CN112134013A - A Broadband Dual-Polarized Phased Array Antenna Based on Dielectric Integrated Cavity - Google Patents
A Broadband Dual-Polarized Phased Array Antenna Based on Dielectric Integrated Cavity Download PDFInfo
- Publication number
- CN112134013A CN112134013A CN202011317736.3A CN202011317736A CN112134013A CN 112134013 A CN112134013 A CN 112134013A CN 202011317736 A CN202011317736 A CN 202011317736A CN 112134013 A CN112134013 A CN 112134013A
- Authority
- CN
- China
- Prior art keywords
- dielectric
- metal
- dielectric substrate
- patches
- phased array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
该发明公开了一种基于介质集成腔体的宽带双极化相控阵天线,涉及无线通信技术领域,雷达技术领域,特别是用于通信系统中的网格形腔体的相控阵天线领域。本发明天线布局简洁紧凑,网格形腔体布局使相控阵天线两个极化一致性高、辐射性能优秀,并具有良好的端口隔离度;馈电结构简单从而避免了复杂的馈电网络。介质集成腔体的结构进一步降低了天线的重量,并使整个天线的辐射孔径均可使用PCB工艺制作,易于加工组装,便于直接与射频前端进行集成。
The invention discloses a broadband dual-polarization phased array antenna based on a dielectric integrated cavity, which relates to the field of wireless communication technology, the field of radar technology, and in particular to the field of phased array antennas for grid-shaped cavity in communication systems . The antenna layout of the invention is simple and compact, and the grid-shaped cavity layout enables the phased array antenna to have high consistency of two polarizations, excellent radiation performance, and good port isolation; the feeding structure is simple, thereby avoiding complex feeding networks. . The structure of the dielectric integrated cavity further reduces the weight of the antenna, and enables the radiation aperture of the entire antenna to be fabricated using the PCB process, which is easy to process and assemble, and facilitates direct integration with the RF front-end.
Description
技术领域technical field
本发明涉及无线通信技术领域,雷达技术领域,特别是用于通信系统中的网格形腔体的相控阵天线领域。The invention relates to the technical field of wireless communication, the technical field of radar, and in particular to the field of phased array antennas used for grid-shaped cavities in communication systems.
背景技术Background technique
在过去的几十年里,宽带双极化相控阵天线在军事和商业领域愈发受到重视,广泛应用于多功能雷达,气象监测和航空管制等系统,尤其是军事载体平台对高性能多功能(监视、识别、追踪目标)雷达系统的需求促进了宽带双极化相控阵天线的快速发展。在该应用背景下,宽带、双极化、低剖面和轻重量是天线的主要设计指标。具有宽带特性的天线有利于雷达系统实现多任务、多目标协同工作;双极化特性有利于实现极化复用、极化捷变,提高了系统的抗干扰能力和灵敏度。因此在单一天线阵列口径下实现宽带、双极化是非常有益的。在传统的宽带双极化相控阵天线设计方法中,首先,为了避免扫描空域内出现栅瓣,天线单元尺寸必须满足无栅瓣条件,天线单元尺寸的限制增加了宽带和双极化布局的设计难度。其次,由于单个双极化相控阵阵元具有两个正交排布的极化端口,两极化端口需要实现独立工作,尽量避免互相干扰,所以极化隔离度的提高也是双极化相控阵天线设计需要考虑的重要问题。最后,在小阵元尺寸满足无栅瓣条件的情况下,阵元间的互耦会十分强烈,这严重影响了阵元扫描性能。即使天线阵列单元在侧射角度下有很好的宽带阻抗匹配,在大角度扫描情况下也往往会因为阵元间互耦形态的改变而使阵元出现严重的阻抗失配,如何抑制阵元间互耦一直是传统相控阵天线设计过程中主要挑战之一。In the past few decades, broadband dual-polarized phased array antennas have received increasing attention in the military and commercial fields, and are widely used in systems such as multi-function radar, weather monitoring, and aviation control, especially military carrier platforms for high-performance multi- The need for functional (surveillance, identification, target tracking) radar systems has prompted the rapid development of broadband dual-polarized phased array antennas. In the context of this application, broadband, dual polarization, low profile, and light weight are the main design criteria for the antenna. Antennas with broadband characteristics are beneficial to the radar system to achieve multi-task and multi-target cooperative work; dual-polarization characteristics are beneficial to realize polarization multiplexing and polarization agility, and improve the anti-interference ability and sensitivity of the system. Therefore, it is very beneficial to realize broadband and dual polarization under a single antenna array aperture. In the traditional broadband dual-polarization phased array antenna design method, firstly, in order to avoid grating lobes in the scanning space, the size of the antenna element must meet the condition of no grating lobes. Design difficulty. Secondly, since a single dual-polarized phased array element has two orthogonally arranged polarization ports, the two polarization ports need to work independently to avoid mutual interference as much as possible, so the improvement of polarization isolation is also due to dual-polarization phase control. important issues to be considered in the design of array antennas. Finally, when the size of the small array element satisfies the condition of no grating lobes, the mutual coupling between the array elements will be very strong, which seriously affects the scanning performance of the array element. Even if the antenna array unit has good broadband impedance matching at the side-fire angle, in the case of large-angle scanning, the array elements often have serious impedance mismatch due to the change of the mutual coupling pattern between the array elements. How to suppress the array elements Mutual coupling has always been one of the main challenges in the design of traditional phased array antennas.
