CN112029671B - Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof - Google Patents
Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof Download PDFInfo
- Publication number
- CN112029671B CN112029671B CN202010866757.4A CN202010866757A CN112029671B CN 112029671 B CN112029671 B CN 112029671B CN 202010866757 A CN202010866757 A CN 202010866757A CN 112029671 B CN112029671 B CN 112029671B
- Authority
- CN
- China
- Prior art keywords
- aspergillus terreus
- aconitic acid
- tbra
- strain
- cada
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/48—Tricarboxylic acids, e.g. citric acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01006—Aconitate decarboxylase (4.1.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/03—Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
- C12Y503/03007—Aconitate DELTA-isomerase (5.3.3.7)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于基因工程领域,具体涉及一种产反式乌头酸的重组土曲霉及其制备方法与应用。The invention belongs to the field of genetic engineering, in particular to a trans-aconitic acid-producing recombinant Aspergillus terreus and a preparation method and application thereof.
背景技术Background technique
反式乌头酸(trans-Aconitic acid,CAS:4023-65-8)是一种不饱和三羧酸。因其含有不饱和双键和丰富的羟基,因此可以作为制备聚合材料的单体化合物,也可以作为其他化合物的合成前体,如三甲基反式乌头酸等。另外,反式乌头酸作为三羧酸循环关键中间体顺乌头酸(cis-Aconitic acid,CAS:585-84-2)的立体异构体,对三羧酸循环中的关键酶乌头酸酶具有一定的抑制作用,可以干扰三羧酸循环,从而影响生命活动,展现出一定的生物活性。Trans-Aconitic acid (CAS: 4023-65-8) is an unsaturated tricarboxylic acid. Because it contains unsaturated double bonds and abundant hydroxyl groups, it can be used as a monomer compound for the preparation of polymeric materials, and can also be used as a synthetic precursor for other compounds, such as trimethyl trans-aconitic acid, etc. In addition, trans-aconitic acid, as a stereoisomer of cis-Aconitic acid (CAS: 585-84-2), a key intermediate in the TCA cycle, is a key enzyme in the TCA cycle. Acidase has a certain inhibitory effect, which can interfere with the tricarboxylic acid cycle, thereby affecting life activities and showing certain biological activities.
反式乌头酸主要是通过化学合成的方法生产,工艺复杂,副产物多,成本高,而且没有形成规模化生产。为了开发更加绿色、高效的反式乌头酸生产工艺,研究人员通过在土曲霉中阻断催化顺乌头酸脱羧生成衣康酸的顺乌头酸脱羧酶基因(cadA),获得了一株能生产乌头酸的土曲霉工程菌株At-ΔcadA(图1中A)。根据生物合成途径及发酵结果分析,可推测敲除cadA积累的直接产物是顺乌头酸,而顺乌头酸作为三羧酸循环的中间体会很快被转化成异柠檬酸并进一步代谢。因此,第一时间将顺乌头酸转化为更稳定的反式乌头酸有利于实现更高的反式乌头酸产量。Trans-aconitic acid is mainly produced by chemical synthesis, the process is complicated, the by-products are many, the cost is high, and there is no large-scale production. In order to develop a greener and more efficient process for the production of trans-aconitic acid, researchers obtained a strain by blocking the cis-aconitic acid decarboxylase gene (cadA) that catalyzes the decarboxylation of cis-aconitic acid to itaconic acid in Aspergillus terreus. Aspergillus terreus engineered strain At-ΔcadA capable of producing aconitic acid (A in Figure 1). According to the analysis of the biosynthetic pathway and fermentation results, it can be speculated that the direct product of cadA knockout accumulation is cis-aconitic acid, and cis-aconitic acid, as an intermediate of the tricarboxylic acid cycle, will be quickly converted into isocitrate and further metabolized. Therefore, converting cis-aconitic acid to more stable trans-aconitic acid at the first time is beneficial to achieve higher trans-aconitic acid production.
发明内容SUMMARY OF THE INVENTION
为了提高生物法合成反式乌头酸的产量,本发明提供了一种高产反式乌头酸的重组土曲霉菌株,所述重组土曲霉以土曲霉(Aspergillus terreus)为出发菌株,是在出发菌株中突变顺乌头酸脱羧酶CadA基因,并过表达乌头酸异构酶TbrA而获得的。In order to improve the yield of biosynthesized trans-aconitic acid, the present invention provides a recombinant Aspergillus terreus strain with high-yield trans-aconitic acid. The strain was obtained by mutating the cis-aconitic acid decarboxylase CadA gene and overexpressing the aconitic acid isomerase TbrA.
在本发明的一个实施例中,所述出发菌株为土曲霉CICC40205,土曲霉NRRL1960,土曲霉DSM23081,土曲霉TN484或土曲霉TN484-M1。In one embodiment of the present invention, the starting strain is Aspergillus terreus CICC40205, Aspergillus terreus NRRL1960, Aspergillus terreus DSM23081, Aspergillus terreus TN484 or Aspergillus terreus TN484-M1.
本发明中所述CadA是指土曲霉中的顺乌头酸脱羧酶,本发明中不对该基因的序列做强制性的限定;在优选的实施方式中,所述cadA的氨基酸序列如SEQ ID No.1所示;在其他的实施方式中,所述cadA还包括与所示序列具有高度同源性的氨基酸序列,优选的,所述高度同源性包括与目的序列的同源性至少99%、95%、90%、85%、80%、75%、70%、65%或60%的序列(即同源性60%以上)。The CadA in the present invention refers to the cis-aconitic acid decarboxylase in Aspergillus terreus, and the sequence of the gene is not limited in the present invention; in a preferred embodiment, the amino acid sequence of the cadA is as shown in SEQ ID No. 1; in other embodiments, the cadA also includes an amino acid sequence with a high degree of homology to the sequence shown, preferably, the high degree of homology includes at least 99% homology with the target sequence , 95%, 90%, 85%, 80%, 75%, 70%, 65% or 60% of the sequence (ie more than 60% homology).
在本发明的一个实施例中,所述乌头酸异构酶TbrA的氨基酸序列如SEQ ID NO.2所示。In an embodiment of the present invention, the amino acid sequence of the aconitate isomerase TbrA is shown in SEQ ID NO.2.
在本发明的一个实施例中,编码所述乌头酸异构酶TbrA的基因核苷酸序列如SEQID NO.3所示。In one embodiment of the present invention, the nucleotide sequence of the gene encoding the aconitate isomerase TbrA is shown in SEQ ID NO.3.
本发明还提供了上述重组土曲霉菌株的构建方法,是以土曲霉为出发菌株,敲除顺乌头酸脱羧酶CadA基因并将所述乌头酸异构酶TbrA的表达元件导入所述出发菌株中,构建重组土曲霉菌株。The present invention also provides a method for constructing the above-mentioned recombinant Aspergillus terreus strain, using Aspergillus terreus as the starting strain, knocking out the cis-aconitic acid decarboxylase CadA gene and introducing the expression element of the aconitic acid isomerase TbrA into the starting strain strains, construct recombinant Aspergillus terreus strains.
在本发明的一个实施例中,所述乌头酸异构酶TbrA的表达元件使用的启动子为PcadA启动子。In one embodiment of the present invention, the promoter used for the expression element of aconitate isomerase TbrA is the P cadA promoter.
本发明还提供了上述重组土曲霉菌株在生产反式乌头酸中的应用。The invention also provides the application of the above recombinant Aspergillus terreus strain in the production of trans-aconitic acid.
在本发明的一个实施例中,所述应用是指将所述重组土曲霉菌株经发酵培养后生产反式乌头酸,所述发酵条件为37 ℃,220 rpm发酵72h-168h。In one embodiment of the present invention, the application refers to the production of trans-aconitic acid after the recombinant Aspergillus terreus strain is fermented and cultured, and the fermentation conditions are 37° C., 220 rpm for 72h-168h.
在本发明的一个实施例中,所述发酵所用的培养基配方为:100 g L-1葡萄糖,2 gL-1 NH4NO3,0.2 g L-1(NH4)2HPO4,20 mg L-1 FeSO4,0.4 g L-1 MgSO4,40 mg L-1 ZnSO4,40mg L-1 CuSO4,余量为水。In one embodiment of the present invention, the medium formula used in the fermentation is: 100 g L -1 glucose, 2 g L -1 NH 4 NO 3 , 0.2 g L -1 (NH 4 ) 2 HPO 4 , 20 mg L -1 FeSO 4 , 0.4 g L -1 MgSO 4 , 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , the balance being water.
有益效果beneficial effect
如图1中B所示,在苏云金芽孢杆菌(Bacillus thuringiensis)中有一种乌头酸异构酶TbrA,可以催化顺乌头酸异构化生成反式乌头酸(Du C., et al., Genetic andBiochemical Characterization of a Gene Operon for trans-Aconitic Acid, aNovel Nematicide from Bacillus thuringiensis, The Journal of BiologicalChemistry, 2017, 292(8):3517–3530)。本发明在敲除cadA的基础上,通过在不同基因组位点、使用不同启动子在土曲霉中异源表达tbrA基因,获得更高效的产反式乌头酸土曲霉工程菌株(图1中A)。As shown in B in Figure 1, there is an aconitic acid isomerase TbrA in Bacillus thuringiensis , which can catalyze the isomerization of cis-aconitic acid to generate trans-aconitic acid (Du C., et al. , Genetic and Biochemical Characterization of a Gene Operon for trans -Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis , The Journal of Biological Chemistry, 2017, 292(8):3517–3530). On the basis of knocking out cadA , the present invention obtains a more efficient trans-aconitic acid-producing A. terreus engineering strain by heterologously expressing the tbrA gene in Aspergillus terreus at different genomic sites and using different promoters (A in Figure 1 ). ).
附图说明Description of drawings
图1. 产反式乌头酸重组土曲霉菌株构建示意图;A为产反式乌头酸土曲霉工程菌株构建示意图;B为乌头酸异构酶TbrA催化原理;Figure 1. Schematic diagram of the construction of trans-aconitic acid-producing recombinant Aspergillus terreus strains; A is the schematic diagram of the construction of trans-aconitic acid-producing A. terreus engineered strains; B is the catalytic principle of aconitic acid isomerase TbrA;
图2. 定点表达乌头酸异构酶TbrA土曲霉菌株的构建策略示意图;A: 以PgpdAt作为tbrA异源表达启动子定点整合在ku80位点;B: 敲除cadA的同时利用PcadA启动子驱动tbrA的异源表达;Figure 2. Schematic diagram of the construction strategy of the Aspergillus terreus strain for site-directed expression of aconitate isomerase TbrA; A: PgpdAt was used as the tbrA heterologous expression promoter for site-directed integration at the ku80 site; B: cadA was knocked out and driven by the PcadA promoter Heterologous expression of tbrA ;
图3. 构建的At-∆cadA-ku80::PgpdAt-tbrA工程菌株的基因组PCR验证结果,M为DNA分子量marker;A: 用引物U-ku80-F/tbrA-R(TtrpC)进行PCR验证的结果,WT为对照菌株At-∆cadA;B: 用引物PgpdAt-F743-F/D-ku80-R验证的结果,WT为对照菌株At-∆ku80-∆pyrG;Figure 3. Genome PCR verification results of the constructed At-∆cadA-ku80::PgpdAt-tbrA engineering strain, M is the DNA molecular weight marker; A: PCR verification with primer U-ku80-F/tbrA-R(TtrpC) Result, WT is the control strain At-∆cadA; B: The result verified with primer PgpdAt-F743-F/D-ku80-R, WT is the control strain At-∆ku80-∆pyrG;
图4. 构建的At-∆cadA::tbrA工程菌株的基因组PCR验证结果;M为DNA分子量marker,WT为对照菌株At-∆cadA;Figure 4. Genome PCR verification results of the constructed At-∆cadA::tbrA engineered strain; M is the DNA molecular weight marker, WT is the control strain At-∆cadA;
图5. 工程菌株发酵72h产顺式及反式乌头酸的HPLC色谱图,CT81-2(长虚线):(At-∆cadA::tbrA菌株的8号转化子CT81发酵的3个平行实验中的第2瓶);GT41-1(点虚线):(At-∆cadA-ku80::PgpdAt-tbrA菌株的4号转化子GT41发酵的3个平行实验中的第1瓶);∆cad-1(实线):(At-∆cadA菌株3个平行实验中的第1瓶);CAA为顺式乌头酸,TAA为反式乌头酸。Figure 5. HPLC chromatograms of cis and trans aconitic acid produced by engineered strains fermented for 72 h, CT81-2 (long dashed line): (3 parallel experiments of the fermentation of transformant CT81 of At-∆cadA::
图6. 工程菌株摇瓶发酵产反式乌头酸产量及比例分析结果;A:顺式及反式乌头酸在72h的产量左侧花纹是反式乌头酸,右侧黑色是顺乌头酸,B:不同转化子发酵中反式乌头酸与顺乌头酸的比例在72h(左白)、112h(中灰)和168h(右斜花纹)的变化;At-∆cadA-ku80::PgpdAt-tbrA 工程菌的三个转化子:GT41、GT71和GT81,At-∆cadA::tbrA工程菌的三个转化子:CT41、CT71和CT81,出发菌株At-∆cadA工程菌株的一个转化子:∆cad;A图中Error bar 代表的三个平行实验的SEM,B图中柱高为三个平行实验中乌头酸与顺乌头酸比例的平均值。Figure 6. Analysis results of the yield and proportion of trans-aconitic acid produced by engineering strains in shake flasks; A: The yield of cis- and trans-aconitic acid at 72h Head acid, B: The ratio of trans-aconitic acid to cis-aconitic acid in different transformants fermentation at 72h (left white), 112h (middle gray) and 168h (right twill); At-∆cadA-ku80 ::Three transformants of PgpdAt-tbrA engineered strain: GT41, GT71 and GT81, At-∆cadA::Three transformants of tbrA engineered strain: CT41, CT71 and CT81, one of the starting strain At-ΔcadA engineered strain Transformant: ∆cad; SEM of the three parallel experiments represented by the Error bar in panel A, and the bar height in panel B is the average of the ratio of aconitic acid to cis-aconitic acid in the three parallel experiments.
具体实施方式Detailed ways
以下结合具体实施例和附图,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。如按照Sambrook等人,分子克隆,实验室手册(New York:ColdSpring Harbor Laboratory Press, 1989)所记载,或按照厂商的建议条件。The present invention will be further described in detail below with reference to specific embodiments and accompanying drawings, and the protection content of the present invention is not limited to the following embodiments. Variations and advantages that can occur to those skilled in the art without departing from the spirit and scope of the inventive concept are included in the present invention, and the appended claims are the scope of protection. The process, conditions, reagents, experimental methods, etc. for implementing the present invention, except for the contents specifically mentioned below, are all common knowledge and common knowledge in the field, and the present invention has no special limited contents. As described in Sambrook et al., Molecular Cloning, Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer's suggested conditions.
本发明中质粒提取采用OMEGA公司Plasmid Mini KitI试剂盒(D6943-02),DNA片段回收采用OMEGA公司Cycle-Pure Kit试剂盒(D6492-02),凝胶回收采用OMEGA公司GelExtraction Kit试剂盒(D2500-01)。In the present invention, plasmid extraction adopts OMEGA's Plasmid Mini KitI kit (D6943-02), DNA fragment recovery adopts OMEGA's Cycle-Pure Kit (D6492-02), and gel recovery adopts OMEGA's GelExtraction Kit (D2500- 01).
PDAS:3.9 g L-1马铃薯右旋糖琼脂培养基(DifcoTM Potato Dextrose Agar, BD,LOT:1165825)和1.2 M山梨醇,灭菌后制备平板。PDAS: 3.9 g L -1 Potato Dextrose Agar Medium (Difco ™ Potato Dextrose Agar, BD, LOT: 1165825) and 1.2 M sorbitol, sterilized to prepare plates.
PDBS:2.4 g L-1马铃薯右旋糖培养基(DifcoTM Potato Dextrose Broth, BD,LOT:9239568)、1.2 M山梨醇和0.5%琼脂糖,灭菌后制成顶层琼脂。PDBS: 2.4 g L -1 potato dextrose medium (Difco ™ Potato Dextrose Broth, BD, LOT: 9239568), 1.2 M sorbitol and 0.5% agarose, sterilized to make top agar.
土曲霉产孢培养基:10 g L-1葡萄糖,2 g L-1 NaNO3,0.2 g L-1 KH2PO4,5 g L-1MgSO4,0.02 g L-1 FeSO4,0.5 g L-1 NaCl,0.04 g L-1 ZnSO4,0.04 g L-1 CuSO4,0.5%麸皮,1.5%琼脂粉,115 ℃灭菌25 min,制备平板。Aspergillus terreus sporulation medium: 10 g L -1 glucose, 2 g L -1 NaNO 3 , 0.2 g L -1 KH 2 PO 4 , 5 g L -1 MgSO 4 , 0.02 g L -1 FeSO 4 , 0.5 g L -1 NaCl, 0.04 g L -1 ZnSO 4 , 0.04 g L -1 CuSO 4 , 0.5% bran, 1.5% agar powder, sterilize at 115 ℃ for 25 min, and prepare a plate.
有机酸发酵培养基IPM:100 g L-1葡萄糖,2 g L-1 NH4NO3,0.2 g L-1(NH4)2HPO4,20mg L-1 FeSO4,0.4 g L-1 MgSO4,40 mg L-1 ZnSO4,40 mg L-1 CuSO4,用硫酸调整pH至3.5,115 ℃灭菌30 min。Organic acid fermentation medium IPM: 100 g L -1 glucose, 2 g L -1 NH 4 NO 3 , 0.2 g L -1 (NH 4 ) 2 HPO 4 , 20 mg L -1 FeSO 4 , 0.4 g L -1 MgSO 4 , 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , adjust the pH to 3.5 with sulfuric acid, and sterilize at 115 °C for 30 min.
土曲霉产孢斜面培养基:10 g L-1葡萄糖,2 g L-1 NaNO3,0.2 g L-1, KH2PO4,20mg L-1 FeSO4,5 g L-1 MgSO4,0.5 g L-1 NaCl,40mg L-1 ZnSO4,40 mg L-1 CuSO4,0.5% 麸皮,1.5%琼脂,115 ℃灭菌15min,然后分装至试管,再115 ℃灭菌25 min,制备斜面。Aspergillus terreus sporulation medium: 10 g L -1 glucose, 2 g L -1 NaNO 3 , 0.2 g L -1 , KH 2 PO 4 , 20 mg L -1 FeSO 4 , 5 g L -1 MgSO 4 , 0.5 g L -1 NaCl, 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , 0.5% bran, 1.5% agar, sterilized at 115 ℃ for 15 min, then divided into test tubes, sterilized at 115 ℃ for 25 min, Prepare bevels.
土曲霉CICC40205,购买自中国工业微生物菌种保藏管理中心。Aspergillus terreus CICC40205, purchased from China Industrial Microorganism Culture Collection and Management Center.
土曲霉NRRL1960 购买自美国农业菌种保藏中心(ARS Culture Collection)。Aspergillus terreus NRRL1960 was purchased from the American Agricultural Culture Collection (ARS Culture Collection).
土曲霉DSM23081购买自德国微生物菌种保藏中心DSMZ (Deutsche Sammlung vonMikroorganismen und Zellkulturen )。Aspergillus terreus DSM23081 was purchased from the German Collection of Microorganisms DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen).
土曲霉TN484,记载在Yahiro, K., Takahama, T., Park, Y. S., Okabe, M.,Breeding of Aspergillus terreus Mutant Tn-484 for Itaconic Acid Productionwith High-Yield, Journal of Fermentation and Bioengineering,1995, 79(5): 506-508。Aspergillus terreus TN484, described in Yahiro, K., Takahama, T., Park, YS, Okabe, M., Breeding of Aspergillus terreus Mutant Tn-484 for Itaconic Acid Production with High-Yield, Journal of Fermentation and Bioengineering, 1995, 79 (5): 506-508.
土曲霉 TN484-M1,记载在Dwiarti, L., Yamane, K., Yamatani, H., Kahar,P.,Okabe, M., Purification and characterization of cis-aconitic aciddecarboxylase from Aspergillus terreus TN484-M1, J Biosci Bioeng, 2002, 94(1): 29-33。Aspergillus terreus TN484-M1, described in Dwiarti, L., Yamane, K., Yamatani, H., Kahar, P., Okabe, M., Purification and characterization of cis-aconitic aciddecarboxylase from Aspergillus terreus TN484-M1, J Biosci Bioeng, 2002, 94(1): 29-33.
质粒pXH2-1,记载在:Huang X et al. Cloning, characterization andapplication of a native glyceraldehyde-3-phosphate dehydrogenase promoter forAspergillus terreus. J Ind Microbiol Biotechnol 2014, 41:585–592. 公众可通过中国科学院青岛生物能源与过程研究所获得。Plasmid pXH2-1, described in: Huang X et al. Cloning, characterization and application of a native glyceraldehyde-3-phosphate dehydrogenase promoter for Aspergillus terreus . J Ind Microbiol Biotechnol 2014, 41:585–592. Public available through Qingdao Biotechnology, Chinese Academy of Sciences Obtained from the Institute of Energy and Process Research.
质粒pXH-106:记载在:吕雪峰等,一种乌头酸的土曲霉菌株及其构建方法与应用,CN 201910649851.1 。Plasmid pXH-106: described in: Lu Xuefeng et al., Aconitic acid-containing Aspergillus terreus strain and construction method and application thereof, CN 201910649851.1.
土曲霉(Aspergillus terreus)At-∆cadA,记载在吕雪峰等,一种乌头酸的土曲霉菌株及其构建方法与应用,CN 201910649851.1,上述材料公众可通过中国科学院青岛生物能源与过程研究所获得。 Aspergillus terreus At-∆cadA, recorded in Lv Xuefeng et al., Aconitic acid-containing Aspergillus terreus strain and its construction method and application, CN 201910649851.1, the above materials are publicly available through the Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences .
土曲霉At-∆ku80记载在吕雪峰等,一种提高基因打靶技术在土曲霉中应用效率的方法与应用,ZL201510275491.5,公众可通过中国科学院青岛生物能源与过程研究所获得。Aspergillus terreus At-∆ku80 is described in Lv Xuefeng et al., A method and application for improving the application efficiency of gene targeting technology in Aspergillus terreus, ZL201510275491.5, available to the public through the Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences.
实施例1、高产反式乌头酸的重组土曲霉菌株的构建。Example 1. Construction of a recombinant Aspergillus terreus strain with high trans-aconitic acid production.
本实施例中所述的高产反式乌头酸的重组土曲霉,以土曲霉(Aspergillus terreus)为出发菌株,在出发菌株中敲除顺乌头酸脱羧酶CadA基因,并过表达乌头酸异构酶TbrA而获得的,出发菌株为目前已知常用的土曲霉,如土曲霉CICC40205、土曲霉NRRL1960、土曲霉DSM23081、土曲霉TN484 、土曲霉TN484-M1或其他能够生产衣康酸的基因工程菌或者野生菌株等均可,本实施例中使用的出发菌株为土曲霉CICC40205,具体的构建方法描述如下:For the recombinant Aspergillus terreus with high trans-aconitic acid production described in this example, Aspergillus terreus was used as the starting strain, the cis-aconitic acid decarboxylase CadA gene was knocked out in the starting strain, and aconitic acid was overexpressed It is obtained by isomerase TbrA, and the starting strain is the commonly used Aspergillus terreus, such as Aspergillus terreus CICC40205, Aspergillus terreus NRRL1960, Aspergillus terreus DSM23081, Aspergillus terreus TN484, Aspergillus terreus TN484-M1 or other genes capable of producing itaconic acid Engineering bacteria or wild strains can be used, and the starting strain used in this embodiment is Aspergillus terreus CICC40205, and the specific construction method is described as follows:
一、ku80位点用PgpdAt启动子表达tbrA 1. Expression of tbrA using the P gpdAt promoter at the ku80 site
1)ku80位点(GenBank 登录号为EAU32303.1)表达tbrA基因打靶元件的构建1) Construction of tbrA gene targeting element expressed at ku80 site (GenBank accession number EAU32303.1)
SEQ ID NO.2是苏云金芽孢杆菌的乌头酸异构酶TbrA的氨基酸序列,按照土曲霉密码子偏好性优化并合成TbrA的编码核苷酸片段如SEQ ID NO.3。SEQ ID NO. 2 is the amino acid sequence of aconitic acid isomerase TbrA of Bacillus thuringiensis, optimized according to the codon preference of Aspergillus terreus, and the nucleotide fragment encoding TbrA is synthesized as SEQ ID NO. 3.
根据基因序列信息设计并合成如下引物:The following primers were designed and synthesized according to the gene sequence information:
U-ku80-F: 5’- cgcgggtttctagaagtcacatcagc -3’;U-ku80-F: 5’-cgcgggtttctagaagtcacatcagc-3’;
U-ku80-R(PgpdAt): 5’- gtacctggatcctcccagagtgtaaggtggatctggagcagagg -3’;U-ku80-R(PgpdAt): 5’-gtacctggatcctcccagagtgtaaggtggatctggagcagagg-3’;
PgpdAt-F743: 5’- ttacactctgggaggatccaggta -3’;PgpdAt-F743: 5'-ttacactctgggaggatccaggta-3';
PgpdAt-R(tbrA) : 5’- gacgaagcaggggatcttcattgtgatgattgatgagttgt -3’;PgpdAt-R(tbrA) : 5’-gacgaagcaggggatcttcattgtgatgattgatgagttgt-3’;
tbrA-F : 5’- atgaagatcccctgcttcgtc -3’;tbrA-F : 5'-atgaagatcccctgcttcgtc-3';
tbrA-R(TtrpC) : 5’- cagtaacgttaagtggatccttaggggatgatcagctcgccct -3’;tbrA-R(TtrpC) : 5’-cagtaacgttaagtggatccttaggggatgatcagctcgccct-3’;
TtrpC-F : 5’- ggatccacttaacgttactg -3’;TtrpC-F: 5'-ggatccacttaacgttactg-3';
hph-R(-TtrpC) : 5’- cggtcggcatctactctattcc -3’;hph-R(-TtrpC) : 5'-cggtcggcatctactctattcc-3';
D-ku80-F(hph-TtrpC) : 5’- ggaatagagtagatgccgaccgtagcccggagttaggtagatag -3’;D-ku80-F(hph-TtrpC): 5’-ggaatagagtagatgccgaccgtagcccggagttaggtagatag-3’;
D-ku80-R : 5’- catcaccgaccctacgctgt -3’;D-ku80-R : 5'-catcaccgaccctacgctgt-3';
C-ku80-F : 5’- ggtggtttctctctatcatgg -3’;C-ku80-F: 5'-ggtggtttctctctatcatgg-3';
C-ku80-R : 5’- gcgaaggcgaaaagtagtctc -3’;C-ku80-R : 5'-gcgaaggcgaaaagtagtctc-3';
以土曲霉(Aspergillus terreus)At-∆cadA基因组DNA为模板,采用pfu DNA聚合酶(Fermentas, 产品目录号: EP0501)进行PCR扩增,用引物U-ku80-F/U-ku80-R(PgpdAt)扩增可以获得大小约为1.0 kb的ku80基因的上游同源臂U-ku80,用引物D-ku80-F(hph-TtrpC)/D-ku80-R扩增可以获得大小为1.0 kb的ku80基因下游同源臂D-ku80。Using Aspergillus terreus ( Aspergillus terreus ) At-∆cadA genomic DNA as a template, pfu DNA polymerase (Fermentas, catalog number: EP0501) was used for PCR amplification, and primers U-ku80-F/U-ku80-R (PgpdAt ), the upstream homology arm U-ku80 of the ku80 gene with a size of about 1.0 kb can be obtained by amplification, and ku80 with a size of 1.0 kb can be obtained by amplification with primers D-ku80-F(hph-TtrpC)/D- ku80 -R Gene downstream homology arm D-ku80.
以质粒pXH2-1为模板,用引物PgpdAt-F743/PgpdAt-R(tbrA)进行PCR扩增得到土曲霉组成型启动子PgpdAt,即PgpdAt片段。Using plasmid pXH2-1 as a template, PCR amplification was performed with primers PgpdAt-F743/PgpdAt-R(tbrA) to obtain the constitutive promoter PgpdAt of Aspergillus terreus, that is, the PgpdAt fragment.
同样以质粒pXH2-1为模板,用引物TtrpC-F/hph-R(-TtrpC)进行终止子TtrpC和潮霉素抗性基因hph的PCR扩增,得到TtrpC-hph片段。Similarly, using plasmid pXH2-1 as a template, PCR amplification of terminator TtrpC and hygromycin resistance gene hph was performed with primer TtrpC-F/hph-R(-TtrpC) to obtain TtrpC-hph fragment.
TbrA片段的获得则是以合成tbrA基因所在质粒为模板,用引物tbrA-F/tbrA-R(TtrpC) PCR扩增得到。The TbrA fragment was obtained by using the plasmid containing the synthetic tbrA gene as a template and PCR amplification with primers tbrA-F/tbrA-R(TtrpC).
将所有PCR产物经1.0%琼脂糖凝胶电泳检测并进行割胶回收纯化。用融合PCR的方法将U-ku80片段、PgpdAt片段、tbrA片段、TtrpC-hph片段和D-ku80片段进行融合,并以该融合PCR的产物作为模板,以C-ku80-F和C-ku80-R作为引物扩增获得大小约为6.8 kb的基因打靶元件ku80::PgpdAt-tbrA-hph片段,可用于ku80位点用PgpdAt启动子表达TbrA的工作。All PCR products were detected by 1.0% agarose gel electrophoresis and recovered and purified by gel tapping. U-ku80 fragment, PgpdAt fragment, tbrA fragment, TtrpC-hph fragment and D-ku80 fragment were fused by the method of fusion PCR, and the product of this fusion PCR was used as a template, and C-ku80-F and C-ku80- R was used as a primer to amplify the gene targeting element ku80::PgpdAt-tbrA-hph fragment with a size of about 6.8 kb, which could be used for the work of expressing TbrA with the PgpdAt promoter at the ku80 site.
2)ku80位点异源表达tbrA土曲霉工程菌株的构建2) Construction of an engineered strain of Aspergillus terreus heterologously expressing tbrA at the ku80 site
土曲霉At-∆cadA是通过敲除cadA基因(顺乌头酸脱羧酶cadA的基因 GenBank 登录号MK026070.1 ,本发明中所述cadA基因其编码的氨基酸序列如SEQ ID NO.1所示)得到的产乌头酸工程菌株(吕雪峰等,一种乌头酸的土曲霉菌株及其构建方法与应用,CN201910649851.1)。将工程菌株At-∆cadA的孢子接种至50 mL IPM液体培养基中,使孢子浓度约为107个/mL,在200 rpm、32 ℃培养12-18 h。用无菌单层500目尼龙布过滤收集长出的菌丝,并用灭菌的0.6 M MgSO4溶液冲洗三次,压干后置于无菌的50 ml三角瓶中,根据菌丝重量加入适量酶解液(每1 g菌丝加入10 ml酶解液),在30 ℃、60 rpm处理1-3 h。将上述酶解后的混合液用300目尼龙布或擦镜纸过滤,收集滤液。在4 ℃、4000 rpm离心收集原生质体,用预冷1.0 M山梨醇溶液洗涤一次,再用预冷的STC(STC组成:1.0 M 山梨醇,50 mMTris-HCl(pH 8.0),50 mM CaCl2)洗涤一次,最后把原生质体重悬于预冷的STC中,并用STC将原生质体浓度调整为5×107个/mL,得到原生质体悬液。向150 μL该原生质体悬液中加入10 μL打靶元件ku80::PgpdAt-tbrA-hph的DNA片段(约2 μg),再加入50 μL冰浴的PSTC(PSTC组成:40% PEG4000,1.2 M山梨醇,50 mM Tris-HCl(pH8.0),50 mM CaCl2),轻轻混匀,冰浴30 min。加入1 mL常温的PSTC,混匀后室温放置20 min。然后与30 mL的PDBS顶层琼脂混合后倾注于10块PDA-SH平板上进行再生筛选培养,在30 ℃黑暗条件下培养5-7天。Aspergillus terreus At-∆cadA is obtained by knocking out the cadA gene (the gene of cis-aconitic acid decarboxylase cadA, GenBank accession number MK026070.1, the amino acid sequence encoded by the cadA gene described in the present invention is shown in SEQ ID NO.1) The obtained aconitic acid-producing engineering strain (Lu Xuefeng et al., an aconitic acid-producing Aspergillus terreus strain and its construction method and application, CN201910649851.1). The spores of the engineered strain At-∆cadA were inoculated into 50 mL of IPM liquid medium so that the spore concentration was about 10 7 /mL, and cultured at 200 rpm and 32 °C for 12-18 h. The grown mycelia were collected by filtration with a sterile single-layer 500-mesh nylon cloth, rinsed three times with sterile 0.6 M MgSO 4 solution, pressed dry and placed in a sterile 50 ml conical flask, and an appropriate amount of enzyme was added according to the weight of the mycelium. The solution (10 ml of enzymatic solution was added to each 1 g of mycelium), and treated at 30 °C and 60 rpm for 1-3 h. The mixed solution after enzymolysis was filtered with 300-mesh nylon cloth or lens paper, and the filtrate was collected. Protoplasts were collected by centrifugation at 4 °C, 4000 rpm, washed once with pre-chilled 1.0 M sorbitol solution, and then washed with pre-chilled STC (STC composition: 1.0 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ) was washed once, and finally the protoplasts were resuspended in pre-cooled STC, and the protoplast concentration was adjusted to 5×10 7 /mL with STC to obtain a protoplast suspension. To 150 μL of the protoplast suspension, add 10 μL of the DNA fragment (about 2 μg) of the targeting element ku80::PgpdAt-tbrA-hph, and then add 50 μL of PSTC in an ice bath (PSTC composition: 40% PEG4000, 1.2 M Yamanashi) alcohol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ), mix gently, and ice bath for 30 min. Add 1 mL of PSTC at room temperature, mix well and place at room temperature for 20 min. Then, it was mixed with 30 mL of PDBS top agar and poured onto 10 PDA-SH plates for regeneration screening culture, and cultured at 30 °C in the dark for 5-7 days.
从转化筛选平板上挑取生长状况良好的转化子转接至PDAH(添加了100 mg/L潮霉素B的PDA平板)平板上,在30 ℃培养5天进行传代纯化。将稳定传代转化子的孢子接种于IPM液体培养基中,30 ℃、200 rpm培养48 h,收集菌丝提取基因组DNA,用U-ku80-F/tbra-R(TtrpC)和PgpdAt-F743-F/D-ku80-R这两对引物进行PCR验证,同时用At-∆cadA菌株的基因组作为对照。阳性转化子能扩增出大小分别约为2.8 kb和6.0 kb的条带,对照不能扩增出条带。选取5个阳性转化子进行单孢分离纯化,每个转化子验证3个单孢,并再次用引物U-ku80-F/tbra-R(TtrpC)和PgpdAt-F743-F/D-ku80-R进行基因组PCR验证,编号为1-1至1-3,2-1至2-3,3-1至3-3,,4-1至4-3,,5-1至5-3,如图3所示,获得ku80位点整合了tbrA表达元件的纯种转化子,记为At-∆cadA-ku80::PgpdAt-tbrA。The transformants with good growth conditions were picked from the transformation screening plate and transferred to PDAH (PDA plate supplemented with 100 mg/L hygromycin B) plate, and cultured at 30 °C for 5 days for passage purification. The spores of the stable passage transformants were inoculated in IPM liquid medium, cultured at 30 °C and 200 rpm for 48 h, and the hyphae were collected to extract genomic DNA. The two pairs of primers /D-ku80-R were verified by PCR, and the genome of the At-∆cadA strain was used as a control. The positive transformants could amplify the bands with sizes of about 2.8 kb and 6.0 kb, respectively, while the control could not amplify the bands. 5 positive transformants were selected for single spore isolation and purification, and 3 single spores were verified for each transformant, and primers U-ku80-F/tbra-R (TtrpC) and PgpdAt-F743-F/D-ku80-R were used again. Perform genomic PCR validation, numbered 1-1 to 1-3, 2-1 to 2-3, 3-1 to 3-3, 4-1 to 4-3, 5-1 to 5-3, as in As shown in Figure 3, a pure transformant with the tbrA expression element integrated at the ku80 site was obtained, which was denoted as At-∆cadA-ku80::PgpdAt-tbrA.
二、在cadA位点用PcadA启动子表达tbrA 2. Expression of tbrA using the PcadA promoter at the cadA site
1)敲除cadA过表达tbrA基因打靶元件的构建1) Construction of knockout cadA overexpression tbrA gene targeting element
根据基因序列信息设计并合成如下引物:The following primers were designed and synthesized according to the gene sequence information:
U-cadA-F: 5’- gcgataaatgttgaacgaggc -3’;U-cadA-F: 5’-gcgataaatgttgaacgaggc-3’;
U-cadA-R(tbrA) : 5’- gacgaagcaggggatcttcattggtcaatttaataggacaattttc -3’;U-cadA-R(tbrA): 5’-gacgaagcaggggatcttcattggtcaatttaataggacaattttc-3’;
tbrA-F: 5’- atgaagatcccctgcttcgtc -3’;tbrA-F: 5’-atgaagatcccctgcttcgtc-3’;
tbrA-R(TtrpC) : 5’- cagtaacgttaagtggatccttaggggatgatcagctcgccct -3’;tbrA-R(TtrpC) : 5’-cagtaacgttaagtggatccttaggggatgatcagctcgccct-3’;
TtrpC-F: 5’- ggatccacttaacgttactg -3’;TtrpC-F: 5'-ggatccacttaacgttactg-3';
TtrpC-R: 5’- aagaaggttacctctaaacaag -3’;TtrpC-R: 5'-aagaaggttacctctaaacaag-3';
pyrG/loxp-F(TtrpC) : 5’- cttgtttagaggtaaccttctttaagggagatggtgattgaactag -3’;pyrG/loxp-F(TtrpC): 5'-cttgtttagaggtaaccttctttaagggagatggtgattgaactag-3';
pyrGAn-R(F743) : 5’- gcatcaaatcgtcgtaccgca -3’;pyrGAn-R(F743): 5'-gcatcaaatcgtcgtaccgca-3';
D-cadA-F(pyrGAn) : 5’- tgcggtacgacgatttgatgctaaatgggaagcgatatggaaac -3’;D-cadA-F(pyrGAn): 5'-tgcggtacgacgatttgatgctaaatgggaagcgatatggaaac-3';
D-cadA-R: 5’- cattgcagggaagtatatgcttc -3’;D-cadA-R: 5’-cattgcagggaagtatatgcttc-3’;
C-cadA-F: 5’- tgtggttcctaccaaggtggc -3’;C-cadA-F: 5’-tgtggttcctaccaaggtggc-3’;
C-cadA-R: 5’-cgactatagctggattgatcac -3’;C-cadA-R: 5’-cgactatagctggattgatcac-3’;
以土曲霉(Aspergillus terreus)At-∆ku80基因组DNA为模板,采用pfu DNA聚合酶(Fermentas, 产品目录号: EP0501)进行PCR扩增,用引物U-cadA-F/U-cadA-R(tbrA)扩增可以获得大小约为1.2 kb的cadA基因的上游同源臂U-cadA,用引物D-cadA-F(pyrGAn)/D-cadA-R扩增可以获得大小为1.3 kb的cadA基因下游同源臂D-cadA。Using Aspergillus terreus ( Aspergillus terreus ) At-∆ku80 genomic DNA as a template, pfu DNA polymerase (Fermentas, catalog number: EP0501) was used for PCR amplification, and primers U-cadA-F/U-cadA-R (tbrA ), the upstream homology arm U-cadA of the cadA gene with a size of about 1.2 kb can be obtained by amplification, and the downstream homology arm of the cadA gene with a size of 1.3 kb can be obtained by using primers D-cadA-F(pyrGAn)/D-cadA-R to amplify Homology arm D-cadA.
以质粒pXH2-1为模板,用引物TtrpC-F和TtrpC-R进行终止子TtrpC的PCR扩增,得到TtrpC片段。Using the plasmid pXH2-1 as a template, PCR amplification of the terminator TtrpC was performed with primers TtrpC-F and TtrpC-R to obtain a TtrpC fragment.
