CN113073221B - Graphene modification method of metal - Google Patents
Graphene modification method of metal Download PDFInfo
- Publication number
- CN113073221B CN113073221B CN202010006480.8A CN202010006480A CN113073221B CN 113073221 B CN113073221 B CN 113073221B CN 202010006480 A CN202010006480 A CN 202010006480A CN 113073221 B CN113073221 B CN 113073221B
- Authority
- CN
- China
- Prior art keywords
- graphene
- metal
- powder
- adhesive
- modification method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 136
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 134
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 76
- 239000002184 metal Substances 0.000 title claims abstract description 76
- 238000002715 modification method Methods 0.000 title claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 56
- 239000000853 adhesive Substances 0.000 claims abstract description 48
- 230000001070 adhesive effect Effects 0.000 claims abstract description 48
- 239000002923 metal particle Substances 0.000 claims abstract description 42
- 238000005245 sintering Methods 0.000 claims abstract description 18
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims description 27
- 210000001161 mammalian embryo Anatomy 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000002270 dispersing agent Substances 0.000 claims description 14
- 239000011265 semifinished product Substances 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000007822 coupling agent Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims 2
- 239000010439 graphite Substances 0.000 claims 2
- 150000001336 alkenes Chemical class 0.000 claims 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 1
- 125000000524 functional group Chemical group 0.000 description 12
- 239000002905 metal composite material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 6
- 239000011147 inorganic material Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 150000001844 chromium Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/108—Mixtures obtained by warm mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
- B22F3/1025—Removal of binder or filler not by heating only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0084—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明提供一种金属的石墨烯改性方法,其步骤包含:提供金属粉末、墨烯粉末及黏着剂,金属粉末包含复数金属颗粒,石墨烯粉末包含复数石墨烯微片,各石墨烯微片包含相连的数石墨烯分子,各石墨烯分子以一个混层轨域sp3键连接一硬脂酸官能基;将金属粉末、石墨烯粉末黏着剂混合磨擦生热使各硬脂酸官能基连接的各混层轨域sp3键吸热后断裂,各石墨烯分子藉由断裂的混层轨域sp3键键接其他的石墨烯分子而使石墨烯分子包覆各金属颗粒;烧结金属颗粒使金属颗粒融合为一金属本体且石墨烯分子构成立体网状之形态结合于金属本体之内。
The present invention provides a metal graphene modification method, which comprises the steps of: providing metal powder, graphene powder and an adhesive, wherein the metal powder includes a plurality of metal particles, the graphene powder includes a plurality of graphene microplatelets, and each graphene microplatelet Including connected several graphene molecules, each graphene molecule connects a stearic acid functional group with a mixed-layer orbital sp3 bond; the metal powder and the graphene powder adhesive are mixed and rubbed to generate heat so that each stearic acid functional group is connected. Each mixed-layer orbital sp3 bond is endothermic and then breaks, and each graphene molecule is bonded to other graphene molecules by the broken mixed-layer orbital sp3 bond, so that the graphene molecule coats each metal particle; sintering the metal particle makes the metal particle It is fused into a metal body and the graphene molecules form a three-dimensional network and are combined in the metal body.
Description
技术领域technical field
本发明涉及石墨烯金属复合材料,特别涉及一种金属的石墨烯改性方法。The invention relates to a graphene metal composite material, in particular to a graphene modification method of a metal.
背景技术Background technique
目前,碳化硅、氧化铝增强铜基复合材料的制备和应用已经趋于成熟,但其综合性能和实际需求还有一段距离,而石墨烯具备优异的机械性能、热学性能和电学性能,是制备导热复合材料最为理想的增强体之一。然而,现在有关石墨烯增强铜铝基复合材料的研究尚处于起步阶段,亟待进行相关的研究工作。如何将石墨烯均匀分散到铜铝基体中,同时使石墨烯和金属间形成良好的接触界面是研究中的重点难题。At present, the preparation and application of silicon carbide and alumina reinforced copper matrix composites have become mature, but their comprehensive performance and actual needs are still a long way off, while graphene has excellent mechanical properties, thermal properties and electrical properties. One of the most ideal reinforcements for thermally conductive composites. However, the research on graphene-enhanced copper-aluminum matrix composites is still in its infancy, and related research work is urgently needed. How to uniformly disperse graphene into the copper-aluminum matrix and at the same time form a good contact interface between graphene and metal is a key problem in research.
再者,现有的改性技术中,对于有机材料一般加入增黏剂增加材料黏性以固定不同的有机材料;无机材料在溶液中一般呈离子态而具有断裂的键结,故一般加入扩链剂,藉由键结固定不同的无机材料。然而,有机材料与无机材料的特性迥异,有机材料与无机材料之间目前并无良好的固定方法。因此,有机石墨烯与无机金属不易均匀地结合。Furthermore, in the existing modification technology, a tackifier is generally added to organic materials to increase the viscosity of the material to fix different organic materials; inorganic materials are generally ionic in solution and have broken bonds, so generally adding a thickener is added. Chain agent, fixing different inorganic materials by bonding. However, the properties of organic materials and inorganic materials are quite different, and there is currently no good fixing method between organic materials and inorganic materials. Therefore, organic graphene and inorganic metals are not easily combined uniformly.
有鉴于此,本发明人遂针对上述现有技术,特潜心研究并配合学理的运用,尽力解决上述之问题点,即成为本发明人改良之目标。In view of this, the inventor of the present invention has devoted himself to the study of the above-mentioned prior art and cooperated with the application of theories, trying his best to solve the above-mentioned problems, which is the goal of the present inventor's improvement.
发明内容SUMMARY OF THE INVENTION
本发明提供一种金属的石墨烯改性方法其能均匀分布石墨烯于金属内。The invention provides a graphene modification method of metal, which can evenly distribute graphene in metal.
本发明提供一种金属的石墨烯改性方法,其步骤包含:提供金属粉末、石墨烯粉末及黏着剂,金属粉末包含复数金属颗粒,黏着剂包含蜡材料,石墨烯粉末包含复数石墨烯微片,各石墨烯微片包含相连的数石墨烯分子,各石墨烯分子包含环状连接的六个碳原子,各石墨烯分子的其中一碳原子以一个混层轨域sp3键连接一硬脂酸官能基,黏着剂包含重量百分比0.5~2%的偶合剂以及重量百分比5~20%的分散剂,偶合剂为钛酸酯及有机铬络合物的其中之一,分散剂为甲基戊醇、聚丙烯酰胺及脂肪酸聚乙二醇酯的其中之一;将金属粉末、石墨烯粉末黏着剂混合为一粉末原料,混合磨擦生热使各硬脂酸官能基连接的各混层轨域sp3键吸热后断裂,硬脂酸官能基自各石墨烯分子分离后,各石墨烯分子藉由断裂的混层轨域sp3键键接其他的石墨烯分子而使石墨烯分子包覆各金属颗粒;烧结金属颗粒使金属颗粒融合为一金属本体且石墨烯分子构成立体网状形态结合于金属本体之内。The present invention provides a method for modifying metal graphene, which comprises the following steps: providing metal powder, graphene powder and an adhesive, wherein the metal powder includes a plurality of metal particles, the adhesive includes a wax material, and the graphene powder includes a plurality of graphene microplates , each graphene microplatelet comprises several graphene molecules that are connected, each graphene molecule comprises six carbon atoms connected in a ring, and one of the carbon atoms of each graphene molecule connects a stearic acid with a mixed-layer orbital sp3 bond Functional group, the adhesive comprises a coupling agent of 0.5-2% by weight and a dispersant of 5-20% by weight, the coupling agent is one of titanate and organic chromium complex, and the dispersant is methyl amyl alcohol , one of polyacrylamide and fatty acid polyethylene glycol ester; mix metal powder and graphene powder adhesive into a powder raw material, and mix and friction to generate heat to connect each mixed layer orbital sp3 of each stearic acid functional group After the bond absorbs heat, it is broken, and after the stearic acid functional group is separated from each graphene molecule, each graphene molecule is bonded to other graphene molecules by the broken mixed-layer orbital sp3 bond, so that the graphene molecule coats each metal particle; Sintering the metal particles makes the metal particles fuse into a metal body, and the graphene molecules form a three-dimensional network and are combined in the metal body.
本发明的石墨烯改性方法,其初胚包含均匀混合的金属颗粒及石墨烯微片,各石墨烯微片被固体的黏着剂包覆而黏合金属颗粒。In the graphene modification method of the present invention, the initial embryo comprises uniformly mixed metal particles and graphene micro-flakes, and each graphene micro-flake is coated with a solid adhesive to bond the metal particles.
本发明的石墨烯改性方法,更包含:加热粉末原料至融熔为一液态混合原料,液态混合原料包含金属粉末、液态的黏着剂以及石墨烯粉末;将液态混合原料注入一模具中射出成型而固化成为一初胚;以及除去初胚中的黏着剂形成一脱蜡半成品,先对初胚进行溶剂脱蜡除去部分的黏着剂,使脱蜡半成品内部形成间隙再进行热脱蜡,热脱蜡的温度介于140℃至170℃之间,其中在步骤f中烧结脱蜡半成品使金属颗粒融合为金属本体。The graphene modification method of the present invention further comprises: heating the powder raw material to melt into a liquid mixed raw material, the liquid mixed raw material comprising metal powder, liquid adhesive and graphene powder; injecting the liquid mixed raw material into a mold for injection molding And solidify into a preliminary embryo; and remove the adhesive in the preliminary embryo to form a dewaxed semi-finished product, first perform solvent dewaxing on the preliminary embryo to remove part of the adhesive, so that a gap is formed inside the dewaxed semi-finished product, and then thermal dewaxing is performed. The temperature of the wax is between 140°C and 170°C, wherein the dewaxed semi-finished product is sintered in step f to fuse the metal particles into a metal body.
本发明的石墨烯改性方法,其以氮气或氢气热烧结方式烧结脱蜡半成品。The graphene modification method of the present invention sinters and dewaxes semi-finished products in a nitrogen or hydrogen thermal sintering manner.
本发明的石墨烯改性方法,其溶剂脱蜡将初胚浸入一溶液中以溶解黏着剂。其热脱蜡将初胚热处理以汽化黏着剂。In the graphene modification method of the present invention, in the solvent dewaxing, the initial embryo is immersed in a solution to dissolve the adhesive. Its thermal dewaxing heat treats the embryo to vaporize the adhesive.
本发明的石墨烯改性方法,其以真空热压烧结方式烧结金属颗粒。In the graphene modification method of the present invention, the metal particles are sintered in a vacuum hot pressing sintering manner.
本发明的石墨烯改性方法,其金属本体为铝或铜。In the graphene modification method of the present invention, the metal body is aluminum or copper.
本发明所述金属的石墨烯改性方法,其各金属颗粒为树枝状电解铜颗粒。粉末原料以行星式搅拌混合而成。石墨烯粉末在该粉末原料中的重量百分比小于5%。The metal graphene modification method of the present invention, each metal particle is a dendritic electrolytic copper particle. Powder raw materials are mixed by planetary stirring. The weight percentage of graphene powder in the powder raw material is less than 5%.
综上所述,本发明所述金属的石墨烯改性方法在金属粉末与黏着剂混和时加入石墨烯,于混炼造粒之后形成金属、黏着剂及石墨烯的混合物,经过射出成型、脱蜡之后,于烧结阶段使得金属粉末与石墨烯结合,提高其热传系数。To sum up, the graphene modification method of the metal according to the present invention adds graphene when the metal powder and the adhesive are mixed, and after kneading and granulation, a mixture of the metal, the adhesive and the graphene is formed. After the wax, the metal powder is combined with the graphene in the sintering stage to improve its heat transfer coefficient.
附图说明Description of drawings
通过附图中所示的本发明优选实施例的具体说明,本发明上述目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。The above objects, features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments of the present invention shown in the accompanying drawings. The same reference numerals refer to the same parts throughout the drawings, and the drawings have not been intentionally drawn to scale, the emphasis being placed on illustrating the gist of the present invention.
图1系本发明优选实施例的金属的石墨烯改性方法之流程图;Fig. 1 is the flow chart of the graphene modification method of the metal of the preferred embodiment of the present invention;
图2系本发明优选实施例的金属的石墨烯改性方法中的粉末原料之示意图;Fig. 2 is the schematic diagram of the powder raw material in the graphene modification method of the metal of the preferred embodiment of the present invention;
图3系本发明优选实施例的金属的石墨烯改性方法中的射出成型步骤之示意图;Fig. 3 is the schematic diagram of the injection molding step in the metal graphene modification method of the preferred embodiment of the present invention;
图4系本发明优选实施例的金属的石墨烯改性方法中的初胚之示意图;Fig. 4 is the schematic diagram of the initial embryo in the graphene modification method of the metal of the preferred embodiment of the present invention;
图5系本发明优选实施例的金属的石墨烯改性方法中的脱蜡半成品之示意图;Fig. 5 is the schematic diagram of the dewaxed semi-finished product in the metal graphene modification method of the preferred embodiment of the present invention;
图6系本发明优选实施例的石墨烯金属复合材料之示意图;6 is a schematic diagram of a graphene metal composite material according to a preferred embodiment of the present invention;
图7系石墨烯之示意图;7 is a schematic diagram of graphene;
图8系官能化石墨烯之示意图。Figure 8 is a schematic diagram of functionalized graphene.
附图标记:Reference number:
10 粉末原料10 powder raw materials
20 液态混合原料20 Liquid mixed raw materials
30 初胚30 primary embryos
40 脱蜡半成品40 Dewaxed semi-finished products
50 成品50 finished products
100 金属颗粒100 Metal Particles
100a 金属本体100a Metal Body
200 石墨烯微片200 graphene microchips
300 黏着剂300 Adhesives
400 模具400 molds
a~f 步骤。a~f steps.
具体实施方式Detailed ways
参阅图1至图6,本发明较佳实施例提供一种石墨烯金属复合材料以及其制造方法。于本实施例中,本发明金属的石墨烯改性方法至少包含后之步骤:Referring to FIG. 1 to FIG. 6 , a preferred embodiment of the present invention provides a graphene metal composite material and a manufacturing method thereof. In this embodiment, the graphene modification method of the metal of the present invention at least comprises the following steps:
于步骤a中提供一金属粉末(metal powder)、一石墨烯粉末(graphene powder)及一黏着剂300(binder),其中金属粉末为铝粉末或铜粉末。其中金属粉末包含复数金属颗粒100(铝颗粒或铜颗粒,铜颗粒较佳地为树枝状电解铜颗粒),石墨烯粉末包含复数石墨烯微片200,且各石墨烯微片200包含如图7所示相连的复数石墨烯分子。参阅图1、图7及图8,石墨烯微片(如图7所示)被改质接上官能基成为官能化石墨烯(如图8所示)。于本实施例中,官能基较佳地为含氧官能基,例如硬脂酸,含氧官能基以混层轨域sp3键键结石墨烯的其中一个碳原子。各石墨烯分子包含环状连接的六个碳原子,如图8所示各石墨烯分子的其中一碳原子以一个混层轨域sp3键连接一官能基。黏着剂300主要为蜡材料其包含石蜡、微结晶蜡或亚克力蜡等,通常是由低分子量的热塑性聚合物或油类组成。黏着剂300中包含重量百分比为0.5~2%的钛酸酯或有机铬络合物作为固定材料的偶合剂。黏着剂300中包含重量百分比为5~20%的分散剂使材料能均匀分散,分散剂可以为甲基戊醇、聚丙烯酰胺或脂肪酸聚乙二醇酯。In step a, a metal powder, a graphene powder and a binder 300 (binder) are provided, wherein the metal powder is aluminum powder or copper powder. The metal powder includes a plurality of metal particles 100 (aluminum particles or copper particles, the copper particles are preferably dendritic electrolytic copper particles), the graphene powder includes a plurality of
于步骤b中,将步骤a中所提供的金属粉末、石墨烯粉末及黏着剂300进行混炼造粒(mixing and granulation)处理而成为一粉末原料10。混炼造粒系均匀混合金属粉末、石墨烯粉末以及黏着剂300,使得粉末原料10中的金属颗粒100以及石墨烯微片200能在分散剂中分散而分别被黏着剂300包覆。具体而言,由于石墨烯与金属的比重差异相当大,必须以行星式搅拌混合同时由不同的方向搅拌方能使石墨烯微片200均匀分布在粉末原料10之中。而且石墨烯粉末在粉末原料中10的重量百分比较佳地小于5%以避免团聚。官能化石墨烯使步骤b中提高石墨烯微片200在金属粉末及黏着剂300中之分散性。因为一定量官能基进入石墨烯微片200会使该石墨烯微片200拥有同种电荷,石墨烯微片200带有官能基时,同种电荷之间会产生静电斥力,使得石墨烯微片200相互排斥分离而能够匀称的分散在分散剂及黏着剂300里。在步骤b的混炼过程中,官能化的石墨烯微片200磨擦产生热能使其含氧官能基的混层轨域sp3键吸热断裂,含氧官能基分离。因此含氧官能基原键结的碳原子能够立即与其他的石墨烯微片200中碳原子断裂的混层轨域sp3键重新键结,藉此使得石墨烯微片200连接为平面状且包覆各金属颗粒100而构成球体。In step b, the metal powder, graphene powder and
具体而言,本发明藉由在石墨烯与金属混合物中加入偶合剂以协助有机的石墨烯与无机的金属相互键结,同时加入分散剂使石墨烯分散而避免团聚。再者,无机材料在混合物中一般呈离子态而具有键结力,偶合剂也可以协助分散剂无机材料中分散。钛酸酯或有机铬络合物皆具有外围电子键结力强的特性,可增强石墨烯与金属的连结强度,再者钛酸酯更具有质量轻的优点,有机铬络合物则具有侧链而可形成更多的键结。对应不同状态的石墨烯材料则选用不同的分散剂,固态材料加入甲基戊醇作为分散剂,液态材料加入聚丙烯酰胺作为分散剂,气态材料加入脂肪酸聚乙二醇酯作为分散剂。Specifically, in the present invention, a coupling agent is added to the mixture of graphene and metal to assist the bonding of organic graphene and inorganic metal, and a dispersing agent is added to disperse graphene to avoid agglomeration. Furthermore, the inorganic material is generally in the ionic state in the mixture and has a bonding force, and the coupling agent can also assist the dispersing agent to disperse the inorganic material. Both titanates and organic chromium complexes have the characteristics of strong peripheral electronic bonding, which can enhance the bonding strength between graphene and metals. Furthermore, titanates have the advantage of light weight, while organic chromium complexes have side effects. chain and more bonds can be formed. Different dispersants are used for graphene materials in different states. Methyl amyl alcohol is added to solid materials as dispersants, polyacrylamide is added to liquid materials as dispersants, and fatty acid polyethylene glycol esters are added to gaseous materials as dispersants.
烧结金属颗粒100可以采用真空热压烧结方式,真空热压烧结方式在接续步骤b的烧结步骤f中,如图3所示将液态混合原料20注入一模具400中,以模具400对液态混合原料20加压并在真空中以700℃烧结1小时而能够烧结铝或铜的金属颗粒100。因模具400对液态混合原料20加压增加其密度而有助于较低的温度下烧结。The
真空热压烧结方式烧结金属颗粒100使金属颗粒100融熔而相互结合为一金属本体100a且同时将黏着剂300汽化排除,由于石墨烯微片200不熔融且其沸点远高于金属颗粒100及黏着剂300,故热处理时结构不会被破坏,而且石墨烯微片200均匀分布在金属本体100a内。选用的金属颗粒100不同(铝或铜),其烧结成的金属本体100a可以为铝或铜。藉此制成如图6所示本发明的石墨烯金属复合材料的成品50。The
烧结金属颗粒100也可以采用冷压热烧结的方式。其包含冷压成型(c-e)以及烧结(f)二段步骤,冷压步骤包含下述二步骤。The
于步骤c中,接续步骤b,加热粉末原料10至融熔为一液态混合原料20;液态混合原料20包含金属粉末、液态的黏着剂300以及石墨烯粉末。In step c, following step b, the powder
于步骤d中,接续步骤c,如图3所示将液态混合原料20注入一模具400中以冷均压成形方式固化成为如图4所示的一初胚30(green part);初胚30包含均匀混合的金属颗粒100及石墨烯微片200,各石墨烯微片200被固体的黏着剂300包覆而黏合金属颗粒100。In step d, following step c, as shown in FIG. 3 , the liquid mixed
如图5所示,于步骤e中,接续步骤d,对初胚30进行脱蜡(debinding)处理以除去初胚30中的黏着剂300而形成一脱蜡半成品40 (brown part)。脱蜡方式可以为热脱蜡(thermal debinding)、或溶剂脱蜡(watery/solvent debinding)。热脱蜡系对初胚30进行热处理,以惰性气体为流动介质,升温将黏着剂300裂解汽化,并由介质带出。真空脱蜡系利用高温及高真空将黏着剂300蒸发,再由蒸馏分子带出。溶剂脱蜡系利用溶剂将黏着剂300溶解。其中,热脱蜡及溶剂脱蜡可以并行实施,先对初胚30进行溶剂脱蜡出部分的黏着剂300,使脱蜡半成品40内部形成间隙再进行热脱蜡,因此有利于高温气体通过间隙将剩余的黏着剂300分解排出。在步骤e中,热脱蜡步骤的温度较佳地低于金属颗粒100的熔点且高于黏着剂300的熔点或沸点,环境工作加热至140℃~170℃,由于石墨烯微片200不熔融且其沸点远高于金属颗粒100及黏着剂300,故热处理时结构不会被破坏。As shown in FIG. 5 , in step e, following step d, the
于烧结步骤f中,接续步骤e,以氮气或氢气热烧结方式烧结脱蜡半成品40使金属颗粒100融熔而相互结合为一金属本体100a,金属颗粒100为铜时环境工作温度加热至1050℃烧结1小时,金属颗粒100为铝时环境工作温度加热至600℃烧结1小时。由于石墨烯微片200不熔融且其沸点远高于金属颗粒100及黏着剂300,故热处理时结构不会被破坏,而且石墨烯微片200均匀分布在金属本体100a内。金属本体100a为铝或铜。藉此制成如图6所示本发明的石墨烯金属复合材料的成品50。In the sintering step f, following step e, the dewaxed
参阅图6,藉由前述的制造方法制成本发明的石墨烯金属复合材料成品50,本发明的石墨烯金属复合材料包含一金属本体100a及埋设在金属本体100a之内的复数石墨烯微片200。其中,金属本体100a为铝或铜,而且石墨烯微片200均匀分布在金属本体100a内。Referring to FIG. 6 , the finished graphene-metal composite material 50 of the present invention is made by the aforementioned manufacturing method. The graphene-metal composite material of the present invention comprises a
综上所述,本发明的金属的石墨烯改性方法在金属粉末与黏着剂300混和时加入石墨烯粉末,于混炼造粒之后形成金属颗粒100、石墨烯微片200及黏着剂300的混合物,经过射出成型、脱蜡之后,于烧结阶段使得成品50中原先呈球体排列包覆于金属颗粒100的石墨烯微片200构成相连球体的立体网状形态结合于金属本体100a之内,提高成品50热传系数。藉由石墨烯增加金属件的热传系数,相较于纯金属作为导热介质而言,在相同热传导总量之情况下,本发明能够配置较小的石墨烯金属复合材料作为导热介质。再者,本发明藉由加入官能基使得石墨烯微片200呈较规则的排列,相较于旧有的随机分散结构,热能在成品50中分散更均匀,因此具有更优异的热传导效率。To sum up, in the metal graphene modification method of the present invention, the graphene powder is added when the metal powder and the adhesive 300 are mixed, and the
以上所述仅为本发明之较佳实施例,非用以限定本发明之专利范围,其他运用本发明之专利精神等效变化,均应俱属本发明之专利范围。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the patent scope of the present invention. Other equivalent changes using the patent spirit of the present invention shall all belong to the patent scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010006480.8A CN113073221B (en) | 2020-01-03 | 2020-01-03 | Graphene modification method of metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010006480.8A CN113073221B (en) | 2020-01-03 | 2020-01-03 | Graphene modification method of metal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113073221A CN113073221A (en) | 2021-07-06 |
CN113073221B true CN113073221B (en) | 2022-07-22 |
Family
ID=76608434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010006480.8A Active CN113073221B (en) | 2020-01-03 | 2020-01-03 | Graphene modification method of metal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113073221B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2629442A (en) * | 2023-04-28 | 2024-10-30 | Siemens Energy Global Gmbh & Co Kg | Composite metallic powder material and high density manufactured components |
CN118952813B (en) * | 2024-10-14 | 2025-02-11 | 宁波石墨烯创新中心有限公司 | Multilayer graphene-metal composite longitudinal heat conductor and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102898680A (en) * | 2011-07-29 | 2013-01-30 | 安炬科技股份有限公司 | surface modified graphene |
CN106623890A (en) * | 2016-09-14 | 2017-05-10 | 河南理工大学 | Graphene/nanometer aluminum powder composite powder, graphene/aluminum base composite material containing composite powder and preparation method thereof |
CN108454185A (en) * | 2017-02-20 | 2018-08-28 | 慧隆科技股份有限公司 | Graphite material radiating fin |
CN110449590A (en) * | 2018-05-08 | 2019-11-15 | 长飞光纤光缆股份有限公司 | A kind of preparation method and product of graphene-Cu-base composites |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10526204B2 (en) * | 2017-09-11 | 2020-01-07 | Global Graphene Group, Inc. | Production of graphene materials directly from carbon/graphite precursor |
-
2020
- 2020-01-03 CN CN202010006480.8A patent/CN113073221B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102898680A (en) * | 2011-07-29 | 2013-01-30 | 安炬科技股份有限公司 | surface modified graphene |
CN106623890A (en) * | 2016-09-14 | 2017-05-10 | 河南理工大学 | Graphene/nanometer aluminum powder composite powder, graphene/aluminum base composite material containing composite powder and preparation method thereof |
CN108454185A (en) * | 2017-02-20 | 2018-08-28 | 慧隆科技股份有限公司 | Graphite material radiating fin |
CN110449590A (en) * | 2018-05-08 | 2019-11-15 | 长飞光纤光缆股份有限公司 | A kind of preparation method and product of graphene-Cu-base composites |
Also Published As
Publication number | Publication date |
---|---|
CN113073221A (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020006441A (en) | Manufacturing method of graphene metal composite material | |
US11655521B2 (en) | Graphene modifying method of metal | |
CN113073221B (en) | Graphene modification method of metal | |
TWI685573B (en) | Manufacturing method of graphene metal composite material | |
US20070057415A1 (en) | Method for producing carbon nanotube-dispersed composite material | |
US20070134496A1 (en) | Carbon nanotube-dispersed composite material, method for producing same and article same is applied to | |
CN102676901B (en) | Process for preparing SiC/Al electronic packaging materials by pressureless impregnation method | |
CN106977830A (en) | Thermal conductive polymer composite with isolation dual network structure and preparation method thereof | |
CN101157993A (en) | A method for preparing high-volume silicon carbide particle-reinforced copper-based composites | |
CN102786815A (en) | Method for modifying surface of BN (boron nitride) powder, modified BN and polymer composite material | |
CN110449590B (en) | Preparation method and product of graphene-copper-based composite material | |
CN106623890A (en) | Graphene/nanometer aluminum powder composite powder, graphene/aluminum base composite material containing composite powder and preparation method thereof | |
CN110564159A (en) | Light polymer nano composite material with isolation structure and preparation method thereof | |
CN108675772B (en) | A kind of preparation method of alumina/graphene core-shell structure composite material | |
CN113149626B (en) | Feed for quartz ceramic injection molding and preparation method thereof | |
CN115894041A (en) | Preparation method of powder extrusion 3D printing molding reaction sintering silicon carbide ceramic | |
CN110684910A (en) | Graphene metal composite material manufacturing method | |
TWI710522B (en) | Graphene modifying method of metal | |
CN108060369A (en) | The preparation method of silicon carbide ceramic fiber/particle reinforced metal-base composites | |
HUANG et al. | Selective laser sintering of SiC green body with low binder content | |
CN114539770A (en) | High-thermal-conductivity and insulating phthalonitrile-based composite material and preparation method and application thereof | |
CN117986809A (en) | High-heat-conductivity insulating resin composition, high-heat-conductivity insulating film and preparation method thereof | |
CN105463347B (en) | A kind of preparation method of powder injection forming binding agent and feeding | |
CN104911385A (en) | A kind of ultrafine ceramic particle ultrafine Cu-based composite material with Ti2SnC as precursor and preparation method thereof | |
CN115232443A (en) | Method for preparing heat-conducting composite material from graphene and polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |