[go: up one dir, main page]

CN112885849B - Display panel and display device - Google Patents

Display panel and display device Download PDF

Info

Publication number
CN112885849B
CN112885849B CN202110127089.8A CN202110127089A CN112885849B CN 112885849 B CN112885849 B CN 112885849B CN 202110127089 A CN202110127089 A CN 202110127089A CN 112885849 B CN112885849 B CN 112885849B
Authority
CN
China
Prior art keywords
layer
display panel
flexible substrate
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110127089.8A
Other languages
Chinese (zh)
Other versions
CN112885849A (en
Inventor
杲皓冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN202110127089.8A priority Critical patent/CN112885849B/en
Publication of CN112885849A publication Critical patent/CN112885849A/en
Application granted granted Critical
Publication of CN112885849B publication Critical patent/CN112885849B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/411Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by materials, geometry or structure of the substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种显示面板及显示装置。所述显示面板包括柔性衬底、设于所述柔性衬底之上的薄膜晶体管层;其中,所述柔性衬底与所述薄膜晶体管层之间设置有带正电的第一半导体层。本发明通过在柔性衬底和薄膜晶体管层之间设置带正电的第一半导体层,所述带正电的第一半导体层可以排斥所述柔性衬底中的带正电的杂质粒子的扩散,使其无法进入薄膜晶体管层中的多晶硅与栅极绝缘层的界面,从而有效改善了薄膜晶体管层的负偏压温度不稳定性效应。

Figure 202110127089

The present invention provides a display panel and a display device. The display panel includes a flexible substrate and a thin film transistor layer disposed on the flexible substrate; wherein a positively charged first semiconductor layer is disposed between the flexible substrate and the thin film transistor layer. In the present invention, a positively charged first semiconductor layer is disposed between the flexible substrate and the thin film transistor layer, and the positively charged first semiconductor layer can repel the diffusion of positively charged impurity particles in the flexible substrate , so that it cannot enter the interface between the polysilicon in the thin film transistor layer and the gate insulating layer, thereby effectively improving the temperature instability effect of the negative bias voltage of the thin film transistor layer.

Figure 202110127089

Description

显示面板及显示装置Display panel and display device

技术领域technical field

本发明涉及显示技术领域,尤其涉及一种显示面板及显示装置。The present invention relates to the field of display technology, and in particular, to a display panel and a display device.

背景技术Background technique

由于P型MOS(Metal-Oxide-Semiconductor,金属-氧化物-半导体)晶体管的电路工艺简单、价格低廉,被广泛应用于LTPS(Low Temperature Poly-Silicon,低温多晶硅)的TFT(Thin Film Transistor,薄膜晶体管)器件。在实际使用过程中,因受栅极电场以及环境温度等因素的影响,会导致TFT器件的阈值电压的绝对值增加、载流子迁移率下降、跨导降低、开态电流减小,即NBTI(Negative Bias Temperature Instability,负偏压温度不稳定性)效应,NBTI效应是TFT器件失效的一个重要原因。Due to the simple circuit process and low price of P-type MOS (Metal-Oxide-Semiconductor, metal-oxide-semiconductor) transistors, it is widely used in TFT (Thin Film Transistor, thin film) of LTPS (Low Temperature Poly-Silicon, low temperature polysilicon). transistor) device. In the actual use process, due to the influence of gate electric field and ambient temperature, the absolute value of the threshold voltage of the TFT device will increase, the carrier mobility will decrease, the transconductance will decrease, and the on-state current will decrease, that is, NBTI (Negative Bias Temperature Instability, Negative Bias Temperature Instability) effect, NBTI effect is an important reason for the failure of TFT devices.

现有技术中通常采用柔性衬底作为可弯折显示面板的衬底基板,经实验发现,采用柔性衬底的TFT器件,其NBTI效应较玻璃衬底的TFT器件更为显著。根据目前的研究发现,引起NBTI效应的主要原因为多晶硅表面的硅氢键(Si-H)在栅压以及高温的作用下发生断裂,H原子逸出,产生了Si的悬挂键,形成了界面陷阱,从而导致出现NBTI效应。而当采用柔性衬底时,柔性衬底中的正离子在栅极电场的作用下,扩散至多晶硅与栅极绝缘层的界面,被界面陷阱所俘获,从而会加剧NBTI效应的发生,导致TFT器件失效。故,有必要改善这一缺陷。In the prior art, a flexible substrate is usually used as the substrate substrate of a bendable display panel. It is found through experiments that the NBTI effect of a TFT device using a flexible substrate is more significant than that of a glass substrate TFT device. According to the current research, the main reason for the NBTI effect is that the silicon-hydrogen bond (Si-H) on the polysilicon surface breaks under the action of gate voltage and high temperature, and the H atom escapes, resulting in the dangling bond of Si and the formation of the interface. traps, resulting in the NBTI effect. When a flexible substrate is used, the positive ions in the flexible substrate diffuse to the interface between the polysilicon and the gate insulating layer under the action of the gate electric field, and are trapped by the interface traps, which will aggravate the occurrence of the NBTI effect and lead to TFT Device failure. Therefore, it is necessary to improve this defect.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供一种显示面板,用于解决现有技术中的显示面板由于采用柔性衬底作为衬底基板,但柔性衬底中的正离子会扩散至薄膜晶体管层,导致薄膜晶体管层失效的技术问题。The embodiment of the present invention provides a display panel, which is used to solve the problem that the flexible substrate is used as the substrate substrate in the display panel in the prior art, but the positive ions in the flexible substrate will diffuse to the thin film transistor layer, resulting in the failure of the thin film transistor layer. technical issues.

本发明实施例提供一种显示面板,包括柔性衬底、设于所述柔性衬底之上的薄膜晶体管层;其中,所述柔性衬底与所述薄膜晶体管层之间设置有带正电的第一半导体层。An embodiment of the present invention provides a display panel, comprising a flexible substrate and a thin film transistor layer disposed on the flexible substrate; wherein a positively charged transistor is disposed between the flexible substrate and the thin film transistor layer the first semiconductor layer.

在本发明实施例提供的显示面板中,所述显示面板还包括设于所述柔性衬底之上的阻挡层、设于所述阻挡层之上的第一缓冲层,其中,所述第一半导体层设于所述阻挡层和所述第一缓冲层之间。In the display panel provided by the embodiment of the present invention, the display panel further includes a barrier layer provided on the flexible substrate, and a first buffer layer provided on the barrier layer, wherein the first buffer layer is A semiconductor layer is provided between the barrier layer and the first buffer layer.

在本发明实施例提供的显示面板中,所述显示面板还包括设于所述柔性衬底之上的阻挡层、设于所述阻挡层之上的第一缓冲层、设于所述第一缓冲层之上的第二缓冲层,其中,所述第一半导体层设于所述第一缓冲层和所述第二缓冲层之间。In the display panel provided by the embodiment of the present invention, the display panel further includes a barrier layer provided on the flexible substrate, a first buffer layer provided on the barrier layer, and a first buffer layer provided on the first buffer layer. A second buffer layer above the buffer layer, wherein the first semiconductor layer is provided between the first buffer layer and the second buffer layer.

在本发明实施例提供的显示面板中,所述显示面板还包括第二半导体层,所述第二半导体层设于所述阻挡层和所述第一缓冲层之间。In the display panel provided by the embodiment of the present invention, the display panel further includes a second semiconductor layer, and the second semiconductor layer is provided between the barrier layer and the first buffer layer.

在本发明实施例提供的显示面板中,所述第二半导体层带正电。In the display panel provided by the embodiment of the present invention, the second semiconductor layer is positively charged.

在本发明实施例提供的显示面板中,所述显示面板还包括电源线,所述第一半导体层通过第一过孔与所述电源线电连接。In the display panel provided by the embodiment of the present invention, the display panel further includes a power supply line, and the first semiconductor layer is electrically connected to the power supply line through a first via hole.

在本发明实施例提供的显示面板中,所述薄膜晶体管层为P型金属氧化物半导体晶体管层。In the display panel provided by the embodiment of the present invention, the thin film transistor layer is a P-type metal oxide semiconductor transistor layer.

在本发明实施例提供的显示面板中,所述第一半导体层为P型半导体层。In the display panel provided by the embodiment of the present invention, the first semiconductor layer is a P-type semiconductor layer.

在本发明实施例提供的显示面板中,所述P型半导体层掺杂有硼离子。In the display panel provided by the embodiment of the present invention, the P-type semiconductor layer is doped with boron ions.

本发明实施例还提供一种显示装置,包括上述的显示面板。An embodiment of the present invention further provides a display device, including the above-mentioned display panel.

有益效果:本发明实施例提供的一种显示面板及显示装置,通过在柔性衬底和薄膜晶体管层之间设置带正电的第一半导体层,所述带正电的第一半导体层可以排斥所述柔性衬底中的带正电的杂质粒子的扩散,使其无法进入薄膜晶体管层中的多晶硅与栅极绝缘层的界面,从而有效改善了薄膜晶体管层的负偏压温度不稳定性效应。Beneficial effects: In a display panel and a display device provided by the embodiments of the present invention, by arranging a positively charged first semiconductor layer between the flexible substrate and the thin film transistor layer, the positively charged first semiconductor layer can repel the The diffusion of positively charged impurity particles in the flexible substrate prevents them from entering the interface between the polysilicon and the gate insulating layer in the thin film transistor layer, thereby effectively improving the negative bias temperature instability effect of the thin film transistor layer .

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments.

图1是本发明实施例提供的一显示面板的基本结构示意图。FIG. 1 is a schematic diagram of a basic structure of a display panel according to an embodiment of the present invention.

图2是本发明实施例提供的另一显示面板的基本结构示意图。FIG. 2 is a schematic diagram of the basic structure of another display panel provided by an embodiment of the present invention.

图3是本发明实施例提供的又一显示面板的基本结构示意图。FIG. 3 is a schematic diagram of the basic structure of another display panel provided by an embodiment of the present invention.

图4是本发明实施例提供的再一显示面板的基本结构示意图。FIG. 4 is a schematic diagram of the basic structure of still another display panel provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。在附图中,为了清晰及便于理解和描述,附图中绘示的组件的尺寸和厚度并未按照比例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. In the drawings, for clarity and ease of understanding and description, the dimensions and thicknesses of components depicted in the drawings are not to scale.

如图1所示,本发明实施例提供的一显示面板的基本结构示意图,所述显示面板包括柔性衬底10、设于所述柔性衬底10之上的薄膜晶体管层20;其中,所述柔性衬底10与所述薄膜晶体管层20之间设置有带正电的第一半导体层30。As shown in FIG. 1 , a schematic diagram of a basic structure of a display panel provided by an embodiment of the present invention, the display panel includes a flexible substrate 10 and a thin film transistor layer 20 disposed on the flexible substrate 10; wherein, the A positively charged first semiconductor layer 30 is disposed between the flexible substrate 10 and the thin film transistor layer 20 .

需要说明的是,所述柔性衬底10是由碳、氢等元素组成的有机薄膜,例如聚酰亚胺。聚酰亚胺主要由二元酐和二元胺合成,具有优良的机械性能以及介电性能,能够保持柔性可弯曲。It should be noted that the flexible substrate 10 is an organic thin film composed of carbon, hydrogen and other elements, such as polyimide. Polyimide is mainly synthesized from dibasic anhydrides and dibasic amines. It has excellent mechanical properties and dielectric properties, and can maintain flexibility and bendability.

需要说明的是,所述薄膜晶体管层20具体包括:有源层201、第一栅极绝缘层202、第一栅极层203、第二栅极绝缘层204、第二栅极层205、层间绝缘层206、源/漏极金属层207。其中,所述有源层201包括n型衬底2011和p沟道2012;所述第一栅极绝缘层202位于所述柔性衬底10之上且覆盖所述有源层201;所述第一栅极层203位于所述第一栅极绝缘层202之上;所述第二栅极绝缘层204位于所述第一栅极绝缘层202之上且覆盖所述第一栅极层203;所述第二栅极层205位于所述第二栅极绝缘层204之上;所述层间绝缘层206位于所述第二栅极绝缘层204之上且覆盖所述第二栅极层205;所述源/漏极金属层207位于所述层间绝缘层206之上且分别通过过孔与所述有源层201的p沟道2012电连接,所述过孔贯穿所述层间绝缘层206、所述第二栅极绝缘层204以及部分所述第一栅极绝缘层202,所述源/漏极金属层207包括源极2071和漏极2072。It should be noted that the thin film transistor layer 20 specifically includes: an active layer 201, a first gate insulating layer 202, a first gate layer 203, a second gate insulating layer 204, a second gate layer 205, a layer Inter-insulating layer 206, source/drain metal layer 207. The active layer 201 includes an n-type substrate 2011 and a p-channel 2012; the first gate insulating layer 202 is located on the flexible substrate 10 and covers the active layer 201; the first gate insulating layer 202 A gate layer 203 is located on the first gate insulating layer 202; the second gate insulating layer 204 is located on the first gate insulating layer 202 and covers the first gate layer 203; The second gate layer 205 is located on the second gate insulating layer 204 ; the interlayer insulating layer 206 is located on the second gate insulating layer 204 and covers the second gate layer 205 ; The source/drain metal layer 207 is located on the interlayer insulating layer 206 and is electrically connected to the p-channel 2012 of the active layer 201 through via holes, which penetrate through the interlayer insulating layer. Layer 206 , the second gate insulating layer 204 and part of the first gate insulating layer 202 , the source/drain metal layer 207 includes a source electrode 2071 and a drain electrode 2072 .

在一种实施例中,所述第二栅极层205交流接地,本发明实施例通过在所述第一栅极层203和所述源/漏极金属层207之间设置第二栅极层205,可起到静电屏蔽作用,减小所述第一栅极层203和所述源/漏极金属层207之间的寄生电容。In an embodiment, the second gate layer 205 is AC grounded. In this embodiment of the present invention, a second gate layer is provided between the first gate layer 203 and the source/drain metal layer 207 205 , which can play an electrostatic shielding role and reduce the parasitic capacitance between the first gate layer 203 and the source/drain metal layer 207 .

在一种实施例中,所述薄膜晶体管层20为P型金属氧化物半导体晶体管层。可以理解的是,所述P型金属氧化物半导体晶体管层是靠空穴的流动传输电流。其中,当不加电时,所述源极2071和所述漏极2072之间不导通;当所述源极2071上加有足够的正电压(所述第一栅极层203接地)时,所述第一栅极层203下方的n型衬底2011表面呈现p型反型层,成为连接所述源极2071和所述漏极2072的沟道。即可以通过控制所述源极2071和所述第一栅极层203之间的压差,从而控制所述P型金属氧化物半导体晶体管层的导通或者截止。In one embodiment, the thin film transistor layer 20 is a P-type metal oxide semiconductor transistor layer. It can be understood that, the P-type metal oxide semiconductor transistor layer transmits current by the flow of holes. Wherein, when no power is applied, there is no conduction between the source electrode 2071 and the drain electrode 2072; when a sufficient positive voltage is applied to the source electrode 2071 (the first gate layer 203 is grounded) , the surface of the n-type substrate 2011 under the first gate layer 203 presents a p-type inversion layer, which becomes a channel connecting the source electrode 2071 and the drain electrode 2072 . That is, by controlling the voltage difference between the source electrode 2071 and the first gate layer 203 , the on or off of the P-type metal oxide semiconductor transistor layer can be controlled.

可以理解的是,因为所述P型金属氧化物半导体晶体管层是n型衬底2011,其中的多数载流子是电子,少数载流子是空穴,对应于所述源/漏极金属层207的接触区的掺杂类型是p型(即p沟道2012),所以所述P型金属氧化物半导体晶体管层的工作条件是在所述第一栅极层203上相对于所述源极2071施加负电压,即在所述第一栅极层203上施加的是负电荷电子,若此时所述显示面板处于高温环境中,会引起负偏压温度不稳定性(NBTI)效应,即会导致所述薄膜晶体管层20的阈值电压的绝对值增加、载流子迁移率下降、跨导降低、开态电流减小,导致所述薄膜晶体管层20失效。It can be understood that because the P-type metal oxide semiconductor transistor layer is the n-type substrate 2011, the majority carriers are electrons and the minority carriers are holes, corresponding to the source/drain metal layer. The doping type of the contact region of 207 is p-type (ie, p-channel 2012), so the working condition of the p-type metal oxide semiconductor transistor layer is relative to the source electrode on the first gate layer 203 2071 applies a negative voltage, that is, negatively charged electrons are applied to the first gate layer 203. If the display panel is in a high temperature environment at this time, it will cause a negative bias temperature instability (NBTI) effect, namely The absolute value of the threshold voltage of the thin film transistor layer 20 increases, the carrier mobility decreases, the transconductance decreases, and the on-state current decreases, resulting in the failure of the thin film transistor layer 20 .

具体地,对所述薄膜晶体管层20施加负偏压和温度应力后,所述薄膜晶体管层20中的Si和SiO2界面处以及氧化层内发生如下电化学反应模型:这种模型假设某种物质Y扩散到Si和SiO2界面,与Si-H键发生电化学反应,生成了一个界面态Si≡Si·和一种未知物质X,Si≡SiH+Y→Si≡Si●+X,即硅氢键(Si-H)在栅压以及高温的作用下发生断裂,H原子逸出,产生了Si的悬挂键,形成了界面陷阱。Specifically, after applying negative bias voltage and temperature stress to the thin film transistor layer 20, the following electrochemical reaction model occurs at the interface of Si and SiO 2 in the thin film transistor layer 20 and in the oxide layer: this model assumes a certain Substance Y diffuses to the interface of Si and SiO 2 and reacts electrochemically with the Si-H bond to generate an interface state Si≡Si and an unknown substance X, Si≡SiH+Y→Si≡Si+X, namely The silicon-hydrogen bond (Si-H) breaks under the action of gate voltage and high temperature, and the H atom escapes, resulting in the dangling bond of Si and the formation of interface traps.

总之,Si和SiO2的界面缺陷是造成所述薄膜晶体管层20失效的主要原因。具体地,所述薄膜晶体管层20失效是由于NBTI效应过程中正电荷的产生和钝化,即界面态(界面陷阱)的形成。其中,在高温负栅压下,所述薄膜晶体管层20的反型层的空穴受到热激发,遂穿到Si和SiO2的界面,由于在界面处存在大量的Si-H键,热激发的空穴与Si-H键在某种条件下作用生成H原子、H+或者含H的物质,从而在界面处留下Si的悬挂键,而由于H原子、H+或者含H的物质的不稳定性,H原子、H+或者含H的物质会远离所述有源层201的界面向所述第一栅极层203的界面扩散,从而产生界面缺陷和正电荷。此外SiO2的界面缺陷处由于正电荷的产生,将导致反型层内的多数载流子(空穴)数量的减少,SiO2中的正电荷的产生将形成一个与栅极电压电场相反的电场,会削弱所述薄膜晶体管层20的性能(例如阈值电压的绝对值增加、载流子迁移率下降、跨导降低、开态电流减小等),随着时间的积累将导致所述薄膜晶体管层20失效。In conclusion, the interface defect of Si and SiO 2 is the main reason for the failure of the thin film transistor layer 20 . Specifically, the thin film transistor layer 20 fails due to the generation and passivation of positive charges during the NBTI effect, that is, the formation of interface states (interface traps). Among them, under the high temperature negative gate voltage, the holes of the inversion layer of the thin film transistor layer 20 are thermally excited and pass through the interface of Si and SiO 2 . Due to the existence of a large number of Si-H bonds at the interface, the thermal excitation The hole and the Si-H bond act under certain conditions to generate H atoms, H + or H-containing substances, thereby leaving Si dangling bonds at the interface, and due to the H atoms, H + or H-containing substances. Instability, H atoms, H + or H-containing substances will diffuse away from the interface of the active layer 201 to the interface of the first gate layer 203 , thereby generating interface defects and positive charges. In addition, due to the generation of positive charges at the interface defects of SiO 2 , the number of majority carriers (holes) in the inversion layer will be reduced, and the generation of positive charges in SiO 2 will form an electric field opposite to the gate voltage. The electric field, which will impair the performance of the thin film transistor layer 20 (eg, increase in absolute value of threshold voltage, decrease in carrier mobility, decrease in transconductance, decrease in on-state current, etc.), will cause the thin film to accumulate over time. Transistor layer 20 fails.

而通过对所述有源层201的表面进行处理,用硅氟(Si-F)键或者硅氘(Si-D)键替代硅氢(Si-H)键,可改善硅氢键(Si-H)在栅压以及高温的作用下发生断裂,H原子逸出,产生了Si的悬挂键,形成界面陷阱,从而导致的负偏压温度不稳定性(NBTI)效应。具体地,是因为氟或者氘与硅原子的结合力更强,不易断裂。但若采用所述柔性衬底10作为显示面板的衬底基板,所述柔性衬底10在栅压以及高温的影响下,也会分解产生正离子,向所述薄膜晶体管层20的方向扩散,导致负偏压温度不稳定性(NBTI)效应进一步加剧。本发明实施例通过在所述柔性衬底10和所述薄膜晶体管层20之间设置带正电的第一半导体层30,所述带正电的第一半导体层30可以排斥所述柔性衬底10中的带正电的杂质粒子的扩散,使其无法进入所述有源层201与所述第一栅极绝缘层202的界面,从而有效改善了所述薄膜晶体管层20的负偏压温度不稳定性(NBTI)效应。By treating the surface of the active layer 201 to replace the silicon-hydrogen (Si-H) bond with a silicon-fluorine (Si-F) bond or a silicon-deuterium (Si-D) bond, the silicon-hydrogen bond (Si-H) can be improved. H) breaks under the action of gate voltage and high temperature, H atoms escape, and dangling bonds of Si are generated, forming interface traps, resulting in the negative bias temperature instability (NBTI) effect. Specifically, it is because the bonding force between fluorine or deuterium and silicon atoms is stronger, and it is not easy to break. However, if the flexible substrate 10 is used as the base substrate of the display panel, the flexible substrate 10 will also decompose to generate positive ions under the influence of gate voltage and high temperature, which will diffuse in the direction of the thin film transistor layer 20, The negative bias temperature instability (NBTI) effect is further exacerbated. In this embodiment of the present invention, by disposing a positively charged first semiconductor layer 30 between the flexible substrate 10 and the thin film transistor layer 20, the positively charged first semiconductor layer 30 can repel the flexible substrate The diffusion of positively charged impurity particles in 10 prevents them from entering the interface between the active layer 201 and the first gate insulating layer 202, thereby effectively improving the negative bias temperature of the thin film transistor layer 20 Instability (NBTI) effects.

在一种实施例中,所述第一半导体层30为P型半导体层。即所述第一半导体层30为空穴浓度远大于自由电子浓度的杂质半导体。所述第一半导体层30的形成方法是:在纯净的硅晶体中掺入三价元素,使之取代晶格中硅原子的位子,从而形成P型半导体。其中,空穴主要由杂质原子提供,自由电子由热激发形成,掺入的杂质原子越多,多子(空穴)的浓度就越高,导电性能就越强。In one embodiment, the first semiconductor layer 30 is a P-type semiconductor layer. That is, the first semiconductor layer 30 is an impurity semiconductor whose hole concentration is much higher than that of free electrons. The method for forming the first semiconductor layer 30 is as follows: pure silicon crystals are doped with trivalent elements to replace the positions of silicon atoms in the crystal lattice, thereby forming a P-type semiconductor. Among them, holes are mainly provided by impurity atoms, and free electrons are formed by thermal excitation. The more impurity atoms are doped, the higher the concentration of multi-subs (holes) and the stronger the electrical conductivity.

在一种实施例中,所述P型半导体层掺杂有硼离子。本发明实施例通过采用硼离子对所述第一半导体层30进行重掺杂,使其成为P型半导体,重掺杂的所述P型半导体层内含有多个正电中心,它们可以排斥所述柔性衬底10中的带正电的杂质粒子的扩散,使其无法进入所述有源层201与所述第一栅极绝缘层202的界面,从而有效改善了所述薄膜晶体管层20的负偏压温度不稳定性(NBTI)效应。In one embodiment, the P-type semiconductor layer is doped with boron ions. In the embodiment of the present invention, the first semiconductor layer 30 is heavily doped with boron ions to make it a P-type semiconductor. The heavily doped P-type semiconductor layer contains a plurality of positive charge centers, which can repel all The diffusion of positively charged impurity particles in the flexible substrate 10 prevents them from entering the interface between the active layer 201 and the first gate insulating layer 202 , thereby effectively improving the thin film transistor layer 20 . Negative Bias Temperature Instability (NBTI) Effect.

需要说明的是,所述P型半导体层掺杂有硼离子,这些硼离子在所述P型半导体层中形成多个正电中心,但由于高温活化工艺,这些硼离子会与周围的硅原子紧密结合,不会随着栅极电场而发生扩散。It should be noted that the P-type semiconductor layer is doped with boron ions, and these boron ions form a plurality of positive charge centers in the P-type semiconductor layer, but due to the high-temperature activation process, these boron ions will interact with surrounding silicon atoms. Tightly bonded with no diffusion with gate electric field.

在一种实施例中,所述显示面板还包括设于所述柔性衬底10之上的阻挡层40、设于所述阻挡层40之上的第一缓冲层50,其中,所述第一半导体层30设于所述阻挡层40和所述第一缓冲层50之间。所述阻挡层40和所述第一缓冲层50的作用都是为了防止外界环境中的水氧入侵导致所述薄膜晶体管层20失效。In an embodiment, the display panel further includes a barrier layer 40 provided on the flexible substrate 10 and a first buffer layer 50 provided on the barrier layer 40, wherein the first buffer layer 50 The semiconductor layer 30 is provided between the barrier layer 40 and the first buffer layer 50 . The functions of the barrier layer 40 and the first buffer layer 50 are both to prevent the intrusion of water and oxygen in the external environment from causing the thin film transistor layer 20 to fail.

在一种实施例中,所述层间绝缘层206和所述源/漏极金属层207上设置有平坦化层208,所述平坦化层208上设置有像素定义层209。所述平坦化层208的作用是为了消除所述层间绝缘层206和所述源/漏极金属层207之间的高度差,所述像素定义层209是为了定义像素区域,以便于后续制备有机发光材料,形成发光功能层(未示出)。其中,制备有机发光材料的方法为喷墨打印或者蒸镀。In one embodiment, a planarization layer 208 is provided on the interlayer insulating layer 206 and the source/drain metal layer 207 , and a pixel definition layer 209 is provided on the planarization layer 208 . The function of the planarization layer 208 is to eliminate the height difference between the interlayer insulating layer 206 and the source/drain metal layer 207, and the pixel definition layer 209 is to define the pixel area for subsequent preparation. The organic light-emitting material forms a light-emitting functional layer (not shown). Wherein, the method for preparing the organic light-emitting material is inkjet printing or evaporation.

接下来,请参阅图2,本发明实施例提供的另一显示面板的基本结构示意图,所述显示面板包括柔性衬底10、设于所述柔性衬底10之上的薄膜晶体管层20、设置于所述柔性衬底10与所述薄膜晶体管层20之间的带正电的第一半导体层30。Next, please refer to FIG. 2 , which is a schematic diagram of the basic structure of another display panel provided by an embodiment of the present invention. The display panel includes a flexible substrate 10 , a thin film transistor layer 20 disposed on the flexible substrate 10 , and a flexible substrate 10 . A positively charged first semiconductor layer 30 between the flexible substrate 10 and the thin film transistor layer 20 .

其中,所述显示面板还包括电源线2073,所述第一半导体层30通过第一过孔与所述电源线2073电连接。The display panel further includes a power line 2073, and the first semiconductor layer 30 is electrically connected to the power line 2073 through a first via hole.

需要说明的是,所述柔性衬底10是由碳、氢等元素组成的有机薄膜,例如聚酰亚胺。聚酰亚胺主要由二元酐和二元胺合成,具有优良的机械性能以及介电性能,能够保持柔性可弯曲。It should be noted that the flexible substrate 10 is an organic thin film composed of carbon, hydrogen and other elements, such as polyimide. Polyimide is mainly synthesized from dibasic anhydrides and dibasic amines. It has excellent mechanical properties and dielectric properties, and can maintain flexibility and bendability.

需要说明的是,所述薄膜晶体管层20具体包括:有源层201、第一栅极绝缘层202、第一栅极层203、第二栅极绝缘层204、第二栅极层205、层间绝缘层206、源/漏极金属层207。其中,所述有源层201包括n型衬底2011和p沟道2012;所述第一栅极绝缘层202位于所述柔性衬底10之上且覆盖所述有源层201;所述第一栅极层203位于所述第一栅极绝缘层202之上;所述第二栅极绝缘层204位于所述第一栅极绝缘层202之上且覆盖所述第一栅极层203;所述第二栅极层205位于所述第二栅极绝缘层204之上;所述层间绝缘层206位于所述第二栅极绝缘层204之上且覆盖所述第二栅极层205;所述源/漏极金属层207位于所述层间绝缘层206之上且分别通过过孔与所述有源层201的p沟道2012电连接,所述过孔贯穿所述层间绝缘层206、所述第二栅极绝缘层204以及部分所述第一栅极绝缘层202,所述源/漏极金属层207包括源极2071和漏极2072。It should be noted that the thin film transistor layer 20 specifically includes: an active layer 201, a first gate insulating layer 202, a first gate layer 203, a second gate insulating layer 204, a second gate layer 205, a layer Inter-insulating layer 206, source/drain metal layer 207. The active layer 201 includes an n-type substrate 2011 and a p-channel 2012; the first gate insulating layer 202 is located on the flexible substrate 10 and covers the active layer 201; the first gate insulating layer 202 A gate layer 203 is located on the first gate insulating layer 202; the second gate insulating layer 204 is located on the first gate insulating layer 202 and covers the first gate layer 203; The second gate layer 205 is located on the second gate insulating layer 204 ; the interlayer insulating layer 206 is located on the second gate insulating layer 204 and covers the second gate layer 205 ; The source/drain metal layer 207 is located on the interlayer insulating layer 206 and is electrically connected to the p-channel 2012 of the active layer 201 through via holes, which penetrate through the interlayer insulating layer. Layer 206 , the second gate insulating layer 204 and part of the first gate insulating layer 202 , the source/drain metal layer 207 includes a source electrode 2071 and a drain electrode 2072 .

可以理解的是,所述电源线2073为所述显示面板提供正电位,本发明实施例通过将所述第一半导体层30通过第一过孔与所述电源线2073电连接,使得所述第一半导体层30恒带正电,可以排斥所述柔性衬底10中的带正电的杂质粒子的扩散,使其无法进入所述有源层201与所述第一栅极绝缘层202的界面,从而有效改善了所述薄膜晶体管层20的负偏压温度不稳定性(NBTI)效应。It can be understood that the power supply line 2073 provides a positive potential for the display panel. In the embodiment of the present invention, the first semiconductor layer 30 is electrically connected to the power supply line 2073 through a first via hole, so that the first semiconductor layer 30 is electrically connected to the power supply line 2073. A semiconductor layer 30 is positively charged, which can repel the diffusion of positively charged impurity particles in the flexible substrate 10 so that they cannot enter the interface between the active layer 201 and the first gate insulating layer 202 , thereby effectively improving the negative bias temperature instability (NBTI) effect of the thin film transistor layer 20 .

在一种实施例中,所述电源线2073可以与所述薄膜晶体管层20的源/漏极金属层207同层制备。In one embodiment, the power supply line 2073 may be prepared in the same layer as the source/drain metal layer 207 of the thin film transistor layer 20 .

在一种实施例中,所述第一半导体层30为P型半导体层。其中,所述P型半导体层掺杂有硼离子。本发明实施例通过在所述第一半导体层30通过第一过孔与所述电源线2073电连接的基础上,进一步采用硼离子对所述第一半导体层30进行重掺杂,使其成为P型半导体,重掺杂的所述P型半导体层内含有多个正电中心,它们可以排斥所述柔性衬底10中的带正电的杂质粒子的扩散,使其无法进入所述有源层201与所述第一栅极绝缘层202的界面,从而进一步改善了所述薄膜晶体管层20的负偏压温度不稳定性(NBTI)效应。In one embodiment, the first semiconductor layer 30 is a P-type semiconductor layer. Wherein, the P-type semiconductor layer is doped with boron ions. In the embodiment of the present invention, on the basis that the first semiconductor layer 30 is electrically connected to the power supply line 2073 through the first via hole, the first semiconductor layer 30 is further heavily doped with boron ions, so that it becomes P-type semiconductor, the heavily doped P-type semiconductor layer contains a plurality of positively charged centers, which can repel the diffusion of positively charged impurity particles in the flexible substrate 10 and prevent them from entering the active The interface between the layer 201 and the first gate insulating layer 202 further improves the negative bias temperature instability (NBTI) effect of the thin film transistor layer 20 .

接下来,请参阅图3,本发明实施例提供的又一显示面板的基本结构示意图,所述显示面板包括柔性衬底10、设于所述柔性衬底10之上的薄膜晶体管层20、设置于所述柔性衬底10与所述薄膜晶体管层20之间的带正电的第一半导体层30。Next, please refer to FIG. 3 , which is a schematic diagram of the basic structure of yet another display panel provided by an embodiment of the present invention. The display panel includes a flexible substrate 10 , a thin film transistor layer 20 disposed on the flexible substrate 10 , and a flexible substrate 10 . A positively charged first semiconductor layer 30 between the flexible substrate 10 and the thin film transistor layer 20 .

其中,所述显示面板还包括设于所述柔性衬底10之上的阻挡层40、设于所述阻挡层40之上的第一缓冲层50、设于所述第一缓冲层50之上的第二缓冲层60,其中,所述第一半导体层30设于所述第一缓冲层50和所述第二缓冲层60之间。The display panel further includes a barrier layer 40 disposed on the flexible substrate 10 , a first buffer layer 50 disposed on the barrier layer 40 , and a first buffer layer 50 disposed on the first buffer layer 50 . The second buffer layer 60 , wherein the first semiconductor layer 30 is provided between the first buffer layer 50 and the second buffer layer 60 .

在一种实施例中,所述第一缓冲层50是由硅氮化合物材料制备而成,所述第二缓冲层60是由硅氧化合物材料制备而成。In an embodiment, the first buffer layer 50 is made of silicon nitride material, and the second buffer layer 60 is made of silicon oxide compound material.

需要说明的是,外界环境中的水汽也是导致NBTI效应发生的原因之一,设法降低水汽在显示面板中的含量,也能减轻NBTI效应。本发明实施例通过在所述柔性衬底10上设置所述第一缓冲层50、所述第二缓冲层60,可以有效防止水汽的扩散。It should be noted that water vapor in the external environment is also one of the causes of the NBTI effect. Trying to reduce the content of water vapor in the display panel can also reduce the NBTI effect. In the embodiment of the present invention, by disposing the first buffer layer 50 and the second buffer layer 60 on the flexible substrate 10 , the diffusion of water vapor can be effectively prevented.

接下来,请参阅图4,本发明实施例提供的再一显示面板的基本结构示意图,所述显示面板包括柔性衬底10、设于所述柔性衬底10之上的阻挡层40、设于所述阻挡层40之上的第一缓冲层50、设于所述第一缓冲层50之上的第二缓冲层60、设于所述第一缓冲层50和所述第二缓冲层60之间的第一半导体层30、设于所述第二缓冲层60之上的薄膜晶体管层20。Next, please refer to FIG. 4 , which is a schematic diagram of the basic structure of yet another display panel provided by an embodiment of the present invention. The display panel includes a flexible substrate 10 , a barrier layer 40 disposed on the flexible substrate 10 , a barrier layer 40 disposed on the flexible substrate 10 , and a A first buffer layer 50 on the barrier layer 40 , a second buffer layer 60 on the first buffer layer 50 , and between the first buffer layer 50 and the second buffer layer 60 . The first semiconductor layer 30 in between, and the thin film transistor layer 20 disposed on the second buffer layer 60 .

其中,所述显示面板还包括第二半导体层70,所述第二半导体层70设于所述阻挡层40和所述第一缓冲层50之间。Wherein, the display panel further includes a second semiconductor layer 70 disposed between the barrier layer 40 and the first buffer layer 50 .

在一种实施例中,所述第二半导体层70带正电。可以理解的是,所述第二半导体层70带正电,可以排斥所述柔性衬底10中的带正电的杂质粒子的扩散,使其无法进入有源层201与第一栅极绝缘层202的界面,从而进一步改善了所述薄膜晶体管层20的负偏压温度不稳定性(NBTI)效应。In one embodiment, the second semiconductor layer 70 is positively charged. It can be understood that the second semiconductor layer 70 is positively charged, which can repel the diffusion of positively charged impurity particles in the flexible substrate 10, so that they cannot enter the active layer 201 and the first gate insulating layer. 202 interface, thereby further improving the negative bias temperature instability (NBTI) effect of the thin film transistor layer 20 .

本发明实施例还提供一种显示装置,包括驱动芯片和上述的显示面板。本发明实施例提供的显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相机、导航仪等具有显示功能的产品或部件。An embodiment of the present invention further provides a display device, including a driving chip and the above-mentioned display panel. The display device provided by the embodiment of the present invention may be a product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital camera, and a navigator.

综上所述,本发明实施例提供的一种显示面板及显示装置,通过在柔性衬底和薄膜晶体管层之间设置带正电的第一半导体层,所述带正电的第一半导体层可以排斥所述柔性衬底中的带正电的杂质粒子的扩散,使其无法进入薄膜晶体管层中的多晶硅与栅极绝缘层的界面,从而有效改善了薄膜晶体管层的负偏压温度不稳定性效应,解决了现有技术中的显示面板由于采用柔性衬底作为衬底基板,但柔性衬底中的正离子会扩散至薄膜晶体管层,导致薄膜晶体管层失效的技术问题。To sum up, the embodiments of the present invention provide a display panel and a display device. By arranging a positively charged first semiconductor layer between a flexible substrate and a thin film transistor layer, the positively charged first semiconductor layer It can repel the diffusion of positively charged impurity particles in the flexible substrate, so that they cannot enter the interface between the polysilicon and the gate insulating layer in the thin film transistor layer, thereby effectively improving the negative bias temperature instability of the thin film transistor layer. It solves the technical problem that the flexible substrate is used as the base substrate in the display panel in the prior art, but the positive ions in the flexible substrate will diffuse to the thin film transistor layer, resulting in the failure of the thin film transistor layer.

以上对本发明实施例所提供的一种显示面板及显示装置进行了详细介绍。应理解,本文所述的示例性实施方式应仅被认为是描述性的,用于帮助理解本发明的方法及其核心思想,而并不用于限制本发明。A display panel and a display device provided by the embodiments of the present invention are described above in detail. It should be understood that the exemplary embodiments described herein should be regarded as descriptive only, and are used to help understand the method and the core idea of the present invention, but not to limit the present invention.

Claims (10)

1. The display panel is characterized by comprising a flexible substrate and a thin film transistor layer arranged on the flexible substrate;
and a positively charged first semiconductor layer is arranged between the flexible substrate and the thin film transistor layer.
2. The display panel of claim 1, further comprising a barrier layer disposed over the flexible substrate, a first buffer layer disposed over the barrier layer, wherein the first semiconductor layer is disposed between the barrier layer and the first buffer layer.
3. The display panel of claim 1, further comprising a barrier layer disposed over the flexible substrate, a first buffer layer disposed over the barrier layer, a second buffer layer disposed over the first buffer layer, wherein the first semiconductor layer is disposed between the first buffer layer and the second buffer layer.
4. The display panel of claim 3, further comprising a second semiconductor layer disposed between the barrier layer and the first buffer layer.
5. The display panel according to claim 4, wherein the second semiconductor layer is positively charged.
6. The display panel according to claim 2 or 3, wherein the display panel further comprises a power supply line, and the first semiconductor layer is electrically connected to the power supply line through a first via hole.
7. The display panel of claim 1, wherein the thin-film transistor layer is a P-type metal-oxide-semiconductor transistor layer.
8. The display panel according to claim 7, wherein the first semiconductor layer is a P-type semiconductor layer.
9. The display panel according to claim 8, wherein the P-type semiconductor layer is doped with boron ions.
10. A display device characterized by comprising the display panel according to any one of claims 1 to 9.
CN202110127089.8A 2021-01-29 2021-01-29 Display panel and display device Active CN112885849B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110127089.8A CN112885849B (en) 2021-01-29 2021-01-29 Display panel and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110127089.8A CN112885849B (en) 2021-01-29 2021-01-29 Display panel and display device

Publications (2)

Publication Number Publication Date
CN112885849A CN112885849A (en) 2021-06-01
CN112885849B true CN112885849B (en) 2022-09-09

Family

ID=76053703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110127089.8A Active CN112885849B (en) 2021-01-29 2021-01-29 Display panel and display device

Country Status (1)

Country Link
CN (1) CN112885849B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374684A (en) * 2014-08-30 2016-03-02 中芯国际集成电路制造(上海)有限公司 PMOS structure and formation method thereof
CN109065632A (en) * 2018-07-26 2018-12-21 惠科股份有限公司 Thin film transistor, manufacturing method thereof and display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531738B1 (en) * 1999-08-31 2003-03-11 Matsushita Electricindustrial Co., Ltd. High voltage SOI semiconductor device
JP2007273919A (en) * 2006-03-31 2007-10-18 Nec Corp Semiconductor device and manufacturing method thereof
TWI358832B (en) * 2007-02-26 2012-02-21 Au Optronics Corp Semiconductor device and manufacturing method ther
WO2009011310A1 (en) * 2007-07-19 2009-01-22 Sharp Kabushiki Kaisha Display device and method for manufacturing the same
CN102024702A (en) * 2009-09-09 2011-04-20 中芯国际集成电路制造(上海)有限公司 Method for improving negative bias temperature instability of semiconductor device
KR102180037B1 (en) * 2013-11-06 2020-11-18 삼성디스플레이 주식회사 Flexible display and manufacturing method thereof
CN106449404B (en) * 2015-08-12 2019-05-28 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
JP2019062170A (en) * 2017-09-28 2019-04-18 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374684A (en) * 2014-08-30 2016-03-02 中芯国际集成电路制造(上海)有限公司 PMOS structure and formation method thereof
CN109065632A (en) * 2018-07-26 2018-12-21 惠科股份有限公司 Thin film transistor, manufacturing method thereof and display device

Also Published As

Publication number Publication date
CN112885849A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN105390551B (en) Thin film transistor (TFT) and its manufacturing method, array substrate, display device
CN105633101A (en) TFT array substrate and manufacture method thereof, and display device
WO2017128557A1 (en) Array substrate and liquid crystal display device
CN113327936B (en) Array substrate and preparation method thereof
US20050214997A1 (en) Method to form local "silicon-on-nothing" or "silicon-on-insulator" wafers with tensile-strained silicon
KR101236498B1 (en) Power semiconductor device
CN107275390A (en) Thin film transistor (TFT) and preparation method thereof, array base palte and display device
CN101236973B (en) Semiconductor device and method of manufacturing the same
CN105789317A (en) Thin film transistor device and preparation method therefor
JP2802618B2 (en) Method for manufacturing thin film transistor
CN112885849B (en) Display panel and display device
CN104659109A (en) Thin film transistor and manufacturing method thereof as well as array substrate
US20130026569A1 (en) Methods and apparatus related to hot carrier injection reliability improvement
US20190244824A1 (en) Array substrate, method for fabricating the same, display panel and method for fabricating the same
CN103681823B (en) Semiconductor device
CN110972508B (en) Thin film transistor and method for manufacturing thin film transistor
Zhang et al. Investigations on the gate-induced drain leakage current of polycrystalline-silicon thin-film transistor and its suppression with drain bias sweep
CN107768309B (en) Hybrid CMOS device and manufacturing method thereof
CN109449086B (en) Thin film transistor, method for producing the same, and display device
JP2010245484A (en) Mos transistor, semiconductor device having built-in mos transistor, and electronic equipment using semiconductor device
JP2899959B2 (en) Method for manufacturing thin film transistor
CN115280500B (en) Display substrate and manufacturing method thereof, and display device
US20180061865A1 (en) Thin film transistor array panel
Ma et al. Impacts of ammonia gas plasma surface treatment on polycrystalline-silicon junctionless thin-film transistor
KR100201779B1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant