CN113316303B - DC arc driven plasma synthetic jet array excitation device and method - Google Patents
DC arc driven plasma synthetic jet array excitation device and method Download PDFInfo
- Publication number
- CN113316303B CN113316303B CN202110574889.4A CN202110574889A CN113316303B CN 113316303 B CN113316303 B CN 113316303B CN 202110574889 A CN202110574889 A CN 202110574889A CN 113316303 B CN113316303 B CN 113316303B
- Authority
- CN
- China
- Prior art keywords
- synthetic jet
- voltage
- plasma synthetic
- plasma
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 45
- 239000010703 silicon Substances 0.000 claims abstract description 45
- 230000015556 catabolic process Effects 0.000 claims abstract description 21
- 230000001360 synchronised effect Effects 0.000 claims description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 claims 34
- 238000005516 engineering process Methods 0.000 description 3
- 238000002679 ablation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/36—Circuit arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Abstract
Description
技术领域Technical field
本发明涉及主动流动控制领域,尤其是一种直流电弧驱动的等离子体合成射流阵列激励装置和方法。The invention relates to the field of active flow control, in particular to a DC arc driven plasma synthetic jet array excitation device and method.
背景技术Background technique
增升减阻是飞行器发展的永恒主题。当前,基于传统布局的飞行器设计已经达到了很高水平,要想进一步提升飞行器的性能必须依赖主动流动控制技术。该项技术的核心是激励器。等离子体合成射流激励器作为一种特殊的主动流动控制激励器,具有射流速度高(>500m/s)、激励频带宽(10kHz)的显著优势,因而在主动流动控制领域应用前景广阔。但受射流孔径(1-3mm)和腔体体积的限制,单个等离子体合成射流激励器的流动控制范围极其有限,沿着展向一般不超过10mm。为了实现飞机襟翼在大偏转角度下数十米空间尺度的流动分离控制,需要将多个等离子体合成射流激励器排布在一起,形成一个阵列。现有的等离子体合成射流阵列激励产生装置大致可以分为两类。一类是串联式放电电路(Boretskij V.et al.Properties of Multi-Spark Plasma Discharge Developed forFlow Control.AIAA 2016-0451,2016.;吴云,张志波,金迪,甘甜,宋慧敏,贾敏,梁华。“单电源驱动阵列式等离子体合成射流流动控制装置及流动控制方法”,申请号:201910669998.7,2015),需要一个高压重频脉冲发生器对多个气体间隙组成的阵列进行周期性的击穿,缺点是重频击穿过程中的电磁干扰大、高压开关器件成本高。另一类是并联式放电电路(邵涛,王磊,章程,严萍,罗振兵,王林。“多个等离子体合成射流激励器同步放电的高压脉冲电源”,申请号:201510578087.5,2015;邵涛,王磊,章程,严萍,罗振兵,王林。“多个等离子体合成射流激励器同步放电的高压脉冲电源”,申请号:201510058090.4,2015),即每个激励器都与一个包含了电阻、变压器绕组和其他半导体器件的高压发生回路相连。并联放电电路虽然不需要高压开关,但电源体积大、元器件多,并且各个激励器的放电并不严格同步。综上,如何采用简单的电路实现等离子体合成射流阵列的高频低噪同步放电迄今仍是个难题。Increasing lift and reducing drag is an eternal theme in the development of aircraft. Currently, aircraft design based on traditional layout has reached a very high level. To further improve the performance of aircraft, active flow control technology must be relied upon. At the heart of this technology is the exciter. As a special active flow control actuator, the plasma synthetic jet actuator has the significant advantages of high jet velocity (>500m/s) and excitation frequency bandwidth (10kHz), so it has broad application prospects in the field of active flow control. However, limited by the jet aperture (1-3mm) and cavity volume, the flow control range of a single plasma synthetic jet actuator is extremely limited, generally not exceeding 10mm along the span. In order to achieve flow separation control of aircraft flaps at a spatial scale of tens of meters at large deflection angles, multiple plasma synthetic jet actuators need to be arranged together to form an array. Existing plasma synthetic jet array excitation generating devices can be roughly divided into two categories. One type is the series discharge circuit (Boretskij V.et al.Properties of Multi-Spark Plasma Discharge Developed for Flow Control.AIAA 2016-0451, 2016.; Wu Yun, Zhang Zhibo, Jin Di, Gan Tian, Song Huimin, Jia Min, Liang Hua. "Single power supply driven array type plasma synthetic jet flow control device and flow control method", application number: 201910669998.7, 2015), a high-voltage repeated frequency pulse generator is required to periodically impact an array composed of multiple gas gaps. The disadvantages are the large electromagnetic interference during the repeated frequency breakdown process and the high cost of high-voltage switching devices. The other type is the parallel discharge circuit (Shao Tao, Wang Lei, Zhang Cheng, Yan Ping, Luo Zhenbing, Wang Lin. "High-voltage pulse power supply for simultaneous discharge of multiple plasma synthetic jet actuators", application number: 201510578087.5, 2015; Shao Tao , Wang Lei, Zhang Cheng, Yan Ping, Luo Zhenbing, Wang Lin. "High-voltage pulse power supply for simultaneous discharge of multiple plasma synthetic jet actuators", application number: 201510058090.4, 2015), that is, each actuator is connected with a resistor, The transformer windings are connected to the high-voltage generating circuits of other semiconductor devices. Although the parallel discharge circuit does not require a high-voltage switch, the power supply is large in size and has many components, and the discharge of each exciter is not strictly synchronized. In summary, how to use a simple circuit to achieve high-frequency and low-noise synchronous discharge of a plasma synthetic jet array is still a problem so far.
发明内容Contents of the invention
本发明提出一种直流电弧驱动的等离子体合成射流阵列同步激励装置,其特征在于,包含直流电源、高压脉冲发生器、第一高压硅堆D1、第二高压硅堆D2、第一电阻器R1、第二电阻器R2、高压电子开关Q1,以及多个等离子体合成射流激励器串联在一起形成的等离子体合成射流激励器阵列;其中The present invention proposes a DC arc driven plasma synthetic jet array synchronous excitation device, which is characterized in that it includes a DC power supply, a high-voltage pulse generator, a first high-voltage silicon stack D1, a second high-voltage silicon stack D2, and a first resistor R1 , the second resistor R2, the high-voltage electronic switch Q1, and a plurality of plasma synthetic jet actuators connected in series to form a plasma synthetic jet actuator array; where
高压电子开关Q1与第一电阻器R1相串联形成串联结构,该串联结构再整体与第二电阻器R2相并联,形成串并结构;该串并结构的两端中,高压电子开关Q1端与直流电源正端相连,两个电阻器连接端与第一高压硅堆D1的正端相连;高压脉冲发生器正端接第二高压硅堆D2的正端,第二高压硅堆D2的负端与第一高压硅堆D1的负端相连接;多个等离子体合成射流激励器串联在一起形成等离子体合成射流激励器阵列;在该阵列中,第一等离子体合成射流激励器的左端与第一高压硅堆D1负端、第二高压硅堆D2负端相连,右端与第二等离子体合成射流激励器的左端相连;第二等离子体合成射流激励器右端与第三等离子体合成射流激励器左端相连...诸如此类,构成首尾相接结构;阵列末尾第N等离子体合成射流激励器的右端接地,N为等离子体合成射流激励器个数;直流电源负端、高压脉冲发生器负端均接地。The high-voltage electronic switch Q1 is connected in series with the first resistor R1 to form a series structure, and the series structure is connected in parallel with the second resistor R2 as a whole to form a series-parallel structure; among the two ends of the series-parallel structure, the high-voltage electronic switch Q1 is connected to The positive terminal of the DC power supply is connected, and the two resistor connecting terminals are connected to the positive terminal of the first high-voltage silicon stack D1; the positive terminal of the high-voltage pulse generator is connected to the positive terminal of the second high-voltage silicon stack D2, and the negative terminal of the second high-voltage silicon stack D2 Connected to the negative end of the first high-voltage silicon stack D1; multiple plasma synthetic jet actuators are connected in series to form a plasma synthetic jet actuator array; in this array, the left end of the first plasma synthetic jet actuator is connected to the first plasma synthetic jet actuator. The negative end of the first high-voltage silicon stack D1 is connected to the negative end of the second high-voltage silicon stack D2, and the right end is connected to the left end of the second plasma synthetic jet exciter; the right end of the second plasma synthetic jet exciter is connected to the third plasma synthetic jet exciter. The left end is connected... and so on, forming an end-to-end structure; the right end of the Nth plasma synthetic jet actuator at the end of the array is grounded, N is the number of plasma synthetic jet actuators; the negative terminal of the DC power supply and the negative terminal of the high-voltage pulse generator are both Ground.
在本发明的一个实施例中,等离体合成射流激励器由开有小孔的腔体和两根对插的钨针电极组成;腔体的体积为50-1000mm3;电极间距为0.5-4mm;出口小孔的直径为1-3mm。In one embodiment of the present invention, the plasma synthetic jet exciter consists of a cavity with a small hole and two oppositely inserted tungsten needle electrodes; the volume of the cavity is 50-1000mm 3 ; the electrode spacing is 0.5- 4mm; the diameter of the exit hole is 1-3mm.
在本发明的一个具体实施例中,腔体的体积为50mm3;钨针电极的直径为1-3mm;电极间距为1mm;出口小孔的直径为2mm。In a specific embodiment of the present invention, the volume of the cavity is 50mm 3 ; the diameter of the tungsten needle electrode is 1-3mm; the electrode spacing is 1mm; and the diameter of the exit hole is 2mm.
上述直流电弧驱动的等离子体合成射流阵列同步激励装置,其工作过程如下:The working process of the above DC arc driven plasma synthetic jet array synchronous excitation device is as follows:
高压脉冲发生器、第二高压硅堆D2和等离子体合成射流激励器阵列组成高压击穿回路,实现放电的击穿;直流电源、第二电阻器R2、第一高压硅堆D1和等离子体合成射流激励器阵列组成直流供电回路,用于维持等离子体合成射流激励器阵列在高电压击穿后形成的电弧,保证放电不熄灭;直流电源、高压电子开关Q1、第一电阻器R1、第一高压硅堆D1和等离子体合成射流激励器阵列形成脉冲放电回路,用于周期性地给等离子体合成射流激励器注入能量;这三个供电回路交替工作,能够实现等离子体合成射流的高频工作。The high-voltage pulse generator, the second high-voltage silicon stack D2 and the plasma synthesis jet exciter array form a high-voltage breakdown circuit to achieve discharge breakdown; the DC power supply, the second resistor R2, the first high-voltage silicon stack D1 and the plasma synthesis The jet exciter array forms a DC power supply circuit, which is used to maintain the arc formed by the plasma synthetic jet exciter array after high voltage breakdown to ensure that the discharge is not extinguished; DC power supply, high-voltage electronic switch Q1, first resistor R1, first The high-voltage silicon stack D1 and the plasma synthetic jet exciter array form a pulse discharge circuit, which is used to periodically inject energy into the plasma synthetic jet actuator; these three power supply loops work alternately to achieve high-frequency operation of the plasma synthetic jet. .
还提供一种直流电弧驱动的等离子体合成射流阵列同步激励方法,具体包括下列步骤:A DC arc driven plasma synthetic jet array synchronous excitation method is also provided, which specifically includes the following steps:
(1)阶段A:点火触发阶段(1) Phase A: Ignition triggering phase
在该阶段,高压脉冲发生器输出一个高压脉冲施加在第二高压硅堆D2和等离子体合成射流激励器阵列两端;当脉冲幅值超过等离子体合成射流激励器的所有空气间隙对应的击穿电压之和时,等离子体合成射流激励器的电极之间形成放电电弧通道;At this stage, the high-voltage pulse generator outputs a high-voltage pulse and applies it to both ends of the second high-voltage silicon stack D2 and the plasma synthetic jet actuator array; when the pulse amplitude exceeds the corresponding breakdown of all air gaps of the plasma synthetic jet actuator When the voltage is summed, a discharge arc channel is formed between the electrodes of the plasma synthetic jet exciter;
(2)阶段B:高能释放阶段(2) Stage B: High energy release stage
点火触发后,高压电子开关Q1打开,等离子体合成射流激励阵列进入阶段B;在该阶段,直流电源通过第一电阻器R1、第一高压硅堆D1向等离子体合成射流激励器的电极之间的电弧通道注入能量;强放电电流使得电弧直径迅速增大、温度急剧升高,实现对等离子体合成射流激励器的腔体内气体的快速增压;在腔体内外压差的驱动,射流从等离子体合成射流激励器腔体的出口小孔喷出;After the ignition is triggered, the high-voltage electronic switch Q1 is turned on, and the plasma synthetic jet excitation array enters stage B; in this stage, the DC power supply passes between the electrodes of the plasma synthetic jet exciter through the first resistor R1 and the first high-voltage silicon stack D1. Energy is injected into the arc channel; the strong discharge current causes the arc diameter to increase rapidly and the temperature to rise sharply, achieving rapid pressurization of the gas in the cavity of the plasma synthetic jet exciter; driven by the pressure difference inside and outside the cavity, the jet flows from the plasma The synthetic jet ejects from the outlet hole of the cavity of the body synthetic jet exciter;
(3)阶段C:低能维弧阶段(3) Stage C: Low-energy dimensional arc stage
高能释放阶段结束后,高压电子开关Q1关闭,等离子体合成射流激励装置进入低能维弧阶段,即阶段C;直流电源、第二电阻器R2、第一高压硅堆D1和等离子体合成射流激励器阵列构成闭合的放电回路;电路中的放电电流仅供维持电弧通道的不熄灭,对于气体的加热效应能够忽略;受自然冷却作用,等离子体合成射流激励器的腔体内气体温度和压力开始缓慢降低,外部环境大气通过出口小孔重新吸入等离子体合成射流激励器,使腔体复原到初始状态;After the high-energy release stage, the high-voltage electronic switch Q1 is turned off, and the plasma synthetic jet excitation device enters the low-energy dimensional arc stage, that is, stage C; the DC power supply, the second resistor R2, the first high-voltage silicon stack D1 and the plasma synthetic jet exciter The array forms a closed discharge circuit; the discharge current in the circuit is only to maintain the arc channel without extinguishing, and the heating effect on the gas can be ignored; due to natural cooling, the gas temperature and pressure in the cavity of the plasma synthetic jet actuator begin to slowly decrease , the external ambient atmosphere is re-inhaled into the plasma synthetic jet exciter through the exit hole, restoring the cavity to its initial state;
(4)阶段B/C交替:高频射流产生阶段(4) Stage B/C alternation: high-frequency jet generation stage
由于电弧在一个完整工作周期后并未熄灭,因此交替打开和关闭高压电子开关Q1,即重复进入阶段B和C,即可产生高频的脉冲射流。Since the arc is not extinguished after a complete working cycle, the high-voltage electronic switch Q1 is turned on and off alternately, that is, repeatedly entering stages B and C, to generate a high-frequency pulse jet.
在本发明的一个具体实施例中,在阶段A:高压脉冲发生器输出的高压脉冲的幅值>20kV,脉宽不限。In a specific embodiment of the present invention, in stage A: the amplitude of the high-voltage pulse output by the high-voltage pulse generator is >20kV, and the pulse width is not limited.
在本发明的另一个具体实施例中,在阶段B:第一电阻器R1阻值为100Ω量级。In another specific embodiment of the present invention, in stage B: the resistance of the first resistor R1 is on the order of 100Ω.
在本发明的再一个具体实施例中,在阶段C:第二电阻器R2阻值为100kΩ量级。In another specific embodiment of the present invention, in stage C: the resistance of the second resistor R2 is on the order of 100 kΩ.
本发明能够实现激励器阵列的“一次点火、高频工作”,克服传统激励装置电磁干扰大、成本高、电源体积大的缺点,对于推进主动流动控制的工程应用具有重要意义。The invention can realize "one-time ignition and high-frequency operation" of the exciter array, overcome the shortcomings of traditional excitation devices such as large electromagnetic interference, high cost, and large power supply volume, and is of great significance for promoting the engineering application of active flow control.
此外,在该方法中,等离子体合成射流阵列的多路电弧并不熄灭,因此只需要一次高压击穿,客服了高频高压脉冲在重复击穿过程中带来的强电磁干扰问题。In addition, in this method, the multiple arcs of the plasma synthetic jet array are not extinguished, so only one high-voltage breakdown is required, which overcomes the problem of strong electromagnetic interference caused by high-frequency and high-voltage pulses during repeated breakdowns.
传统的激励装置需要频繁对空气间隙进行击穿,电磁干扰大。本发明中的激励装置只需要一次高压击穿过程,电磁干扰小。Traditional excitation devices require frequent breakdown of the air gap and cause large electromagnetic interference. The excitation device in the present invention only requires one high-voltage breakdown process and has small electromagnetic interference.
传统激励装置受高压脉冲电源最高重复工作频率限制,放电频率一般在5kHz以下。而本发明中的激励装置则不需要使用重频高压脉冲电源,激励器阵列的工作频率由高压电子开关Q1决定,可以达到50kHz。Traditional excitation devices are limited by the maximum repetitive working frequency of high-voltage pulse power supply, and the discharge frequency is generally below 5kHz. The excitation device in the present invention does not need to use a repeated frequency high-voltage pulse power supply. The operating frequency of the exciter array is determined by the high-voltage electronic switch Q1 and can reach 50kHz.
本发明中的高压脉冲发生器可以由价格低廉的点火电源来实现,经济性好。The high-voltage pulse generator in the present invention can be realized by a low-price ignition power supply, and is economical.
附图说明Description of drawings
图1示出直流电弧驱动的等离子体合成射流阵列激励装置;Figure 1 shows a DC arc driven plasma synthetic jet array excitation device;
图2示出等离子体合成射流阵列放电波形示意图;Figure 2 shows a schematic diagram of the discharge waveform of the plasma synthetic jet array;
图3示出等离子体合成射流阵列的三个工作阶段。Figure 3 shows the three working stages of the plasma synthetic jet array.
具体实施方式Detailed ways
图1示出本发明的直流电弧驱动的等离子体合成射流阵列激励装置。该装置主要包含一个直流电源(电压在1000V量级)、一个高压脉冲发生器(脉冲电压:20-30kV)、两个高压硅堆(D1和D2)、两个电阻器(R1和R2)、一个高压电子开关Q1和若干个等离子体合成射流激励器串联在一起形成的阵列。其中,高压电子开关Q1与第一电阻器R1相串联形成串联结构,该串联结构再整体与第二电阻器R2相并联,形成串并结构;该串并结构的两端中,高压电子开关Q1端与直流电源正端相连,两个电阻器连接端与第一高压硅堆D1的正端相连。高压脉冲发生器正端接第二高压硅堆D2的正端,第二高压硅堆D2的负端与第一高压硅堆D1的负端相连接。多个等离子体合成射流激励器串联在一起形成等离子体合成射流激励器阵列。在该阵列中,第一等离子体合成射流激励器的左端与第一高压硅堆D1负端、第二高压硅堆D2负端相连,右端与第二等离子体合成射流激励器的左端相连;第二等离子体合成射流激励器右端与第三等离子体合成射流激励器左端相连...诸如此类,构成首尾相接结构;阵列末尾第N等离子体合成射流激励器的右端接地,N为等离子体合成射流激励器个数。直流电源负端、高压脉冲发生器负端均接地。Figure 1 shows the DC arc driven plasma synthetic jet array excitation device of the present invention. The device mainly includes a DC power supply (voltage in the order of 1000V), a high-voltage pulse generator (pulse voltage: 20-30kV), two high-voltage silicon stacks (D1 and D2), two resistors (R1 and R2), A high-voltage electronic switch Q1 and several plasma synthetic jet exciters are connected in series to form an array. Among them, the high-voltage electronic switch Q1 is connected in series with the first resistor R1 to form a series structure, and the series structure is connected in parallel with the second resistor R2 as a whole to form a series-parallel structure; at both ends of the series-parallel structure, the high-voltage electronic switch Q1 The terminal is connected to the positive terminal of the DC power supply, and the two resistor connecting terminals are connected to the positive terminal of the first high-voltage silicon stack D1. The positive terminal of the high-voltage pulse generator is connected to the positive terminal of the second high-voltage silicon stack D2, and the negative terminal of the second high-voltage silicon stack D2 is connected to the negative terminal of the first high-voltage silicon stack D1. A plurality of plasma synthetic jet actuators are connected in series to form a plasma synthetic jet actuator array. In this array, the left end of the first plasma synthetic jet exciter is connected to the negative end of the first high-voltage silicon stack D1 and the negative end of the second high-voltage silicon stack D2, and the right end is connected to the left end of the second plasma synthetic jet exciter; The right end of the second plasma synthetic jet actuator is connected to the left end of the third plasma synthetic jet actuator...and so on, forming a head-to-tail structure; the right end of the Nth plasma synthetic jet actuator at the end of the array is grounded, and N is the plasma synthetic jet. Number of exciters. The negative terminal of the DC power supply and the negative terminal of the high-voltage pulse generator are both grounded.
每个等离体合成射流激励器由开有小孔的腔体和两根对插的钨针电极组成(宗豪华,宋慧敏,梁华,贾敏,李应红.纳秒脉冲等离子体合成射流特性实验研究[J]。推进技术,2015,(10):1474-1478。)。腔体的体积大约为50-1000mm3,出于加热效率考虑优选50mm3。钨针电极的直径为1-3mm,出于耐烧蚀考虑优选2mm。电极间距范围为0.5-4mm,为了方便放电击穿优选1mm。出口小孔的直径为1-3mm,优选2mm。Each plasma synthetic jet exciter consists of a cavity with a small hole and two oppositely inserted tungsten needle electrodes (Zong Haohua, Song Huimin, Liang Hua, Jia Min, Li Yinghong. Experiment on the characteristics of nanosecond pulsed plasma synthetic jet Research[J]. Propulsion Technology, 2015, (10): 1474-1478.). The volume of the cavity is approximately 50-1000mm 3 , and 50mm 3 is preferred for heating efficiency. The diameter of the tungsten needle electrode is 1-3mm, and 2mm is preferred for ablation resistance. The electrode spacing range is 0.5-4mm, and 1mm is preferred to facilitate discharge breakdown. The diameter of the outlet hole is 1-3mm, preferably 2mm.
高压脉冲发生器、第二高压硅堆D2和等离子体合成射流激励器阵列组成一个高压击穿回路,实现放电的击穿。直流电源、第二电阻器R2、第一高压硅堆D1和等离子体合成射流激励器阵列组成直流供电回路,用于维持等离子体合成射流激励器阵列在高电压击穿后形成的电弧,保证放电不熄灭。直流电源、高压电子开关Q1、第一电阻器R1、第一高压硅堆D1和等离子体合成射流激励器阵列形成脉冲放电回路,用于周期性地给等离子体合成射流激励器注入能量。这三个供电回路交替工作,能够实现等离子体合成射流的高频工作。The high-voltage pulse generator, the second high-voltage silicon stack D2 and the plasma synthetic jet exciter array form a high-voltage breakdown circuit to achieve discharge breakdown. The DC power supply, the second resistor R2, the first high-voltage silicon stack D1 and the plasma synthetic jet actuator array form a DC power supply circuit, which is used to maintain the arc formed by the plasma synthetic jet actuator array after high voltage breakdown to ensure discharge. Not extinguished. The DC power supply, the high-voltage electronic switch Q1, the first resistor R1, the first high-voltage silicon stack D1 and the plasma synthetic jet actuator array form a pulse discharge circuit for periodically injecting energy into the plasma synthetic jet actuator. These three power supply loops work alternately to achieve high-frequency operation of the plasma synthetic jet.
图2示出等离子体合成射流激励器阵列在高频工作过程中的放电波形。整个放电波形可以分为A、B和C三个阶段。对应于每个阶段的等离子体合成射流激励器工作状态如图3所示。现结合图2和图3对图1激励装置的工作过程进行介绍。Figure 2 shows the discharge waveform of the plasma synthetic jet exciter array during high-frequency operation. The entire discharge waveform can be divided into three stages: A, B and C. The working status of the plasma synthetic jet exciter corresponding to each stage is shown in Figure 3. The working process of the excitation device in Figure 1 will now be introduced with reference to Figures 2 and 3.
一种直流电弧驱动的等离子体合成射流阵列激励装置和方法,具体包括下列步骤:A DC arc driven plasma synthetic jet array excitation device and method specifically includes the following steps:
(1)点火触发阶段(阶段A)。(1) Ignition triggering phase (Phase A).
在该阶段,高压脉冲发生器输出一个高压脉冲(幅值>20kV,脉宽不限)施加在第二高压硅堆D2和等离子体合成射流激励器阵列两端。当脉冲幅值超过等离子体合成射流激励器的所有空气间隙对应的击穿电压之和时,等离子体合成射流激励器的电极之间形成放电电弧通道,对应于图2中的电流尖峰。At this stage, the high-voltage pulse generator outputs a high-voltage pulse (amplitude >20kV, pulse width is not limited) and is applied to both ends of the second high-voltage silicon stack D2 and the plasma synthetic jet exciter array. When the pulse amplitude exceeds the sum of breakdown voltages corresponding to all air gaps of the plasma synthetic jet actuator, a discharge arc channel is formed between the electrodes of the plasma synthetic jet actuator, corresponding to the current spike in Figure 2.
(2)高能释放阶段(阶段B)。(2) High energy release stage (stage B).
点火触发后,高压电子开关Q1打开,等离子体合成射流激励阵列进入高能释放阶段(阶段B)。在该阶段,直流电源通过第一电阻器R1(例如阻值为100Ω量级)、第一高压硅堆D1向等离子体合成射流激励器的电极之间的电弧通道注入能量,放电电流处于10A量级。强放电电流使得电弧直径迅速增大、温度急剧升高,实现对等离子体合成射流激励器的腔体内气体的快速增压。在腔体内外压差的驱动,射流从等离子体合成射流激励器腔体的出口小孔喷出。After the ignition is triggered, the high-voltage electronic switch Q1 is opened, and the plasma synthetic jet excitation array enters the high-energy release stage (stage B). At this stage, the DC power supply injects energy into the arc channel between the electrodes of the plasma synthetic jet actuator through the first resistor R1 (for example, the resistance value is in the order of 100Ω) and the first high-voltage silicon stack D1, and the discharge current is 10A. class. The strong discharge current causes the arc diameter to rapidly increase and the temperature to rise sharply, achieving rapid pressurization of the gas in the cavity of the plasma synthetic jet exciter. Driven by the pressure difference inside and outside the cavity, the jet is ejected from the exit hole of the plasma synthetic jet exciter cavity.
(3)低能维弧阶段(阶段C)。(3) Low-energy dimensional arc stage (stage C).
高能释放阶段结束后,高压电子开关Q1关闭,等离子体合成射流激励装置进入低能维弧阶段,即阶段C。直流电源、第二电阻器R2(例如阻值为100kΩ量级)、第一高压硅堆D1和等离子体合成射流激励器阵列构成闭合的放电回路。电路中的放电电流只有10mA量级,仅供维持电弧通道的不熄灭,对于气体的加热效应可以忽略。受自然冷却作用,等离子体合成射流激励器的腔体内气体温度和压力开始缓慢降低,外部环境大气通过出口小孔重新吸入等离子体合成射流激励器,使腔体复原到初始状态。After the high-energy release stage ends, the high-voltage electronic switch Q1 is closed, and the plasma synthetic jet excitation device enters the low-energy dimensional arc stage, which is stage C. The DC power supply, the second resistor R2 (for example, the resistance value is in the order of 100 kΩ), the first high-voltage silicon stack D1 and the plasma synthetic jet exciter array form a closed discharge circuit. The discharge current in the circuit is only on the order of 10mA, which is only used to maintain the arc channel without extinguishing, and the heating effect on the gas can be ignored. Due to natural cooling, the gas temperature and pressure in the cavity of the plasma synthetic jet actuator begin to slowly decrease, and the external ambient atmosphere is re-inhaled into the plasma synthetic jet actuator through the outlet hole, causing the cavity to return to its initial state.
(4)高频射流产生阶段(阶段B/C交替)(4) High-frequency jet generation stage (stage B/C alternation)
由于电弧在一个完整工作周期后并未熄灭,因此交替打开和关闭高压电子开关Q1(即激励器重复进入阶段B和C),即可产生高频的脉冲射流。Since the arc is not extinguished after a complete working cycle, the high-voltage electronic switch Q1 is alternately opened and closed (that is, the exciter repeatedly enters stages B and C) to generate a high-frequency pulse jet.
本发明的核心是在激励装置中设置了低能维弧回路,保持电弧在等离子体合成射流激励器阵列的工作过程中始终处于不熄状态,从而实现“一次击穿、高频工作”的目的。高压电子开关可以选用IGBT或者MOSFET。The core of the invention is to set up a low-energy dimensional arc loop in the excitation device to keep the arc in a non-extinguishing state during the operation of the plasma synthetic jet exciter array, thereby achieving the purpose of "one breakdown, high-frequency operation". High-voltage electronic switches can use IGBT or MOSFET.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110574889.4A CN113316303B (en) | 2021-05-25 | 2021-05-25 | DC arc driven plasma synthetic jet array excitation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110574889.4A CN113316303B (en) | 2021-05-25 | 2021-05-25 | DC arc driven plasma synthetic jet array excitation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113316303A CN113316303A (en) | 2021-08-27 |
CN113316303B true CN113316303B (en) | 2023-11-03 |
Family
ID=77374738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110574889.4A Active CN113316303B (en) | 2021-05-25 | 2021-05-25 | DC arc driven plasma synthetic jet array excitation device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113316303B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114126182B (en) * | 2021-11-12 | 2023-05-30 | 中国人民解放军空军工程大学 | High-efficiency plasma synthetic jet exciter based on steam pressure enhancement |
CN114221569B (en) * | 2021-12-21 | 2023-12-01 | 中国人民解放军国防科技大学 | Parallel discharge device and method for plasma high-energy synthetic jet exciter |
CN115459603B (en) * | 2022-09-22 | 2023-04-14 | 南京航空航天大学 | A Synthetic Jet Generating Circuit Based on Isolated Saturated Inductor |
CN115515289A (en) * | 2022-10-11 | 2022-12-23 | 中国人民解放军空军工程大学 | Nanosecond pulse dielectric barrier discharge supercharging array plasma synthetic jet device |
CN116546716B (en) * | 2023-05-12 | 2023-10-27 | 南京航空航天大学 | A multi-channel plasma synthetic jet device that discharges simultaneously |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678888A (en) * | 1983-01-21 | 1987-07-07 | Plasma Energy Corporation | Power circuit apparatus for starting and operating plasma arc |
US5235162A (en) * | 1992-05-26 | 1993-08-10 | Tescom Corporation | Plasma pilot arc ignition system |
JP2000094126A (en) * | 1998-09-18 | 2000-04-04 | Nippon Steel Weld Prod & Eng Co Ltd | DC arc welding equipment and arc ignition equipment for plasma processing equipment |
CN1735304A (en) * | 2004-08-04 | 2006-02-15 | 优志旺电机株式会社 | Power supply unit for high pressure discharge lamp |
JP2006049061A (en) * | 2004-08-04 | 2006-02-16 | Ushio Inc | Power supply device for high-pressure discharge lamp |
JP2011154856A (en) * | 2010-01-27 | 2011-08-11 | Ushio Inc | Discharge-lamp power feed device |
CN106050593A (en) * | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
CN108064102A (en) * | 2015-12-30 | 2018-05-22 | 杭州鸿雁电器有限公司 | A kind of method and brightness switching device for controlling LED lamp brightness switching |
RU2656341C1 (en) * | 2017-03-02 | 2018-06-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) | Method of gas discharge initiation |
CN110920869A (en) * | 2019-07-16 | 2020-03-27 | 中国人民解放军空军工程大学 | High-frequency array type combined arc discharge exciter and method for controlling interference instability of shock wave boundary layer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6740843B2 (en) * | 2002-06-07 | 2004-05-25 | City University Of Hong Kong | Method and apparatus for automatically re-igniting vacuum arc plasma source |
WO2011133856A1 (en) * | 2010-04-22 | 2011-10-27 | Warner Power, Llc | An electronic method to improve the starting characteristics of direct current arc lamps |
-
2021
- 2021-05-25 CN CN202110574889.4A patent/CN113316303B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678888A (en) * | 1983-01-21 | 1987-07-07 | Plasma Energy Corporation | Power circuit apparatus for starting and operating plasma arc |
US5235162A (en) * | 1992-05-26 | 1993-08-10 | Tescom Corporation | Plasma pilot arc ignition system |
JP2000094126A (en) * | 1998-09-18 | 2000-04-04 | Nippon Steel Weld Prod & Eng Co Ltd | DC arc welding equipment and arc ignition equipment for plasma processing equipment |
CN1735304A (en) * | 2004-08-04 | 2006-02-15 | 优志旺电机株式会社 | Power supply unit for high pressure discharge lamp |
JP2006049061A (en) * | 2004-08-04 | 2006-02-16 | Ushio Inc | Power supply device for high-pressure discharge lamp |
JP2011154856A (en) * | 2010-01-27 | 2011-08-11 | Ushio Inc | Discharge-lamp power feed device |
CN108064102A (en) * | 2015-12-30 | 2018-05-22 | 杭州鸿雁电器有限公司 | A kind of method and brightness switching device for controlling LED lamp brightness switching |
CN106050593A (en) * | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
RU2656341C1 (en) * | 2017-03-02 | 2018-06-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) | Method of gas discharge initiation |
CN110920869A (en) * | 2019-07-16 | 2020-03-27 | 中国人民解放军空军工程大学 | High-frequency array type combined arc discharge exciter and method for controlling interference instability of shock wave boundary layer |
Non-Patent Citations (1)
Title |
---|
Haohua Zong, Marios Kotsonis.Realisation of plasma synthetic jet array with a novel sequential discharge.Sensors and Actuators A: Physical.2017,第266卷第1-4页,图1-7. * |
Also Published As
Publication number | Publication date |
---|---|
CN113316303A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113316303B (en) | DC arc driven plasma synthetic jet array excitation device and method | |
Huiskamp | Nanosecond pulsed streamer discharges Part I: Generation, source-plasma interaction and energy-efficiency optimization | |
CN106050593B (en) | Plasma synthesis jet stream discharged in series device and method based on Marx generators | |
CN102938968B (en) | Circuit for triggering two-gap plasma jet apparatus | |
CN103441427B (en) | Multichannel gas spark switch applying plasma synthesis jet trigger technology | |
Kazemi et al. | Waveform control of pulsed-power generator based on solid-state LTD | |
Lyublinsky et al. | Pulse power nanosecond-range DSRD-based generators for electric discharge technologies | |
US7988103B2 (en) | Solid state supersonic flow actuator and method of use | |
CN101667819A (en) | Dual power source pulse generator for a triggering system | |
JP2008270207A (en) | Ablation plasma gun | |
CN111498089B (en) | Device and method for realizing aircraft flow control based on plasma exciter | |
CN102523675A (en) | Plasma ejection device for igniting long air spark gap and circuit thereof | |
CN210106081U (en) | Solid ablation type magnetic plasma thruster | |
US20100024385A1 (en) | Pulsed plasma thruster and method of operation thereof | |
CN116546716B (en) | A multi-channel plasma synthetic jet device that discharges simultaneously | |
Cheng et al. | A nanosecond pulsed generator with fast-solid-state switch for synchronous discharge in plasma synthetic jet actuators | |
CN111577561A (en) | Device for improving jet intensity of annular electrode exciter and working method thereof | |
CN114221569B (en) | Parallel discharge device and method for plasma high-energy synthetic jet exciter | |
CN216672874U (en) | Parallel array discharge device of spark discharge synthetic jet actuator | |
Zhang et al. | A three-electrode gas switch triggered by microhollow cathode discharge with low trigger voltage | |
Yoshinaga et al. | Effect of polarity and rise time of applied pulsed voltage on streamer discharge phenomena | |
JP3766571B2 (en) | Thin film forming apparatus and shunting arc discharge electrode apparatus | |
McPhee et al. | The design and testing of an extended lifetime, high voltage, low jitter trigatron for repetitive operation | |
Qiu et al. | Characteristics of repetitive discharges of plasma synthetic jet actuators | |
RU2664892C1 (en) | Ablative pulse plasma engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |