[go: up one dir, main page]

CN112811922B - 一种覆铜板的氮化硅陶瓷基片及其制备方法 - Google Patents

一种覆铜板的氮化硅陶瓷基片及其制备方法 Download PDF

Info

Publication number
CN112811922B
CN112811922B CN202110075100.0A CN202110075100A CN112811922B CN 112811922 B CN112811922 B CN 112811922B CN 202110075100 A CN202110075100 A CN 202110075100A CN 112811922 B CN112811922 B CN 112811922B
Authority
CN
China
Prior art keywords
silicon nitride
ceramic substrate
nitride ceramic
atmosphere
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110075100.0A
Other languages
English (en)
Other versions
CN112811922A (zh
Inventor
刘学建
张辉
姚秀敏
刘岩
蒋金弟
黄政仁
陈忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110075100.0A priority Critical patent/CN112811922B/zh
Publication of CN112811922A publication Critical patent/CN112811922A/zh
Application granted granted Critical
Publication of CN112811922B publication Critical patent/CN112811922B/zh
Priority to EP22742113.8A priority patent/EP4282848A4/en
Priority to US18/261,078 priority patent/US20240067577A1/en
Priority to JP2023543222A priority patent/JP7617290B2/ja
Priority to PCT/CN2022/072347 priority patent/WO2022156634A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种覆铜板的氮化硅陶瓷基片及其制备方法,所述覆铜板的氮化陶硅瓷基片的结构包括氮化陶硅瓷基片、分布在氮化陶硅瓷基片上下两侧的铜板,以及分布在铜板和氮化陶硅瓷基片之间的焊接层;所述氮化陶硅瓷基片的组分包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物;所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%。

Description

一种覆铜板的氮化硅陶瓷基片及其制备方法
技术领域
本发明涉及一种覆铜板的氮化硅陶瓷及其制备方法,属于半导体材料与器件领域。
背景技术
近年来,半导体器件沿着大功率化、高频化、集成化的方向迅猛发展。半导体器件工作产生的热量是引起半导体器件失效的关键因素,而绝缘基板的导热性是影响整体半导体器件散热的关键。此外,如在电动汽车、高速铁路、轨道交通等领域,半导体器件使用过程中往往要面临颠簸、震动等复杂的力学环境,这对所用材料的可靠性提出了严苛的要求。
高导热氮化硅(Si3N4)陶瓷由于其优异的力学和热学性能,被认为是兼具高强度和高导热的最佳半导体绝缘基板材料,在大功率绝缘栅双极型晶体管(IGBT)的散热应用方面极具潜力。氮化硅晶体的理论热导率可达400W·m-1·K-1以上,具有成为高导热基板的潜力。优良的力学性能和良好的高导热潜质使氮化硅陶瓷有望弥补现有氧化铝、氮化铝等陶瓷基板材料的不足,在高端半导体器件、特别是大功率IGBT散热基板应用方面具有巨大潜力。然而,传统氮化硅陶瓷材料的热导率只有20~30W·m-1·K-1,根本无法满足大功率半导体器件基板散热的应用需求。
另一方面,氮化硅属于强共价键化合物,依靠固相扩散很难烧结致密,必须添加适量(添加量通常大于5wt%)的稀土氧化物和(或)金属氧化物作为烧结助剂(如Y2O3、 La2O3、MgO、Al2O3、CaO等),但烧结助剂的添加会显著降低氮化硅陶瓷的热导率,低的烧结助剂含量有助于获得高的热导,然而低烧结助剂含量又带来氮化硅陶瓷烧结致密化的难题。
而且,伴随着功率器件(包括LED、LD、IGBT、CPV等)的发展,散热成为影响器件性能与可靠性的关键技术。对于电子器件而言,通常温度每升高10℃,器件有效寿命就降低30%~50%。因此,选用合适的封装材料与工艺、提高器件散热能力成为发展功率器件的技术瓶颈。
陶瓷基板又称陶瓷电路板,包括陶瓷基片和金属线路层。对于电子封装而言,封装基板起着承上启下、连接内外散热通道的关键作用,同时兼有电气互连和机械支撑等功能。氮化硅陶瓷具有热导率高、耐热性好、机械强度高、热膨胀系数低等优势,是功率半导体器件封装优选的基片材料。其中陶瓷覆铜板是大功率器件的重要组成部件,具有陶瓷的高导热、高电绝缘、高机械强度、低膨胀等特性,又兼具无氧铜的高导电性和优异焊接性能,且能像高分子基板PCB线路板一样刻蚀出各种图形。
根据封装结构和应用要求,陶瓷基板可分为平面陶瓷基板和三维陶瓷基板两大类。根据制备原理与工艺不同,平面陶瓷基板可分为薄膜陶瓷基板、厚膜印刷陶瓷基板、直接键合铜陶瓷基板、活性金属钎焊陶瓷基板、直接电镀铜陶瓷基板和激光活化金属陶瓷基板等。其中,活性金属钎焊陶瓷基板(AMB):AMB陶瓷基板利用含少量活性金属元素的焊料实现铜箔与陶瓷基片之间的焊接,AMB基板依靠活性焊料与陶瓷界面之间发生化学反应实现键合,因此结合强度高,具有耐高低温冲击失效能力强、可靠性高等独特优势,已成为新一代半导体和新型大功率电力电子器件的首选封装材料。
陶瓷基片与铜箔的AMB焊接工艺是首先在陶瓷基片表面涂覆一层活性金属焊料层,然后在真空条件下加热使活性金属元素与陶瓷基片表面元素之间发生化学键合,从而实现二者的高强度连接。基片表面涂覆焊料层的方法主要有丝网印刷、镀覆法、溅射法、喷镀法等,不同工艺方法具有各自特点。
发明内容
针对上述问题,本发明的目的在于提供一种覆铜板的氮化硅陶瓷基片及其制备方法。
一方面,本发明提供了一种覆铜板的氮化硅陶瓷基片,所述覆铜板的氮化硅陶瓷基片的结构包括氮化硅陶瓷基片、分布在氮化硅陶瓷基片上下两侧的铜板,以及分布在铜板和氮化硅陶瓷基片之间的焊接层;所述氮化硅陶瓷基片的组分包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物;所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%。
较佳的,所述氮化硅陶瓷材料中的杂质总量≤1.0wt%;所述杂质包括晶格氧、金属杂质离子、杂质碳中的至少一种。
较佳的,所述焊接层的组分为AgCuTi,其中Ag:Cu:Ti的质量比为x:y:z,其中 x=0.60~0.65,y=0.33~0.37,z=0.01~0.04,且x+y+z=1;优选地,所述焊接层的厚度为20~60微米。
较佳的,所述铜板的厚度为0.1~1.5mm,优选为0.2mm~1.0mm;所述氮化硅陶瓷基片为0.2~2.0mm。
另一方面,本发明提供了一种上述的覆铜板的氮化硅陶瓷基片的制备方法,将铜板、焊料箔片和氮化硅陶瓷基片按照覆铜板的氮化硅陶瓷基片的结构叠层,在保护气氛中脱粘后,再在860~920℃下真空焊接,得到所述覆铜板的氮化硅陶瓷基片;
优选地,所述焊接箔片的制备过程包括:
(1)将银粉、铜粉、钛粉、有机溶剂和粘结剂在保护气氛中混合,得到混合浆料;
(2)将所得浆料在保护气氛中进行流延成型和干燥,得到焊接箔片。
较佳的,所述银粉的平均粒径为5~20μm,含氧量不大于0.05%;所述铜粉的平均粒径为5~20μm,含氧量不大于0.05%;所述钛粉的平均粒径为1~5μm,含氧量不大于0.2%;所述保护气氛为氮气气氛
较佳的,采用温度递增的流动热N2气氛对流延膜素坯进行干燥,所述N2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa;优选地,氮气气氛的温度阶段为2段,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃,且前段气氛温度<后段气氛温度。
较佳的,所述脱粘的参数包括:N2气氛的压力为0.1~0.2MPa;处理温度为500~800℃;处理时间为1~3小时。
较佳的,所述氮化硅陶瓷基片的制备方法包括:
(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,再加入有机溶剂和粘结剂,在保护气氛混合,得到混合浆料;
(2)将所得混合浆料在保护气氛中经过流延成型,得到素坯;
(3)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;
(4)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片;
优选地,所述保护气氛为惰性气氛或氮气气氛,优选为氮气气氛;所述还原性气氛为氢气含量不高于5%的氢气/氮气混合气氛。