以质粒pXH-106为模板,用引物pyrG/loxp-F(TtrpC)和pyrGAn-R(F743)进行PCR扩增黑曲霉pyrG An 基因表达元件作为筛选标记,即pyrGAn片段。Using plasmid pXH-106 as template, primers pyrG/loxp-F (TtrpC) and pyrGAn-R (F743) were used to amplify the Aspergillus niger pyrG An gene expression element as a selection marker, namely pyrG An fragment.
TbrA片段的获得是以合成tbrA基因所在质粒为模板,用引物tbrA-F和tbrA-R(TtrpC)扩增得到。The TbrA fragment was obtained by using the plasmid where the tbrA gene was synthesized as a template and amplified with primers tbrA-F and tbrA-R (TtrpC).
将所有PCR产物经1.0%琼脂糖凝胶电泳检测并进行割胶回收纯化。用融合PCR的方法将U-cadA片段、tbrA片段、TtrpC片段、pyrGAn片段和D-cadA片段进行融合,并以该融合PCR的产物作为模板,以C-cadA-F和C-cadA-R作为引物扩增获得大小约为5.5 kb的∆cadA::tbrA基因打靶元件,可用于在cadA位点用PcadA启动子表达TbrA的工作。All PCR products were detected by 1.0% agarose gel electrophoresis and recovered and purified by gel tapping. The U-cadA fragment, tbrA fragment, TtrpC fragment, pyrG An fragment and D-cadA fragment were fused by fusion PCR, and the product of the fusion PCR was used as a template, and C-cadA-F and C-cadA-R were used as templates. The ΔcadA::tbrA gene targeting element with a size of about 5.5 kb was obtained as primer amplification, which can be used to express TbrA with the PcadA promoter at the cadA site.
2)cadA位点异源表达tbrA土曲霉工程菌株的构建2) Construction of an engineered strain of Aspergillus terreus that heterologously expresses tbrA at the cadA site
土曲霉At-∆ku80是针对土曲霉CICC40205进行ku80基因(GenBank 登录号为EAU32303.1)敲除的工程菌株,At-∆ku80-∆pyrG则是在At-∆ku80菌株基础上敲除了pyrG基因之后得到的尿嘧啶营养缺陷型工程菌株(吕雪峰等,一种提高基因打靶技术在土曲霉中应用效率的方法与应用,ZL201510275491.5)。将工程菌株At-∆ku80-∆pyrG的孢子接种至50 mL IPM-FU(添加了1 g L-1 5-氟乳清酸和10 mM尿嘧啶核苷的IPM)液体培养基中,使孢子浓度约为107个/mL,在200 rpm、32 ℃培养12-18 h。用无菌单层500目尼龙布过滤收集长出的菌丝,并用灭菌的0.6 M MgSO4溶液冲洗三次,压干后置于无菌的50 mL三角瓶中,根据菌丝重量加入适量酶解液(每1 g菌丝加入10 mL酶解液),在30 ℃、60 rpm处理1-3 h。将上述酶解后的混合液用300目尼龙布或擦镜纸过滤,收集滤液。在4 ℃、4000 rpm离心收集原生质体,用预冷1.0 M山梨醇溶液洗涤一次,再用预冷的STC(STC组成:1.0 M 山梨醇,50mM Tris-HCl(pH 8.0),50 mM CaCl2)洗涤一次,最后把原生质体重悬于预冷的STC中,并用STC将原生质体浓度调整为5×107个/mL,得到原生质体悬液。向150 μL该原生质体悬液中加入10 μL打靶元件∆cadA::tbrA的DNA片段(约2 μg)。再加入50 μL冰浴的PSTC(PSTC 组成:40% PEG4000,1.2M山梨醇,50 mM Tris-HCl(pH8.0),50 mM CaCl2),轻轻混匀,冰浴30min。加入1 mL常温的PSTC,混匀后室温放置20 min。然后与30 mL的PDBS顶层琼脂混合后倾注于10块PDAS平板上进行再生筛选培养,在30 ℃黑暗条件下培养5-7天。Aspergillus terreus At-∆ku80 is an engineered strain that knocks out the ku80 gene (GenBank accession number: EAU32303.1) against A. terreus CICC40205, and At-∆ku80-∆pyrG knocks out the pyrG gene on the basis of the At-∆ku80 strain The obtained uracil auxotrophic engineering strain (Lu Xuefeng et al., A method and application for improving the application efficiency of gene targeting technology in Aspergillus terreus, ZL201510275491.5). The spores of the engineered strain At-∆ku80-∆pyrG were inoculated into 50 mL of IPM-FU (IPM supplemented with 1 g L -1 5-fluoroorotic acid and 10 mM uridine) liquid medium to make the spores. The concentration was about 10 7 cells/mL, and cultured at 200 rpm and 32 °C for 12-18 h. The grown mycelia were collected by filtration with a sterile single-layer 500-mesh nylon cloth, rinsed three times with sterile 0.6 M MgSO 4 solution, pressed dry and placed in a sterile 50 mL conical flask, and an appropriate amount of enzyme was added according to the weight of the mycelium. The solution (10 mL of enzymatic solution was added to each 1 g of mycelium) was treated at 30 °C and 60 rpm for 1-3 h. The mixed solution after enzymolysis was filtered with 300-mesh nylon cloth or lens paper, and the filtrate was collected. Protoplasts were collected by centrifugation at 4 °C, 4000 rpm, washed once with pre-cooled 1.0 M sorbitol solution, and then washed with pre-cooled STC (STC composition: 1.0 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ) was washed once, and finally the protoplasts were resuspended in pre-cooled STC, and the protoplast concentration was adjusted to 5×10 7 /mL with STC to obtain a protoplast suspension. To 150 μL of this protoplast suspension was added 10 μL of the DNA fragment (approximately 2 μg) of the targeting element ∆cadA::tbrA. Then add 50 μL of PSTC in ice bath (PSTC composition: 40% PEG4000, 1.2 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ), mix gently, and ice bath for 30 min. Add 1 mL of PSTC at room temperature, mix well and place at room temperature for 20 min. Then, it was mixed with 30 mL of PDBS top agar and poured onto 10 PDAS plates for regeneration screening and cultured at 30 °C in the dark for 5-7 days.
从转化筛选平板上挑取生长状况良好的转化子转接至PDA平板上,在30 ℃培养5天进行传代纯化。将稳定传代转化子的孢子接种于IPM液体培养基中,30 ℃、200 rpm培养48 h,收集菌丝提取基因组DNA,用引物U-cadA-F/D-cadA-R进行PCR验证,同时用At-∆ku80-∆pyrG菌株的基因组作为对照。阳性转化子能扩增出大小约为5.8 kb的条带,对照能扩增大小约为4.0 kb的条带。选取5个阳性转化子进行单孢分离纯化,每个转化子验证3个单孢,并再次用引物U-cadA-F/D-cadA-R进行基因组PCR验证,编号为1-1至1-3,2-1至2-3,3-1至3-3,,4-1至4-3,,5-1至5-3,如图4所示,获得cadA位点整合了tbrA表达元件的纯种转化子,记为At-∆cadA::tbrA。The transformants with good growth conditions were picked from the transformation screening plate and transferred to the PDA plate, and cultured at 30 °C for 5 days for passage purification. The spores of the stable passage transformants were inoculated in IPM liquid medium, cultured at 30 °C and 200 rpm for 48 h, and the hyphae were collected to extract genomic DNA, which was verified by PCR with primers U-cadA-F/D-cadA-R. The genome of the At-∆ku80-∆pyrG strain served as a control. Positive transformants can amplify a band of about 5.8 kb in size, and the control can amplify a band of about 4.0 kb in size. 5 positive transformants were selected for single spore isolation and purification, each transformant was verified for 3 single spores, and the primers U-cadA-F/D-cadA-R were used again for genomic PCR verification, numbered 1-1 to 1- 3, 2-1 to 2-3, 3-1 to 3-3, 4-1 to 4-3, 5-1 to 5-3, as shown in Figure 4, to obtain cadA sites with integrated tbrA expression The pure-bred transformants of the element were denoted At-∆cadA::tbrA.
实施例2、异源表达tbrA土曲霉工程菌株的发酵产乌头酸的摇瓶分析。Example 2. Shake flask analysis of aconitic acid produced by fermentation of an engineered strain of Aspergillus terreus heterologously expressing tbrA .
分别选取3个At-∆cadA-ku80::PgpdAt-tbrA和At-∆cadA::tbrA的阳性转化子株,同时以At-∆cadA作为对照菌株,分别接种至土曲霉产孢斜面培养基,32 ℃培养7天获得成熟的孢子。再分别将一支斜面上的孢子接种至一瓶IPM中(500 mL三角瓶中装有55 mL培养基),接种量约为终浓度2x106个孢子/mL,每个转化子设置3个摇瓶作为平行,37 ℃,220 rpm分别发酵72 h、112 h和168h。Three positive transformant strains of At-∆cadA-ku80::PgpdAt-tbrA and At-∆cadA::tbrA were selected respectively, and At-∆cadA was used as a control strain, and were inoculated into Aspergillus terreus sporulation slant medium respectively, 32 Cultivated for 7 days to obtain mature spores. Then inoculate a spore on the slant into a bottle of IPM (55 mL medium in a 500 mL conical flask), the inoculation amount is about the final concentration of 2×10 6 spores/mL, and each transformant is set with 3 shakers. Flasks were used as parallel, and were fermented for 72 h, 112 h and 168 h at 37 °C and 220 rpm, respectively.
取上清液经0.45 μm滤器过滤后进行适当稀释,用高效液相色谱分析方法(HighPerformance Liquid Chromatography, HPLC)检测有机酸含量。色谱柱:Bio-rad AminexHPX-87H, 300 mm x 7.8 mm;流动相:5 mM硫酸;流速:0.5 mL/min;柱温:55 ℃;检查温度:35 ℃;紫外检测器(210 nm)。The supernatant was filtered through a 0.45 μm filter and then appropriately diluted, and the content of organic acids was detected by high performance liquid chromatography (High Performance Liquid Chromatography, HPLC). Column: Bio-rad AminexHPX-87H, 300 mm x 7.8 mm; mobile phase: 5 mM sulfuric acid; flow rate: 0.5 mL/min; column temperature: 55 °C; inspection temperature: 35 °C; UV detector (210 nm).
结果如图5和图6所示,菌株At-∆cadA、At-∆cadA-ku80::PgpdAt-tbrA和At-∆cadA::tbrA的顺/反式乌头酸的HPLC色谱图和发酵产量统计比较分析显示在摇瓶发酵中期72h:At-∆cadA::tbrA转化子CT81 (19.05g/L)的反式乌头酸产量和峰图远高于At-∆cadA-ku80::PgpdAt-tbrA的转化子GT41(1.62g/L)和出发菌株At-∆cadA转化子∆cad(5.52g/L),而CT81顺式乌头酸的产量(2.36g/L)和峰图却低于出发菌株At-∆cadA0转化子∆cad(2.53g/L),其中, At-∆cadA::tbrA的转化子CT81最优在72h提高了反式乌头酸产量的245%;比较反式乌头酸/顺式乌头酸产量比例在72h发酵中期可以明显的发现At-∆cadA::tbrA转化子CT41(9:1)、CT71(8:1)及CT81(8:1)都远大于出发菌株At-∆cadA转化子∆cad(4:3),而PgpdAt启动子引入的异构酶TbrA菌株At-∆cadA-ku80::PgpdAt-tbrA转化子GT41(2:1)、GT71(5:1)及GT81(7:1)也实现了这种反式乌头酸/顺式乌头酸比例的不同程度提高,目标产物反式乌头酸产量(1.6g/L、2.5g/L、1.3g/L)低于出发菌株At-∆cadA转化子∆cad(5.52g/L);发酵112h,At-∆cadA::tbrA的转化子CT81反式乌头酸产量为23.13g/L,出发菌株At-∆cadA转化子∆cad 反式乌头酸产量为12.36g/L,112h At-∆cadA::tbrA反式乌头酸产量提高了87.1%;发酵168h, At-∆cadA::tbrA的转化子CT81反式乌头酸产量为24.65g/L,出发菌株At-∆cadA转化子∆cad 反式乌头酸产量为13.19g/L,168h At-∆cadA::tbrA反式乌头酸产量提高了86.8%, 相比于72h提高的245%来讲,At-∆cadA::tbrA后期产量提高并不大,从一定发酵周期的发酵产酸率来讲,72h发酵At-∆cadA::tbrA转化子CT81是最优的。The results are shown in Figures 5 and 6, HPLC chromatograms and fermentation yields of cis/trans aconitic acid of strains At-∆cadA, At-∆cadA-ku80::PgpdAt-tbrA and At-∆cadA::tbrA Statistical comparative analysis showed that in the middle 72h of shake flask fermentation: the trans-aconitic acid production and peak profile of At-∆cadA::tbrA transformant CT81 (19.05 g/L) were much higher than those of At-∆cadA-ku80::PgpdAt- The tbrA transformant GT41 (1.62g/L) and the starting strain At-∆cadA transformant ∆cad (5.52g/L), while the CT81 cis-aconitic acid yield (2.36g/L) and peak graph were lower than The transformant ∆cad (2.53g/L) of the starting strain At-∆cadA0, among which, the transformant CT81 of At-∆cadA::tbrA improved the production of trans-aconitic acid by 245% at 72h; The ratio of cephalic acid/cis-aconitic acid production in the middle stage of 72h fermentation can be clearly found that the At-∆cadA::tbrA transformants CT41 (9:1), CT71 (8:1) and CT81 (8:1) are much larger than The starting strain At-∆cadA transformant ∆cad (4:3), while the isomerase introduced by the P gpdAt promoter TbrA strain At-∆cadA-ku80::PgpdAt-tbrA transformant GT41 (2:1), GT71 ( 5:1) and GT81 (7:1) also achieved different degrees of increase in the ratio of trans-aconitic acid/cis-aconitic acid, and the target product trans-aconitic acid yield (1.6g/L, 2.5g/L) L, 1.3g/L) was lower than the starting strain At-∆cadA transformant ∆cad (5.52g/L); 112h fermentation, At-∆cadA::tbrA transformant CT81 trans-aconitic acid yield was 23.13g/L L, the production of ∆cad trans-aconitic acid in the transformant of the starting strain At-∆cadA was 12.36g/L, and the production of At-∆cadA::tbrA trans-aconitic acid increased by 87.1% in 112h; after 168h of fermentation, At-∆cadA ::tbrA transformant CT81 trans-aconitic acid yield was 24.65g/L, the starting strain At-∆cadA transformant ∆cad trans-aconitic acid yield was 13.19g/L, 168h At-∆cadA::tbrA trans-aconitic acid yield The yield of aconitic acid increased by 86.8%. Compared with the increase of 245% at 72h, the yield of At-∆cadA::tbrA in the later stage did not increase much. From the perspective of the fermentation acid production rate of a certain fermentation period, the 72h fermentation At- The -∆cadA::tbrA transformant CT81 was optimal.
综上结果证明引入异构酶TbrA在两个启动子引导下都可以实现在发酵中期72h顺式乌头酸到反式乌头酸的转化,其中PcadA启动子引导的TbrA异构酶可以实现最终反式乌头酸产量的大幅度提高及发酵时间的缩短。In summary, the results show that the introduction of the isomerase TbrA under the guidance of both promoters can achieve the conversion of cis-aconitic acid to trans-aconitic acid in the middle of fermentation for 72h, and the TbrA isomerase under the guidance of the P cadA promoter can achieve In the end, the production of trans-aconitic acid was greatly improved and the fermentation time was shortened.
本发明的氨基酸和核苷酸序列:Amino acid and nucleotide sequences of the present invention:
SEQ ID NO.1 顺乌头酸脱羧酶CadASEQ ID NO.1 Cisaconitic acid decarboxylase CadA
MTKQSADSNAKSGVTSEICHWASNLATDDIPSDVLERAKYLILDGIACAWVGARVPWSEKYVQATMSFEPPGACRVIGYGQKLGPVAAAMTNSAFIQATELDDYHSEAPLHSASIVLPAVFAASEVLAEQGKTISGIDVILAAIVGFESGPRIGKAIYGSDLLNNGWHCGAVYGAPAGALATGKLLGLTPDSMEDALGIACTQACGLMSAQYGGMVKRVQHGFAARNGLLGGLLAHGGYEAMKGVLERSYGGFLKMFTKGNGREPPYKEEEVVAGLGSFWHTFTIRIKLYACCGLVHGPVEAIENLQGRYPELLNRANLSNIRHVHVQLSTASNSHCGWIPEERPISSIAGQMSVAYILAVQLVDQQCLLSQFSEFDDNLERPEVWDLARKVTSSQSEEFDQDGNCLSAGRVRIEFNDGSSITESVEKPLGVKEPMPNERILHKYRTLAGSVTDESRVKEIEDLVLGLDRLTDISPLLELLNCPVKSPLVMTKQSADSNAKSGVTSEICHWASNLATDDIPSDVLERAKYLILDGIACAWVGARVPWSEKYVQATMSFEPPGACRVIGYGQKLGPVAAAMTNSAFIQATELDDYHSEAPLHSASIVLPAVFAASEVLAEQGKTISGIDVILAAIVGFESGPRIGKAIYGSDLLNNGWHCGAVYGAPAGALATGKLLGLTPDSMEDALGIACTQACGLMSAQYGGMVKRVQHGFAARNGLLGGLLAHGGYEAMKGVLERSYGGFLKMFTKGNGREPPYKEEEVVAGLGSFWHTFTIRIKLYACCGLVHGPVEAIENLQGRYPELLNRANLSNIRHVHVQLSTASNSHCGWIPEERPISSIAGQMSVAYILAVQLVDQQCLLSQFSEFDDNLERPEVWDLARKVTSSQSEEFDQDGNCLSAGRVRIEFNDGSSITESVEKPLGVKEPMPNERILHKYRTLAGSVTDESRVKEIEDLVLGLDRLTDISPLLELLNCPVKSPLV
SEQ ID NO.2SEQ ID NO.2
序列特征:Sequence features:
长度:357 aaLength: 357 aa
分子类型:氨基酸序列Molecular Type: Amino Acid Sequence
最初来源:苏云金芽孢杆菌(Bacillus thuringiensis)Original Source: Bacillus thuringiensis
特异性名称:乌头酸异构酶TbrASpecificity name: aconitate isomerase TbrA
MKIPCFVMRGGTSKGLFFLDKHLPSNKSIRDEVILKALGAGNARGVDGMGTLDPLSNKIAIIRISTTPGIDIDYLFLQADLKRRILDDSVNCGNIIAAVAPYAVESGLIKVGSGKETITIRNLNTNVIVESTIATKNGNVVYNGDIKIDGVPGTGAPIDLNFKNSIGSVTGKLFPTGAKTDVINGINVSCVDVSVPLIIIRASELGIIGNESPDVLNANKTFLHDIDLIRKKVACLANLGDVSNKVIPKIAVISKPRESGTITSRYFIPHQCHSTHAVTGSLALSAAIKINGTTAYHVAKNNDLNKMKKLNQIIIEHPAGKIQTESVIEESSNGYVIKKSSITRTARLLFKGELIIPMKIPCFVMRGGTSKGLFFLDKHLPSNKSIRDEVILKALGAGNARGVDGMGTLDPLSNKIAIIRISTTPGIDIDYLFLQADLKRRILDDSVNCGNIIAAVAPYAVESGLIKVGSGKETITIRNLNTNVIVESTIATKNGNVVYNGDIKIDGVPGTGAPIDLNFKNSIGSVTGKLFPTGAKTDVINGINVSCVDVSVPLIIIRASELGIIGNESPDVLNANKTFLHDIDLIRKKVACLANLGDVSNKVIPKIAVISKPRESGTITSRYFIPHQCHSTHAVTGSLALSAAIKINGTTAYHVAKNNDLNKMKKLNQIIIEHPAGKIQTESVIEESSNGYVIKKSSITRTARLLFKGELIIP
SEQ ID NO.3SEQ ID NO.3
序列特征:Sequence features:
长度:1074 bpLength: 1074 bp
分子类型:DNA序列Molecular Type: DNA Sequence
最初来源:苏云金芽孢杆菌(Bacillus thuringiensis)Original Source: Bacillus thuringiensis
特异性名称:乌头酸异构酶基因tbrA Specificity name: aconitate isomerase gene tbrA
ATGAAGATCCCCTGCTTCGTCATGCGCGGCGGCACCAGCAAGGGCCTGTTCTTCCTGGACAAGCACCTGCCCTCCAACAAGTCCATCCGCGACGAGGTCATCCTGAAGGCCCTGGGCGCCGGCAACGCCCGTGGTGTCGATGGTATGGGCACCCTGGACCCCCTGAGCAACAAGATCGCCATCATCCGCATCAGCACCACCCCCGGCATCGACATCGACTACCTGTTCCTGCAAGCCGACCTGAAGCGCCGCATCCTGGACGACAGCGTCAACTGCGGCAACATCATCGCCGCCGTCGCCCCCTACGCCGTCGAATCTGGCCTGATCAAGGTCGGCAGCGGCAAGGAGACCATCACCATCCGCAACCTGAACACCAACGTCATCGTCGAGAGCACCATCGCCACCAAGAACGGCAACGTCGTCTACAACGGCGACATCAAGATCGACGGCGTCCCCGGCACCGGCGCTCCTATTGACCTGAACTTCAAGAACAGCATCGGCAGCGTCACCGGCAAGCTGTTCCCCACCGGCGCCAAGACCGACGTCATCAACGGCATCAACGTCTCCTGCGTCGACGTCAGCGTCCCCCTGATCATCATCCGCGCCTCCGAGCTGGGCATCATCGGCAACGAGAGCCCCGACGTCCTGAACGCCAACAAGACCTTCCTGCACGACATCGACCTGATCCGCAAGAAGGTCGCCTGCCTGGCCAACCTGGGCGACGTCTCCAACAAGGTCATCCCCAAGATCGCCGTCATCAGCAAGCCCCGCGAGTCCGGCACCATCACCTCCCGTTACTTCATCCCCCACCAGTGCCACTCCACCCACGCCGTCACCGGCAGCCTGGCTCTGTCCGCTGCCATCAAGATCAACGGCACCACCGCCTACCACGTCGCCAAGAACAACGACCTGAACAAGATGAAGAAGCTGAACCAGATCATCATCGAGCACCCCGCCGGCAAGATCCAGACCGAGTCCGTCATCGAGGAGTCCTCCAACGGCTACGTCATCAAGAAGAGCTCCATCACCCGCACCGCCCGCCTGCTGTTCAAGGGCGAGCTGATCATCCCCTAAATGAAGATCCCCTGCTTCGTCATGCGCGGCGGCACCAGCAAGGGCCTGTTCTTCCTGGACAAGCACCTGCCCTCCAACAAGTCCATCCGCGACGAGGTCATCCTGAAGGCCCTGGGCGCCGGCAACGCCCGTGGTGTCGATGGTATGGGCACCCTGGACCCCCTGAGCAACAAGATCGCCATCATCCGCATCAGCACCACCCCCGGCATCGACATCGACTACCTGTTCCTGCAAGCCGACCTGAAGCGCCGCATCCTGGACGACAGCGTCAACTGCGGCAACATCATCGCCGCCGTCGCCCCCTACGCCGTCGAATCTGGCCTGATCAAGGTCGGCAGCGGCAAGGAGACCATCACCATCCGCAACCTGAACACCAACGTCATCGTCGAGAGCACCATCGCCACCAAGAACGGCAACGTCGTCTACAACGGCGACATCAAGATCGACGGCGTCCCCGGCACCGGCGCTCCTATTGACCTGAACTTCAAGAACAGCATCGGCAGCGTCACCGGCAAGCTGTTCCCCACCGGCGCCAAGACCGACGTCATCAACGGCATCAACGTCTCCTGCGTCGACGTCAGCGTCCCCCTGATCATCATCCGCGCCTCCGAGCTGGGCATCATCGGCAACGAGAGCCCCGACGTCCTGAACGCCAACAAGACCTTCCTGCACGACATCGACCTGATCCGCAAGAAGGTCGCCTGCCTGGCCAACCTGGGCGACGTCTCCAACAAGGTCATCCCCAAGATCGCCGTCATCAGCAAGCCCCGCGAGTCCGGCACCATCACCTCCCGTTACTTCATCCCCCACCAGTGCCACTCCACCCACGCCGTCACCGGCAGCCTGGCTCTGTCCGCTGCCATCAAGATCAACGGCACCACCGCCTACCACGTCGCCAAGAACAACGACCTGAACAAGATGAAGAAGCTGAACCAGATCATCATCGAGCACCCCGCCGGCAAGATCCAGACCGAGTCCGTCATCGAGGAGTCCTCCAACG GCTACGTCATCAAGAAGAGCTCCATCACCCGCACCGCCCGCCTGCTGTTCAAGGGCGAGCTGATCATCCCCTAA
SEQ ID NO.4编码顺乌头酸脱羧酶CadA的基因SEQ ID NO.4 Gene encoding cis-aconitic acid decarboxylase CadA
ATGACCAAACAATCTGCGGACAGCAACGCAAAGTCAGGAGTTACGTCCGAAATATGTCATTGGGCATCCAACCTGGCCACTGACGACATCCCTTCGGACGTATTAGAAAGAGCAAAATACCTTATTCTCGACGGTATTGCATGTGCCTGGGTTGGTGCAAGAGTGCCTTGGTCAGAGAAGTATGTTCAGGCAACGATGAGCTTTGAGCCGCCGGGGGCCTGCAGGGTGATTGGATATGGACAGGTAAATTTTATTCACTCTAGACGGTCCACAAAGTATACTGACGATCCTTCGTATAGAAACTGGGGCCTGTTGCAGCAGCCATGACCAATTCCGCTTTCATACAGGCTACGGAGCTTGACGACTACCACAGCGAAGCCCCCCTACACTCTGCAAGCATTGTCCTTCCTGCGGTCTTTGCAGCAAGTGAGGTCTTAGCCGAGCAGGGCAAAACAATTTCCGGTATAGATGTTATTCTAGCCGCCATTGTGGGGTTTGAATCTGGCCCACGGATCGGCAAAGCAATCTACGGATCGGACCTCTTGAACAACGGCTGGCATTGTGGAGCTGTGTATGGCGCTCCAGCCGGTGCGCTGGCCACAGGAAAGCTCCTCGGTCTAACTCCAGACTCCATGGAAGATGCTCTCGGAATTGCGTGCACGCAAGCCTGTGGTTTAATGTCGGCGCAATACGGAGGCATGGTAAAGCGTGTGCAACACGGATTCGCAGCGCGTAATGGTCTTCTTGGGGGACTGTTGGCCCATGGTGGGTACGAGGCAATGAAAGGTGTCCTGGAGAGATCTTACGGCGGTTTCCTCAAGATGTTCACCAAGGGCAACGGCAGAGAGCCTCCCTACAAAGAGGAGGAAGTGGTGGCTGGTCTCGGTTCATTCTGGCATACCTTTACTATTCGCATCAAGCTCTATGCCTGCTGCGGACTTGTCCATGGTCCAGTCGAGGCTATCGAAAACCTTCAGGGGAGATACCCCGAGCTCTTGAATAGAGCCAACCTCAGCAACATTCGCCATGTTCATGTACAGCTTTCAACGGCCTCGAACAGTCACTGTGGATGGATACCAGAGGAGAGACCCATCAGTTCAATCGCAGGGCAGATGAGTGTCGCATACATTCTCGCCGTCCAGCTGGTCGACCAGCAATGTCTTTTGTCCCAGTTTTCTGAGTTTGATGACAACCTGGAGAGGCCAGAAGTTTGGGATCTGGCCAGGAAGGTTACTTCATCTCAAAGCGAAGAGTTTGATCAAGACGGCAACTGTCTCAGTGCGGGTCGCGTGAGGATTGAGTTCAACGATGGTTCTTCTATTACGGAAAGTGTCGAGAAGCCTCTTGGTGTCAAAGAGCCCATGCCAAACGAACGGATTCTCCACAAATACCGAACCCTTGCTGGTAGCGTGACGGACGAATCCCGGGTGAAAGAGATTGAGGATCTTGTCCTCGGCCTGGACAGGCTCACCGACATTAGCCCATTGCTGGAGCTGCTGAATTGCCCCGTGAAATCGCCACTGGTATAAATGACCAAACAATCTGCGGACAGCAACGCAAAGTCAGGAGTTACGTCCGAAATATGTCATTGGGCATCCAACCTGGCCACTGACGACATCCCTTCGGACGTATTAGAAAGAGCAAAATACCTTATTCTCGACGGTATTGCATGTGCCTGGGTTGGTGCAAGAGTGCCTTGGTCAGAGAAGTATGTTCAGGCAACGATGAGCTTTGAGCCGCCGGGGGCCTGCAGGGTGATTGGATATGGACAGGTAAATTTTATTCACTCTAGACGGTCCACAAAGTATACTGACGATCCTTCGTATAGAAACTGGGGCCTGTTGCAGCAGCCATGACCAATTCCGCTTTCATACAGGCTACGGAGCTTGACGACTACCACAGCGAAGCCCCCCTACACTCTGCAAGCATTGTCCTTCCTGCGGTCTTTGCAGCAAGTGAGGTCTTAGCCGAGCAGGGCAAAACAATTTCCGGTATAGATGTTATTCTAGCCGCCATTGTGGGGTTTGAATCTGGCCCACGGATCGGCAAAGCAATCTACGGATCGGACCTCTTGAACAACGGCTGGCATTGTGGAGCTGTGTATGGCGCTCCAGCCGGTGCGCTGGCCACAGGAAAGCTCCTCGGTCTAACTCCAGACTCCATGGAAGATGCTCTCGGAATTGCGTGCACGCAAGCCTGTGGTTTAATGTCGGCGCAATACGGAGGCATGGTAAAGCGTGTGCAACACGGATTCGCAGCGCGTAATGGTCTTCTTGGGGGACTGTTGGCCCATGGTGGGTACGAGGCAATGAAAGGTGTCCTGGAGAGATCTTACGGCGGTTTCCTCAAGATGTTCACCAAGGGCAACGGCAGAGAGCCTCCCTACAAAGAGGAGGAAGTGGTGGCTGGTCTCGGTTCATTCTGGCATACCTTTACTATTCGCATCAAGCTCTATGCCTGCTGCGGACTTGTCCATGGTCCAGTCGAGGCTATCGAAAACCTTCAGGGGAGATACCCCGAGCTCTTGAA TAGAGCCAACCTCAGCAACATTCGCCATGTTCATGTACAGCTTTCAACGGCCTCGAACAGTCACTGTGGATGGATACCAGAGGAGAGACCCATCAGTTCAATCGCAGGGCAGATGAGTGTCGCATACATTCTCGCCGTCCAGCTGGTCGACCAGCAATGTCTTTTGTCCCAGTTTTCTGAGTTTGATGACAACCTGGAGAGGCCAGAAGTTTGGGATCTGGCCAGGAAGGTTACTTCATCTCAAAGCGAAGAGTTTGATCAAGACGGCAACTGTCTCAGTGCGGGTCGCGTGAGGATTGAGTTCAACGATGGTTCTTCTATTACGGAAAGTGTCGAGAAGCCTCTTGGTGTCAAAGAGCCCATGCCAAACGAACGGATTCTCCACAAATACCGAACCCTTGCTGGTAGCGTGACGGACGAATCCCGGGTGAAAGAGATTGAGGATCTTGTCCTCGGCCTGGACAGGCTCACCGACATTAGCCCATTGCTGGAGCTGCTGAATTGCCCCGTGAAATCGCCACTGGTATAA
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中国科学院青岛生物能源与过程研究所 山东鲁抗舍里乐药业有限公司<110> Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences Shandong Lukang Sheriler Pharmaceutical Co., Ltd.
<120> 一种高产反式乌头酸的重组土曲霉菌株及其制备方法与应用<120> A recombinant Aspergillus terreus strain with high-yield trans-aconitic acid and its preparation method and application
<130><130>
<160> 28<160> 28
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 490<211> 490
<212> PRT<212> PRT
<213> 顺乌头酸脱羧酶CadA<213> Cisaconitic acid decarboxylase CadA
<400> 1<400> 1
Met Thr Lys Gln Ser Ala Asp Ser Asn Ala Lys Ser Gly Val Thr SerMet Thr Lys Gln Ser Ala Asp Ser Asn Ala Lys Ser Gly Val Thr Ser
1 5 10 151 5 10 15
Glu Ile Cys His Trp Ala Ser Asn Leu Ala Thr Asp Asp Ile Pro SerGlu Ile Cys His Trp Ala Ser Asn Leu Ala Thr Asp Asp Ile Pro Ser
20 25 30 20 25 30
Asp Val Leu Glu Arg Ala Lys Tyr Leu Ile Leu Asp Gly Ile Ala CysAsp Val Leu Glu Arg Ala Lys Tyr Leu Ile Leu Asp Gly Ile Ala Cys
35 40 45 35 40 45
Ala Trp Val Gly Ala Arg Val Pro Trp Ser Glu Lys Tyr Val Gln AlaAla Trp Val Gly Ala Arg Val Pro Trp Ser Glu Lys Tyr Val Gln Ala
50 55 60 50 55 60
Thr Met Ser Phe Glu Pro Pro Gly Ala Cys Arg Val Ile Gly Tyr GlyThr Met Ser Phe Glu Pro Pro Gly Ala Cys Arg Val Ile Gly Tyr Gly
65 70 75 8065 70 75 80
Gln Lys Leu Gly Pro Val Ala Ala Ala Met Thr Asn Ser Ala Phe IleGln Lys Leu Gly Pro Val Ala Ala Ala Met Thr Asn Ser Ala Phe Ile
85 90 95 85 90 95
Gln Ala Thr Glu Leu Asp Asp Tyr His Ser Glu Ala Pro Leu His SerGln Ala Thr Glu Leu Asp Asp Tyr His Ser Glu Ala Pro Leu His Ser
100 105 110 100 105 110
Ala Ser Ile Val Leu Pro Ala Val Phe Ala Ala Ser Glu Val Leu AlaAla Ser Ile Val Leu Pro Ala Val Phe Ala Ala Ser Glu Val Leu Ala
115 120 125 115 120 125
Glu Gln Gly Lys Thr Ile Ser Gly Ile Asp Val Ile Leu Ala Ala IleGlu Gln Gly Lys Thr Ile Ser Gly Ile Asp Val Ile Leu Ala Ala Ile
130 135 140 130 135 140
Val Gly Phe Glu Ser Gly Pro Arg Ile Gly Lys Ala Ile Tyr Gly SerVal Gly Phe Glu Ser Gly Pro Arg Ile Gly Lys Ala Ile Tyr Gly Ser
145 150 155 160145 150 155 160
Asp Leu Leu Asn Asn Gly Trp His Cys Gly Ala Val Tyr Gly Ala ProAsp Leu Leu Asn Asn Gly Trp His Cys Gly Ala Val Tyr Gly Ala Pro
165 170 175 165 170 175
Ala Gly Ala Leu Ala Thr Gly Lys Leu Leu Gly Leu Thr Pro Asp SerAla Gly Ala Leu Ala Thr Gly Lys Leu Leu Gly Leu Thr Pro Asp Ser
180 185 190 180 185 190
Met Glu Asp Ala Leu Gly Ile Ala Cys Thr Gln Ala Cys Gly Leu MetMet Glu Asp Ala Leu Gly Ile Ala Cys Thr Gln Ala Cys Gly Leu Met
195 200 205 195 200 205
Ser Ala Gln Tyr Gly Gly Met Val Lys Arg Val Gln His Gly Phe AlaSer Ala Gln Tyr Gly Gly Met Val Lys Arg Val Gln His Gly Phe Ala
210 215 220 210 215 220
Ala Arg Asn Gly Leu Leu Gly Gly Leu Leu Ala His Gly Gly Tyr GluAla Arg Asn Gly Leu Leu Gly Gly Leu Leu Ala His Gly Gly Tyr Glu
225 230 235 240225 230 235 240
Ala Met Lys Gly Val Leu Glu Arg Ser Tyr Gly Gly Phe Leu Lys MetAla Met Lys Gly Val Leu Glu Arg Ser Tyr Gly Gly Phe Leu Lys Met
245 250 255 245 250 255
Phe Thr Lys Gly Asn Gly Arg Glu Pro Pro Tyr Lys Glu Glu Glu ValPhe Thr Lys Gly Asn Gly Arg Glu Pro Pro Tyr Lys Glu Glu Glu Val
260 265 270 260 265 270
Val Ala Gly Leu Gly Ser Phe Trp His Thr Phe Thr Ile Arg Ile LysVal Ala Gly Leu Gly Ser Phe Trp His Thr Phe Thr Ile Arg Ile Lys
275 280 285 275 280 285
Leu Tyr Ala Cys Cys Gly Leu Val His Gly Pro Val Glu Ala Ile GluLeu Tyr Ala Cys Cys Gly Leu Val His Gly Pro Val Glu Ala Ile Glu
290 295 300 290 295 300
Asn Leu Gln Gly Arg Tyr Pro Glu Leu Leu Asn Arg Ala Asn Leu SerAsn Leu Gln Gly Arg Tyr Pro Glu Leu Leu Asn Arg Ala Asn Leu Ser
305 310 315 320305 310 315 320
Asn Ile Arg His Val His Val Gln Leu Ser Thr Ala Ser Asn Ser HisAsn Ile Arg His Val His Val Gln Leu Ser Thr Ala Ser Asn Ser His
325 330 335 325 330 335
Cys Gly Trp Ile Pro Glu Glu Arg Pro Ile Ser Ser Ile Ala Gly GlnCys Gly Trp Ile Pro Glu Glu Arg Pro Ile Ser Ser Ile Ala Gly Gln
340 345 350 340 345 350
Met Ser Val Ala Tyr Ile Leu Ala Val Gln Leu Val Asp Gln Gln CysMet Ser Val Ala Tyr Ile Leu Ala Val Gln Leu Val Asp Gln Gln Cys
355 360 365 355 360 365
Leu Leu Ser Gln Phe Ser Glu Phe Asp Asp Asn Leu Glu Arg Pro GluLeu Leu Ser Gln Phe Ser Glu Phe Asp Asp Asn Leu Glu Arg Pro Glu
370 375 380 370 375 380
Val Trp Asp Leu Ala Arg Lys Val Thr Ser Ser Gln Ser Glu Glu PheVal Trp Asp Leu Ala Arg Lys Val Thr Ser Ser Gln Ser Glu Glu Phe
385 390 395 400385 390 395 400
Asp Gln Asp Gly Asn Cys Leu Ser Ala Gly Arg Val Arg Ile Glu PheAsp Gln Asp Gly Asn Cys Leu Ser Ala Gly Arg Val Arg Ile Glu Phe
405 410 415 405 410 415
Asn Asp Gly Ser Ser Ile Thr Glu Ser Val Glu Lys Pro Leu Gly ValAsn Asp Gly Ser Ser Ile Thr Glu Ser Val Glu Lys Pro Leu Gly Val
420 425 430 420 425 430
Lys Glu Pro Met Pro Asn Glu Arg Ile Leu His Lys Tyr Arg Thr LeuLys Glu Pro Met Pro Asn Glu Arg Ile Leu His Lys Tyr Arg Thr Leu
435 440 445 435 440 445
Ala Gly Ser Val Thr Asp Glu Ser Arg Val Lys Glu Ile Glu Asp LeuAla Gly Ser Val Thr Asp Glu Ser Arg Val Lys Glu Ile Glu Asp Leu
450 455 460 450 455 460
Val Leu Gly Leu Asp Arg Leu Thr Asp Ile Ser Pro Leu Leu Glu LeuVal Leu Gly Leu Asp Arg Leu Thr Asp Ile Ser Pro Leu Leu Glu Leu
465 470 475 480465 470 475 480
Leu Asn Cys Pro Val Lys Ser Pro Leu ValLeu Asn Cys Pro Val Lys Ser Pro Leu Val
485 490 485 490
<210> 2<210> 2
<211> 357<211> 357
<212> PRT<212> PRT
<213> 乌头酸异构酶TbrA<213> aconitate isomerase TbrA
<400> 2<400> 2
Met Lys Ile Pro Cys Phe Val Met Arg Gly Gly Thr Ser Lys Gly LeuMet Lys Ile Pro Cys Phe Val Met Arg Gly Gly Thr Ser Lys Gly Leu
1 5 10 151 5 10 15
Phe Phe Leu Asp Lys His Leu Pro Ser Asn Lys Ser Ile Arg Asp GluPhe Phe Leu Asp Lys His Leu Pro Ser Asn Lys Ser Ile Arg Asp Glu
20 25 30 20 25 30
Val Ile Leu Lys Ala Leu Gly Ala Gly Asn Ala Arg Gly Val Asp GlyVal Ile Leu Lys Ala Leu Gly Ala Gly Asn Ala Arg Gly Val Asp Gly
35 40 45 35 40 45
Met Gly Thr Leu Asp Pro Leu Ser Asn Lys Ile Ala Ile Ile Arg IleMet Gly Thr Leu Asp Pro Leu Ser Asn Lys Ile Ala Ile Ile Arg Ile
50 55 60 50 55 60
Ser Thr Thr Pro Gly Ile Asp Ile Asp Tyr Leu Phe Leu Gln Ala AspSer Thr Thr Pro Gly Ile Asp Ile Asp Tyr Leu Phe Leu Gln Ala Asp
65 70 75 8065 70 75 80
Leu Lys Arg Arg Ile Leu Asp Asp Ser Val Asn Cys Gly Asn Ile IleLeu Lys Arg Arg Ile Leu Asp Asp Ser Val Asn Cys Gly Asn Ile Ile
85 90 95 85 90 95
Ala Ala Val Ala Pro Tyr Ala Val Glu Ser Gly Leu Ile Lys Val GlyAla Ala Val Ala Pro Tyr Ala Val Glu Ser Gly Leu Ile Lys Val Gly
100 105 110 100 105 110
Ser Gly Lys Glu Thr Ile Thr Ile Arg Asn Leu Asn Thr Asn Val IleSer Gly Lys Glu Thr Ile Thr Ile Arg Asn Leu Asn Thr Asn Val Ile
115 120 125 115 120 125
Val Glu Ser Thr Ile Ala Thr Lys Asn Gly Asn Val Val Tyr Asn GlyVal Glu Ser Thr Ile Ala Thr Lys Asn Gly Asn Val Val Tyr Asn Gly
130 135 140 130 135 140
Asp Ile Lys Ile Asp Gly Val Pro Gly Thr Gly Ala Pro Ile Asp LeuAsp Ile Lys Ile Asp Gly Val Pro Gly Thr Gly Ala Pro Ile Asp Leu
145 150 155 160145 150 155 160
Asn Phe Lys Asn Ser Ile Gly Ser Val Thr Gly Lys Leu Phe Pro ThrAsn Phe Lys Asn Ser Ile Gly Ser Val Thr Gly Lys Leu Phe Pro Thr
165 170 175 165 170 175
Gly Ala Lys Thr Asp Val Ile Asn Gly Ile Asn Val Ser Cys Val AspGly Ala Lys Thr Asp Val Ile Asn Gly Ile Asn Val Ser Cys Val Asp
180 185 190 180 185 190
Val Ser Val Pro Leu Ile Ile Ile Arg Ala Ser Glu Leu Gly Ile IleVal Ser Val Pro Leu Ile Ile Ile Arg Ala Ser Glu Leu Gly Ile Ile
195 200 205 195 200 205
Gly Asn Glu Ser Pro Asp Val Leu Asn Ala Asn Lys Thr Phe Leu HisGly Asn Glu Ser Pro Asp Val Leu Asn Ala Asn Lys Thr Phe Leu His
210 215 220 210 215 220
Asp Ile Asp Leu Ile Arg Lys Lys Val Ala Cys Leu Ala Asn Leu GlyAsp Ile Asp Leu Ile Arg Lys Lys Val Ala Cys Leu Ala Asn Leu Gly
225 230 235 240225 230 235 240
Asp Val Ser Asn Lys Val Ile Pro Lys Ile Ala Val Ile Ser Lys ProAsp Val Ser Asn Lys Val Ile Pro Lys Ile Ala Val Ile Ser Lys Pro
245 250 255 245 250 255
Arg Glu Ser Gly Thr Ile Thr Ser Arg Tyr Phe Ile Pro His Gln CysArg Glu Ser Gly Thr Ile Thr Ser Arg Tyr Phe Ile Pro His Gln Cys
260 265 270 260 265 270
His Ser Thr His Ala Val Thr Gly Ser Leu Ala Leu Ser Ala Ala IleHis Ser Thr His Ala Val Thr Gly Ser Leu Ala Leu Ser Ala Ala Ile
275 280 285 275 280 285
Lys Ile Asn Gly Thr Thr Ala Tyr His Val Ala Lys Asn Asn Asp LeuLys Ile Asn Gly Thr Thr Ala Tyr His Val Ala Lys Asn Asn Asp Leu
290 295 300 290 295 300
Asn Lys Met Lys Lys Leu Asn Gln Ile Ile Ile Glu His Pro Ala GlyAsn Lys Met Lys Lys Leu Asn Gln Ile Ile Ile Glu His Pro Ala Gly
305 310 315 320305 310 315 320
Lys Ile Gln Thr Glu Ser Val Ile Glu Glu Ser Ser Asn Gly Tyr ValLys Ile Gln Thr Glu Ser Val Ile Glu Glu Ser Ser Asn Gly Tyr Val
325 330 335 325 330 335
Ile Lys Lys Ser Ser Ile Thr Arg Thr Ala Arg Leu Leu Phe Lys GlyIle Lys Lys Ser Ser Ile Thr Arg Thr Ala Arg Leu Leu Phe Lys Gly
340 345 350 340 345 350
Glu Leu Ile Ile ProGlu Leu Ile Ile Pro
355 355
<210> 3<210> 3
<211> 1074<211> 1074
<212> DNA<212> DNA
<213> 乌头酸异构酶基因tbrA<213> aconitate isomerase gene tbrA
<400> 3<400> 3
atgaagatcc cctgcttcgt catgcgcggc ggcaccagca agggcctgtt cttcctggac 60atgaagatcc cctgcttcgt catgcgcggc ggcaccagca agggcctgtt cttcctggac 60
aagcacctgc cctccaacaa gtccatccgc gacgaggtca tcctgaaggc cctgggcgcc 120aagcacctgc cctccaacaa gtccatccgc gacgaggtca tcctgaaggc cctgggcgcc 120
ggcaacgccc gtggtgtcga tggtatgggc accctggacc ccctgagcaa caagatcgcc 180ggcaacgccc gtggtgtcga tggtatgggc accctggacc ccctgagcaa caagatcgcc 180
atcatccgca tcagcaccac ccccggcatc gacatcgact acctgttcct gcaagccgac 240atcatccgca tcagcaccac ccccggcatc gacatcgact acctgttcct gcaagccgac 240
ctgaagcgcc gcatcctgga cgacagcgtc aactgcggca acatcatcgc cgccgtcgcc 300ctgaagcgcc gcatcctgga cgacagcgtc aactgcggca acatcatcgc cgccgtcgcc 300
ccctacgccg tcgaatctgg cctgatcaag gtcggcagcg gcaaggagac catcaccatc 360ccctacgccg tcgaatctgg cctgatcaag gtcggcagcg gcaaggagac catcaccatc 360
cgcaacctga acaccaacgt catcgtcgag agcaccatcg ccaccaagaa cggcaacgtc 420cgcaacctga acaccaacgt catcgtcgag agcaccatcg ccaccaagaa cggcaacgtc 420
gtctacaacg gcgacatcaa gatcgacggc gtccccggca ccggcgctcc tattgacctg 480gtctacaacg gcgacatcaa gatcgacggc gtccccggca ccggcgctcc tattgacctg 480
aacttcaaga acagcatcgg cagcgtcacc ggcaagctgt tccccaccgg cgccaagacc 540aacttcaaga acagcatcgg cagcgtcacc ggcaagctgt tccccaccgg cgccaagacc 540
gacgtcatca acggcatcaa cgtctcctgc gtcgacgtca gcgtccccct gatcatcatc 600gacgtcatca acggcatcaa cgtctcctgc gtcgacgtca gcgtccccct gatcatcatc 600
cgcgcctccg agctgggcat catcggcaac gagagccccg acgtcctgaa cgccaacaag 660cgcgcctccg agctgggcat catcggcaac gagagccccg acgtcctgaa cgccaacaag 660
accttcctgc acgacatcga cctgatccgc aagaaggtcg cctgcctggc caacctgggc 720accttcctgc acgacatcga cctgatccgc aagaaggtcg cctgcctggc caacctgggc 720
gacgtctcca acaaggtcat ccccaagatc gccgtcatca gcaagccccg cgagtccggc 780gacgtctcca acaaggtcat ccccaagatc gccgtcatca gcaagccccg cgagtccggc 780
accatcacct cccgttactt catcccccac cagtgccact ccacccacgc cgtcaccggc 840accatcacct ccgttactt catcccccac cagtgccact ccacccacgc cgtcaccggc 840
agcctggctc tgtccgctgc catcaagatc aacggcacca ccgcctacca cgtcgccaag 900agcctggctc tgtccgctgc catcaagatc aacggcacca ccgcctacca cgtcgccaag 900
aacaacgacc tgaacaagat gaagaagctg aaccagatca tcatcgagca ccccgccggc 960aacaacgacc tgaacaagat gaagaagctg aaccagatca tcatcgagca ccccgccggc 960
aagatccaga ccgagtccgt catcgaggag tcctccaacg gctacgtcat caagaagagc 1020aagatccaga ccgagtccgt catcgaggag tcctccaacg gctacgtcat caagaagagc 1020
tccatcaccc gcaccgcccg cctgctgttc aagggcgagc tgatcatccc ctaa 1074tccatcaccc gcaccgcccg cctgctgttc aagggcgagc tgatcatccc ctaa 1074
<210> 4<210> 4
<211> 1529<211> 1529
<212> DNA<212> DNA
<213> 编码顺乌头酸脱羧酶CadA的基因<213> Gene encoding cis-aconitic acid decarboxylase CadA
<400> 4<400> 4
atgaccaaac aatctgcgga cagcaacgca aagtcaggag ttacgtccga aatatgtcat 60atgaccaaac aatctgcgga cagcaacgca aagtcaggag ttacgtccga aatatgtcat 60
tgggcatcca acctggccac tgacgacatc ccttcggacg tattagaaag agcaaaatac 120tgggcatcca acctggccac tgacgacatc ccttcggacg tattagaaag agcaaaatac 120
cttattctcg acggtattgc atgtgcctgg gttggtgcaa gagtgccttg gtcagagaag 180cttattctcg acggtattgc atgtgcctgg gttggtgcaa gagtgccttg gtcagagaag 180
tatgttcagg caacgatgag ctttgagccg ccgggggcct gcagggtgat tggatatgga 240tatgttcagg caacgatgag ctttgagccg ccgggggcct gcagggtgat tggatatgga 240
caggtaaatt ttattcactc tagacggtcc acaaagtata ctgacgatcc ttcgtataga 300caggtaaatt ttattcactc tagacggtcc acaaagtata ctgacgatcc ttcgtataga 300
aactggggcc tgttgcagca gccatgacca attccgcttt catacaggct acggagcttg 360aactggggcc tgttgcagca gccatgacca attccgcttt catacaggct acggagcttg 360
acgactacca cagcgaagcc cccctacact ctgcaagcat tgtccttcct gcggtctttg 420acgactacca cagcgaagcc cccctacact ctgcaagcat tgtccttcct gcggtctttg 420
cagcaagtga ggtcttagcc gagcagggca aaacaatttc cggtatagat gttattctag 480cagcaagtga ggtcttagcc gagcagggca aaacaatttc cggtatagat gttattctag 480
ccgccattgt ggggtttgaa tctggcccac ggatcggcaa agcaatctac ggatcggacc 540ccgccattgt ggggtttgaa tctggcccac ggatcggcaa agcaatctac ggatcggacc 540
tcttgaacaa cggctggcat tgtggagctg tgtatggcgc tccagccggt gcgctggcca 600tcttgaacaa cggctggcat tgtggagctg tgtatggcgc tccagccggt gcgctggcca 600
caggaaagct cctcggtcta actccagact ccatggaaga tgctctcgga attgcgtgca 660caggaaagct cctcggtcta actccagact ccatggaaga tgctctcgga attgcgtgca 660
cgcaagcctg tggtttaatg tcggcgcaat acggaggcat ggtaaagcgt gtgcaacacg 720cgcaagcctg tggtttaatg tcggcgcaat acggaggcat ggtaaagcgt gtgcaacacg 720
gattcgcagc gcgtaatggt cttcttgggg gactgttggc ccatggtggg tacgaggcaa 780gattcgcagc gcgtaatggt cttcttgggg gactgttggc ccatggtggg tacgaggcaa 780
tgaaaggtgt cctggagaga tcttacggcg gtttcctcaa gatgttcacc aagggcaacg 840tgaaaggtgt cctggagaga tcttacggcg gtttcctcaa gatgttcacc aagggcaacg 840
gcagagagcc tccctacaaa gaggaggaag tggtggctgg tctcggttca ttctggcata 900gcagagagcc tccctacaaa gaggaggaag tggtggctgg tctcggttca ttctggcata 900
cctttactat tcgcatcaag ctctatgcct gctgcggact tgtccatggt ccagtcgagg 960cctttactat tcgcatcaag ctctatgcct gctgcggact tgtccatggt ccagtcgagg 960
ctatcgaaaa ccttcagggg agataccccg agctcttgaa tagagccaac ctcagcaaca 1020ctatcgaaaa ccttcagggg agataccccg agctcttgaa tagagccaac ctcagcaaca 1020
ttcgccatgt tcatgtacag ctttcaacgg cctcgaacag tcactgtgga tggataccag 1080ttcgccatgt tcatgtacag ctttcaacgg cctcgaacag tcactgtgga tggataccag 1080
aggagagacc catcagttca atcgcagggc agatgagtgt cgcatacatt ctcgccgtcc 1140aggagagacc catcagttca atcgcagggc agatgagtgt cgcatacatt ctcgccgtcc 1140
agctggtcga ccagcaatgt cttttgtccc agttttctga gtttgatgac aacctggaga 1200agctggtcga ccagcaatgt cttttgtccc agttttctga gtttgatgac aacctggaga 1200
ggccagaagt ttgggatctg gccaggaagg ttacttcatc tcaaagcgaa gagtttgatc 1260ggccagaagt ttgggatctg gccaggaagg ttacttcatc tcaaagcgaa gagtttgatc 1260
aagacggcaa ctgtctcagt gcgggtcgcg tgaggattga gttcaacgat ggttcttcta 1320aagacggcaa ctgtctcagt gcgggtcgcg tgaggattga gttcaacgat ggttcttcta 1320
ttacggaaag tgtcgagaag cctcttggtg tcaaagagcc catgccaaac gaacggattc 1380ttacggaaag tgtcgagaag cctcttggtg tcaaagagcc catgccaaac gaacggattc 1380
tccacaaata ccgaaccctt gctggtagcg tgacggacga atcccgggtg aaagagattg 1440tccacaaata ccgaaccctt gctggtagcg tgacggacga atcccgggtg aaagagattg 1440
aggatcttgt cctcggcctg gacaggctca ccgacattag cccattgctg gagctgctga 1500aggatcttgt cctcggcctg gacaggctca ccgacattag cccattgctg gagctgctga 1500
attgccccgt gaaatcgcca ctggtataa 1529attgccccgt gaaatcgcca ctggtataa 1529
<210> 5<210> 5
<211> 21<211> 21
<212> DNA<212> DNA
<213> U-cadA-F<213> U-cadA-F
<400> 5<400> 5
gcgataaatg ttgaacgagg c 21gcgataaatg ttgaacgagg c 21
<210> 6<210> 6
<211> 46<211> 46
<212> DNA<212> DNA
<213> U-cadA-R(tbrA)<213> U-cadA-R(tbrA)
<400> 6<400> 6
gacgaagcag gggatcttca ttggtcaatt taataggaca attttc 46gacgaagcag gggatcttca ttggtcaatt taataggaca attttc 46
<210> 7<210> 7
<211> 21<211> 21
<212> DNA<212> DNA
<213> tbrA-F<213> tbrA-F
<400> 7<400> 7
atgaagatcc cctgcttcgt c 21atgaagatcc cctgcttcgt c 21
<210> 8<210> 8
<211> 43<211> 43
<212> DNA<212> DNA
<213> tbrA-R(TtrpC)<213> tbrA-R(TtrpC)
<400> 8<400> 8
cagtaacgtt aagtggatcc ttaggggatg atcagctcgc cct 43cagtaacgtt aagtggatcc ttaggggatg atcagctcgc cct 43
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212> DNA
<213> TtrpC-F<213> TtrpC-F
<400> 9<400> 9
ggatccactt aacgttactg 20
<210> 10<210> 10
<211> 22<211> 22
<212> DNA<212> DNA
<213> TtrpC-R<213> TtrpC-R
<400> 10<400> 10
aagaaggtta cctctaaaca ag 22aagaaggtta cctctaaaca ag 22
<210> 11<210> 11
<211> 46<211> 46
<212> DNA<212> DNA
<213> pyrG/loxp-F(TtrpC)<213> pyrG/loxp-F(TtrpC)
<400> 11<400> 11
cttgtttaga ggtaaccttc tttaagggag atggtgattg aactag 46cttgtttaga ggtaaccttc tttaagggag atggtgattg aactag 46
<210> 12<210> 12
<211> 21<211> 21
<212> DNA<212> DNA
<213> pyrGAn-R(F743)<213> pyrGAn-R(F743)
<400> 12<400> 12
gcatcaaatc gtcgtaccgc a 21gcatcaaatc gtcgtaccgc a 21
<210> 13<210> 13
<211> 44<211> 44
<212> DNA<212> DNA
<213> D-cadA-F(pyrGAn)<213> D-cadA-F(pyrGAn)
<400> 13<400> 13
tgcggtacga cgatttgatg ctaaatggga agcgatatgg aaac 44tgcggtacga cgatttgatg ctaaatggga agcgatatgg aaac 44
<210> 14<210> 14
<211> 23<211> 23
<212> DNA<212> DNA
<213> D-cadA-R<213> D-cadA-R
<400> 14<400> 14
cattgcaggg aagtatatgc ttc 23cattgcaggg aagtatatgc ttc 23
<210> 15<210> 15
<211> 21<211> 21
<212> DNA<212> DNA
<213> C-cadA-F<213> C-cadA-F
<400> 15<400> 15
tgtggttcct accaaggtgg c 21tgtggttcct accaaggtgg c 21
<210> 16<210> 16
<211> 22<211> 22
<212> DNA<212> DNA
<213> C-cadA-R<213> C-cadA-R
<400> 16<400> 16
cgactatagc tggattgatc ac 22cgactatagc tggattgatc ac 22
<210> 17<210> 17
<211> 26<211> 26
<212> DNA<212> DNA
<213> U-ku80-F<213> U-ku80-F
<400> 17<400> 17
cgcgggtttc tagaagtcac atcagc 26cgcgggtttc tagaagtcac atcagc 26
<210> 18<210> 18
<211> 44<211> 44
<212> DNA<212> DNA
<213> U-ku80-R(PgpdAt)<213> U-ku80-R(PgpdAt)
<400> 18<400> 18
gtacctggat cctcccagag tgtaaggtgg atctggagca gagg 44gtacctggat cctcccagag tgtaaggtgg atctggagca gagg 44
<210> 19<210> 19
<211> 24<211> 24
<212> DNA<212> DNA
<213> PgpdAt-F743<213> PgpdAt-F743
<400> 19<400> 19
ttacactctg ggaggatcca ggta 24ttacactctg ggaggatcca ggta 24
<210> 20<210> 20
<211> 41<211> 41
<212> DNA<212> DNA
<213> PgpdAt-R(tbrA)<213> PgpdAt-R(tbrA)
<400> 20<400> 20
gacgaagcag gggatcttca ttgtgatgat tgatgagttg t 41gacgaagcag gggatcttca ttgtgatgat tgatgagttg t 41
<210> 21<210> 21
<211> 21<211> 21
<212> DNA<212> DNA
<213> tbrA-F<213> tbrA-F
<400> 21<400> 21
atgaagatcc cctgcttcgt c 21atgaagatcc cctgcttcgt c 21
<210> 22<210> 22
<211> 43<211> 43
<212> DNA<212> DNA
<213> tbrA-R(TtrpC)<213> tbrA-R(TtrpC)
<400> 22<400> 22
cagtaacgtt aagtggatcc ttaggggatg atcagctcgc cct 43cagtaacgtt aagtggatcc ttaggggatg atcagctcgc cct 43
<210> 23<210> 23
<211> 20<211> 20
<212> DNA<212> DNA
<213> TtrpC-F<213> TtrpC-F
<400> 23<400> 23
ggatccactt aacgttactg 20
<210> 24<210> 24
<211> 22<211> 22
<212> DNA<212> DNA
<213> hph-R(-TtrpC)<213> hph-R(-TtrpC)
<400> 24<400> 24
cggtcggcat ctactctatt cc 22cggtcggcat ctactctatt cc 22
<210> 25<210> 25
<211> 44<211> 44
<212> DNA<212> DNA
<213> D-ku80-F(hph-TtrpC)<213> D-ku80-F(hph-TtrpC)
<400> 25<400> 25
ggaatagagt agatgccgac cgtagcccgg agttaggtag atag 44ggaatagagt agatgccgac cgtagcccgg agttaggtag atag 44
<210> 26<210> 26
<211> 20<211> 20
<212> DNA<212> DNA
<213> D-ku80-R<213> D-ku80-R
<400> 26<400> 26
catcaccgac cctacgctgt 20
<210> 27<210> 27
<211> 21<211> 21
<212> DNA<212> DNA
<213> C-ku80-F<213> C-ku80-F
<400> 27<400> 27
ggtggtttct ctctatcatg g 21ggtggtttct ctctatcatg g 21
<210> 28<210> 28
<211> 21<211> 21
<212> DNA<212> DNA
<213> C-ku80-R<213> C-ku80-R
<400> 28<400> 28
gcgaaggcga aaagtagtct c 21gcgaaggcga aaagtagtct c 21
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010866757.4A CN112029671B (en) | 2020-08-26 | 2020-08-26 | Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010866757.4A CN112029671B (en) | 2020-08-26 | 2020-08-26 | Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112029671A CN112029671A (en) | 2020-12-04 |
CN112029671B true CN112029671B (en) | 2022-07-05 |
Family
ID=73580907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010866757.4A Active CN112029671B (en) | 2020-08-26 | 2020-08-26 | Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112029671B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024235233A1 (en) * | 2023-05-15 | 2024-11-21 | 中国科学院青岛生物能源与过程研究所 | Bio-based trans-aconitate, preparation method therefor and use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU92409B1 (en) * | 2014-03-21 | 2015-09-22 | Philipps Universit T Marburg | Means and methods for itaconic acid production |
CN110036114A (en) * | 2016-08-26 | 2019-07-19 | 勒萨弗尔公司 | The itaconic acid of raising produces |
CN110527637A (en) * | 2019-07-18 | 2019-12-03 | 中国科学院青岛生物能源与过程研究所 | A kind of Aspergillus terreus bacterial strain producing aconitic acid and its construction method and application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2017344A1 (en) * | 2007-07-20 | 2009-01-21 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Production of itaconic acid |
-
2020
- 2020-08-26 CN CN202010866757.4A patent/CN112029671B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU92409B1 (en) * | 2014-03-21 | 2015-09-22 | Philipps Universit T Marburg | Means and methods for itaconic acid production |
CN110036114A (en) * | 2016-08-26 | 2019-07-19 | 勒萨弗尔公司 | The itaconic acid of raising produces |
CN110527637A (en) * | 2019-07-18 | 2019-12-03 | 中国科学院青岛生物能源与过程研究所 | A kind of Aspergillus terreus bacterial strain producing aconitic acid and its construction method and application |
Non-Patent Citations (1)
Title |
---|
Genetic and Biochemical Characterization of a Gene Operon for trans-Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis;Cuiying Du等;《J Biol Chem.》;20170113;第292卷(第8期);第3517-3530页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112029671A (en) | 2020-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110527637B (en) | Aconitic acid-producing Aspergillus terreus strain and construction method and application thereof | |
CN104212784B (en) | Restructuring nitrilase, encoding gene, mutant, engineering bacteria and application | |
JP4705089B2 (en) | Process for producing (S)-or (R) -3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid | |
CN113265346B (en) | Genetically engineered bacterium for producing porcine myoglobin through fermentation and application thereof | |
CN103834582B (en) | A kind of improve itaconic acid fermentation output bacterial strain and structure thereof and utilize bacterial strain to produce the method for methylene-succinic acid | |
CN112143764B (en) | A kind of method for preparing brivaracetam intermediate compound catalyzed by biological enzyme | |
CN108004239A (en) | A kind of Novel promoter of high efficient expression protease | |
WO1993023545A1 (en) | Gene which codes for eicosapentaenoic acid synthetase group and process for producing eicosapentaenoic acid | |
CN112029671B (en) | Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof | |
CN111944706B (en) | A recombinant Aspergillus terreus strain producing itaconic acid and its construction method and application | |
CN112011470B (en) | A kind of genetically engineered bacteria producing trans-aconitic acid and its construction method and application | |
CN112011468B (en) | A kind of recombinant Aspergillus terreus producing trans-aconitic acid and its preparation method and application | |
CN112011469B (en) | A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application | |
CN105950491B (en) | A strain highly expressing alkaline pectinase and its construction and application | |
CN115820601B (en) | A polyester plastic hydrolase and its application | |
JP3476834B2 (en) | Method for producing Rhodotorula gracilis enzyme D-amino acid oxidase in a host cell | |
CN112029670B (en) | Recombinant aspergillus terreus for producing itaconic acid and construction method and application thereof | |
CN109402086B (en) | 2-methylbutyrate side chain hydrolase, expression strain and application thereof | |
CN114250155A (en) | A kind of Trichoderma reesei engineering bacteria with high cellulase production under the condition of glucose as carbon source and its construction method and application | |
CN106085993B (en) | A kind of amidase derived from Burkholderia vine, gene, strain and application thereof | |
JP2009118783A (en) | Improvement of secretion production of protein by filamentous fungus | |
WO2007099994A1 (en) | Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials | |
CN108118042B (en) | 2-methylbutyrate side chain hydrolase, Monacolin J-producing aspergillus strain, and construction method and application thereof | |
JPWO2015019674A1 (en) | Method for producing flavin adenine dinucleotide-binding glucose dehydrogenase from Mucor | |
CN119570831A (en) | Engineering bacterium for high-yield trans-aconitic acid and construction method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |