CN105463347B - A kind of preparation method of powder injection forming binding agent and feeding - Google Patents
A kind of preparation method of powder injection forming binding agent and feeding Download PDFInfo
- Publication number
- CN105463347B CN105463347B CN201610032389.7A CN201610032389A CN105463347B CN 105463347 B CN105463347 B CN 105463347B CN 201610032389 A CN201610032389 A CN 201610032389A CN 105463347 B CN105463347 B CN 105463347B
- Authority
- CN
- China
- Prior art keywords
- preparation
- parts
- paraffin
- carbon nanotubes
- binding agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011230 binding agent Substances 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000843 powder Substances 0.000 title claims abstract description 16
- 238000002347 injection Methods 0.000 title claims 3
- 239000007924 injection Substances 0.000 title claims 3
- 239000012188 paraffin wax Substances 0.000 claims abstract description 28
- 239000002131 composite material Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 20
- 229920001179 medium density polyethylene Polymers 0.000 claims abstract description 18
- 239000004701 medium-density polyethylene Substances 0.000 claims abstract description 17
- 239000007787 solid Substances 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000004094 surface-active agent Substances 0.000 claims abstract description 10
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims abstract description 9
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000005642 Oleic acid Substances 0.000 claims abstract description 9
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims abstract description 9
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 238000001125 extrusion Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 238000005469 granulation Methods 0.000 claims description 4
- 230000003179 granulation Effects 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- IIGMITQLXAGZTL-UHFFFAOYSA-N octyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCC IIGMITQLXAGZTL-UHFFFAOYSA-N 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 239000000428 dust Substances 0.000 claims 5
- 238000004898 kneading Methods 0.000 claims 2
- 150000002148 esters Chemical class 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 43
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract description 38
- 239000002041 carbon nanotube Substances 0.000 abstract description 38
- 239000000463 material Substances 0.000 abstract description 8
- 238000001746 injection moulding Methods 0.000 abstract description 6
- 239000006185 dispersion Substances 0.000 abstract description 5
- 239000011156 metal matrix composite Substances 0.000 abstract description 5
- -1 Polyethylene Polymers 0.000 abstract description 2
- 239000004698 Polyethylene Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 abstract 1
- 229920000573 polyethylene Polymers 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 239000011246 composite particle Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/14—Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/02—Pretreatment of the fibres or filaments
- C22C47/06—Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明公开了一种粉末注射成形用粘结剂和喂料的制备方法,粘结剂的制备包括以下步骤:(1)按质量比为1︰5~20︰0.1~0.6的比例分别称取碳纳米管、石蜡与油酸,将石蜡加热至熔融后加入碳纳米管与油酸,保持温度为80~85℃条件下超声并搅拌0.5~1.5h,使碳纳米管分散均匀;然后迅速冷却至凝固,得到复合固态石蜡;(2)将得到的复合固态石蜡切碎,按质量份,将30~40份切碎的复合固态石蜡加入混炼机,混炼后加入12‑18份中密度聚乙烯,待中密度聚乙烯溶解后加入2‑3份表面活性剂,再经混炼得到粘结剂。本发明可使用容易脱出的低分子量的粘结剂,能使碳纳米管在金属基复合材料中实现稳定均匀分散,能抑制晶粒的长大,有效抑制体积的收缩,获得高致密化的复合材料。The invention discloses a method for preparing a binder and feeding material for powder injection molding. The preparation of the binder includes the following steps: (1) Weighing the powder according to the mass ratio of 1:5~20:0.1~0.6 Carbon nanotubes, paraffin and oleic acid, heat the paraffin to melt, add carbon nanotubes and oleic acid, keep the temperature at 80~85°C, ultrasonically stir for 0.5~1.5h to disperse the carbon nanotubes evenly; then cool rapidly To solidify, obtain composite solid paraffin; (2) chop the obtained composite solid paraffin, by mass parts, add 30~40 parts of chopped composite solid paraffin into mixer, add 12-18 parts of medium density after mixing Polyethylene, after the medium density polyethylene is dissolved, add 2-3 parts of surfactant, and then knead to obtain the binder. The invention can use a low molecular weight binder that is easy to come out, which can realize stable and uniform dispersion of carbon nanotubes in the metal matrix composite material, can inhibit the growth of crystal grains, effectively inhibit the shrinkage of volume, and obtain a highly dense composite Material.
Description
技术领域technical field
本发明涉及一种粉末注射成形用粘结剂和喂料的制备方法。The invention relates to a preparation method of a binder and a feeding material for powder injection molding.
背景技术Background technique
碳纳米管以其独特的结构和性能,有望成为最具前景的复合材料增强相。在制备碳纳米管增强金属基复合材料的过程中,碳纳米管在基体中的分散性和两相的相容性是两个关键的问题。因为碳纳米管与碳纤维一样与大多数金属不润湿,所以很难在碳纳米管与金属基体之间形成牢固的结合界面,从而影响了碳纳米管增强效果的发挥。采用机械或借助溶剂等比较简单的混合方法,两者之间尺寸和比重的差异将导致碳纳米管团聚和偏聚难以避免;对碳纳米管进行改性,如Cu、Ni等对碳纳米管表面包覆,但由于直径仅为纳米级,在其表面进行金属层镀覆难以达到均匀、致密,而大规模的镀覆更难保证包覆层连续和致密。为了克服这个问题,人们提出了一些新的复合方法,韩国科学家通过对碳纳米管的功能化,利用液相与铜离子复合,还原后采用等离子体火焰烧结工艺,杨氏模量提高了两倍。我们课题组对解决这个问题也有较大的突破,采用静电组装方法通过液相预先合成微米级的碳纳米管-铜复合颗粒。碳纳米管被“锁”在复合颗粒中,可极大地减少烧结过程中的偏聚;以此为原始粉末,在模具中热压成型,再经热轧,得到碳纳米管分布均匀的块体材料。不难看出,这些方法均对碳纳米管进行了功能化修饰,与基体具有良好的润湿性。然而。对纳米级尺寸的碳纳米管进行功能化处理是一个繁琐的工作,一般需要经过普通的酸洗纯化处理后再进行深度化学或物理修饰,即昂贵又耗时,难以实现规模化生产。With its unique structure and properties, carbon nanotubes are expected to become the most promising reinforcement phase for composite materials. In the process of preparing carbon nanotube-reinforced metal matrix composites, the dispersion of carbon nanotubes in the matrix and the compatibility of the two phases are two key issues. Because carbon nanotubes, like carbon fibers, are not wetted with most metals, it is difficult to form a firm bonding interface between carbon nanotubes and the metal matrix, thereby affecting the performance of the carbon nanotube reinforcement effect. Using a relatively simple mixing method such as mechanical or solvent, the difference in size and specific gravity between the two will lead to the aggregation and segregation of carbon nanotubes is difficult to avoid; modifying carbon nanotubes, such as Cu, Ni, etc. Surface coating, but because the diameter is only nanoscale, it is difficult to achieve uniform and dense metal layer plating on the surface, and it is even more difficult to ensure continuous and dense coating layer in large-scale plating. In order to overcome this problem, some new composite methods have been proposed. Korean scientists functionalized carbon nanotubes, used the liquid phase to composite with copper ions, and used plasma flame sintering after reduction. The Young's modulus was doubled. . Our research group has also made a big breakthrough in solving this problem, using the electrostatic assembly method to pre-synthesize micron-sized carbon nanotube-copper composite particles through the liquid phase. The carbon nanotubes are "locked" in the composite particles, which can greatly reduce the segregation during the sintering process; as the original powder, it is hot-pressed in a mold, and then hot-rolled to obtain a block with uniform distribution of carbon nanotubes Material. It is not difficult to see that these methods have carried out functional modification on carbon nanotubes, and have good wettability with the matrix. However. It is a tedious task to functionalize carbon nanotubes with nanoscale size. Generally, it needs to undergo ordinary acid washing and purification before further chemical or physical modification, which is expensive and time-consuming, and it is difficult to achieve large-scale production.
利用熔渗法来制备碳纳米管增强金属基复合材料也是人们探索的技术路径,其思路是把碳增强体事先分散于有机物中,通过热处理获得碳纳米管三维网络骨架结构的多孔预制件,将高温熔融态金属压入碳增强体预制件中。这种方法所获得复合材料中碳纳米管的分散和均匀分布的问题较容易解决,且碳纳米管的体积含量也可以达20%以上,但这种方法对两相的浸润性要求很高,液体金属的渗透难以充分和完全,孔洞较多,致密度难以提高。Using the infiltration method to prepare carbon nanotube-reinforced metal matrix composites is also a technical path that people have explored. The idea is to disperse the carbon reinforcement in organic matter in advance, and obtain a porous preform with a three-dimensional network skeleton structure of carbon nanotubes through heat treatment. The hot molten metal is pressed into the carbon reinforcement preform. The dispersion and uniform distribution of carbon nanotubes in the composite material obtained by this method is easier to solve, and the volume content of carbon nanotubes can also reach more than 20%, but this method requires high wettability of the two phases. The penetration of liquid metal is difficult to fully and completely, there are many holes, and the density is difficult to increase.
发明内容Contents of the invention
本发明解决的技术问题是,针对现有技术存在的缺陷, 提供一种通过粉末注射成形方法制备碳纳米管增强金属基复合材料所需要的粘结剂及其喂料的制备方法。这种粘结剂利用中密度聚乙烯作具有较高粘度的聚合物作为混合介质,预先与碳纳米管充分分散混合,借助聚合物熔体流动时的剪切和拉伸作用,实现碳纳米管和金属粉末大范围均匀分散和锚固。The technical problem to be solved by the present invention is to provide a method for preparing the binder and its feeding materials required for the preparation of carbon nanotube reinforced metal matrix composite materials by powder injection molding method in view of the defects existing in the prior art. This binder uses medium-density polyethylene as a polymer with a high viscosity as a mixing medium, and is fully dispersed and mixed with carbon nanotubes in advance. With the help of shearing and stretching when the polymer melt flows, carbon nanotubes And metal powder is uniformly dispersed and anchored in a wide range.
本发明的技术方案之一是,提供一种粉末注射成形用粘结剂的制备方法,包括以下步骤:One of the technical solutions of the present invention is to provide a method for preparing a binder for powder injection molding, comprising the following steps:
(1)按质量比为1︰5~20︰0.1~0.6的比例分别称取碳纳米管、石蜡与油酸,将石蜡加热至熔融后加入碳纳米管与油酸,保持温度为80~85℃条件下超声并搅拌0.5~1.5h,使碳纳米管分散均匀;然后迅速冷却至凝固,得到复合固态石蜡;(1) Weigh carbon nanotubes, paraffin and oleic acid according to the mass ratio of 1:5~20:0.1~0.6, heat the paraffin to melt, add carbon nanotubes and oleic acid, and keep the temperature at 80~85 Ultrasound and stir for 0.5~1.5h at ℃ to disperse the carbon nanotubes evenly; then cool rapidly until solidified to obtain composite solid paraffin;
(2)将得到的复合固态石蜡切碎,按质量份,将30~40份切碎的复合固态石蜡加入混炼机,混炼后,加入12-18份中密度聚乙烯,待中密度聚乙烯溶解后加入2~3份表面活性剂,再经混炼,得到粘结剂。(2) The obtained composite solid paraffin is chopped, and 30 to 40 parts of chopped composite solid paraffin are added to the mixer in parts by mass. After mixing, 12 to 18 parts of medium density polyethylene are added, and the medium density polyethylene Add 2~3 parts of surfactant after ethylene is dissolved, and then knead to obtain binder.
进一步地,所述碳纳米管的直径为10~30nm,长度为5~50μm。Further, the carbon nanotubes have a diameter of 10-30 nm and a length of 5-50 μm.
进一步地,所述的表面活性剂为硬脂酸、硬脂酸丁酯和/或硬脂酸辛酯。Further, the surfactant is stearic acid, butyl stearate and/or octyl stearate.
进一步地,所述步骤(2)的具体过程如下:将得到的复合固态石蜡切碎,按质量份,将30~40份切碎的复合固态石蜡加入混炼机,在转速为25~30r/min、温度为80~85℃条件下混炼20~40min;将混炼机的温度调至140~150℃后,加入15份中密度聚乙烯,待中密度聚乙烯溶解后将转速调至40~50r/min,加入2.5份表面活性剂,混炼40~80min,得到粘结剂。Further, the specific process of the step (2) is as follows: chop the obtained composite solid paraffin, and add 30 to 40 parts of the chopped composite solid paraffin into the mixing machine in parts by mass, at a speed of 25 to 30r/ min, and the temperature is 80~85°C for 20~40min; adjust the temperature of the mixer to 140~150°C, add 15 parts of medium density polyethylene, and adjust the speed to 40 after the medium density polyethylene is dissolved. ~50r/min, add 2.5 parts of surfactant, knead for 40~80min to get binder.
本发明又一技术方案是,提供一种粉末注射成形用喂料的制备方法,将上述制备方法获得的粘结剂与金属粉末混炼,再经挤出造粒,得到喂料。Another technical solution of the present invention is to provide a method for preparing feedstock for powder injection molding. The binder obtained by the above preparation method is mixed with metal powder, and then extruded and granulated to obtain the feedstock.
进一步地,所述金属粉末为球形,粒径为0.5~3μm。Further, the metal powder is spherical and has a particle size of 0.5-3 μm.
进一步地,所述金属粉末为铜粉或镍粉。Further, the metal powder is copper powder or nickel powder.
进一步地,所述粘结剂与金属粉末的质量比为1︰4~6。Further, the mass ratio of the binder to the metal powder is 1:4~6.
进一步地,所述粘结剂与金属粉末混炼的温度为150~160℃,所述挤出的温度为175~185℃。Further, the mixing temperature of the binder and the metal powder is 150-160°C, and the extrusion temperature is 175-185°C.
本发明的有益效果是,本发明能使碳纳米管在金属基复合材料中实现稳定均匀分散。将碳纳米管引入到粘结剂体系中,将充分利用聚合物作为粘结剂主要组分有利于碳纳米管分散和锚固,以及注射成形能获得高致密化的优势。同时,碳纳米管的加入既能提高粘结剂体系的力学强度,又能提高粘结剂体系的粘度,而且呈网络结构布的碳纳米管因其大的长径比和高强高韧将进一步有效抑制体积的收缩。此外,碳纳米管的存在使我们可选择较低分子量的中密度聚乙烯就能达到粘结剂保形性和流动性的要求,不需使用传统粘结剂中所用的高密度聚乙烯,而低分子量的中密度聚乙烯更容易在后续的脱脂过程中脱出。还值得一提的是,高强高韧的碳纳米管的存在不但可减小脱脂过程中体积的收缩,而且在后续的烧结过程中还能抑制晶粒的长大,这非常有利致密度和性能的提高。The beneficial effect of the invention is that the invention can realize stable and uniform dispersion of the carbon nanotubes in the metal matrix composite material. The introduction of carbon nanotubes into the binder system will make full use of the polymer as the main component of the binder, which is beneficial to the dispersion and anchoring of carbon nanotubes, and the advantages of high densification obtained by injection molding. At the same time, the addition of carbon nanotubes can not only improve the mechanical strength of the binder system, but also increase the viscosity of the binder system, and the carbon nanotubes in the network structure will further improve Effectively inhibit volume shrinkage. In addition, the presence of carbon nanotubes allows us to choose lower molecular weight medium-density polyethylene to meet the requirements of binder shape retention and fluidity, without using high-density polyethylene used in traditional binders, but Low molecular weight medium density polyethylene is easier to come out in the subsequent degreasing process. It is also worth mentioning that the presence of high-strength and high-toughness carbon nanotubes can not only reduce the volume shrinkage during the debinding process, but also inhibit the growth of grains in the subsequent sintering process, which is very beneficial to the density and performance. improvement.
附图说明Description of drawings
图1表示实施例1得到的喂料的扫描电镜照片。Fig. 1 represents the scanning electron micrograph of the feeding material that embodiment 1 obtains.
具体实施方式detailed description
实施例1:称取2g碳纳米管(直径为10~30纳米,长度为5微米到50微米)与32.5g石蜡和1g油酸加热至80℃呈熔融态。在超声分散作用下,搅拌混合1h。待到混合溶液大致变得均匀且大致呈黑色时,迅速取出直至凝固,将得到的复合固态石蜡切碎。Example 1: Weigh 2g of carbon nanotubes (with a diameter of 10-30nm and a length of 5-50μm) with 32.5g of paraffin and 1g of oleic acid and heat to 80°C to be in a molten state. Under the action of ultrasonic dispersion, stir and mix for 1 h. When the mixed solution becomes roughly uniform and roughly black, take it out quickly until it solidifies, and chop the obtained composite solid paraffin.
将上述切碎的石蜡加入到已升温至80℃的混炼机中,在转速为30r/min时,混炼30min。将混炼机温度调至145℃后加入15g中密度聚乙烯,保持转速不变的情况下混炼60min,待中密度聚乙烯大致溶解后将转速调至45r/min,并加入2.5g表面活性剂,在混炼机中混炼1小时,得到粘结剂;Add the above-mentioned chopped paraffin into the kneader whose temperature has been raised to 80°C, and knead for 30 min at the speed of 30 r/min. Adjust the temperature of the mixer to 145°C, add 15g of medium-density polyethylene, and knead for 60 minutes while keeping the speed constant. After the medium-density polyethylene is roughly dissolved, adjust the speed to 45r/min, and add 2.5g of surface active agent, mixed for 1 hour in a kneader to obtain a binder;
接着,将250g铜粉(直径为0.5微米)加入到上述粘结剂中。将混炼温度升至155℃,搅拌速度仍保持45r/min,混炼1.5h。将所得的复合物加入双螺杆挤出机中,挤出温度设置为180℃,进行挤出造粒,得到喂料。Next, 250 g of copper powder (0.5 µm in diameter) was added to the above binder. Raise the mixing temperature to 155°C, keep the stirring speed at 45r/min, and mix for 1.5h. The obtained compound was put into a twin-screw extruder, and the extrusion temperature was set at 180° C. for extrusion granulation to obtain feed.
将上述制备方法得到的喂料制样,进行扫描电镜分析,其电镜照片如图1所示,从图1中看出,喂料呈类球形粒子,碳纳米管非常均匀地分布于粒子中,表明这一技术路线能很好地实现碳纳米管与铜粉的均匀复合。The feed sample preparation that above-mentioned preparation method obtains is carried out scanning electron microscope analysis, and its electron microscope photo is as shown in Figure 1, finds out from Figure 1, feed is spherical particle, and carbon nanotube is very evenly distributed in the particle, It shows that this technical route can well realize the uniform composite of carbon nanotubes and copper powder.
实施例2:称取6g碳纳米管(直径为10~30纳米,长度为5微米到50微米)与32.5g石蜡和1g油酸加热至80℃呈熔融态。在超声分散作用下,搅拌混合1h。待到混合溶液大致变得均匀且大致呈黑色时,迅速取出直至凝固,将得到的复合固态石蜡切碎。Example 2: Weigh 6g of carbon nanotubes (with a diameter of 10-30nm and a length of 5-50μm) with 32.5g of paraffin and 1g of oleic acid and heat to 80°C to be in a molten state. Under the action of ultrasonic dispersion, stir and mix for 1 h. When the mixed solution becomes roughly uniform and roughly black, take it out quickly until it solidifies, and chop the obtained composite solid paraffin.
将上述切碎的石蜡加入到已升温至80℃的混炼机中,在转速为30r/min时,混炼30min。将混炼机温度调至145℃后加入15g中密度聚乙烯,保持转速不变的情况下混炼60min,待中密度聚乙烯大致溶解后将转速调至45r/min,并加入2.5g表面活性剂,在混炼机中混炼1小时,得到粘结剂;Add the above-mentioned chopped paraffin into the kneader whose temperature has been raised to 80°C, and knead for 30 min at the speed of 30 r/min. Adjust the temperature of the mixer to 145°C, add 15g of medium-density polyethylene, and knead for 60 minutes while keeping the speed constant. After the medium-density polyethylene is roughly dissolved, adjust the speed to 45r/min, and add 2.5g of surface active agent, mixed for 1 hour in a kneader to obtain a binder;
接着,将300g铜粉(直径为2微米)加入到上述粘结剂中。将混炼温度升至155℃,搅拌速度仍保持45r/min,混炼1.5h。将所得的复合物加入双螺杆挤出机中,挤出温度设置为180℃,进行挤出造粒,得到喂料。Next, 300 g of copper powder (2 microns in diameter) was added to the above binder. Raise the mixing temperature to 155°C, keep the stirring speed at 45r/min, and mix for 1.5h. The obtained compound was put into a twin-screw extruder, and the extrusion temperature was set at 180° C. for extrusion granulation to obtain feed.
实施例3:称取4g碳纳米管(直径为10~30纳米,长度为5微米到50微米)与32.5g石蜡和1g油酸加热至80℃呈熔融态。在超声分散作用下,搅拌混合1h。待到混合溶液大致变得均匀且大致呈黑色时,迅速取出直至凝固,将得到的复合固态石蜡切碎。Example 3: Weigh 4g of carbon nanotubes (10-30nm in diameter, 5-50μm in length), 32.5g of paraffin wax and 1g of oleic acid and heat to 80°C to be in a molten state. Under the action of ultrasonic dispersion, stir and mix for 1 h. When the mixed solution becomes roughly uniform and roughly black, take it out quickly until it solidifies, and chop the obtained composite solid paraffin.
将上述切碎的石蜡加入到已升温至80℃的混炼机中,在转速为30r/min时,混炼30min。将混炼机温度调至145℃后加入15g中密度聚乙烯,保持转速不变的情况下混炼60min,待中密度聚乙烯大致溶解后将转速调至45r/min,并加入2.5g表面活性剂,在混炼机中混炼1小时,得到粘结剂;Add the above-mentioned chopped paraffin into the kneader whose temperature has been raised to 80°C, and knead for 30 min at the speed of 30 r/min. Adjust the temperature of the mixer to 145°C, add 15g of medium-density polyethylene, and mix for 60 minutes while keeping the speed constant. After the medium-density polyethylene is roughly dissolved, adjust the speed to 45r/min, and add 2.5g of surface active agent, mixed for 1 hour in a kneader to obtain a binder;
接着,将300g铜粉(直径为2微米)加入到上述粘结剂中。将混炼温度升至155℃,搅拌速度仍保持45r/min,混炼1.5h。将所得的复合物加入双螺杆挤出机中,挤出温度设置为180℃,进行挤出造粒,得到喂料。Next, 300 g of copper powder (2 microns in diameter) was added to the above binder. Raise the mixing temperature to 155°C, keep the stirring speed at 45r/min, and mix for 1.5h. The obtained compound was put into a twin-screw extruder, and the extrusion temperature was set at 180° C. for extrusion granulation to obtain feed.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610032389.7A CN105463347B (en) | 2016-01-19 | 2016-01-19 | A kind of preparation method of powder injection forming binding agent and feeding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610032389.7A CN105463347B (en) | 2016-01-19 | 2016-01-19 | A kind of preparation method of powder injection forming binding agent and feeding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105463347A CN105463347A (en) | 2016-04-06 |
CN105463347B true CN105463347B (en) | 2018-02-16 |
Family
ID=55601499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610032389.7A Expired - Fee Related CN105463347B (en) | 2016-01-19 | 2016-01-19 | A kind of preparation method of powder injection forming binding agent and feeding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105463347B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110078497A (en) * | 2019-03-14 | 2019-08-02 | 湖北精圭锆业有限公司 | Black zirconia feeding and preparation method thereof for ceramic injection forming |
CN114212773A (en) * | 2021-12-17 | 2022-03-22 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of carbon nanotube film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388847B (en) * | 2014-12-02 | 2016-06-08 | 宁波新睦新材料有限公司 | The Cu-base composites of a kind of fibre reinforced and its preparation method |
-
2016
- 2016-01-19 CN CN201610032389.7A patent/CN105463347B/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
油酸修饰碳纳米管及其摩擦性能的研究;陈传盛等;《润滑与密封》;20071231;第32卷(第12期);第23-26页 * |
碳纳米管改性的蜡基复合粘结剂;陈小华等;《湖南大学学报(自然科学版)》;20130930;第40卷(第9期);第74-78页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105463347A (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107825621B (en) | Polymer-based micro/nano functional composite spherical powder and preparation method thereof | |
Bai et al. | Improving the mechanical properties of laser‐sintered polyamide 12 through incorporation of carbon nanotubes | |
CN100587007C (en) | A method of inorganic nanoparticles reinforced nylon selective laser sintering formed parts | |
CN110193893B (en) | Preparation method of polymer-based spherical powder | |
JP2020006441A (en) | Manufacturing method of graphene metal composite material | |
CN105033254A (en) | Method for manufacturing high-performance in-situ TiC reinforced titanium-based composite workpiece on basis of CNTs and laser additive manufacturing and processing technology | |
CN103088273A (en) | Preparation method of high-volume-fraction carbon-nanotube-enhanced metal-based composite material | |
CN105463347B (en) | A kind of preparation method of powder injection forming binding agent and feeding | |
CN105504749A (en) | Polycarbonate composite material for 3D printing and preparation method thereof | |
CN113878113B (en) | Ceramic-stainless steel composite material and preparation method thereof | |
wei Li et al. | Synergy of low-and high-density polyethylene in a binder system for powder injection molding of SiC ceramics | |
TW200925297A (en) | Method of making magnesium matrix nanotube composite material | |
Yang et al. | Selective laser sintering of polyamide 12/potassium titanium whisker composites | |
TWI685573B (en) | Manufacturing method of graphene metal composite material | |
US20230117192A1 (en) | Preparation method for w-cu composite plate with cu phase in finger-shaped gradient distribution | |
Alam et al. | Fabrication approaches of nanocomposites | |
CN113073221B (en) | Graphene modification method of metal | |
CN106380710A (en) | Preparation method and application of nylon composite powder material | |
CN107140985A (en) | A kind of high performance ceramic material preparation method based on increasing material manufacturing technique | |
Bai et al. | Selective laser sintering mechanism of polymer-coated molybdenum powder | |
CN112247141B (en) | A kind of slurry of fiber-reinforced metal matrix composite material for extrusion 3D printing and preparation method thereof | |
CN105331334A (en) | Preparation method of short carbon fiber/meso-erythritol phase change composite material | |
CN106589941B (en) | Laser sintered 3D printing technique fiberglass reinforced walnut shell composite powder material | |
Muhsan et al. | Flow behavior of Cu/CNTs feedstocks for powder injection molding | |
Zhao et al. | Mechanical behavior and microstructure of 3D-printed carbon nanotubes-reinforced Cu composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180216 |