较佳的,所述的氮化硅陶瓷基片的制备方法包括:
(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,在保护气氛中,经混合和成型,得到素坯;
(2)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;
(3)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片;
优选地,所述保护气氛为惰性气氛或氮气气氛,优选为氮气气氛;所述还原性气氛为氢气含量不高于5%的氢气/氮气混合气氛。
有益效果:
本发明通过制备工艺过程中氧含量的控制(包括混料和素坯成型过程中避免原料氧化、还原性气氛预处理)、金属杂质离子含量控制、碳含量的控制,减少晶格空位、位错等结构缺陷的量,达到提高氮化硅陶瓷材料热导率和击穿场强的目的。同时,通过两步烧结工艺来调控晶界相的组分和含量,低温烧结阶段促使烧结助剂生成液相,促进致密化;高温阶段使残余的MgO烧结助剂挥发,同时进一步降低晶界相中玻璃相含量,从而达到减少晶界相含量、增加结晶化程度、进而提高热导率的目的。同时,材料的高击穿场强有利于在大功率器件应用、并有利于减小基片材料的厚度和降低热阻,使采用该材料制成的覆铜板呈现抗热冲击、高可靠、使用寿命长的典型特点;
本发明在活性金属粉体均匀混合的基础上,首先采用流延成型方法实现焊料箔片素坯的成型,保证焊料中各组分的均匀分布和厚度一致;通过在焊料的混料、成型过程中采用惰性气氛保护,避免金属粉体的氧化,进而保证氮化硅陶瓷覆铜板的高强度焊接;同时,采用成型焊料箔片素坯的方式实现焊料在陶瓷基片表面的均匀涂覆,避免传统丝网印刷工艺易导致的焊料不均匀现象,实现氮化硅陶瓷覆铜板的低应力焊接,具有陶瓷基片与铜片之间金属焊料层分布均匀、避免漏焊、提高可靠性的特点;此外,基于传统的氮化铝、氧化铝、氧化锆增韧氧化铝(ZTA)陶瓷基片制备的陶瓷覆铜板仅能焊接厚度较薄的铜箔(一般不大于 0.8mm),若铜箔厚度过大,则可靠性急剧降低;而本发明方法适用于高热导陶瓷基片与大厚度铜箔(0.1~1.5mm)的焊接,即使对于厚度在1mm以上的铜箔,仍然可以制备出高强度、低应力、高可靠的氮化硅陶瓷覆铜板;而厚度较大的铜箔则能够承受更大的电流密度,适用于更大功率的半导体器件。
附图说明
图1为实施例1制备氮化硅陶瓷材料的XRD图谱;
图2为实施例1制备氮化硅陶瓷材料的典型SEM微观结构;
图3为实施例1制备氮化硅陶瓷材料的典型TEM微观结构;
图4为实施例6氮化处理后所制备材料的XRD图谱;
图5为实施例6高温烧结后所制备材料的XRD图谱;
图6为实施例6制备氮化硅陶瓷材料的典型SEM微观结构;
图7为本发明制备的活性金属焊料箔片的素坯;
图8为覆铜板的氮化硅陶瓷基片的结构示意图;
图9为实施例12制备的覆铜板的氮化硅陶瓷基片;
图10为覆铜板的氮化硅陶瓷基片的焊接区微观结构;
图11为覆铜板的氮化硅陶瓷基片的焊接区微观结构(a)及其成分分析(b);
图12为覆铜板的氮化硅陶瓷基片经高低温循环热冲击后的超声扫描图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,氮化硅陶瓷材料中含有不低于95%的氮化硅相、和结晶相含量不低于 40%的晶界相。而且,所得氮化硅陶瓷材料中晶格氧、金属杂质离子、碳杂质等含量低,总量在1.0wt%以下。因此,本发明中氮化硅陶瓷材料具有高的热导率和击穿场强。
在本发明一实施方式中,通过采用洁净化、保护气氛下的制备工艺,避免空气或热空气接触材料,控制制备陶瓷中的杂质含量和氧含量,从而在不降低材料弯曲强度的前提下,达到提高材料热导率和击穿场强的目的。以下示例性地说明本发明提供的氮化硅陶瓷材料的制备方法。
该氮化硅陶瓷材料的制备方法具体包含以下步骤:在保护气氛下的混料和素坯成型、还原性气氛下的预处理、氮气气氛下的烧结并控制烧结制度。
保护气氛下的混料。将原始粉体、烧结助剂Y2O3粉体与MgO粉体在密闭容器中加入无水乙醇作为溶剂,在保护气氛保护下混合均匀,再经干燥,得到混合粉体。或者,将原始粉体、烧结助剂Y2O3粉体与MgO粉体置于密闭容器中,再加入无水乙醇作为有机溶剂、 PVB作为粘结剂,然后在保护气氛保护下混合均匀,得到混合浆料。其中,粘结剂可为原始粉体+烧结助剂总质量的5~9wt%。所得混合浆料的固含量为50~70wt%。
在可选的实施方式中,混料所用保护气氛为惰性气氛或氮气气氛,优选为氮气气氛。优选,采用具有聚氨酯或尼龙内衬的密闭容器进行混料,并在容器中通入氮气,避免空气的进入。
在可选的实施方式中,原始粉体为氮化硅粉体、硅粉、或氮化硅粉与硅粉混合粉体。其中,氮化硅与硅混合粉体中硅粉的质量百分比不低于75%,即由Si粉氮化后所生成氮化硅占全部氮化硅相质量百分比80%以上。
在可选的实施方式中,烧结助剂(Y2O3粉体与MgO粉体)的总质量不超过原始粉体 +烧结助剂总质量的5wt%。若烧结助剂过多,则因所制备氮化硅陶瓷材料中晶界相含量增加而降低材料的热导率和击穿场强。若烧结助剂过少,则不能充分促进致密化,导致所制备氮化硅陶瓷材料致密度偏低,气孔增加,从而降低材料的热导率和击穿场强。进一步优选,烧结助剂中Y2O3与MgO的摩尔比可为1.0~1.4:2.5~2.9。若MgO过量,则由烧结助剂形成的液相共熔点温度相对偏低,MgO在高温下挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强偏低。若MgO少量,因烧结助剂中MgO比例偏低,由烧结助剂形成的液相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
保护气氛下的素坯成型。在保护气氛中,将混合粉体直接压制成型,得到素坯。其中压制成型的方式包括但不仅限于干压成型、等静压成型等。或者,在保护气氛中,将混合浆料直接流延成型,得到素坯(片状素坯)。优选,在流延成型之前,将混合浆料进行真空除气处理(真空度一般为-0.1~-10kPa,时间为4~24小时)。更优选,通过控制流延成型的刮刀高度来调节片状素坯的厚度。在可选的实施方式中,素坯成型所用保护气氛可为惰性气氛或氮气气氛,优选为氮气气氛。一般是在成型过程中直接通入氮气保护。
还原性气氛下成型素坯的预处理。在还原性气氛、一定温度下进行成型素坯的预处理,去除原始粉体中的氧,脱除成型素坯中的有机物。在可选的实施方式中,当原始粉体为硅粉、或氮化硅与硅的混合粉体时,成型素坯先在还原性气氛中、一定温度下预处理之后,再在还原性气氛中进一步氮化处理。
在可选的实施方式中,所述预处理可在氢气含量不高于5%的还原性氮气气氛中进行,还原性气氛的气体压力为0.1~0.2MPa。预处理温度可为500~800℃,保温时间可为1~3小时。
在可选的实施方式中,所述氮化处理可在氢气含量不高于5%的氮气气氛中进行,气氛压力为0.1~0.2MPa。氮化处理温度为1350~1450℃,保温时间为3~6小时。
坯体的烧结处理,包括低温热处理和高温热处理。具体来说,在高氮气压力下、采用分步烧结工艺进行烧结致密化,所述分步烧结工艺包括抑制烧结助剂中低熔点物质挥发的低温热处理,以及进一步的高温烧结使其致密。在本发明中,烧结处理应采用高氮气压力条件下的气压烧结,气氛压力可为0.5~10MPa。可将坯体放在BN坩埚中进行烧结处理。其中,低温热处理(低温烧结)的温度可为1600~1800℃,保温时间可为1.5~2.5小时。高温热处理(高温烧结)的温度可为1800~2000℃,保温时间可为4~12小时。
在本发明中,所制备的氮化硅陶瓷中晶格氧、金属杂质离子、杂质碳等的含量低,具有高热导、高击穿场强的特点,其热导率在90W·m-1·K-1以上,同时击穿场强达 30KV/mm以上。
在本公开中,采用活性金属钎焊工艺制备氮化硅陶瓷覆铜板,包含以下步骤:焊料的混合、焊料箔片素坯的成型、焊料箔片素坯的裁剪与叠层、叠层片的脱粘和氮化硅覆铜板的真空焊接。以下示例性地说明本发明提供的覆铜板的氮化硅陶瓷基片的制备方法。
焊料的混合。在密闭容器和N2气氛保护下,将银粉、铜粉、钛粉、有机溶剂和粘结剂均匀混合,得到混合浆料。具体来说,采用密闭容器通过湿法球磨进行混料,并在容器中冲入0.1MPa N2气氛,避免空气的进入。其中,银粉的质量百分比可为60~65%,平均粒径可为5~20μm,含氧量不大于0.05%;铜粉的质量百分比可为33~37%,平均粒径可为 5~20μm,含氧量不大于0.05%;钛粉的质量百分比可为1~4%,平均粒径可为1~5μ m,含氧量不大于0.2%。在可选的实施方式中,粘结剂可为聚乙烯醇缩丁醛(PVB),粘结剂的加入量可为银粉、铜粉和钛粉总质量的5~15wt%。优选地,该浆料中还包括其他助剂,例如消泡剂、分散剂、增塑剂中的至少一种。消泡剂可为油酸,加入量可为银粉、铜粉和钛粉总质量的0.2~1.0wt%。分散剂可为聚乙二醇(PEG)、磷酸三乙酯(TEP)中的至少一种,加入量可为银粉、铜粉和钛粉总质量的0.2~1.0wt%。增塑剂可为邻苯二甲酸二乙酯 (DEP)、邻苯二甲酸二丁酯(DBP)、聚乙二醇(PEG)中的至少一种,加入量可为银粉、铜粉和钛粉总质量的2~6wt%。该焊料的混合浆料的固含量为55~75wt%。
焊料箔片素坯的成型。将混合浆料在N2气氛下流延成型和热N2气氛下干燥,实现厚度均匀焊料箔片素坯的制备。所述的成型焊料箔片素坯的厚度为20~60μm,厚度偏差不大于±10μm。
在可选的实施方式中,采用温度递增的流动热N2气氛对流延膜素坯进行干燥,热N2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa。所述温度递增的流动热N2气氛,其中,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃。
焊料箔片素坯的裁剪与叠层。将干燥后的焊料箔片素坯裁剪成与氮化硅陶瓷基片尺寸相匹配的箔片,并进行氮化硅陶瓷基片、焊料素坯箔片和铜箔的叠层。其中,焊料素坯的叠层是在氮化硅基片的上下面均放置一片焊料箔片素坯,再在焊料箔片素坯的外侧分别放置一层尺寸相匹配的铜箔。
叠层片的脱粘。在微正压、一定温度条件下对叠层片进行热处理。其中,所述的叠层片的脱粘,通过通入N2气氛产生微正压,气氛压力为0.1~0.2MPa,处理温度为500~ 800℃,处理时间为1~3h。
氮化硅覆铜板的真空焊接。在真空、一定温度条件下对叠层片进行真空焊接。其中,真空焊接的参数包括:真空度为10-2~10-4Pa;焊接温度为860~920℃,保温时间为 5~20min。
在本发明中,还可将氮化硅陶瓷材料制成覆铜板后可用于大功率绝缘栅双极型晶体管(IGBT)模块的散热基板。采用所得氮化硅陶瓷制成的覆铜板后具有抗热冲击、高可靠、使用寿命长的特点。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
首先,将95g Si3N4粉体、5g烧结助剂粉体(Y2O3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、 1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合6h后得到浆料;在上述浆料中进一步添加5g PVB和3g DBP,继续在N2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N2气氛保护下进行流延成型基片素坯,基片素坯厚度d±0.05mm (d=0.2~2.0);再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.15MPa N2(含有5%H2)气氛保护下、以5℃/min的速率升温至600℃后脱粘预处理2h;(2)在2MPa N2气氛保护下、以 5℃/min的速率升温至1650℃后低温热处理2h;(3)在8MPa N2气氛保护下、以3℃/min的速率升温至1950℃后高温烧结8h;(4)随炉冷却至室温。
由本实施例1制得氮化硅陶瓷基板材料的弯曲强度为810MPa,热导率为106W·m-1·K-1,击穿场强为45KV/mm。该材料的XRD图谱如图1所示,仅存在高强度的β-Si3N4衍射峰、且没有明显的馒头峰,这表明所制备材料中的β-Si3N4相的含量大于95wt%、晶界相的含量小于5%。材料的典型SEM微观结构如图2所示,材料具有高致密度,微观结构均匀,Si3N4晶粒(灰黑色区域)呈现典型的双峰分布,由细小的等轴状Si3N4晶粒和大的长柱状Si3N4晶粒相互镶嵌组成;晶界相(灰白色区域)含量低,均匀弥散分布在Si3N4基质中;进一步通过至少10张SEM图片统计分析,并结合原料中烧结助剂的总引入量≤ 5wt%,可以得出本实施例所制备氮化硅陶瓷材料中晶界相的含量小于5%。材料的典型 TEM微观结构如图3所示(图3中B为图3中A中虚线方框区域的局部放大图),Si3N4晶粒(灰黑色区域)之间弥散分布着晶界相(灰白色区域),而晶界相由玻璃相(浅色区域) 和结晶相(深色区域)组成;通过至少10张TEM图片统计分析,可以得出本实施例所制备氮化硅陶瓷材料的晶界相中结晶相的含量约为54vol%。
实施例2~5
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,所制备材料组成和性能如表2所示。
实施例6
首先,将3g Si3N4粉体、55g Si粉体、4.5g烧结助剂粉体(Y2O3:MgO=1.4:2.6,摩尔比)、 0.7g蓖麻油、0.6g PEG、50g无水乙醇和130g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合8h后得到浆料;在上述浆料中进一步添加4g PVB和2.5g DBP,继续在N2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N2气氛保护下进行流延成型基片素坯;再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.2MPa N2(含有5%H2)气氛保护下、以4℃/min的速率升温至600℃后脱粘预处理3h;(2)在0.2MPa N2(含有5%H2)气氛保护下、以5℃/min的速率升温至1450℃后氮化处理6h;(3)在3MPa N2气氛保护下、以6℃/min的速率升温至 1700℃后低温热处理2h;(4)在8MPa N2气氛保护下、以5℃/min的速率升温至1950℃后高温烧结10h;(5)随炉冷却至室温。
由本实施例6制得氮化硅陶瓷基板材料的弯曲强度为710MPa,热导率为110W·m-1·K-1,击穿场强为48KV/mm。该材料经氮化处理工艺(上述工艺过程(2))后的XRD图谱如图4所示,主晶相均为α-Si3N4,同时含有少量的β-Si3N4物相(5~10%)。该材料经高温烧结工艺(上述工艺过程(4))后的XRD图谱如图5所示,仅存在β-Si3N4衍射峰、且没有明显的馒头峰,这表明所制备材料中β-Si3N4相的含量大于95wt%、晶界相的含量小于 5wt%;进一步采用上述实施例1相同的方法,测出所制备材料晶界相中的结晶相含量约为 60vol%。材料断口的典型SEM微观结构如图6所示,材料具有高致密度,微观结构均匀,由细小的等轴状Si3N4晶粒和大的长柱状Si3N4晶粒相互镶嵌组成。
实施例7~10
原材料配比、烧结助剂组成、预处理工艺、氮化处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参照实施例6,所制备材料组成和性能如表2所示。
实施例11
本实施例11中氮化硅陶瓷材料的制备过程参照实施例1,主要区别在于:将95gSi3N4粉体、5g烧结助剂粉体(Y2O3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合6h后得到浆料。然后在氮气气氛中进行干燥、过筛、干压成型(20MPa)和冷等静压成型(200MPa),得到素坯。
对比例1
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表 1),工艺过程参照实施例1,区别在于:球磨混料和素坯成型等工艺过程未采用氮气气氛保护措施。所制备材料组成和性能如表1所示。因在材料制备工艺过程中未采用本发明所述的氮气气氛保护措施,原料中的氮化硅粉体发生不同程度的氧化,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。
对比例2
烧结助剂组成比例、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂总量增加。所制备材料组成和性能如表2所示。因烧结助剂含量偏高,由烧结助剂形成的具有较低热导率特性的晶界相含量较高,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。
对比例3
原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y2O3:MgO=1.2:4.0)。所制备材料组成和性能如表2 所示。因烧结助剂中MgO比例偏高,由烧结助剂形成的液相共熔点温度相对偏低,高温挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例4
原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y2O3:MgO=1.3:2.0)。所制备材料组成和性能如表2 所示。因烧结助剂中MgO比例偏低,由烧结助剂形成的液相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例5
原材料配比、烧结助剂组成、预处理工艺等具体参数与实施例1相同(见表1),工艺过程与实施例1近似,区别在于:烧结工艺为一步烧结。所制备材料组成和性能如表2所示。因不包含低温热处理过程,在未充分致密化情况下就开始发生较严重的MgO挥发,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例6
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),工艺过程同实施例1,区别在于:低温热处理温度偏低。所制备材料组成和性能如表2所示。因低温热处理温度偏低,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例7-8
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例8相同(见表 1),工艺过程同实施例8,区别在于:氮化处理温度偏低(对比例7)或偏高(对比例8)。所制备材料组成和性能如表2所示。因氮化处理温度偏低(对比例7)或偏高(对比例8),材料中的Si粉氮化不充分(对比例7)或发生部分硅化现象(对比例8),致使所制备氮化硅陶瓷材料的力学、热学和电学性能均明显降低。
表1为氮化硅陶瓷材料的组成及其制备工艺:
Figure BDA0002907199280000111
Figure BDA0002907199280000121
表2为氮化硅陶瓷材料的相组成及性能参数:
Figure BDA0002907199280000122
Figure BDA0002907199280000131
实施例12
焊料箔片素坯的制备:(1)将Ag粉(平均粒径8μm,含氧量0.01%)、Cu粉(平均粒径6μm,含氧量0.01%)和Ti粉(平均粒径2μm,含氧量0.1%)按照质量比63:35:2称量后置入内衬聚氨酯的球磨罐中,同时加入0.2%油酸、0.5%PEG、2%PVA、1%DEP、200%氮化硅研磨球和110%无水乙醇,抽真空后通入1atm N2气氛保护,在100rpm下球磨混料8h 后得到分散均匀、无团聚的浆料;(2)对制备的浆料进行抽真空除气泡处理8h,真空度为 -0.5kPa;(3)在N2保护气氛下对上述除气泡后的浆料进行流延成型,通过调节刮刀高度控制流延膜素坯厚度在50±10μm;采用流动的温度递增的热N2气氛对流延膜素坯进行干燥,N2气氛压力为0.12MPa,前后两段N2气氛的温度分别为45℃和65℃;(4)将干燥后的流延膜素坯裁剪成与实施例1制备的氮化硅陶瓷基片相匹配的尺寸,实现焊料箔片素坯的制备。制备的活性金属焊料箔片素坯见图7,箔片厚度50±5μm,表面均匀、光滑、平整,具有良好的柔韧性,可卷曲,可裁剪。
AMB真空钎焊:(1)将所制备的氮化硅陶瓷基片、焊料箔片素坯和厚度为0.3mm的无氧铜箔组装而成图8所示的叠层片组件;(2)将叠层片组件在0.15MPa的N2气氛下650℃保温2h脱粘;(3)将脱粘后的叠层片组件放入真空钎焊炉中,在10-3Pa真空度下、 900℃、保温10min进行焊接;(4)随炉冷却至室温。图9给出了所制备的高强度、低应力、高可靠氮化硅陶瓷覆铜板,其中结合强度(铜箔剥离强度)为15N/mm(参照GB/T 4722-2017《印制电路用刚性覆铜箔层压板试验方法》检测),覆铜板的平面度为0.2mm;图 10和图11分别给出了氮化硅覆铜板焊接区微观结构及其成分分析照片,可以看出:在氮化硅陶瓷基片和铜箔层之间有一个宽度约50μm的焊接区(宽度与焊料箔片宽度相一致),焊接区主要由Cu(浅灰色区域)和Ag(灰白色区域)组成,其中Cu形成基本连续相,Ag形成弥散分布的Ag颗粒(灰白色小颗粒)和部分区域Ag连续相(灰白色网状结构);在氮化硅陶瓷和焊接区之间有一个宽度约100nm的元素扩散反应过渡区,形成了由Ti和Si元素反应形成的新物相(如Ti5Si3),从而保证了焊接强度;经过200次高低温循环热冲击后(在300℃保温10分钟后立即放入室温水浴中冷淬10分钟为一次热冲击),所制备氮化硅覆铜板完好无损(未进行高低温循环热冲击极限实验),没有产生微裂纹、翘曲、开裂等肉眼可见缺陷(图12)。
实施例13~16
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。
实施例17-18
料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,区别在于:选用实施例8制备氮化硅陶瓷材料作为氮化硅陶瓷基片,其厚度为0.5mm。所制备氮化硅陶瓷覆铜板特性如表4。
对比例9~10
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因焊料组成中活性金属Ti含量过低(对比例9)或过高(对比例10),所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命均明显降低(分别经120次和150次热冲击循环后,陶瓷基片和焊接铜箔的部分焊接区域就产生了开裂缺陷)。
对比例11~12
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因焊料箔片厚度过小(对比例 11)或过大(对比例12),所制备陶瓷覆铜板的铜层剥离强度有部分降低(对比例11)或明显降低(对比例12),热冲击循环寿命均明显降低(分别经120次和100次热冲击循环后,陶瓷基片和焊接铜箔的部分焊接区域就产生了开裂缺陷)。
对比例13
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因所焊接的铜箔厚度太大(2mm),虽然所制备陶瓷覆铜板的铜层剥离强度较高,但在热冲击循环过程中产生的热应力大,热冲击寿命明显降低(经80次冲击循环后,陶瓷基片和铜箔之间就产生了开裂缺陷)。
对比例14
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接过程中的真空度偏低,导致二者之间结合力较低,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命明显降低(经130次冲击循环后,陶瓷基片和铜箔之间就产生了开裂缺陷)。
对比例15
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度过高,明显超过焊料的共熔点温度,致使焊料高温熔化后溢流,陶瓷基片和铜箔之间未形成有效焊接,直接开裂。
对比例16
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度过低,未充分达到焊料的共熔点温度,致使活性金属未充分扩散并形成良好化学结合,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命明显降低。
对比例17-18
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度下的保温时间过长(对比例17)或过短(对比例18),二者未达到最佳结合状态,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命均有所降低。
表3为本发明制备的焊料箔片的组分:
Figure BDA0002907199280000151
Figure BDA0002907199280000161
表4为本发明中覆铜板的氮化硅陶瓷基片的制备参数及性能参数:
Figure BDA0002907199280000162

Claims (12)

1.一种覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述覆铜板的氮化硅陶瓷基片包括氮化硅陶瓷基片、分布在氮化硅陶瓷基片上下两侧的铜板,以及分布在铜板和氮化硅陶瓷基片之间的焊接层;所述氮化硅陶瓷基片的组分包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物,通过两步烧结工艺来调控晶界相的组分和含量使得所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%;制备氮化硅陶瓷基片所用烧结助剂为Y2O3与MgO,二者摩尔比为1.0~1.4 : 2.5~2.9,所述两步烧结工艺包括:在氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理;所述氮化硅陶瓷基片的厚度为0.2~2.0mm;所述焊接层的组分为AgCuTi,其中Ag:Cu:Ti的质量比为x:y:z,其中x=0.60~0.65,y=0.33~0.37,z=0.01~0.04,且x+y+z=1,焊接层的厚度为20~60微米;所述铜板的厚度为0.1~1.5mm;将铜板、形成焊接层的焊料箔片和氮化硅陶瓷基片按照覆铜板的氮化硅陶瓷基片的结构叠层,在保护气氛中脱粘后,再在860~920℃、保温5~20min的条件下真空焊接得到所述覆铜板的氮化硅陶瓷基片。
2.根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片中的杂质总量≤1.0wt%;所述杂质包括晶格氧、金属杂质离子、杂质碳中的至少一种。
3.根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述铜板的厚度为0.2mm~1.0mm。
4.根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述脱粘的参数包括:N2气氛的压力为0.1~0.2MPa;处理温度为500~800℃;处理时间为1~3小时。
5.根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述焊料箔片的制备过程包括:
(1)将银粉、铜粉、钛粉、有机溶剂和粘结剂在保护气氛中混合,得到混合浆料;
(2)将所得浆料在保护气氛中进行流延成型和干燥,得到焊料箔片。
6.根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述银粉的平均粒径为5~20μm,含氧量不大于0.05%;所述铜粉的平均粒径为5~20μm,含氧量不大于0.05%;所述钛粉的平均粒径为1~5μm,含氧量不大于0.2%;所述保护气氛为氮气气氛。
7.根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,采用温度递增的流动热N2气氛对流延膜素坯进行干燥,所述N2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa。
8.根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮气气氛的温度阶段为2段,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃,且前段气氛温度<后段气氛温度。
9.根据权利要求1-8中任一项所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法包括:
(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,再加入有机溶剂和粘结剂,在保护气氛混合,得到混合浆料;
(2)将所得混合浆料在保护气氛中经过流延成型,得到素坯;
(3)将所得素坯置于还原性气氛中、在500~800℃进行预处理,得到坯体;
(4)将所得坯体置于氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片。
10.根据权利要求9所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法中所用的保护气氛为惰性气氛或氮气气氛、所用的还原性气氛为氢气含量不高于5%的氢气/氮气混合气氛。
11.根据权利要求1-8中任一项所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述的氮化硅陶瓷基片的制备方法包括:
(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,在保护气氛中,经混合和成型,得到素坯;
(2)将所得素坯置于还原性气氛中、在500~800℃进行预处理,得到坯体;
(3)将所得坯体置于氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片。
12.根据权利要求11所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法中所用的保护气氛为惰性气氛或氮气气氛、所用的还原性气氛为氢气含量不高于5%的氢气/氮气混合气氛。
CN202110075100.0A 2021-01-20 2021-01-20 一种覆铜板的氮化硅陶瓷基片及其制备方法 Active CN112811922B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202110075100.0A CN112811922B (zh) 2021-01-20 2021-01-20 一种覆铜板的氮化硅陶瓷基片及其制备方法
EP22742113.8A EP4282848A4 (en) 2021-01-20 2022-01-17 MANUFACTURING METHOD FOR A COPPER PLATE-COATED SILICON NITRIDE CERAMIC SUBSTRATE
US18/261,078 US20240067577A1 (en) 2021-01-20 2022-01-17 Preparation method for copper plate-covered silicon nitride ceramic substrate
JP2023543222A JP7617290B2 (ja) 2021-01-20 2022-01-17 銅板付きの窒化ケイ素セラミック基板の作製方法
PCT/CN2022/072347 WO2022156634A1 (zh) 2021-01-20 2022-01-17 一种覆铜板的氮化硅陶瓷基片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110075100.0A CN112811922B (zh) 2021-01-20 2021-01-20 一种覆铜板的氮化硅陶瓷基片及其制备方法

Publications (2)

Publication Number Publication Date
CN112811922A CN112811922A (zh) 2021-05-18
CN112811922B true CN112811922B (zh) 2021-11-02

Family

ID=75858679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110075100.0A Active CN112811922B (zh) 2021-01-20 2021-01-20 一种覆铜板的氮化硅陶瓷基片及其制备方法

Country Status (5)

Country Link
US (1) US20240067577A1 (zh)
EP (1) EP4282848A4 (zh)
JP (1) JP7617290B2 (zh)
CN (1) CN112811922B (zh)
WO (1) WO2022156634A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811922B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种覆铜板的氮化硅陶瓷基片及其制备方法
CN112830788B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种氮化硅陶瓷材料及其制备方法
CN114478043B (zh) * 2022-01-12 2023-05-09 中国科学院上海硅酸盐研究所 一种基于液相烧结的碳化硅陶瓷的连接方法
CN114394838B (zh) * 2022-02-09 2023-02-14 江苏耀鸿电子有限公司 一种高击穿强度的高频覆铜基板及其制备方法
DE102023103509A1 (de) * 2023-02-14 2024-08-14 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und ein Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren
DE102023103850A1 (de) * 2023-02-16 2024-08-22 Rogers Germany Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
CN116283336A (zh) * 2023-03-24 2023-06-23 中国科学院上海硅酸盐研究所 一种锆钛酸铅陶瓷与金属的连接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409425A (zh) * 2014-11-13 2015-03-11 河北中瓷电子科技有限公司 高导热氮化硅陶瓷覆铜板及其制备方法
CN108585881A (zh) * 2018-06-14 2018-09-28 哈尔滨工业大学 一种高热导率氮化硅陶瓷及其制备方法
CN109400175A (zh) * 2018-11-15 2019-03-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷基片材料的制备方法
CN111253162A (zh) * 2019-02-22 2020-06-09 中国科学院上海硅酸盐研究所苏州研究院 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN111403347A (zh) * 2020-03-03 2020-07-10 江苏富乐德半导体科技有限公司 一种高可靠性氮化硅覆铜陶瓷基板的铜瓷界面结构及其制备方法
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN112159237A (zh) * 2020-09-28 2021-01-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷材料及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480038B1 (en) * 1990-04-16 1997-07-09 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic circuit board
US5928768A (en) * 1995-03-20 1999-07-27 Kabushiki Kaisha Toshiba Silicon nitride circuit board
JP3682552B2 (ja) * 1997-03-12 2005-08-10 同和鉱業株式会社 金属−セラミックス複合基板の製造方法
US6107638A (en) * 1997-03-14 2000-08-22 Kabushiki Kaisha Toshiba Silicon nitride circuit substrate and semiconductor device containing same
EP0935286A4 (en) * 1997-05-26 2008-04-09 Sumitomo Electric Industries COPPER CIRCUIT CONNECTING SUBSTRATE AND ITS MANUFACTURE
JP4332824B2 (ja) 1999-06-07 2009-09-16 日立金属株式会社 高熱伝導窒化ケイ素質焼結体の製造方法およびその焼結体、基板、半導体素子用回路基板
JP2002203942A (ja) * 2000-12-28 2002-07-19 Fuji Electric Co Ltd パワー半導体モジュール
JP4591738B2 (ja) * 2001-03-29 2010-12-01 日立金属株式会社 窒化ケイ素質焼結体
JP3775335B2 (ja) 2002-04-23 2006-05-17 日立金属株式会社 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
CN1246253C (zh) * 2004-05-17 2006-03-22 清华大学 氮化硅陶瓷制造方法
JP4997431B2 (ja) 2006-01-24 2012-08-08 独立行政法人産業技術総合研究所 高熱伝導窒化ケイ素基板の製造方法
US20100258233A1 (en) * 2007-11-06 2010-10-14 Mitsubishi Materials Corporation Ceramic substrate, method of manufacturing ceramic substrate, and method of manufacturing power module substrate
WO2012070463A1 (ja) * 2010-11-22 2012-05-31 株式会社東芝 圧接構造用セラミックスヒートシンク材およびそれを用いた半導体モジュール並びに半導体モジュールの製造方法
CN104798195B (zh) * 2012-11-20 2017-09-26 同和金属技术有限公司 金属-陶瓷接合基板及其制造方法
JP5672324B2 (ja) * 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
TWI637466B (zh) * 2013-08-26 2018-10-01 三菱綜合材料股份有限公司 接合體及功率模組用基板
JP6256176B2 (ja) * 2014-04-25 2018-01-10 三菱マテリアル株式会社 接合体の製造方法、パワーモジュール用基板の製造方法
KR20170021282A (ko) * 2014-06-16 2017-02-27 우베 고산 가부시키가이샤 질화규소 분말, 질화규소 소결체 및 회로 기판, 및 질화규소 분말의 제조 방법
JP2017135374A (ja) * 2016-01-22 2017-08-03 三菱マテリアル株式会社 接合体、パワーモジュール用基板、パワーモジュール、接合体の製造方法及びパワーモジュール用基板の製造方法
EP3471517B1 (en) 2016-06-10 2024-08-21 Tanaka Kikinzoku Kogyo K.K. Ceramic circuit substrate and method for producing ceramic circuit substrate
JP6904094B2 (ja) * 2016-06-23 2021-07-14 三菱マテリアル株式会社 絶縁回路基板の製造方法
EP3352214A1 (de) * 2017-01-23 2018-07-25 Siemens Aktiengesellschaft Halbleitermodul mit bodenplatte mit hohlwölbung
JP7301740B2 (ja) * 2017-05-30 2023-07-03 デンカ株式会社 セラミックス回路基板及びその製造方法
CN108383532A (zh) * 2018-05-28 2018-08-10 江苏东浦精细陶瓷科技股份有限公司 一种致密化氮化硅陶瓷材料及其制备方法
KR102139194B1 (ko) * 2018-08-17 2020-07-30 (주) 존인피니티 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
CN112811922B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种覆铜板的氮化硅陶瓷基片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409425A (zh) * 2014-11-13 2015-03-11 河北中瓷电子科技有限公司 高导热氮化硅陶瓷覆铜板及其制备方法
CN108585881A (zh) * 2018-06-14 2018-09-28 哈尔滨工业大学 一种高热导率氮化硅陶瓷及其制备方法
CN109400175A (zh) * 2018-11-15 2019-03-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷基片材料的制备方法
CN111253162A (zh) * 2019-02-22 2020-06-09 中国科学院上海硅酸盐研究所苏州研究院 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN111403347A (zh) * 2020-03-03 2020-07-10 江苏富乐德半导体科技有限公司 一种高可靠性氮化硅覆铜陶瓷基板的铜瓷界面结构及其制备方法
CN112142476A (zh) * 2020-09-28 2020-12-29 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
CN112159237A (zh) * 2020-09-28 2021-01-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷材料及其制备方法

Also Published As

Publication number Publication date
JP7617290B2 (ja) 2025-01-17
US20240067577A1 (en) 2024-02-29
WO2022156634A1 (zh) 2022-07-28
CN112811922A (zh) 2021-05-18
EP4282848A1 (en) 2023-11-29
JP2024506483A (ja) 2024-02-14
EP4282848A4 (en) 2025-02-05

Similar Documents

Publication Publication Date Title
CN112811922B (zh) 一种覆铜板的氮化硅陶瓷基片及其制备方法
JP5673106B2 (ja) 窒化珪素基板の製造方法、窒化珪素基板、窒化珪素回路基板および半導体モジュール
JP5245405B2 (ja) 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP5023165B2 (ja) セラミックス回路基板
WO2020203787A1 (ja) 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
US5998043A (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
US11964919B2 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
CN112830788B (zh) 一种氮化硅陶瓷材料及其制备方法
TWI813747B (zh) 銅/陶瓷接合體、絕緣電路基板、及銅/陶瓷接合體之製造方法、及絕緣電路基板之製造方法
WO2011049067A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
JP3629783B2 (ja) 回路基板
US6783867B2 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP3193305B2 (ja) 複合回路基板
JPH11154719A (ja) 窒化珪素回路基板、半導体装置及び窒化珪素回路基板の製造方法
JPWO2022156634A5 (zh)
JP3518841B2 (ja) 基板およびその製造方法
JP7192100B2 (ja) 窒化珪素回路基板、及び、電子部品モジュール
WO2022224958A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP4328414B2 (ja) 基板の製造方法
JP2003020282A (ja) 窒化アルミニウム焼結体、その製造方法及び用途
KR100382416B1 (ko) 세라믹 회로기판
JPH1086279A (ja) 窒化ケイ素多層基板およびその製造方法
WO2025075015A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2025065002A (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2025074992A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant