CN1132800C - 介电陶瓷组合物 - Google Patents
介电陶瓷组合物 Download PDFInfo
- Publication number
- CN1132800C CN1132800C CN01102966A CN01102966A CN1132800C CN 1132800 C CN1132800 C CN 1132800C CN 01102966 A CN01102966 A CN 01102966A CN 01102966 A CN01102966 A CN 01102966A CN 1132800 C CN1132800 C CN 1132800C
- Authority
- CN
- China
- Prior art keywords
- ceramic
- weight
- dielectric
- parts
- electronic component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1236—Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
- H01G4/1245—Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16235—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15192—Resurf arrangement of the internal vias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15313—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/162—Disposition
- H01L2924/16251—Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24926—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
提供一种介电陶瓷组合物,用该组合物可获得能在约1100℃或更低温度下焙烧的介电陶瓷,能与低电阻和价廉金属如Ag和Cu共烧结,其介电常数和Q值高,介电常数的温度系数小。介电陶瓷组合物包括100重量份主组分和约3-20重量份的至少含B和Si的玻璃,所述主组分包括约22-43重量份TiO2、约38-58重量份ZrO2和约9-26重量份SnO2。
Description
本发明涉及适合在高频区如微波和毫米波(milliwave)区使用的介电陶瓷组合物。更具体而言,本发明涉及适合通过层叠和与金属电极共烧结而实现小型化的介电陶瓷组合物,以及使用该介电陶瓷组合物的陶瓷多层基材、陶瓷电子元件和层叠的陶瓷电子元件。
近年来,高频介电陶瓷被广泛使用,例如介电谐振器和微波集成电路(MIC)介电基材。为使高频介电陶瓷小型化,要求大的介电常数和Q值,介电常数与温度的相关性小。
在日本经审查的专利申请公告4-59267中公开了有关高频介电陶瓷组合物的例子。此专利中,介电陶瓷组合物由通式(Zr,Sn)TiO4表示。这种介电陶瓷组合物在1350℃或更高温度下焙烧,可提供r为38或更大的相对介电常数和在7GHz时Q值为9,000或更大。
一般来说,在高频区使用的介电谐振器中,必须使用低电阻和价廉的金属如Ag和Cu作为电极。为了共烧结金属和陶瓷,陶瓷必须在低于这些金属熔点的温度下焙烧。
然而,上述金属的熔点在960-1063℃,与上述介电陶瓷组合物的焙烧温度1300℃相比是很低的。因此,出现的问题在于上述介电陶瓷组合物适合在高频区使用,但是这些金属不能用作内电极材料。
考虑在上述日本经审查的专利申请公告4-59267中揭示的介电陶瓷组合物,焙烧温度高达1350℃或更高。所以,该介电陶瓷组合物不能与上述低电阻金属共烧结。
本发明的目的是提供一种可在约1100℃或更低温度下焙烧,能与低电阻金属如Ag和Cu共烧结的介电陶瓷组合物,该组合物具有高介电常数和Q值,介电常数的温度系数小,因而其高频特性优良,在环境承受特性方面的可靠性高。
本发明的另一个目的是提供使用上述介电陶瓷组合物的陶瓷多层基材、陶瓷电子元件和层叠的陶瓷电子元件,它们都具有优良的高频特性,和在高温、高湿度等环境中可靠性高。
根据本发明的第一方面,介电陶瓷组合物包括100重量份的主要组分及3-20重量份的至少含B和Si的玻璃,主组分包括约22-43重量份TiO2、约38-59重量份ZrO2和约9-26重量份SnO2。
较好的介电陶瓷组合物还包括约10重量份或更少的NiO和约7重量份或更少的Ta2O5。
本发明的这一具体方面,玻璃含有碱金属氧化物、碱土金属氧化物、氧化锌、Al2O3、B2O3和SiO2,以玻璃总量作100%(重量)为基准,其组成可由下式表示:
10≤SiO2≤60;
5≤B2O3≤40;
0≤Al2O3≤30;
20≤EO≤70(其中E:至少一种选自碱土金属、Mg、Ca、Sr、Ba的元素、和Zn);和
0≤A2O≤15(其中A:至少一种选自Li、Na和K的碱金属元素)。
较好的介电陶瓷组合物还包含相对于100重量份主组分,约7重量份或更少的CuO作为添加剂。
下面详细描述本发明。
由于本发明的介电陶瓷组合物,相对于100重量份主组分,含有约3-20重量份的至少含B和Si的玻璃,该组合物可以在约1100℃或更低温度下焙烧,并能和低电阻金属如Ag和Cu共烧结。
本发明中,TiO2组分,相对于100重量份上述主组分,限制在约22-43重量份范围。当TiO2含量小于约22重量份时,制得的介电陶瓷的介电系数下降。当该含量超过约43重量份时,制得的介电陶瓷的介电常数的温度系数在正值一侧变得过大。
ZrO2含量限于约38-58重量份。当该含量超出该范围时,介电陶瓷的介电常数系数在正值一侧变得过大。
SnO2含量限于约9-20重量份。当该含量约小于9重量份时,制得的介电陶瓷的介电常数的温度系数在正值一侧很大,且Q值下降。当该含量超过约26重量份时,制得的介电陶瓷的介电常数的温度系数在负值一侧过大。
当玻璃含量相对于上述主组分作100重量份小于约3重量份时,不能在1100℃或更低温度下焙烧。当该含量超过约20重量份时,制得的介电陶瓷的介电常数和Q值下降。
本发明中,相对于主组分作100重量份,加入约10重量份或更少的NiO和约7重量份或更少的Ta2O5时,可提高Q值。当NiO含量超过约10重量份或Ta2O5含量超过约7重量份时,相反,制得的介电陶瓷的Q值下降。
上述玻璃组分满足上述配方时,可进一步改善在1100℃或更低温度下的可烧结性,制得的介电陶瓷的抗湿性提高,能确保制得高Q值和高介电常数的介电陶瓷。
SiO2含量小于约10%(重量)的情况,制得的介电陶瓷的抗湿性下降,Q值下降。与之相反,当玻璃的SiO2含量超过约60%(重量)时,玻璃的软化点提高,可烧结性下降。
上述玻璃组合物中,B2O3含量小于约5%(重量)情况,玻璃软化点提高,而可烧结性下降。当该含量超过约40%(重量)时,抗湿性下降。
上述玻璃组合物中,Al2O3含量超过约30%(重量),玻璃软化点提高,而可烧结性下降。
而且,上述碱土金属氧化物或ZnO的添加比例小于约22%(重量)的情况,玻璃软化点提高,而可烧结性下降。与之相反,当上述比例超过约70%(重量)时,制得的介电陶瓷的抗湿性和Q值下降。
为改善低温可烧结性,在玻璃中加入碱金属是有效的。然而,当碱金属氧化物的加入比例超过约15%(重量)时,抗湿性和Q值下降。
根据本发明第二方面,陶瓷多层基材包括包含介电陶瓷层的陶瓷基材,所述介电陶瓷层包括上述的介电陶瓷组合物和多个在陶瓷基材的上述介电陶瓷层上形成的内电极。在这种陶瓷多层基材上,形成由本发明介电陶瓷组合物制成的介电陶瓷层,在介电陶瓷层上可形成多个内电极。因此,可以在约1100℃或更低温度下烧结陶瓷多层基材,其介电常数高,Q值高,介电常数的温度系数小。
本发明的陶瓷多层基材具体方面,将介电常数小于本发明介电陶瓷层的第二陶瓷层叠加在介电陶瓷层的至少一面。
本发明第三方面,将多个内电极层叠在至少部分介电陶瓷层其间,构成单块式电容器。
具体而言,多个内电极与至少部分介电陶瓷层层叠在其间,构成电容器和线圈导体,它们彼此相连构成层叠的电感器。
本发明第四方面,陶瓷电子元件包括上述陶瓷多层基材和至少一个安装在陶瓷多层基材上的电子元件,与多个内电极一起构成电路。在陶瓷多层基材上宜固定一个帽,包围上述电子元件。使用导体帽作为这种帽更好。
具体而言,本发明的陶瓷电子元件包括多个仅在陶瓷多层基材的底部形成的外电极和多个电连接到外电极的通孔导体和电连接到内电极或电子元件的通孔导体。
本发明的第五方面,层叠的陶瓷电子元件包括由本发明的介电陶瓷组合物构成的烧结陶瓷材料、多个放置在烧结陶瓷材料上的内电极和多个在烧结陶瓷材料外表面上形成的外电极,外电极各自电连接到一个内电极。
本发明的层叠陶瓷电子元件的具体方面,多个内电极与陶瓷层相互层叠,构成单块电容器单元。
本发明的层叠陶瓷电子元件的另一个具体方面,除了构成上述单块电容器的内电极外,多个内电极包括多个线圈导体,它们彼此相连,构成层叠的电感器单元。
图1是作为陶瓷电子元件的陶瓷层叠组件的纵向剖面图,它使用本发明一个实施方案的陶瓷多层基材;
图2是图1所示的陶瓷多层组件的透视组装图;
图3是说明制造本发明第二个实施方案的层叠陶瓷电子元件的陶瓷坯料片和其上形成的电极图案的透视组装图;
图4是本发明第二个实施方案的层叠陶瓷电子元件的透视图;
图5是图4所示的层叠陶瓷电子元件的线路图。
首先说明本发明的介电陶瓷组合物的具体实施例,再说明本发明陶瓷电子元件的陶瓷多层基材、陶瓷电子元件和结构,可以清楚地理解本发明。
制备主组分的SnO2、TiO2和ZrO2,按照表1和表2所示的量(重量份),用球磨湿混合16小时。混合物脱水、干燥、并于1400℃焙烧2小时。按照表1和表2所示的比例,在焙烧后的主组分中加入NiO2、Ta2O5和CuO,,再加入玻璃。加入粘合剂后,该混合物用球磨再次湿混合16小时,获得原料混合物。
按照下面表3所列混合比例(重量比例,总量为100%(重量)),混合BaCO3、SrCO3、CaCO3、MgCO3、ZnO、Al2O3、Li2CO3、Na2CO3、K2CO3、SiO2和B2O3,在PtRh坩埚中于1200-1600℃熔化,随后骤冷和研碎,作为上述玻璃。
按上述制得的混合物粉末在2,000kgf/cm2压力下模压成形,焙烧后可制成直径10毫米,厚5毫米的盘。制成的盘压制品在下表和表2所列的烧结温度下烧结2小时,制得烧结材料,样品编号为1-45。
采用两端短路的介电谐振法,测定制得的烧结盘材料的谐振频率(约7GHz)下的相对介电常数(r)和Q值。结果示于表1和表2。
表1 | ||||||||||||
样品 | TiO2 | ZrO2 | SnO2 | NiO | Ta2O5 | CuO | 玻璃种类 | 玻璃(重量)% | 烧结温度℃ | 相对介电常数 | Q值 | ofppm/℃ |
1* | 20 | 56 | 24 | 0.2 | 0.5 | 2.0 | G1 | 10 | 900 | 19 | 2300 | -11 |
2 | 22 | 52 | 26 | 5.0 | 5.0 | 2.0 | G1 | 10 | 900 | 27 | 2400 | -10 |
3 | 22 | 58 | 20 | 6.0 | 7.0 | 2.0 | G1 | 10 | 900 | 26 | 1800 | +33 |
4* | 22 | 58 | 20 | 5.0 | 10.0 | 2.0 | G1 | 10 | 900 | 22 | 800 | +39 |
5* | 32 | 52 | 16 | 20.0 | 1.0 | 2.0 | G1 | 10 | 900 | 26 | 800 | -4 |
6 | 32 | 52 | 16 | 10.0 | 5.0 | 2.0 | G1 | 10 | 900 | 27 | 1700 | +3 |
7 | 33 | 58 | 9 | 4.0 | 4.0 | 2.0 | G1 | 10 | 900 | 31 | 1700 | +29 |
8 | 36 | 38 | 26 | 1.0 | 1.0 | 2.0 | G1 | 10 | 900 | 31 | 2500 | +9 |
9* | 40 | 36 | 24 | 0.5 | 0.5 | 2.0 | G1 | 10 | 900 | 35 | 1800 | +90 |
10 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G1 | 10 | 900 | 33 | 3000 | -2 |
11 | 43 | 38 | 19 | 0.5 | 0.5 | 2.0 | G1 | 10 | 900 | 33 | 2300 | +51 |
12* | 46 | 35 | 19 | 0.2 | 1.0 | 2.0 | G1 | 10 | 900 | 34 | 2000 | +60 |
13* | 32 | 60 | 8 | 0.2 | 1.0 | 2.0 | G1 | 10 | 900 | 32 | 800 | +55 |
14* | 35 | 36 | 29 | 0.2 | 1.0 | 2.0 | G1 | 10 | 900 | 29 | 2000 | -41 |
15 | 40 | 39 | 21 | 0.2 | 1.0 | 0 | G1 | 10 | 1000 | 34 | 3200 | -1 |
16 | 40 | 39 | 21 | 0.2 | 1.0 | 7.0 | G1 | 10 | 850 | 33 | 1200 | -10 |
17* | 40 | 39 | 21 | 0.2 | 1.0 | 10.0 | G1 | 10 | 840 | 35 | 800 | -20 |
18* | 40 | 39 | 21 | 0.2 | 1.0 | 5.0 | - | 0 | 1400 | 38 | 2000 | -10 |
19 | 40 | 39 | 21 | 0.2 | 1.0 | 4.0 | G1 | 3 | 1000 | 36 | 1900 | -5 |
20 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G1 | 20 | 850 | 28 | 1200 | -10 |
表2 | ||||||||||||
样品 | TiO2 | ZrO2 | SnO2 | NiO | Ta2O5 | CuO | 玻璃种类 | 玻璃(重量)% | 烧结温度℃ | 相对介电常数 | Q值 | ofppm/℃ |
21* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G1 | 10 | 800 | 19 | 800 | -15 |
22 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G2 | 10 | 880 | 32 | 3200 | 0 |
23* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G3 | 10 | 880 | 32 | 3300 | +2 |
24 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G4 | 10 | 1000 | 32 | 3500 | -5 |
25* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G5 | 10 | 1050 | 33 | 3400 | -5 |
26* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G6 | 10 | 1050 | 32 | 2800 | -10 |
27 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G7 | 10 | 1000 | 34 | 2500 | -15 |
28 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G8 | 10 | 880 | 33 | 2800 | -5 |
29* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G9 | 10 | 860 | 33 | 2000 | -3 |
30 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G10 | 10 | 900 | 33 | 2900 | -3 |
31 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G11 | 10 | 900 | 33 | 2800 | -4 |
32 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G12 | 10 | 1000 | 34 | 3100 | -7 |
33* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G13 | 10 | 860 | 33 | 2900 | -0 |
34 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G14 | 10 | 900 | 35 | 2000 | +4 |
35 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G15 | 10 | 900 | 34 | 2300 | -2 |
36 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G16 | 10 | 900 | 33 | 2600 | 0 |
37 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G17 | 10 | 900 | 32 | 2800 | -2 |
38 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G18 | 10 | 1000 | 31 | 2500 | -7 |
39* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G19 | 10 | 1050 | 30 | 2400 | -10 |
40 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G20 | 10 | 900 | 34 | 2600 | -10 |
41 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G21 | 10 | 900 | 33 | 2800 | -7 |
42 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G22 | 10 | 900 | 32 | 2700 | -5 |
43 | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G23 | 10 | 900 | 32 | 2900 | -2 |
44* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G24 | 10 | 900 | 34 | 400 | -6 |
45* | 40 | 39 | 21 | 0.2 | 1.0 | 2.0 | G25 | 10 | 1200 | 31 | 1800 | -10 |
表3 | |||||||||||
SiO2 | B2O3 | K2O | Li2O | Na2O | BaO | SrO | MgO | CaO | ZnO | PbO | |
G1 | 25 | 30 | - | 10 | - | - | - | - | - | 35 | - |
G2 | 10 | 40 | - | 10 | - | - | - | - | - | 40 | - |
G3* | 5 | 40 | - | 10 | - | - | - | - | - | 45 | - |
G4 | 50 | 20 | - | 10 | - | - | - | - | - | 20 | - |
G5* | 70 | 10 | - | 10 | - | - | - | - | - | 10 | - |
G6* | 50 | 2 | - | 15 | - | - | - | - | - | 33 | - |
G7 | 40 | 5 | - | 15 | - | 20 | - | - | - | 20 | - |
G8 | 20 | 50 | - | 10 | - | - | - | - | - | 20 | - |
G9* | 10 | 70 | - | 10 | - | 5 | - | - | - | 10 | - |
G10 | 25 | 30 | 10 | - | - | - | - | - | - | 35 | - |
G11 | 25 | 30 | - | - | 10 | - | - | - | - | 35 | - |
G12 | 25 | 40 | - | - | - | - | - | - | - | 35 | - |
G13* | 15 | 30 | - | 20 | - | - | - | - | - | 35 | - |
G14 | 25 | 35 | - | 10 | - | 30 | - | - | - | - | - |
G15 | 25 | 35 | - | 10 | - | - | 30 | - | - | - | - |
G16 | 25 | 35 | - | 10 | - | - | - | 30 | - | - | - |
G17 | 25 | 35 | - | 10 | - | - | - | - | 30 | - | - |
G18 | 15 | 10 | - | 5 | - | - | - | - | - | 70 | - |
G19* | 10 | 5 | - | 5 | - | - | - | - | - | 80 | - |
G20 | 25 | 30 | - | 10 | - | - | - | - | - | 15 | - |
G21 | 25 | 30 | - | 10 | - | - | - | 20 | - | 15 | - |
G22 | 25 | 30 | - | 10 | - | - | - | - | 15 | 20 | - |
G23 | 25 | 30 | - | 5 | - | - | - | 10 | 10 | 20 | - |
G24* | 30 | - | - | 10 | - | - | - | - | - | - | 60 |
G25* | 60 | - | - | 10 | - | - | - | - | - | - | - |
由表1清楚可知,烧结材料样品1制得的介电陶瓷中,相对介电常数r低至19。这可能是因为TiO2的混合比例低至20重量份。
陶瓷烧结材料样品9中,介电常数的温度系数f大至+90。这可能是因为ZrO2的混合比例低至36重量份。
陶瓷烧结材料样品12中,介电常数的温度系数f大至+60。这可能是因为TiO2的混合比例高至46重量份,而ZrO2的混合比例低至35重量份。
陶瓷烧结材料样品13中,介电常数的温度系数f较大。这可能是因为ZrO2的混合比例高至60重量份,而SnO2的混合比例低至8重量份。
陶瓷烧结材料样品14中,介电常数的温度系数f在负值一侧大至-41。这是因为ZrO2的混合比例低至36重量份,而SnO2的混合比例高至20重量份。
陶瓷烧结材料样品18中,由于未加入玻璃,烧结温度高达1400℃。
由表2清楚地可知,陶瓷烧结材料样品21中,制得的介电陶瓷的相对介电常数r低至19,Q值也低至800,这是因为玻璃的混合比例太高,达到30重量份。
陶瓷烧结材料样品44中,由于使用表3中由G24所示组成的玻璃,Q值低至400。
陶瓷烧结材料样品45中,由于使用表3中由G25所示组成的玻璃,烧结温度高达1200℃。
另一方面,通过在约1100℃或更低温度下焙烧,就可制得本发明范围内的陶瓷烧结材料样品,它们的相对介电常数r高达20或更大,Q值高达500或更大,介电常数的温度系数f绝对值小至40或更小。
如上所述,当使用本发明的介电陶瓷组合物时,可以在较低温度下焙烧,因此可与低电阻和价廉金属如Ag和Cu共烧结,并通过层叠构成小型高频谐振器。
下面,说明使用本发明介电陶瓷组合物的陶瓷多层基材、陶瓷电子元件和层叠陶瓷电子元件的结构实例。
图1是作为陶瓷电子元件的陶瓷多层组件的剖面图,它包括本发明一个实施方案的陶瓷多层基材;图2是图1所示的陶瓷多层组件的透视组装图;
陶瓷多层组件1由陶瓷多层基材2制成。
陶瓷多层基材2中,介电陶瓷层4是由本发明的介电陶瓷组合物制成,其介电常数相对较高,该层插在绝缘陶瓷层3a和3b之间。
构成绝缘陶瓷层3a和3b的陶瓷材料没有具体限制,只要其介电常数与介电陶瓷层4相比为较低,例如可由氧化铝和石英组成。
放置多个内电极5,内电极5各自对着介电陶瓷层4,夹在介电陶瓷层4之间,形成单块电容器单元C1和C2。
在绝缘陶瓷层3a和3b,以及介电陶瓷层4上形成多个通孔电极6和6a,以及内导线。
在陶瓷多层基材2的顶面放置电子元件9。使用合适的电子元件如半导体装置和基片单块电容器作为电子元件9-11。这些电子元件9-11和电容器单元C1和C2可通过上述通孔电极6和内导线电连接,构成此实施方案的陶瓷多层组件1的线路。
将导体帽8固定在上述陶瓷多层基材2的顶面。导体帽8电连接到通孔电极6,该电极从陶瓷多层基材2的顶面穿透到其底面。在陶瓷多层基材2的底面形成外电极7,7,外电极电连接到通孔电极6和6a。其它外电极(未在图中示出),与上述外电极7一样,仅在陶瓷多层基材2的底面形成。其余外电极通过上述内导线电连接到电子元件9-11和电容器单元C1和C2。
因此,通过形成外电极7,仅用于在陶瓷多层基材2的底面上的外连接,使用该底面,易于将陶瓷层叠组件表面安装在印刷线路基材等上。
此实施方案中,由于帽8是由导体材料制成,并通过通孔电极6,电连接到外电极7,电子元件9-11可被导体帽8电磁屏蔽。然而,帽8不要求必须由导体材料制成。
此实施方案的陶瓷多层组件1中,由于单块电容器单元C1和C2是由本发明的介电陶瓷组合物在上述陶瓷多层基材2上形成,内电极5、构成外部线路的电极和通孔电极6和6a可以由低电阻和价廉金属如Ag和Cu制成,它们可以共烧结。因此,电容器单元C1和C2可以由整体烧结的陶瓷多层基材2制成,可以小型化。另外,由于上述介电陶瓷层4使用了本发明的介电陶瓷组合物,其介电常数较高,Q值也较高。因此,制成的陶瓷多层组件1适合在高频区使用。
采用已知的陶瓷层叠和整体焙烧技术,能方便地制得上述陶瓷多层基材2。即,制备主要有本发明介电陶瓷组合物的陶瓷坯料片。在该陶瓷坯料片上印刷用于构成内电极5的电极图案、外线路和通孔电极6和6a等。之后,层叠这些坯料片。在陶瓷坯料片的顶部和底部再层叠合适数量的陶瓷坯料片形成绝缘陶瓷层3a和3b,其上形成用于构成外线路和通孔电极6和6a的电极图案,并在厚度方向进行压制。通过焙烧制成的层叠物,可制得陶瓷多层基材2。
在单块电容器单元C1和C2中,由于介电陶瓷层被放置在厚度方向的相邻内电极5和5之间用以确定电容量,使用相对较小面积的内电极可获得大的电容量,因此可达到小型化。
图3至图5分别是透视组装图和线路图,说明本发明第二个实施方案的层叠陶瓷电子元件的结构。图4所示的层叠陶瓷电子元件20是一个LC滤波器。烧结陶瓷材料21中,构成电感器L和电容器C的线路描述如下。使用本发明的高频介电陶瓷组合物构成烧结陶瓷材料21。在烧结陶瓷材料21的外表面形成外电极23a、23b、24a和24b,在外电极23a、23b、24a和24b之间构成图5所示的LC谐振线路。
之后,通过参考图3对制造方法的说明,可清楚理解所示烧结陶瓷材料的构成。
在本发明的介电陶瓷组合物材料中加入有机赋形剂,制得陶瓷糊浆。采用合适的成形片方法,将陶瓷糊浆成形为陶瓷坯料片。将制成的陶瓷坯料片干燥,然后穿孔,制得长方形预定尺寸的陶瓷坯料片21a-21m。
如果需要,在陶瓷坯料片21a-21m上形成通孔,用于构成通孔电极28。通过丝网印刷再施用导电糊料,形成线圈导体26a和26b、电容器的内电极27a-27c、以及线圈导体26c和26d,并在上述通孔中填入导电糊料,形成通孔电极28。
然后,陶瓷坯料片21a-21m按附图所示的方向层叠,并在厚度方向压制,制得层叠物。
制得的层叠物焙烧,制得烧结陶瓷材料21。
采用薄膜制造法在烧结陶瓷材料21上可形成图4所示的外电极23a-24b,例如通过涂布和烘烤导电糊料,通过真空沉积、电镀或溅射。由此可制造层叠陶瓷电子元件20。
由图3可知,图5所示的电感器单元L1由线圈导体26a和26b构成,电感器单元L2由线圈导体26c和26d构成,电容器单元C由内电极27a-27c构成。
此实施例的层叠陶瓷电子元件20中,按上面所述构成LC滤波器。由于烧结陶瓷材料21是使用本发明的介电陶瓷组合物构成,类似于第一实施例的陶瓷多层基材2,可通过低温焙烧制得,因此可以和使用低熔点金属如铜、银和金与陶瓷整体焙烧,作为内电极的所述线圈导体26a-26c,或作为由于电容器的内电极27a-27c。另外,这种LC滤波器适合在高频区使用,其相对介电常数较高,高频区的Q值较高,谐振频率f的温度系数的变化较小。
上面的第一结构实施方案和第二结构实施方案中,描述了陶瓷多层组件1和构成LC滤波器的层叠陶瓷电子元件20;但是,本发明的陶瓷电子元件和层叠陶瓷电子元件不限于这些结构。即,本发明可应用于各种陶瓷多层基材如用于多片组件的陶瓷多层基材和用于混合ICs的陶瓷多层基材,或应用于电子元件安装在这些陶瓷多层基材上的各种陶瓷电子元件,还可应用于各种片型层叠电子元件如片型单块电容器和片型层叠介质天线。
本发明的介电陶瓷组合物中,因为在100重量份的主组分中加入了约3-20重量份至少含B和Si的玻璃,主组分包括约22-43重量份TiO2,约38-58重量份ZrO2和约9-26重量份SnO2,该组合物可通过在约1100℃或更低的低温焙烧制得,因此,可以共烧结低电阻和价廉金属如Ag和Cu。所以,在陶瓷多层基材和层叠陶瓷电子元件中,这些金属可用作内电极材料,陶瓷多层基材和层叠陶瓷电子元件可小型化。
另外,相对介电常数高达约20或更大,在7GHz,Q值高达500或更大,谐振频率的温度系数较小,高频时适合用于构成电容器和LC谐振线路。
相对于100重量份所述主组分还含有约10重量份或更少NiO和约7重量份或更少的Ta2O5的情况,可进一步提高Q值。
本发明的介电陶瓷组合物中,上述玻璃具有在上面所述公式表示的范围之内的组成时,该组合物可以在约1000℃或更低温度下烧结,同时可保持高Q值和高的相对介电常数。
相对于100重量份上述主组分还含有约7重量份CuO作为添加剂的情况,低温可烧结性可进一步得到改善。
因为本发明的陶瓷多层基材的结构中,在包括由本发明介电陶瓷组合物构成的介电陶瓷层的陶瓷基材中形成多个内电极,因此可以在低温烧结,因而低电阻和价廉金属如Ag和Cu可用作内电极的组成材料。而且,在介电陶瓷层中,由于介电常数高,Q值高,谐振频率的温度系数小,因此可提供适合在高频下使用的陶瓷多层基材。
陶瓷多层基材中,在介电陶瓷层至少一面上层叠第二陶瓷层,该陶瓷层的介电常数小于上述介电陶瓷层时,通过调节第二陶瓷层的组成和层叠形式,可根据要求来适当控制强度和环境容许特性。
当多个内电极层叠插入至少部分介电陶瓷层,构成单块电容器时,由于本发明的介电陶瓷组合物的介电常数高,Q值高,适合在高频下使用,易得到大的电容量。而且,因为介电常数高,使得外电极的表面积小,从而使电容器部分的尺寸较小。
在多个内电极包括构成单块电容器的内电极和多个线圈导体彼此连接构成层叠电感器的情况,如上所述,由于本发明的介电陶瓷组合物的介电常数高、高频下的Q值高、以及谐振频率的温度系数小,能容易地制造适合在高频下使用的小型LC谐振线路。
本发明的陶瓷电子元件中,至少一种电子元件层叠在本发明的陶瓷多层基材上,使用所述电子元件和在陶瓷多层基材的线路结构,可提供各种小型化、适合在高频使用的电子元件。
将一种帽固定在陶瓷多层基材,包围电子元件的情况,由于电子元件被这种帽保护,提供的陶瓷电子元件具备优良的抗湿性等。
在使用导体帽作为帽的情况,被包围的电子元件得到电磁屏蔽。
外电极仅在陶瓷多层基材的底面形成的情况下,易于从陶瓷多层基材的底面表面将其安装在印刷线路基材上等。
本发明的层叠陶瓷电子元件中,由于多个内电极形成在本发明的介电陶瓷组合物中,因此可以在低温焙烧,可使用低电阻和价廉金属如Ag和Cu作为内电极的组成材料。而且,介电陶瓷组合物的介电常数高、Q值高以及谐振频率的温度系数小,因此,能提供适合在高频使用的单块电容器。
本发明的层叠陶瓷电子元件中,在多个内电极构成单块电容器的情况,由于本发明的介电陶瓷组合物的介电常数高,Q值高,适合在高频使用,并易达到大的电容量。而且,由于介电常数高,可以使得外电极的表面积小,从而使电容器部分的尺寸小。
本发明的层叠陶瓷电子元件中,在多个内电极包括构成电容器的内电极和构成层叠电感器的线圈导体的情况,如上所述,本发明的介电陶瓷组合物的介电常数高、Q值高以及各种频率的温度系数小,容易构成适合在高频使用的小的LC谐振线路。
Claims (14)
1.一种介电陶瓷组合物,包括:
100重量份主组分,该主组分包括22-43重量份TiO2、38-58重量份ZrO2和9-26重量份SnO2;
3-20重量份的玻璃组分,
所述玻璃组分含有碱金属氧化物、碱土金属氧化物、氧化锌、Al2O3、B2O3和SiO2,以玻璃总量作100%重量为基准,其组成可由下式表示:
10≤SiO2≤60;
5≤B2O3≤40;
0≤Al2O3≤30;
20≤EO≤70,其中E是Zn和至少一种选自Mg、Ca、Sr和Ba的元素;和
0≤A2O≤15,其中A是选自Li、Na和K的至少一种。
2.如权利要求1所述的介电陶瓷组合物,其特征在于所述组合物还包括最多10重量份的NiO和最多7重量份的Ta2O5。
3.如权利要求2所述的介电陶瓷组合物,其特征在于所述组合物还包括相对于100重量份的所述主组分,最多7重量份的CuO作为添加剂。
4.如权利要求1所述的介电陶瓷组合物,其特征在于所述组合物还包括相对于100重量份的所述主组分,最多7重量份的CuO作为添加剂。
5.一种陶瓷电子元件,它具有至少一种安装在陶瓷多层基材的电子元件,与多个内电极一起形成电路;所述的陶瓷多层基材包括至少有两个面的陶瓷基材和多个放置在所述陶瓷基材内的内电极,所述介电基材包括多层介电陶瓷层,所述多层介电陶瓷层中至少一层是权利要求1~4中任何一项所述的介电陶瓷组合物。
6.如权利要求5所述的陶瓷电子元件,其特征在于在所述介电陶瓷层的至少一面上层叠有第二陶瓷层,所述第二陶瓷层的介电常数小于所述介电陶瓷组合物的介电陶瓷层的介电常数。
7.如权利要求5所述的陶瓷电子元件,其特征在于所述多个内电极放置在至少部分介电陶瓷层之间,构成单块电容器。
8.如权利要求5所述的陶瓷电子元件,其特征在于所述多个内电极放置在至少部分介电陶瓷层之间,构成电容器,并具有至少两个彼此连接的线圈导体,构成层叠电感器。
9.如权利要求5所述的陶瓷电子元件,其特征在于所述电子元件还包括固定在所述陶瓷多层基材上的帽,以包围所述电子元件。
10.如权利要求9所述的陶瓷电子元件,其特征在于所述帽是导电性的。
11.如权利要求5所述的电子元件,其特征在于所述电子元件还包括在所述陶瓷多层基材没有安装所述电子元件一面上的多个外电极,和多个在所述基材上的通孔导体,与所述外电极电连接。
12.一种层叠陶瓷电子元件,包括如权利要求1~4中任何一项所述的介电陶瓷组合物的烧结陶瓷材料、多个放置在所述烧结陶瓷材料中的内电极和多个外电极,所述外电极各自放置在所述烧结陶瓷材料的外表面并与一个内电极电连接。
13.如权利要求12所述的层叠陶瓷电子元件,其特征在于所述多个内电极之间放置陶瓷层,构成电容器单元。
14.如权利要求12所述的层叠陶瓷电子元件,其特征在于所述多个内电极,除了所述构成电容器单元的内电极外,还包括多个彼此连接的线圈导体,构成层叠电感器单元。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000032174A JP2001220230A (ja) | 2000-02-09 | 2000-02-09 | 誘電体磁器組成物 |
JP032174/2000 | 2000-02-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1308034A CN1308034A (zh) | 2001-08-15 |
CN1132800C true CN1132800C (zh) | 2003-12-31 |
Family
ID=18556822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN01102966A Expired - Fee Related CN1132800C (zh) | 2000-02-09 | 2001-02-09 | 介电陶瓷组合物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6472074B2 (zh) |
JP (1) | JP2001220230A (zh) |
CN (1) | CN1132800C (zh) |
GB (1) | GB2359076B (zh) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6818985B1 (en) * | 2001-12-22 | 2004-11-16 | Skyworks Solutions, Inc. | Embedded antenna and semiconductor die on a substrate in a laminate package |
JP3093578U (ja) * | 2002-10-22 | 2003-05-16 | アルプス電気株式会社 | 多層回路基板 |
KR100522134B1 (ko) * | 2003-04-02 | 2005-10-18 | 한국과학기술연구원 | 저온소성용 고유전율 유전체 조성물 |
CN1317213C (zh) * | 2003-10-23 | 2007-05-23 | 浙江大学 | 一种微波功能模块用低介低损耗介质材料及制备方法 |
JP4244865B2 (ja) * | 2004-06-03 | 2009-03-25 | セイコーエプソン株式会社 | 圧電発振器および電子機器 |
CN100389091C (zh) * | 2005-10-17 | 2008-05-21 | 郴州高斯贝尔数码科技有限公司 | C波段用微波介质陶瓷及其制造方法 |
JP3985009B1 (ja) | 2006-07-07 | 2007-10-03 | Tdk株式会社 | 誘電体磁器 |
CN100436371C (zh) * | 2006-07-14 | 2008-11-26 | 镇江蓝宝石电子实业有限公司 | 一种降低(Zr0.8Sn0.2)TiO4陶瓷烧结温度的方法 |
JP4793447B2 (ja) * | 2007-04-20 | 2011-10-12 | 株式会社村田製作所 | 多層セラミック基板およびその製造方法ならびに電子部品 |
JP2009051694A (ja) * | 2007-08-27 | 2009-03-12 | Tdk Corp | 誘電体磁器 |
JP4506802B2 (ja) * | 2007-09-28 | 2010-07-21 | Tdk株式会社 | 誘電体磁器組成物 |
US8836454B2 (en) * | 2009-08-11 | 2014-09-16 | Telepath Networks, Inc. | Miniature magnetic switch structures |
GB0918221D0 (en) * | 2009-10-16 | 2009-12-02 | Cambridge Silicon Radio Ltd | Inductor structure |
KR100999784B1 (ko) * | 2010-02-23 | 2010-12-08 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지 |
US8432240B2 (en) | 2010-07-16 | 2013-04-30 | Telepath Networks, Inc. | Miniature magnetic switch structures |
US8957747B2 (en) | 2010-10-27 | 2015-02-17 | Telepath Networks, Inc. | Multi integrated switching device structures |
EP2683031B1 (en) * | 2011-07-14 | 2016-04-27 | Murata Manufacturing Co., Ltd. | Wireless communication device |
US8847715B2 (en) | 2011-09-30 | 2014-09-30 | Telepath Networks, Inc. | Multi integrated switching device structures |
CN103518254B (zh) | 2012-05-08 | 2016-07-20 | 新电元工业株式会社 | 半导体装置的制造方法以及半导体装置 |
JP6976053B2 (ja) * | 2016-12-14 | 2021-12-01 | Tdk株式会社 | 積層電子部品 |
JP6838381B2 (ja) * | 2016-12-14 | 2021-03-03 | Tdk株式会社 | 積層電子部品 |
JP7021552B2 (ja) * | 2018-02-09 | 2022-02-17 | Tdk株式会社 | 誘電体フィルタ |
US10790075B2 (en) | 2018-04-17 | 2020-09-29 | Avx Corporation | Varistor for high temperature applications |
CN110407579B (zh) * | 2018-04-28 | 2021-04-16 | 中国科学院上海硅酸盐研究所 | 一种具有超高q值微波介质材料及其制备方法 |
CN110357419B (zh) * | 2019-07-18 | 2022-05-06 | 成都宏科电子科技有限公司 | 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法 |
CN111546718B (zh) * | 2020-04-15 | 2022-04-29 | 中国电子科技集团公司第三十八研究所 | 一种微波复合介质板的制备方法及制得的微波复合介质板 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665041A (en) * | 1985-05-10 | 1987-05-12 | Murata Manufacturing Co., Ltd. | Dielectric ceramic composition for high frequencies |
US5132258A (en) * | 1990-08-21 | 1992-07-21 | Sanyo Electric Co., Ltd. | Microwave dielectric ceramic composition |
US5264403A (en) * | 1991-09-27 | 1993-11-23 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass |
DE69209613T2 (de) * | 1991-10-24 | 1996-10-31 | Matsushita Electric Ind Co Ltd | Dielektrisches-keramisches Verbundmaterial |
US5290740A (en) * | 1991-11-06 | 1994-03-01 | Ngk Insulators, Ltd. | Dielectric ceramic composition used for producing dielectric resonator or filter for microwave application |
JP2000143341A (ja) * | 1998-09-11 | 2000-05-23 | Murata Mfg Co Ltd | 誘電体セラミック組成物及び積層セラミック部品 |
-
2000
- 2000-02-09 JP JP2000032174A patent/JP2001220230A/ja active Pending
-
2001
- 2001-01-22 GB GB0101602A patent/GB2359076B/en not_active Expired - Fee Related
- 2001-01-30 US US09/772,328 patent/US6472074B2/en not_active Expired - Fee Related
- 2001-02-09 CN CN01102966A patent/CN1132800C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001220230A (ja) | 2001-08-14 |
GB2359076B (en) | 2002-01-09 |
US20010016251A1 (en) | 2001-08-23 |
CN1308034A (zh) | 2001-08-15 |
GB2359076A (en) | 2001-08-15 |
GB0101602D0 (en) | 2001-03-07 |
US6472074B2 (en) | 2002-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1132800C (zh) | 介电陶瓷组合物 | |
CN1208783C (zh) | 介电陶瓷组合物 | |
CN1188367C (zh) | 绝缘陶瓷压块、陶瓷多层基板和陶瓷电子器件 | |
CN1197822C (zh) | 绝缘陶瓷压块 | |
CN1209771C (zh) | 绝缘体陶瓷组合物 | |
JP5056528B2 (ja) | 絶縁体セラミック組成物およびそれを用いた絶縁体セラミック | |
CN1224064C (zh) | 叠层陶瓷电容器 | |
CN1100332C (zh) | 叠层陶瓷电容器 | |
JP5273490B2 (ja) | セラミック組成物、セラミックグリーンシート、及びセラミック電子部品 | |
CN1072831C (zh) | 叠层陶瓷电容器 | |
CN1093101C (zh) | 介电陶瓷组合物和层叠陶瓷元件 | |
CN1228068A (zh) | 非磁性陶瓷和多层陶瓷部件 | |
CN1360320A (zh) | 合成多层陶瓷电子部件及其制造方法 | |
US8093172B2 (en) | Glass composition, dielectric composition and multilayer ceramic capacitor embedded low temperature co-fired ceramic substrate using the same | |
JP3680715B2 (ja) | 絶縁体磁器組成物 | |
CN1183057C (zh) | 低温烧结陶瓷及电子部件 | |
JP3903781B2 (ja) | 複合積層セラミック電子部品及びその製造方法 | |
JP2010052970A (ja) | セラミック組成物、セラミックグリーンシート、及びセラミック電子部品 | |
CN1202532C (zh) | 介电陶瓷组合物、介电陶瓷压块及含有它们的电子元件 | |
JP3805173B2 (ja) | ガラスセラミック焼結体およびそれを用いた多層配線基板 | |
JP3697975B2 (ja) | 誘電体磁器組成物、セラミック多層基板、セラミック電子部品及び積層セラミック電子部品 | |
JP3680714B2 (ja) | 絶縁体磁器組成物 | |
JP2001139373A (ja) | 誘電体磁器組成物、セラミック多層基板、セラミック電子部品及び積層セラミック電子部品 | |
JP2001247365A (ja) | 誘電体セラミック組成物、ならびに、電子部品、電子装置 | |
JP2002068832A (ja) | ガラスセラミック焼結体およびそれを用いた多層配線基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20031231 Termination date: 20100209 |