近年来,利用天线阵元间耦合来实现宽带相控阵天线的新思路引起了国际天线领域相关学者的广泛关注与深入研究。该思路的理论基础为Wheeler教授在1965年提出的连续电流面理论,Wheeler教授在IEEE Transactions on Antennas and Propagation期刊题为“Simple Relations Derived from a Phased-Array Antenna Made of an InfiniteCurrent Sheet”的论文里对此理论做了详细阐释。In recent years, the new idea of using the coupling between antenna elements to realize broadband phased array antennas has attracted extensive attention and in-depth research by relevant scholars in the field of international antennas. The theoretical basis of this idea is the continuous current surface theory proposed by Professor Wheeler in 1965. Professor Wheeler stated in the paper entitled "Simple Relations Derived from a Phased-Array Antenna Made of an Infinite Current Sheet" in the journal IEEE Transactions on Antennas and Propagation. This theory is explained in detail.
2003年,俄亥俄州立大学的B. Munk教授在美国专利号6512487专利“宽带相控阵及相关技术”(Wideband Phased Array Antenna and Associated Methods)中首次提出了利用天线阵元间耦合的新型宽带相控阵。其特点是在偶极子单元之间加入耦合电容,利用单元间的强互耦效应形成连续电流,克服了互耦效应对天线带宽和扫描角的限制。在实际应用中,双极化强耦合偶极子相控阵天线的馈电网络需要进行精心设计,以避免馈电网络带来的交叉极化辐射和极化隔离度下降。另外,为了避免偶极子非平衡馈电而引起的共模谐振,通常需要采用短路探针或其他复杂的抑制措施。因此双极化强耦合偶极子阵列的馈电网络结构复杂,增加了整个天线系统的尺寸、剖面和成本。In 2003, Professor B. Munk of Ohio State University first proposed a new type of broadband phased array using coupling between antenna elements in the US Patent No. 6512487 "Wideband Phased Array Antenna and Associated Methods". array. Its characteristic is that coupling capacitors are added between the dipole units, and the strong mutual coupling effect between the units is used to form a continuous current, which overcomes the limitation of the mutual coupling effect on the antenna bandwidth and scanning angle. In practical applications, the feed network of the dual-polarized strongly coupled dipole phased array antenna needs to be carefully designed to avoid cross-polarization radiation and polarization isolation degradation caused by the feed network. In addition, in order to avoid common mode resonance caused by unbalanced feeding of dipoles, shorting probes or other complex suppression measures are usually required. Therefore, the structure of the feed network of the dual-polarized strongly coupled dipole array is complex, which increases the size, profile and cost of the entire antenna system.
在申请号为CN201610945580.0的中国专利“一种基于连接腔体的相控阵天线”中,提出了一种基于连续电流面理论设计的宽带相控阵天线,其利用微带馈线激励连接腔体来形成连续的等效磁流辐射,有效地增加了天线的工作带宽。但该款天线需要在其金属地板上开长槽以形成连接腔体,天线辐射孔径不能完全使用PCB工艺制作,不方便直接与射频前端进行集成。In the Chinese patent with the application number CN201610945580.0 "A Phased Array Antenna Based on Connection Cavity", a broadband phased array antenna designed based on the continuous current surface theory is proposed, which uses a microstrip feeder to excite the connection cavity body to form continuous equivalent magnetic current radiation, which effectively increases the working bandwidth of the antenna. However, this antenna needs to open a long slot on its metal floor to form a connection cavity, and the antenna radiation aperture cannot be made entirely by the PCB process, which is inconvenient to directly integrate with the RF front-end.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术存在的问题,提供一种避免复杂馈电网络设计,辐射孔径可以完全使用PCB工艺制作,易集成、加工组装方便,并具有宽带、低剖面、高极化隔离度、低交叉极化比和优秀扫描性能特性的双极化相控阵天线。Aiming at the problems existing in the prior art, the present invention provides a design that avoids complex feeding networks, the radiation aperture can be made entirely by the PCB process, is easy to integrate, convenient to process and assemble, and has wideband, low profile, high polarization isolation, low Dual-polarized phased array antenna with cross-polarization ratio and excellent scanning performance characteristics.
为了实现上述目的,本发明采用如下技术方案:一种基于介质集成腔体的宽带双极化相控阵天线,该相控阵天线从下到上依次包括:下层介质基板101、中层介质基板102、上层介质基板103;In order to achieve the above purpose, the present invention adopts the following technical scheme: a broadband dual-polarized phased array antenna based on a dielectric integrated cavity, the phased array antenna includes, from bottom to top, a lower
所述下层介质基板101上表面阵列间隔排布有多个金属贴片109,绕金属贴片109的内边缘设置有一圈金属化过孔110,该金属化过孔110的上端与下层介质基板101的上表面齐平,下端与下层介质基板101的下表面齐平;金属贴片109内部设置有两个同轴接头内芯108:垂直极化同轴接头内芯和水平极化同轴接头内芯,同轴接头内芯108的上端与中层介质基板102的上表面齐平,下端从下层介质基板101伸出,连接所述宽带双极化相控阵天线的外部设备,同轴接头内芯108与金属贴片109不接触;A plurality of
所述中层介质基板102上表面设置有若干长条形的垂直极化微带馈线106和长条形的水平极化微带馈线105;每一个垂直极化微带馈线106的一端对应连接一个垂直极化同轴接头内芯的上端,该垂直极化微带馈线106的另一端沿垂直方向延伸到相邻金属贴片109的对应上方;每一个水平极化微带馈线105的一端对应连接一个水平极化同轴接头内芯的上端,该水平极化微带馈线105的另一端沿水平方向延伸到相邻金属贴片109的对应上方;The upper surface of the middle-layer
所述上层介质基板103的上表面设置有网状金属贴片107,该网状金属贴片107包括垂直方向的多列贴片和水平方向的多行贴片,每一列或每一行贴片都包括多组金属条带,每组金属条带之间不接触,每组金属条带包括三根并列的完全相同的金属条带;每组的三根金属条带的两端分别位于相邻的两块金属贴片109的对应上方,且所有相邻的金属贴片109的对应上方都设置有一组金属条带;The upper surface of the upper
所述下层介质基板101相邻的金属贴片109的金属化过孔110之间形成介质集成腔体104,相邻的四个金属贴片109之间形成一个十字形介质集成腔体104和该十字形介质集成腔体104对应的三层结构构成一个基本天线单元。A dielectric integrated
进一步的,所述金属化过孔110的高度为0.02~0.2 λlow,λlow为低频端自由空间波长,相邻金属贴片109的间隙宽度为0.02~0.2 λlow;所述下层介质基板101相邻的金属贴片109的金属化过孔110之间形成介质集成腔体104,相邻金属贴片109之间的方向为介质集成腔体104宽度方向;同轴接头内芯108的轴线与介质集成腔体104宽度方向的中线相距0.02~0.2λlow;水平极化微带馈线105和垂直极化微带馈线106的长度为0.05~0.4λlow;所述上层介质基板103的相对介电常数在1~3.5之间,厚度为0.01~0.1λlow;上层介质基板103直接覆盖在中层介质基板102上或放置在距离中层介质基板102上表面小于0.1λlow高度的位置处;单根金属条带长度为0.1~0.4λlow,宽度为0.005~0.1λlow。Further, the height of the metallized via
进一步的,所述垂直极化微带馈线106和水平极化微带馈线105的形状完全相同,为两端宽中间窄的长条形贴片,且馈电端的宽度窄于耦合端的宽度。Further, the vertically polarized
进一步的,所述金属贴片109为正方形或类正方形;类正方形结构为将正方形的每条边分为向外突起的三段,每段之间的夹角大于160°小于180°。Further, the
进一步的,所述宽带双极化相控阵天线为平板形或平面弧形。Further, the broadband dual-polarized phased array antenna is in the shape of a flat plate or a plane arc.
本发明的有益效果是:天线布局简洁紧凑,网格形腔体布局使相控阵天线两个极化一致性高、辐射性能优秀,并具有良好的端口隔离度;馈电结构简单从而避免了复杂的馈电网络。介质集成腔体的结构进一步降低了天线的重量,并使整个天线的辐射孔径均可使用PCB工艺制作,易于加工组装,便于直接与射频前端进行集成。The beneficial effects of the invention are as follows: the antenna layout is simple and compact, and the grid-shaped cavity layout enables the phased array antenna to have high consistency of two polarizations, excellent radiation performance, and good port isolation; complex feed network. The structure of the dielectric integrated cavity further reduces the weight of the antenna, and enables the radiation aperture of the entire antenna to be fabricated using the PCB process, which is easy to process and assemble, and facilitates direct integration with the RF front-end.
附图说明Description of drawings
图1为实施例1中基于介质集成腔体的平面宽带双极化相控阵天线的结构分解示意图。FIG. 1 is an exploded schematic diagram of the structure of a planar broadband dual-polarized phased array antenna based on a dielectric integrated cavity in Embodiment 1. As shown in FIG.
图2为一个基本天线单元的多视图,其中(a)为上层介质基板的上表面示意图,(b)为侧视剖视图,(c)为中层介质基板的上表面示意图,(d)为下层介质基板的上表面示意图。Figure 2 is a multi-view of a basic antenna unit, wherein (a) is a schematic diagram of the upper surface of the upper dielectric substrate, (b) is a side cross-sectional view, (c) is a schematic diagram of the upper surface of the middle dielectric substrate, and (d) is the lower dielectric substrate Schematic diagram of the upper surface of the substrate.
图3为本发明宽带双极化相控阵天线为平板弧形时的结构示意图,其中(a)为平板弧形阵列三维图,(b)为平板弧形阵列俯视图,(c)为平板弧形阵列正视图。3 is a schematic structural diagram of the broadband dual-polarized phased array antenna of the present invention when it is in the shape of a flat plate arc, wherein (a) is a three-dimensional diagram of a flat plate arc array, (b) is a plan view of the flat plate arc array, and (c) is a flat plate arc Front view of the shape array.
图4为下层介质基板上表面的金属贴片为正方形时的示意图。FIG. 4 is a schematic diagram when the metal patch on the upper surface of the lower dielectric substrate is square.
图5为下层介质基板上表面的金属贴片为类正方形时的示意图。FIG. 5 is a schematic diagram when the metal patch on the upper surface of the lower dielectric substrate is quasi-square.
图6为本发明实施例1的有源电压驻波比仿真结果图。FIG. 6 is a diagram showing the simulation result of the active voltage standing wave ratio according to Embodiment 1 of the present invention.
图7为本发明实施例1的端口隔离度仿真结果图。FIG. 7 is a diagram showing a simulation result of port isolation according to Embodiment 1 of the present invention.
图8为本发明实施例2的有源电压驻波比仿真结果图。FIG. 8 is a diagram showing a simulation result of an active voltage standing wave ratio according to Embodiment 2 of the present invention.
图9为本发明实施例3的有源电压驻波比仿真结果图。FIG. 9 is a simulation result diagram of an active voltage standing wave ratio according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
实施例1Example 1
本实施例的基于介质集成腔体的宽带双极化相控阵天线平板阵列形式,如图1所示分为三层,包括具有网格形介质集成腔体104的下层介质基板101、印刷有水平极化微带馈线105和垂直极化微带馈线106的中层介质基板102、印刷有网状金属贴片107的上层介质基板103;下层介质基板101的厚度为3mm,相对介电常数为3,介质基板中利用周期排布的金属贴片109和金属化过孔110构成了深度3mm,宽度5mm的网格形介质集成腔体104;中层介质基板102的相对介电常数2.2,厚度0.25mm,其上表面印刷有水平极化微带馈线105和垂直极化微带馈线106;上层介质基板103的相对介电常数2.2,厚度2.5mm,上表面印刷有网状金属贴片107;两个同轴接头内芯108穿过下层介质基板101和中层介质基板102分别对应与水平极化微带馈线105和垂直极化微带馈线106相连,并进行馈电;相邻金属贴片109中点之间的距离为12.5mm;网状金属贴片中每个金属条带的尺寸均为7mm × 0.7 mm,同方向上金属条带之间的间距为2 mm;本实施例工作频段为7.5~12.5 GHz,阵列高度为高频12.5 GHz自由空间波长的0.24倍,具有低剖面的特性。The flat panel array form of broadband dual-polarized phased array antenna based on a dielectric integrated cavity in this embodiment is divided into three layers as shown in FIG. The middle-layer
图2所示为将本发明宽带双极化相控阵天线进行单元划分后的一个基本天线单元的示意图,便于观察各层元件之间的位置关系。图 (a)为基本天线单元上层介质基板103的上表面示意图,图(b)为基本天线单元侧视剖视图,图(c)为基本天线单元中层介质基板102的上表面示意图,图(d)为基本天线单元下层介质基板101的上表面示意图;图中可看出金属条带为介质集成腔体104的正上方;水平极化微带馈线105和垂直极化微带馈线106跨越相邻的两个金属贴片109。FIG. 2 is a schematic diagram of a basic antenna unit after the broadband dual-polarization phased array antenna of the present invention is divided into units, which is convenient for observing the positional relationship between the elements of each layer. Figure (a) is a schematic diagram of the upper surface of the upper
图3为本发明宽带双极化相控阵天线为平板弧形时的结构示意图。图 (a)为平板弧形阵列三维图,图 (b)为平板弧形阵列俯视图,图(c)为平板弧形阵列正视图。FIG. 3 is a schematic structural diagram of the broadband dual-polarized phased array antenna of the present invention when it is in the shape of a flat plate arc. Figure (a) is a three-dimensional view of the flat plate arc array, Figure (b) is a top view of the flat plate arc array, and Figure (c) is a front view of the flat plate arc array.
图4为下层介质基板上表面的金属贴片为正方形时的示意图。FIG. 4 is a schematic diagram when the metal patch on the upper surface of the lower dielectric substrate is square.
图5为下层介质基板上表面的金属贴片为类正方形时的示意图。类正方形结构为将正方形的每条边分为向外突起的三段,每段之间的夹角大于160°小于180°。FIG. 5 is a schematic diagram when the metal patch on the upper surface of the lower dielectric substrate is quasi-square. The square-like structure is to divide each side of the square into three protruding sections, and the included angle between each section is greater than 160° and less than 180°.
图6给出了实施例1中阵列单元在不同扫描角下,水平极化端口有源电压驻波比随频率变化的仿真结果。从中可以看到,在±60°扫描范围内,有源电压驻波比小于2的阻抗带宽大于50%,由于阵列单元结构的对称性,单元两极化的扫描性能仿真结果具有良好的一致性。FIG. 6 shows the simulation results of the variation of the active voltage standing wave ratio of the horizontally polarized port with the frequency of the array unit in the embodiment 1 under different scanning angles. It can be seen that in the scanning range of ±60°, the impedance bandwidth of the active VSWR less than 2 is greater than 50%. Due to the symmetry of the array element structure, the simulation results of the scanning performance of the polarization of the element have good consistency.
图7给出了实施例1中阵列单元在不同扫描角下,端口隔离度随频率变化的仿真结果。从中可以看到,在±60°扫描范围内,阵列单元内两正交极化端口的隔离度小于-20dB。从上述仿真结果中可以看出,本实施例中阵列单元实现了相控阵天线的宽带、双极化特性。FIG. 7 shows the simulation results of the variation of the port isolation with the frequency of the array unit in Example 1 under different scanning angles. It can be seen from this that the isolation of the two orthogonally polarized ports in the array unit is less than -20dB within the ±60° scanning range. It can be seen from the above simulation results that the array unit in this embodiment realizes the broadband and dual polarization characteristics of the phased array antenna.
实施例2Example 2
本实施例基于介质集成腔体的宽带双极化相控阵天线平板阵列形式,如图1所示分为三层,包括具有网格形介质集成腔体104的下层介质基板101、印刷有水平极化微带馈线105和垂直极化微带馈线106的中层介质基板102、印刷有网状金属贴片107的上层介质基板103;下层介质基板101的厚度为3.5mm,相对介电常数为2.2,介质基板中利用周期排布的金属贴片109和金属化过孔110构成了深度3.5mm,宽度从4mm渐变至5mm的网格形介质集成腔体104;中层介质基板102的相对介电常数2.2,厚度0.127mm,其上表面印刷有水平极化微带馈线105和垂直极化微带馈线106;上层介质基板103的相对介电常数2.2,厚度2.5mm,上表面印刷有网状金属贴片107;两个同轴接头内芯108穿过下层介质基板101和中层介质基板102分别对应与水平极化微带馈线105和垂直极化微带馈线106相连,并进行馈电;金属贴片109为类正方形,类正方形结构为将正方形的每条边分为向外突起的三段,每段之间的夹角为160°;相邻金属贴片109中点之间的距离为12.5mm;网状金属贴片中每个金属条带的尺寸均为7.5mm × 0.6 mm,同方向上金属条带之间的间距为2 mm;本实施例工作频段为7.2~12.7GHz,阵列高度为高频12.7 GHz自由空间波长的0.26倍,具有低剖面的特性。This embodiment is based on a dielectric integrated cavity in the form of a flat panel array of broadband dual-polarized phased array antennas, which is divided into three layers as shown in FIG. The middle layer dielectric substrate 102 of the polarized microstrip feeder 105 and the vertically polarized microstrip feeder 106, the upper layer dielectric substrate 103 printed with the mesh metal patch 107; the thickness of the lower layer dielectric substrate 101 is 3.5mm, and the relative dielectric constant is 2.2 , the metal patch 109 and metallized vias 110 arranged periodically in the dielectric substrate form a grid-shaped dielectric integrated cavity 104 with a depth of 3.5 mm and a width from 4 mm to 5 mm; the relative permittivity of the intermediate dielectric substrate 102 2.2, the thickness is 0.127mm, and the horizontally polarized microstrip feeder 105 and the vertically polarized microstrip feeder 106 are printed on the upper surface; the relative permittivity of the upper dielectric substrate 103 is 2.2, the thickness is 2.5mm, and the upper surface is printed with mesh metal stickers sheet 107; two coaxial joint inner cores 108 pass through the lower dielectric substrate 101 and the middle dielectric substrate 102 and are respectively connected to the horizontally polarized microstrip feeder 105 and the vertically polarized microstrip feeder 106, and feed; metal patch 109 is a quasi-square, and the quasi-square structure is that each side of the square is divided into three sections protruding outward, and the included angle between each section is 160°; the distance between the midpoints of adjacent metal patches 109 is 12.5mm ; The size of each metal strip in the mesh metal patch is 7.5 mm × 0.6 mm, and the spacing between the metal strips in the same direction is 2 mm; the working frequency band of this embodiment is 7.2-12.7 GHz, and the array height is high It is 0.26 times the free-space wavelength of 12.7 GHz, and has the characteristics of low profile.
图8给出了实施例2中阵列单元在不同扫描角下,水平极化端口有源电压驻波比随频率变化的仿真结果。从中可以看到,在±60°扫描范围内,有源电压驻波比小于2的阻抗带宽大于55%。本实施例中的金属贴片109为类正方形,周期排布的金属贴片109和金属化过孔110构成了宽度渐变的网格型介质集成腔体104,阵列单元实现了相比实施例1更好的阻抗匹配带宽。FIG. 8 shows the simulation results of the variation of the active voltage standing wave ratio of the horizontally polarized port with the frequency of the array unit in the embodiment 2 under different scanning angles. It can be seen that the impedance bandwidth with an active VSWR less than 2 is greater than 55% in the ±60° scanning range. The
实施例3Example 3
本实施例的基于介质集成腔体的宽带双极化相控阵天线为平面弧形阵列形式;如图3所示分为三层,包括具有网格形介质集成腔体104的下层介质基板101、印刷有水平极化微带馈线105和垂直极化微带馈线106的中层介质基板102、印刷有网状金属贴片107的上层介质基板103;下层介质基板101的厚度为3mm,相对介电常数为3,介质基板中利用周期排布的金属贴片109和金属化过孔110构成了深度3mm,宽度4.8mm的网格形介质集成腔体104;中层介质基板102的相对介电常数2.2,厚度0.25mm,其上表面印刷有水平极化微带馈线105和垂直极化微带馈线106;上层介质基板103的相对介电常数2.2,厚度3mm,上表面印刷有网状金属贴片107;两个同轴接头内芯108穿过下层介质基板101和中层介质基板102分别对应与水平极化微带馈线105和垂直极化微带馈线106相连,并进行馈电;平面弧形阵列整体结构为一个半圆环,圆环的内圆的直径为100mm,外圆的直径为111.5mm;本实施例工作频段为7.6~12.6GHz,阵列剖面的厚度为高频12.6 GHz自由空间波长的0.24倍,具有低剖面的特性。The broadband dual-polarized phased array antenna based on the dielectric integrated cavity of this embodiment is in the form of a planar arc array; as shown in FIG. , the middle-
图9给出了实施例3中平面弧形阵列单元在不同扫描角下,水平极化端口有源电压驻波比随频率变化的仿真结果。从中可以看到,在±60°扫描范围内,有源电压驻波比小于2的阻抗带宽大于50%。从上述仿真结果中可以看出,本实施例中阵列单元在共形条件下仍可以实现相控阵天线的宽带、宽角扫描特性。FIG. 9 shows the simulation results of the variation of the active voltage standing wave ratio of the horizontally polarized port with the frequency of the planar arc-shaped array unit in Embodiment 3 under different scanning angles. It can be seen that the impedance bandwidth with an active VSWR less than 2 is greater than 50% in the ±60° scanning range. It can be seen from the above simulation results that the array unit in this embodiment can still achieve the broadband and wide-angle scanning characteristics of the phased array antenna under conformal conditions.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011317736.3A CN112134013B (en) | 2020-11-23 | 2020-11-23 | A Broadband Dual-Polarized Phased Array Antenna Based on Dielectric Integrated Cavity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011317736.3A CN112134013B (en) | 2020-11-23 | 2020-11-23 | A Broadband Dual-Polarized Phased Array Antenna Based on Dielectric Integrated Cavity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112134013A true CN112134013A (en) | 2020-12-25 |
CN112134013B CN112134013B (en) | 2021-02-05 |
Family
ID=73852248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011317736.3A Active CN112134013B (en) | 2020-11-23 | 2020-11-23 | A Broadband Dual-Polarized Phased Array Antenna Based on Dielectric Integrated Cavity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112134013B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112928464A (en) * | 2021-02-05 | 2021-06-08 | 中山大学 | Multi-beam antenna without feed network and manufacturing method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014081543A1 (en) * | 2012-11-26 | 2014-05-30 | Raytheon Company | Dual linear and circularly polarized patch radiator |
CN103904423A (en) * | 2012-12-28 | 2014-07-02 | 中国航空工业第六○七研究所 | Low profile broadband medium back cavity four radiator antenna unit |
EP2824758A1 (en) * | 2013-07-11 | 2015-01-14 | Honeywell International Inc. | A frequency selective polarizer |
CN105305098A (en) * | 2015-09-29 | 2016-02-03 | 电子科技大学 | Based-on-strong-mutual-coupling-effect ultra wide band common aperture phased array antenna and development method |
CN106340727A (en) * | 2016-11-02 | 2017-01-18 | 电子科技大学 | Connected cavity based phased array antenna |
US20180090813A1 (en) * | 2016-09-28 | 2018-03-29 | Movandi Corporation | Low-Cost and Low-Loss Phased Array Antenna Panel |
US20180269593A1 (en) * | 2015-06-16 | 2018-09-20 | The Mitre Corporation | Frequency-scaled ultra-wide spectrum element |
US20190097305A1 (en) * | 2016-11-18 | 2019-03-28 | Ahmadreza Rofougaran | Phased Array Antenna Panel Having Reduced Passive Loss of Received Signals |
CN209298340U (en) * | 2019-02-01 | 2019-08-23 | 桂林电子科技大学 | Miniaturized Wide Bandwidth Beam Circularly Polarized Microstrip Antenna for C-Band |
CN110635232A (en) * | 2019-08-20 | 2019-12-31 | 电子科技大学 | A dual-polarized microstrip antenna unit with wide-angle wide-band scanning capability |
CN110676568A (en) * | 2019-11-04 | 2020-01-10 | 中国电子科技集团公司第五十四研究所 | Double-circular-polarization microstrip antenna unit |
CN110797640A (en) * | 2019-11-07 | 2020-02-14 | 西安电子工程研究所 | Ka frequency band broadband low-profile dual-linear polarization microstrip antenna based on high-frequency lamination technology |
CN111326860A (en) * | 2020-03-30 | 2020-06-23 | 华南理工大学 | Low cross polarization dual-frequency cavity-backed antenna and wireless communication equipment |
-
2020
- 2020-11-23 CN CN202011317736.3A patent/CN112134013B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014081543A1 (en) * | 2012-11-26 | 2014-05-30 | Raytheon Company | Dual linear and circularly polarized patch radiator |
CN103904423A (en) * | 2012-12-28 | 2014-07-02 | 中国航空工业第六○七研究所 | Low profile broadband medium back cavity four radiator antenna unit |
EP2824758A1 (en) * | 2013-07-11 | 2015-01-14 | Honeywell International Inc. | A frequency selective polarizer |
US20180269593A1 (en) * | 2015-06-16 | 2018-09-20 | The Mitre Corporation | Frequency-scaled ultra-wide spectrum element |
CN105305098A (en) * | 2015-09-29 | 2016-02-03 | 电子科技大学 | Based-on-strong-mutual-coupling-effect ultra wide band common aperture phased array antenna and development method |
US20180090813A1 (en) * | 2016-09-28 | 2018-03-29 | Movandi Corporation | Low-Cost and Low-Loss Phased Array Antenna Panel |
CN106340727A (en) * | 2016-11-02 | 2017-01-18 | 电子科技大学 | Connected cavity based phased array antenna |
US20190097305A1 (en) * | 2016-11-18 | 2019-03-28 | Ahmadreza Rofougaran | Phased Array Antenna Panel Having Reduced Passive Loss of Received Signals |
CN209298340U (en) * | 2019-02-01 | 2019-08-23 | 桂林电子科技大学 | Miniaturized Wide Bandwidth Beam Circularly Polarized Microstrip Antenna for C-Band |
CN110635232A (en) * | 2019-08-20 | 2019-12-31 | 电子科技大学 | A dual-polarized microstrip antenna unit with wide-angle wide-band scanning capability |
CN110676568A (en) * | 2019-11-04 | 2020-01-10 | 中国电子科技集团公司第五十四研究所 | Double-circular-polarization microstrip antenna unit |
CN110797640A (en) * | 2019-11-07 | 2020-02-14 | 西安电子工程研究所 | Ka frequency band broadband low-profile dual-linear polarization microstrip antenna based on high-frequency lamination technology |
CN111326860A (en) * | 2020-03-30 | 2020-06-23 | 华南理工大学 | Low cross polarization dual-frequency cavity-backed antenna and wireless communication equipment |
Non-Patent Citations (3)
Title |
---|
RUNLIANG XIA: "A Novel Dual-polarized Cavity-backed Element for Wideband Wide-scanning Phased Array", 《2018 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING》 * |
SHIWEI QU: "In-Band Scattering Reduction of Wideband", 《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》 * |
夏润梁: "相控阵天线宽角宽带扫描方法研究", 《中国博士学位论文全文数据库》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112928464A (en) * | 2021-02-05 | 2021-06-08 | 中山大学 | Multi-beam antenna without feed network and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112134013B (en) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111370860B (en) | Strong coupling ultra wide band phased array antenna based on interdigital resistive surface loading | |
CN112838361B (en) | Coupling offset path stub and high-isolation millimeter wave phased array antenna based on same | |
CN110098477B (en) | Radiation structure and array antenna | |
US10840593B1 (en) | Antenna devices to suppress ground plane interference | |
CN106329106B (en) | A Broadband High Isolation Low Cross-polarized Dual-polarized Microstrip Antenna Array Based on SIW Technology | |
CN110323575A (en) | The dual polarization close coupling ultra wide band phased array antenna of electromagnetism Meta Materials load | |
US20120146869A1 (en) | Planar Ultrawideband Modular Antenna Array | |
US20100007572A1 (en) | Dual-polarized phased array antenna with vertical features to eliminate scan blindness | |
US11205847B2 (en) | 5-6 GHz wideband dual-polarized massive MIMO antenna arrays | |
CN112838360B (en) | Dual-polarized microstrip phased array antenna unit and array thereof | |
CN106340727A (en) | Connected cavity based phased array antenna | |
CN104868233A (en) | Left-right hand circular polarization reconstructible micro-strip travelling wave antenna array | |
CN109193171B (en) | A Low RCS Microstrip Antenna Based on Van Atta Array Polarization Conversion | |
EP3662537B1 (en) | Tripole current loop radiating element with integrated circularly polarized feed | |
CN114583457B (en) | Four-patch broadband microstrip antenna unit and antenna array based on coupling feed | |
CN108134203B (en) | Large-unit-space wide-angle scanning phased array antenna based on electromagnetic band gap structure | |
WO2017107501A1 (en) | A low coupling 2×2 mimo array | |
CN111755825A (en) | A Wide Bandwidth Angle Scanning Phased Array Antenna Based on Stacked Patch Matching Layers | |
CN116581531A (en) | A wide-beam dual-polarized dielectric resonator antenna | |
CN111613899A (en) | An X-band Broadband High Gain Dual Linear Polarized Microstrip Antenna Array | |
CN115441175A (en) | A Microwave and Millimeter Wave Common Aperture Antenna Based on Partial Structure Multiplexing | |
CN110112554A (en) | A kind of circular polarization microstrip antenna | |
CN113690595A (en) | Wide-beam antenna unit and phased array | |
CN209822857U (en) | Novel tightly-fed broadband dual-polarization butterfly-shaped oscillator | |
CN110233336B (en) | Series-fed circularly polarized antenna normal array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |