结果表明:YNLX-HYL的最适pH为5.5(图2);经pH5.0–7.0的缓冲液处理1h,该酶酶活剩余达59%以上(图3)。The results showed that the optimum pH of YNLX-HYL was 5.5 (Fig. 2); after 1 h of buffer treatment with pH 5.0-7.0, the enzyme activity remained over 59% (Fig. 3).

3、纯化的重组透明质酸裂解酶YNLX-HYL的热活性及热稳定性测定:3. Determination of thermal activity and thermal stability of purified recombinant hyaluronan lyase YNLX-HYL:

酶的热活性测定:在pH5.5的缓冲液中,于0–70℃下进行酶促反应。Enzyme Thermal Activity Assay: Enzymatic reactions were performed at 0–70°C in pH 5.5 buffer.

酶的热稳定性测定:将同样酶量的酶液分别置于40℃、50℃和60℃中,处理10–60min后,在pH5.5及37℃下进行酶促反应,以未处理的酶液作为对照。Determination of the thermal stability of the enzyme: The enzyme solution with the same amount of enzyme was placed at 40 °C, 50 °C and 60 °C, respectively, and after treatment for 10–60 min, the enzymatic reaction was carried out at pH 5.5 and 37 °C, and the untreated enzyme was used. Enzyme solution served as a control.

以透明质酸钠为底物,反应10min,测定纯化的YNLX-HYL的酶学性质。结果表明,YNLX-HYL是典型的低温酶。YNLX-HYL的最适温度为35℃,在0℃、10℃和20℃分别具有10%、39%和55%的酶活(图4);该酶在40℃和50℃下处理60min后,酶活分别剩余59%和18%,在60℃下则快速失活(图5)。Using sodium hyaluronate as the substrate, the reaction was carried out for 10 min, and the enzymatic properties of the purified YNLX-HYL were determined. The results show that YNLX-HYL is a typical low temperature enzyme. The optimum temperature of YNLX-HYL was 35°C, and the enzyme activities were 10%, 39%, and 55% at 0°C, 10°C, and 20°C, respectively (Fig. 4); the enzyme was treated at 40°C and 50°C for 60 min. , the enzyme activity remained 59% and 18%, respectively, and was rapidly inactivated at 60 °C (Figure 5).

4、纯化的重组透明质酸裂解酶YNLX-HYL在(NH4)2SO4中的活性及稳定性测定:4. Determination of activity and stability of purified recombinant hyaluronan lyase YNLX-HYL in (NH 4 ) 2 SO 4 :

酶在(NH4)2SO4中的活性测定:在酶促反应体系中加入1.0–30.0%(w/v)(NH4)2SO4,于pH5.5及37℃下进行酶促反应。Determination of enzyme activity in (NH 4 ) 2 SO 4 : add 1.0–30.0% (w/v) (NH 4 ) 2 SO 4 to the enzymatic reaction system, and carry out the enzymatic reaction at pH 5.5 and 37°C .

酶在(NH4)2SO4中的稳定性测定:将纯化的酶液置于5.0–30.0%(w/v)的(NH4)2SO4水溶液中,在37℃下处理60min,然后在pH5.5及37℃下进行酶促反应,以未处理的酶液作为对照。Stability determination of enzyme in (NH 4 ) 2 SO 4 : The purified enzyme solution was placed in 5.0–30.0% (w/v) aqueous (NH 4 ) 2 SO 4 solution, treated at 37 °C for 60 min, and then The enzymatic reaction was carried out at pH 5.5 and 37°C, and the untreated enzyme solution was used as a control.

以透明质酸钠为底物,反应10min,测定纯化的YNLX-HYL的酶学性质。结果表明:在反应体系中加入1.0–30.0%(w/v)的(NH4)2SO4,YNLX-HYL的活性逐渐提高到276%(图6);经5.0–30.0%(w/v)的(NH4)2SO4在37℃下处理60min,该酶的活性从143%逐渐降到18%(图7)。Using sodium hyaluronate as the substrate, the reaction was carried out for 10 min, and the enzymatic properties of the purified YNLX-HYL were determined. The results showed that: adding 1.0-30.0% (w/v) (NH 4 ) 2 SO 4 to the reaction system, the activity of YNLX-HYL gradually increased to 276% (Fig. 6); after 5.0-30.0% (w/v) ) of (NH 4 ) 2 SO 4 was treated at 37° C. for 60 min, and the activity of the enzyme gradually decreased from 143% to 18% ( FIG. 7 ).

5、纯化的重组透明质酸裂解酶YNLX-HYL在Na2SO4中的活性及稳定性测定:5. Determination of activity and stability of purified recombinant hyaluronan lyase YNLX-HYL in Na 2 SO 4 :

酶在Na2SO4中的活性测定:在酶促反应体系中加入1.0–30.0%(w/v)Na2SO4,于pH5.5及37℃下进行酶促反应。Determination of enzyme activity in Na 2 SO 4 : 1.0–30.0% (w/v) Na 2 SO 4 was added to the enzymatic reaction system, and the enzymatic reaction was carried out at pH 5.5 and 37°C.

酶在Na2SO4中的稳定性测定:将纯化的酶液置于5.0–30.0%(w/v)的Na2SO4水溶液中,在37℃下处理60min,然后在pH5.5及37℃下进行酶促反应,以未处理的酶液作为对照。Determination of enzyme stability in Na 2 SO 4 : The purified enzyme solution was placed in a 5.0–30.0% (w/v) Na 2 SO 4 aqueous solution, treated at 37 °C for 60 min, and then at pH 5.5 and 37 The enzymatic reaction was carried out at ℃, and the untreated enzyme solution was used as a control.

以透明质酸钠为底物,反应10min,测定纯化的YNLX-HYL的酶学性质。结果表明:在反应体系中加入1.0–20.0%(w/v)的Na2SO4,YNLX-HYL的活性逐渐提高到220%,加入20.0–30.0%(w/v)的Na2SO4,YNLX-HYL的活性由220%逐渐降到130%(图8);经5.0–30.0%(w/v)的Na2SO4在37℃下处理60min,该酶的活性总体呈现下降趋势,最低降到19%(图9)。Using sodium hyaluronate as the substrate, the reaction was carried out for 10 min, and the enzymatic properties of the purified YNLX-HYL were determined. The results show that: adding 1.0-20.0% (w/v) Na 2 SO 4 to the reaction system, the activity of YNLX-HYL gradually increased to 220%, adding 20.0-30.0% (w/v) Na 2 SO 4 , The activity of YNLX-HYL gradually decreased from 220% to 130% (Fig. 8); after being treated with 5.0–30.0% (w/v) Na 2 SO 4 for 60 min at 37°C, the activity of the enzyme showed a decreasing trend overall, and the lowest dropped to 19% (Figure 9).

实施例4纯化的重组透明质酸裂解酶YNLX-HYL在制备不饱和透明质酸寡糖中的方法和应用Example 4 Method and application of purified recombinant hyaluronan lyase YNLX-HYL in the preparation of unsaturated hyaluronan oligosaccharides

1、不饱和透明质酸寡糖的制备:1. Preparation of unsaturated hyaluronic acid oligosaccharides:

反应体系含450μL 0.5%(w/v)的透明质酸钠,50μL适当稀释的YNLX-HYL(约130U酶液),在pH5.5及37℃下,反应20min–4h后,煮沸5min终止反应。采用薄层层析法(TLC)分析裂解产物(使用青岛海洋化工有限公司的高效薄层层析硅胶板G型)。The reaction system contains 450 μL of 0.5% (w/v) sodium hyaluronate, 50 μL of appropriately diluted YNLX-HYL (about 130 U enzyme solution), at pH 5.5 and 37 °C, after 20 min–4 h of reaction, boil for 5 min to terminate the reaction . The cleavage products were analyzed by thin-layer chromatography (TLC) (using a high-performance thin-layer chromatography silica gel plate type G from Qingdao Ocean Chemical Co., Ltd.).

薄层层析步骤如下所示:The thin layer chromatography steps are as follows:

(1)配制展开剂(冰醋酸20mL,双蒸水20mL,正丁醇40mL,混匀),取适量倒入展开槽,静置30min左右;(1) Prepare a developing agent (20 mL of glacial acetic acid, 20 mL of double-distilled water, 40 mL of n-butanol, mix well), pour an appropriate amount into the developing tank, and let it stand for about 30 minutes;

(2)将硅胶板放在110℃烘箱中活化30min,冷却后划线,点样(每次0.5μL,吹干,共点3次);(2) Put the silica gel plate in a 110°C oven for activation for 30min, draw a line after cooling, and spot the sample (0.5 μL each time, blow dry, spot 3 times in total);

(3)将点样的一端硅胶板朝下放入展开槽中,点样点不要没入展开剂;(3) Put the silica gel plate at one end of the spotting down into the developing tank, and do not submerge the developing agent into the spotting spot;

(4)待展开剂到距硅胶板上沿1.5cm时,取出硅胶板,吹干,再展开一次;(4) When the developing agent is 1.5cm away from the silica gel plate, take out the silica gel plate, blow it dry, and expand it again;

(5)第二次展开结束后,硅胶板直接浸入适量显色剂(1g二苯胺溶于50mL丙酮中,溶解后加入1mL苯胺及5mL 85%的磷酸,混匀,现用现配);(5) After the second expansion, the silica gel plate is directly immersed in an appropriate amount of color developer (1 g of diphenylamine is dissolved in 50 mL of acetone, and after dissolving, 1 mL of aniline and 5 mL of 85% phosphoric acid are added, mixed, and used now and prepared);

(6)几秒钟后,立即取出硅胶板并放置于90℃烘箱中10–15min,使斑点显色。(6) After a few seconds, immediately take out the silica gel plate and place it in an oven at 90°C for 10-15min to make the spots develop.

结果表明:YNLX-HYL裂解透明质酸钠20min后形成的产物主要为不饱和透明质酸二糖,另外还有两种不饱和透明质酸寡糖;YNLX-HYL裂解透明质酸钠1h后形成的产物主要为不饱和透明质酸二糖,另外还有一种不饱和透明质酸寡糖;YNLX-HYL裂解透明质酸钠4h后形成的产物为不饱和透明质酸二糖(图10)。The results showed that the products formed by YNLX-HYL cleaving sodium hyaluronate for 20 min were mainly unsaturated hyaluronic acid disaccharides and two unsaturated hyaluronic acid oligosaccharides; The product is mainly unsaturated hyaluronic acid disaccharide, and there is also an unsaturated hyaluronic acid oligosaccharide; the product formed after YNLX-HYL cleaves sodium hyaluronate for 4h is unsaturated hyaluronic acid disaccharide (Figure 10).

2、不饱和透明质酸寡糖的抗氧化性分析:2. Antioxidative analysis of unsaturated hyaluronic acid oligosaccharides:

反应体系含5mL 5%(w/v)的透明质酸钠,1mL适当稀释的YNLX-HYL(约5000U酶液),在pH5.5及35℃下,反应1h和5h后,煮沸5min终止反应。将裂解产物加至10kDa超滤管中,在5000rpm下离心去除酶等大分子物质,收集管中的滤液,得到不饱和透明质酸寡糖。The reaction system contains 5 mL of 5% (w/v) sodium hyaluronate, 1 mL of appropriately diluted YNLX-HYL (about 5000U enzyme solution), at pH 5.5 and 35 ℃, after 1h and 5h of reaction, boiled for 5min to terminate the reaction . The cleavage product was added to a 10kDa ultrafiltration tube, centrifuged at 5000 rpm to remove macromolecular substances such as enzymes, and the filtrate in the tube was collected to obtain unsaturated hyaluronic acid oligosaccharides.

利用试剂盒检测透明质酸钠和不饱和透明质酸寡糖的氮自由基清除能力、羟自由基清除能力、超氧阴离子自由基清除能力和总抗氧化能力。总抗氧化能力的对照品为1mM的水溶性维生素E(Trolox),采用ABTS进行检测。The nitrogen free radical scavenging ability, hydroxyl radical scavenging ability, superoxide anion free radical scavenging ability and total antioxidant capacity of sodium hyaluronate and unsaturated hyaluronic acid oligosaccharides were detected by kits. The control substance for total antioxidant capacity is 1 mM water-soluble vitamin E (Trolox), which is detected by ABTS.

结果表明:YNLX-HYL裂解透明质酸钠1h和5h形成的不饱和透明质酸寡糖的氮自由基清除率分别为68%和73%,而未裂解的透明质酸钠的氮自由基清除率为20%(图11);YNLX-HYL裂解透明质酸钠1h和5h形成的不饱和透明质酸寡糖的羟自由基清除率分别为68%和79%,而未裂解的透明质酸钠的羟自由基清除率为41%(图12);YNLX-HYL裂解透明质酸钠1h和5h形成的不饱和透明质酸寡糖的超氧阴离子自由基清除率分别为62%和64%,而未裂解的透明质酸钠的超氧阴离子自由基清除率为13%(图13);YNLX-HYL裂解透明质酸钠1h和5h形成的不饱和透明质酸寡糖的相对总抗氧化率分别为62%和61%,而未裂解的透明质酸钠的相对总抗氧化率为14%(图14)。The results showed that the nitrogen radical scavenging rates of unsaturated hyaluronan oligosaccharides formed by YNLX-HYL cleaving sodium hyaluronate for 1h and 5h were 68% and 73%, respectively, while the nitrogen radical scavenging rate of uncleaved sodium hyaluronate was 68% and 73%, respectively. The hydroxyl radical scavenging rate of unsaturated hyaluronic acid oligosaccharides formed by YNLX-HYL cleaving sodium hyaluronate for 1h and 5h was 68% and 79%, respectively, while the uncleaved hyaluronic acid The hydroxyl radical scavenging rate of sodium is 41% (Fig. 12); the superoxide anion radical scavenging rate of unsaturated hyaluronic acid oligosaccharides formed by YNLX-HYL cleavage of sodium hyaluronate for 1h and 5h are 62% and 64%, respectively , while the superoxide anion radical scavenging rate of uncleaved sodium hyaluronate was 13% (Fig. 13); rates were 62% and 61%, respectively, while the relative total antioxidant rate of uncleaved sodium hyaluronate was 14% (Figure 14).

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principle and spirit of the invention Variations, the scope of the invention is defined by the appended claims and their equivalents.

序列表sequence listing

<110> 云南师范大学<110> Yunnan Normal University

<120> 一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL及其应用<120> A low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL and its application

<160> 5<160> 5

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 799<211> 799

<212> PRT<212> PRT

<213> 透明质酸裂解酶(YNLX-HYL)<213> Hyaluronan lyase (YNLX-HYL)

<400> 1<400> 1

Met Lys Lys Thr Asn Leu Ala Phe Ser Leu Leu Cys Leu Ser Met GlyMet Lys Lys Thr Asn Leu Ala Phe Ser Leu Leu Cys Leu Ser Met Gly

1 5 10 151 5 10 15

Ser Val His Ala Gln Ile Ala Thr Glu Asn Val Asn Leu Pro Val ValSer Val His Ala Gln Ile Ala Thr Glu Asn Val Asn Leu Pro Val Val

20 25 30 20 25 30

Lys Ser Thr Thr Thr Thr Ser Thr Gln Gln Gln His Ile Ile Glu ArgLys Ser Thr Thr Thr Thr Ser Thr Gln Gln Gln His Ile Ile Glu Arg

35 40 45 35 40 45

Met Arg Asp Thr Trp Arg Gln Asn Phe Val Pro Ser Gly Pro Ala AlaMet Arg Asp Thr Trp Arg Gln Asn Phe Val Pro Ser Gly Pro Ala Ala

50 55 60 50 55 60

Pro Glu Leu Ser Ala Glu Tyr Val Ala Ser Leu Asn Lys Thr Ala AsnPro Glu Leu Ser Ala Glu Tyr Val Ala Ser Leu Asn Lys Thr Ala Asn

65 70 75 8065 70 75 80

Ile Phe Trp Lys Gly Ile Asp Lys Asn Thr Pro Ala Gly Gln Leu TrpIle Phe Trp Lys Gly Ile Asp Lys Asn Thr Pro Ala Gly Gln Leu Trp

85 90 95 85 90 95

Ala Asp Thr Val Leu Asp Ser Glu Ser Thr Ser Gly Arg Leu Lys LeuAla Asp Thr Val Leu Asp Ser Glu Ser Thr Ser Gly Arg Leu Lys Leu

100 105 110 100 105 110

Gly Thr Thr Leu Tyr Thr Val Tyr Gln Arg Leu Phe Thr Leu Ala LysGly Thr Thr Leu Tyr Thr Val Tyr Gln Arg Leu Phe Thr Leu Ala Lys

115 120 125 115 120 125

Ala Trp Ala Thr Pro Gly Thr Asp Leu Tyr Lys Asn Ala Gln Leu AsnAla Trp Ala Thr Pro Gly Thr Asp Leu Tyr Lys Asn Ala Gln Leu Asn

130 135 140 130 135 140

Thr Val Leu Lys Ser Ala Leu Ile Asn Leu Asn Gln Asp Tyr Tyr AsnThr Val Leu Lys Ser Ala Leu Ile Asn Leu Asn Gln Asp Tyr Tyr Asn

145 150 155 160145 150 155 160

Asp Gln Thr Pro Glu Trp Gly Asn Trp Trp Asn Trp Glu Leu Gly IleAsp Gln Thr Pro Glu Trp Gly Asn Trp Trp Asn Trp Glu Leu Gly Ile

165 170 175 165 170 175

Ser Arg Ser Val Asn Asn Thr Leu Val Ile Leu Tyr Asp Asp Leu ProSer Arg Ser Val Asn Asn Thr Leu Val Ile Leu Tyr Asp Asp Leu Pro

180 185 190 180 185 190

Ser Thr Leu Ile Asp Asn Tyr Asn Leu Ala Thr Arg His Phe Val ArgSer Thr Leu Ile Asp Asn Tyr Asn Leu Ala Thr Arg His Phe Val Arg

195 200 205 195 200 205

Asp Pro Arg Tyr Leu Ala Glu Gly Ser Gly Ala Pro Tyr Ser Thr ThrAsp Pro Arg Tyr Leu Ala Glu Gly Ser Gly Ala Pro Tyr Ser Thr Thr

210 215 220 210 215 220

Lys Asn Ala Phe Thr Ser Thr Gly Gly Asn Arg Ile Asp Ser Ala MetLys Asn Ala Phe Thr Ser Thr Gly Gly Asn Arg Ile Asp Ser Ala Met

225 230 235 240225 230 235 240

Val Val Phe Val Arg Gly Leu Leu Ala Asn Asp Pro Gly Glu Ile SerVal Val Phe Val Arg Gly Leu Leu Ala Asn Asp Pro Gly Glu Ile Ser

245 250 255 245 250 255

Ala Ala Val Thr Ser Val Pro Glu Val Leu Asn Thr Val Gln Ser GlyAla Ala Val Thr Ser Val Pro Glu Val Leu Asn Thr Val Gln Ser Gly

260 265 270 260 265 270

Asp Gly Phe Tyr Lys Asp Gly Ser Phe Ile Gln His Lys Asp Leu ProAsp Gly Phe Tyr Lys Asp Gly Ser Phe Ile Gln His Lys Asp Leu Pro

275 280 285 275 280 285

Tyr Ser Gly Thr Tyr Gly Gln Val Leu Leu Asn Gly Leu Gly Leu IleTyr Ser Gly Thr Tyr Gly Gln Val Leu Leu Asn Gly Leu Gly Leu Ile

290 295 300 290 295 300

Lys Asn Ser Val Ala Gly Thr Pro Trp Asp Phe Ser Val Glu Asp AsnLys Asn Ser Val Ala Gly Thr Pro Trp Asp Phe Ser Val Glu Asp Asn

305 310 315 320305 310 315 320

Arg Arg Ile Tyr Asp Val Ile Arg Gln Ala Phe Leu Pro Leu Leu HisArg Arg Ile Tyr Asp Val Ile Arg Gln Ala Phe Leu Pro Leu Leu His

325 330 335 325 330 335

Glu Gly Lys Met Pro Asp Ala Val Asn Gly Arg Ser Ile Ser Arg LysGlu Gly Lys Met Pro Asp Ala Val Asn Gly Arg Ser Ile Ser Arg Lys

340 345 350 340 345 350

Asn Gly Gln Asp Gln Asp Val Gly Ala Ser Val Met Asn Ala Ile AlaAsn Gly Gln Asp Gln Asp Val Gly Ala Ser Val Met Asn Ala Ile Ala

355 360 365 355 360 365

Leu Phe Val Asn Gly Ala Pro Pro Glu Glu Lys Arg His Ile Glu GlnLeu Phe Val Asn Gly Ala Pro Pro Glu Glu Lys Arg His Ile Glu Gln

370 375 380 370 375 380

Val Leu Lys Ala Gln Leu Asn Ser Lys Thr Thr Glu Tyr Tyr His ThrVal Leu Lys Ala Gln Leu Asn Ser Lys Thr Thr Glu Tyr Tyr His Thr

385 390 395 400385 390 395 400

His Leu Pro Glu Asn Leu Thr Ser Trp Gln Val Ile Thr Arg Ile GlnHis Leu Pro Glu Asn Leu Thr Ser Trp Gln Val Ile Thr Arg Ile Gln

405 410 415 405 410 415

Gln His Ser His Leu Pro Pro Ala Pro Arg Thr Ala Gly Gly Lys LeuGln His Ser His Leu Pro Pro Ala Pro Arg Thr Ala Gly Gly Lys Leu

420 425 430 420 425 430

Tyr Ala Asp Met Asp Arg Leu Ile Tyr Gln Gly Thr Asn Tyr Leu AlaTyr Ala Asp Met Asp Arg Leu Ile Tyr Gln Gly Thr Asn Tyr Leu Ala

435 440 445 435 440 445

Val Val Ala Met His Ser Asn Arg Thr Gly Ser Tyr Glu Cys Ile AsnVal Val Ala Met His Ser Asn Arg Thr Gly Ser Tyr Glu Cys Ile Asn

450 455 460 450 455 460

Asn Glu Asn Leu Lys Gly Gln Arg Thr Ser Asp Gly Met Thr Trp LeuAsn Glu Asn Leu Lys Gly Gln Arg Thr Ser Asp Gly Met Thr Trp Leu

465 470 475 480465 470 475 480

Tyr Leu Pro Asn Asp Asp Gln Tyr Arg Asp Tyr Trp Pro Val Val AspTyr Leu Pro Asn Asp Asp Gln Tyr Arg Asp Tyr Trp Pro Val Val Asp

485 490 495 485 490 495

Ser Arg Phe Leu Pro Gly Thr Thr Ser Ala Gly Glu Gln Gly Trp CysSer Arg Phe Leu Pro Gly Thr Thr Ser Ala Gly Glu Gln Gly Trp Cys

500 505 510 500 505 510

Asp Glu Gln Tyr Arg Val Thr Gln Leu Gly Arg Ala Asn Ile Ala TrpAsp Glu Gln Tyr Arg Val Thr Gln Leu Gly Arg Ala Asn Ile Ala Trp

515 520 525 515 520 525

Ala Gly Gly Asn Thr Leu Asn Lys Trp Ala Ser Ala Ser Met His LeuAla Gly Gly Asn Thr Leu Asn Lys Trp Ala Ser Ala Ser Met His Leu

530 535 540 530 535 540

Lys Val Pro Thr Tyr Ser Leu Lys Ala Lys Lys Ser Trp Phe Met AlaLys Val Pro Thr Tyr Ser Leu Lys Ala Lys Lys Ser Trp Phe Met Ala

545 550 555 560545 550 555 560

Pro His Glu Met Ile Met Leu Gly Ser Gln Ile Ser Ser Ser Ser ProPro His Glu Met Ile Met Leu Gly Ser Gln Ile Ser Ser Ser Ser Pro

565 570 575 565 570 575

Ala Val Thr Thr Ile Ala Asn Gln Lys Ile Ser Gly Ser Ala Lys ValAla Val Thr Thr Ile Ala Asn Gln Lys Ile Ser Gly Ser Ala Lys Val

580 585 590 580 585 590

Leu Val Asp Gly Ile Val Leu Leu Pro Gly Glu Glu Arg Lys Ala ThrLeu Val Asp Gly Ile Val Leu Leu Pro Gly Glu Glu Arg Lys Ala Thr

595 600 605 595 600 605

Gln Ser Val Val Leu Asn Asp Lys Gly Asn Asn Ile Ile Trp Lys ProGln Ser Val Val Leu Asn Asp Lys Gly Asn Asn Ile Ile Trp Lys Pro

610 615 620 610 615 620

Leu Ala Gly Ser Ser Ala Gln Val Ser Val Lys Gln Arg Gln Gly AsnLeu Ala Gly Ser Ser Ala Gln Val Ser Val Lys Gln Arg Gln Gly Asn

625 630 635 640625 630 635 640

Trp Ala Asp Ile Gly Thr Ser Ser Gly Lys Val Ser Ala Gln Phe LeuTrp Ala Asp Ile Gly Thr Ser Ser Gly Lys Val Ser Ala Gln Phe Leu

645 650 655 645 650 655

Thr Ile Ile Gln Pro His Ser Ala Glu Ser Asp Asn His Tyr Ala TrpThr Ile Ile Gln Pro His Ser Ala Glu Ser Asp Asn His Tyr Ala Trp

660 665 670 660 665 670

Val Val Phe Pro Ser Gly Ser Ala Ser Pro Ser Val Asn Ala Asp IleVal Val Phe Pro Ser Gly Ser Ala Ser Pro Ser Val Asn Ala Asp Ile

675 680 685 675 680 685

Thr Leu Leu Ala Asn Asp Ala Lys Val Gln Ala Val Ser Leu Pro GlyThr Leu Leu Ala Asn Asp Ala Lys Val Gln Ala Val Ser Leu Pro Gly

690 695 700 690 695 700

Gln Gln Val Ile Tyr Ala Asn Phe Trp Arg Ser Ala Thr Val Gly GlyGln Gln Val Ile Tyr Ala Asn Phe Trp Arg Ser Ala Thr Val Gly Gly

705 710 715 720705 710 715 720

Ile His Ala Leu Thr Pro Met Ser Leu Ile Met Thr Pro Thr Thr GlnIle His Ala Leu Thr Pro Met Ser Leu Ile Met Thr Pro Thr Thr Gln

725 730 735 725 730 735

Gly Tyr Gln Ile Ala Val Ser Ser Pro Arg Arg Asp Ser Arg Val SerGly Tyr Gln Ile Ala Val Ser Ser Pro Arg Arg Asp Ser Arg Val Ser

740 745 750 740 745 750

Phe Gln Leu Pro Asp Asn Ala Ile Pro Phe His Ile Ser Ser Asp ProPhe Gln Leu Pro Asp Asn Ala Ile Pro Phe His Ile Ser Ser Asp Pro

755 760 765 755 760 765

Asp Lys Arg Val Ser Leu Asn Gly Glu Ile Val Ser Val Asn Met ThrAsp Lys Arg Val Ser Leu Asn Gly Glu Ile Val Ser Val Asn Met Thr

770 775 780 770 775 780

Asn Leu Arg Gly Ser Ser Tyr Ser Phe Glu Leu Ser Lys Asn LysAsn Leu Arg Gly Ser Ser Tyr Ser Phe Glu Leu Ser Lys Asn Lys

785 790 795785 790 795

<210> 2<210> 2

<211> 2400<211> 2400

<212> DNA<212> DNA

<213> 透明质酸裂解酶基因(ynlx-hyl)<213> Hyaluronan lyase gene (ynlx-hyl)

<400> 2<400> 2

atgaaaaaga caaatttagc attttcgcta ttgtgcttaa gtatgggcag cgtacatgca 60atgaaaaaga caaatttagc attttcgcta ttgtgcttaa gtatgggcag cgtacatgca 60

cagatcgcta ccgaaaatgt aaatctgcca gtagtaaaat caactaccac aacgtcaacc 120cagatcgcta ccgaaaatgt aaatctgcca gtagtaaaat caactaccac aacgtcaacc 120

cagcaacagc atattattga gcgtatgcgt gatacctggc ggcagaattt tgtgccttca 180cagcaacagc atattattga gcgtatgcgt gatacctggc ggcagaattt tgtgccttca 180

ggcccagcgg cgccagaatt atcagcagag tatgtggcaa gtttaaacaa aacggccaat 240ggcccagcgg cgccagaatt atcagcagag tatgtggcaa gtttaaacaa aacggccaat 240

atattctgga aaggaataga taaaaatacc cccgcaggcc agttatgggc agataccgta 300atattctgga aaggaataga taaaaatacc cccgcaggcc agttatgggc agataccgta 300

ctggatagtg aaagcacatc aggacgcctg aaactgggca ctactcttta tacggtatac 360ctggatagtg aaagcacatc aggacgcctg aaactgggca ctactcttta tacggtatac 360

caacgcctgt tcaccctggc aaaagcctgg gctacgccgg ggacagatct ttataaaaat 420caacgcctgt tcaccctggc aaaagcctgg gctacgccgg ggacagatct ttataaaaat 420

gctcagttga atactgtact taaatcagcg ctgatcaatc tgaaccagga ctattataac 480gctcagttga atactgtact taaatcagcg ctgatcaatc tgaaccagga ctattataac 480

gatcagaccc cagaatgggg aaactggtgg aactgggagt taggcatttc acgcagtgtt 540gatcagaccc cagaatgggg aaactggtgg aactgggagt taggcatttc acgcagtgtt 540

aacaatactc tggtgatact ttatgatgat ctcccttcca cgctgattga taattataat 600aacaatactc tggtgatact ttatgatgat ctcccttcca cgctgattga taattataat 600

ctcgcgaccc gacattttgt tcgcgaccct cgttatttag ctgaaggaag cggagccccc 660ctcgcgaccc gacattttgt tcgcgaccct cgttatttag ctgaaggaag cggagccccc 660

tactccacaa caaaaaatgc ctttacgtcg actggcggaa accgcattga cagcgcaatg 720tactccacaa caaaaaatgc ctttacgtcg actggcggaa accgcattga cagcgcaatg 720

gtcgtttttg ttcggggtct cctggctaac gatcctggag aaattagcgc tgcagtaact 780gtcgtttttg ttcggggtct cctggctaac gatcctggag aaattagcgc tgcagtaact 780

tcagtacctg aagtgcttaa caccgttcag tccggagatg gtttctacaa agacggatcg 840tcagtacctg aagtgcttaa caccgttcag tccggagatg gtttctacaa agacggatcg 840

tttatccagc ataaagattt accttatagc ggaacctatg gccaggtttt gctgaatggt 900tttatccagc ataaagattt accttatagc ggaacctatg gccaggtttt gctgaatggt 900

ctgggattaa ttaaaaacag cgtcgcaggt acaccatggg atttctcagt tgaagataat 960ctgggattaa ttaaaaacag cgtcgcaggt acaccatggg atttctcagt tgaagataat 960

cgccgtattt atgacgtgat cagacaagct tttttacctt tacttcatga gggaaaaatg 1020cgccgtattt atgacgtgat cagacaagct tttttacctt tacttcatga gggaaaaatg 1020

cccgatgccg tcaatgggcg cagtatttca cgtaaaaatg ggcaggatca ggatgttggc 1080cccgatgccg tcaatgggcg cagtatttca cgtaaaaatg ggcaggatca ggatgttggc 1080

gcatcagtta tgaatgccat tgcattgttt gttaatggtg cgccaccaga agaaaagcgc 1140gcatcagtta tgaatgccat tgcattgttt gttaatggtg cgccaccaga agaaaagcgc 1140

cacattgaac aggtattaaa agcccagcta aattcaaaaa caacggaata ttatcacact 1200cacattgaac aggtattaaa agcccagcta aattcaaaaa caacggaata ttatcacact 1200

cacttgccag aaaacttaac ctcctggcag gttattacgc gtattcaaca gcatagccat 1260cacttgccag aaaacttaac ctcctggcag gttattacgc gtattcaaca gcatagccat 1260

ttgccaccgg ccccccgaac agcgggcggt aaactgtatg cagatatgga tcgtctgatt 1320ttgccaccgg ccccccgaac agcgggcggt aaactgtatg cagatatgga tcgtctgatt 1320

tatcagggta caaactatct ggctgttgta gcgatgcatt ccaatcgtac tggtagctac 1380tatcagggta caaactatct ggctgttgta gcgatgcatt ccaatcgtac tggtagctac 1380

gaatgtatta ataacgagaa tctaaaaggg cagagaacat ctgatgggat gacctggctg 1440gaatgtatta ataacgagaa tctaaaaggg cagagaacat ctgatgggat gacctggctg 1440

tatttgccca atgacgatca atatcgtgat tactggcctg tggtcgacag tcggttttta 1500tatttgccca atgacgatca atatcgtgat tactggcctg tggtcgacag tcggttttta 1500

ccaggcacca cctctgctgg cgagcagggt tggtgtgatg agcaataccg tgtgactcag 1560ccaggcacca cctctgctgg cgagcagggt tggtgtgatg agcaataccg tgtgactcag 1560

ttaggtcggg caaatatcgc ctgggcgggt ggcaatactc tgaataaatg ggcaagcgcg 1620ttaggtcggg caaatatcgc ctgggcgggt ggcaatactc tgaataaatg ggcaagcgcg 1620

agtatgcatt taaaagtgcc gacttattca ctcaaggcga aaaaatcctg gttcatggca 1680agtatgcatt taaaagtgcc gacttattca ctcaaggcga aaaaatcctg gttcatggca 1680

ccgcatgaaa tgatcatgct tgggagccag atatccagta gtagcccggc ggtaacgacc 1740ccgcatgaaa tgatcatgct tgggagccag atatccagta gtagcccggc ggtaacgacc 1740

attgctaatc agaaaatcag tggctcggca aaagtgcttg ttgatggcat cgtcttgctg 1800attgctaatc agaaaatcag tggctcggca aaagtgcttg ttgatggcat cgtcttgctg 1800

cccggagaag agagaaaagc aacccaatct gtcgttttaa acgataaagg taataacatt 1860cccggagaag agagaaaagc aacccaatct gtcgttttaa acgataaagg taataacatt 1860

atctggaagc cattagctgg ctcaagcgca caagttagtg tgaaacaacg tcagggtaac 1920atctggaagc cattagctgg ctcaagcgca caagttagtg tgaaacaacg tcagggtaac 1920

tgggccgata tcggcacctc atccggtaaa gtttcggcac aatttttaac cattatccag 1980tgggccgata tcggcacctc atccggtaaa gtttcggcac aatttttaac cattatccag 1980

cctcatagcg cagaatcaga taatcattat gcctgggttg tcttcccctc ggggtccgca 2040cctcatagcg cagaatcaga taatcattat gcctgggttg tcttcccctc ggggtccgca 2040

tccccttccg taaatgctga cataacgctc cttgcgaatg atgcaaaagt ccaggctgtg 2100tccccttccg taaatgctga cataacgctc cttgcgaatg atgcaaaagt ccaggctgtg 2100

tcgctaccag gtcagcaggt tatttatgct aatttctggc gttctgcaac tgtgggaggc 2160tcgctaccag gtcagcaggt tatttatgct aatttctggc gttctgcaac tgtgggaggc 2160

attcatgcat tgacgccaat gtccctgatt atgacgccaa caacacaagg ttatcagata 2220attcatgcat tgacgccaat gtccctgatt atgacgccaa caacacaagg ttatcagata 2220

gcagtatctt caccacgtcg tgatagtcgg gtgtcattcc aactgcccga taatgcaatc 2280gcagtatctt caccacgtcg tgatagtcgg gtgtcattcc aactgcccga taatgcaatc 2280

ccattccata tttccagtga ccctgataag cgcgtatctc ttaacgggga gatcgtcagc 2340ccattccata tttccagtga ccctgataag cgcgtatctc ttaacgggga gatcgtcagc 2340

gtgaatatga ccaatctacg cggcagtagt tattcttttg aattatctaa aaataaatag 2400gtgaatatga ccaatctacg cggcagtagt tattcttttg aattatctaa aaataaatag 2400

<210> 3<210> 3

<211> 20<211> 20

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

Met Lys Lys Thr Asn Leu Ala Phe Ser Leu Leu Cys Leu Ser Met GlyMet Lys Lys Thr Asn Leu Ala Phe Ser Leu Leu Cys Leu Ser Met Gly

1 5 10 151 5 10 15

Ser Val His AlaSer Val His Ala

20 20

<210> 4<210> 4

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

taagaaggag atatacatat gcagatcgct accgaaaatg taaat 45taagaaggag atatacatat gcagatcgct accgaaaatg taaat 45

<210> 5<210> 5

<211> 55<211> 55

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

gtggtggtgg tggtgctcga gtttattttt agataattca aaagaataac tactg 55gtggtggtgg tggtgctcga gtttattttt agataattca aaagaataac tactg 55

Claims (6)

1.一种低温耐硫酸盐的透明质酸裂解酶YNLX-HYL,其特征在于,所述的透明质酸裂解酶YNLX-HYL的氨基酸序列如SEQ ID NO.1所示。1. a low-temperature sulfate-resistant hyaluronan lyase YNLX-HYL, is characterized in that, the amino acid sequence of described hyaluronan lyase YNLX-HYL is as shown in SEQ ID NO.1. 2.权利要求1所述的透明质酸裂解酶YNLX-HYL的编码基因ynlx-hyl,其特征在于,所述的编码基因ynlx-hyl的核苷酸序列如SEQ ID NO.2所示。2. The coding gene ynlx-hyl of the hyaluronan lyase YNLX-HYL according to claim 1, wherein the nucleotide sequence of the coding gene ynlx-hyl is as shown in SEQ ID NO.2. 3.一种重组表达载体,其特征在于,包含权利要求2所述的编码基因ynlx-hyl。3. A recombinant expression vector, characterized in that it comprises the encoding gene ynlx-hyl of claim 2. 4.根据权利要求3所述的一种重组表达载体,其特征在于,所述的重组表达载体为pEasy-E2-ynlx-hyl。4 . The recombinant expression vector according to claim 3 , wherein the recombinant expression vector is pEasy-E2-ynlx-hyl. 5 . 5.一种重组菌,其特征在于,包含权利要求2所述的编码基因ynlx-hyl。5. a recombinant bacteria, is characterized in that, comprises the described coding gene ynlx-hyl of claim 2. 6.根据权利要求5所述的一种重组菌,其特征在于,所述的重组菌为BL21(DE3)/ynlx-hyl。6 . The recombinant bacteria according to claim 5 , wherein the recombinant bacteria is BL21(DE3)/ynlx-hyl. 7 .
CN202010323988.0A 2020-04-22 2020-04-22 A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application Active CN111394344B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010323988.0A CN111394344B (en) 2020-04-22 2020-04-22 A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010323988.0A CN111394344B (en) 2020-04-22 2020-04-22 A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application

Publications (2)

Publication Number Publication Date
CN111394344A CN111394344A (en) 2020-07-10
CN111394344B true CN111394344B (en) 2022-07-12

Family

ID=71428036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010323988.0A Active CN111394344B (en) 2020-04-22 2020-04-22 A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application

Country Status (1)

Country Link
CN (1) CN111394344B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118406592B (en) * 2024-04-22 2024-11-19 北京华妍生物科技有限公司 Microorganism and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619889B (en) * 2017-11-06 2020-09-01 齐河力厚化工有限公司 Leather soaking enzyme preparation
CN111004755A (en) * 2019-12-30 2020-04-14 中国海洋大学 Citrobacter T26 for specifically degrading hyaluronic acid, hyaluronidase HylC produced by Citrobacter T26 and application of hyaluronidase HylC

Also Published As

Publication number Publication date
CN111394344A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
CN105950592B (en) Salt-resistant, ethanol-resistant and trypsin-resistant xylosidase JB13GH39 and preparation method thereof
CN116555229B (en) N-acetylglucosaminidase mutant, recombinant expression vector, bacterium and application
CN105483102B (en) The β of resistance to Product inhibiton-N-acetylglucosaminidase HJ5nag and preparation method thereof
CN116376875B (en) N-acetylglucosaminidase mutants with improved thermostability and their applications
CN105950586A (en) Low temperature xylosidase HJ14GH43 and salt-tolerant mutant thereof
CN117737038B (en) N-acetylglucosaminidase mutant De254P delta 5 and preparation and application thereof
CN108342374A (en) A kind of chitinase and its application
CN114410611B (en) Laminarin degrading enzyme OUC-BsLam26 and its application
CN117625581A (en) N-acetylglucosaminidase mutant Ea2F and application thereof
CN103981161A (en) Salt-tolerant ethanol-tolerant protease-tolerant surfactant-tolerant exoinulinase, gene thereof, vector and strain
CN102220301B (en) Alkali-resistant low-temperature alpha-galactosidase AgaAJB13 and genes thereof
CN102220303B (en) Xylanase XynAHJ3 with protease resistance and gene thereof
CN105483101B (en) The β of the resistance to Product inhibiton of low temperature salt tolerant-N-acetylglucosaminidase JB10NagA
CN111394344B (en) A low-temperature sulfate-tolerant hyaluronan lyase YNLX-HYL and its application
CN117737039B (en) N-acetylglucosaminidase mutant De259A delta 7 and preparation and application thereof
Hashimoto et al. Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1
JP6236512B2 (en) Agarase, compositions comprising said, and applications thereof
CN117925576A (en) N-acetylglucosaminidase mutant De10A and application thereof
CN107446903B (en) Salt-tolerant ethanol-tolerant pectinase with 3 optimal pH values and gene thereof
CN113564146B (en) A heat-resistant β-galactosidase and its application in lactose degradation
CN103789287B (en) There is the alpha-galactosidase A gaAJB07 and gene, recombinant vector, recombinant bacterial strain that turn glycosyl activity
CN104726430B (en) The α galactosidase As gaAHJ8 and its gene of salt tolerant resistant protease
Guo et al. Expression of a novel hyaluronidase from Streptococcus zooepidemicus in Escherichia coli and its application for the preparation of HA oligosaccharides
CN109251913B (en) A kind of mannanase mutant DeP41P42 and its application
CN115873831A (en) Chitosanase mutant with high catalytic activity and temperature stability and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared