[go: up one dir, main page]

CN112011469B - A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application - Google Patents

A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application Download PDF

Info

Publication number
CN112011469B
CN112011469B CN202010866728.8A CN202010866728A CN112011469B CN 112011469 B CN112011469 B CN 112011469B CN 202010866728 A CN202010866728 A CN 202010866728A CN 112011469 B CN112011469 B CN 112011469B
Authority
CN
China
Prior art keywords
aspergillus terreus
aconitic acid
strain
adi1
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010866728.8A
Other languages
Chinese (zh)
Other versions
CN112011469A (en
Inventor
吕雪峰
黄雪年
耿策
唐慎
靳志刚
曹海峰
郭强
李继彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Lukang Shelile Pharmaceutical Co ltd
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Shandong Lukang Shelile Pharmaceutical Co ltd
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Lukang Shelile Pharmaceutical Co ltd, Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Shandong Lukang Shelile Pharmaceutical Co ltd
Priority to CN202010866728.8A priority Critical patent/CN112011469B/en
Publication of CN112011469A publication Critical patent/CN112011469A/en
Application granted granted Critical
Publication of CN112011469B publication Critical patent/CN112011469B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/48Tricarboxylic acids, e.g. citric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01006Aconitate decarboxylase (4.1.1.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A recombinant aspergillus terreus strain for producing trans-aconitic acid and a construction method and application thereof belong to the technical field of genetic engineering. In order to improve the yield of trans-aconitic acid synthesized by a biological method, the invention provides a recombinant Aspergillus terreus strain for producing trans-aconitic acid, which is obtained by taking Aspergillus terreus (Aspergillus terreus) as an initial strain, knocking out a aconitate decarboxylase CadA gene in the initial strain and over-expressing aconitate isomerase Adi 1. The amino acid sequence of the aconitic acid isomerase Adi1 is shown as SEQ ID NO. 2; the nucleotide sequence is shown as SEQ ID NO. 3. According to the invention, the Adi1 is overexpressed on the basis of knockout of CadA, so that cis-aconitic acid is converted into trans-aconitic acid, and thus higher trans-aconitic acid yield is obtained, and the method can be used for producing the trans-aconitic acid.

Description

一种产反式乌头酸的重组土曲霉菌株及其构建方法与应用A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application

技术领域technical field

本发明属于基因工程领域,具体涉及一种高产反式乌头酸的重组土曲霉菌株及其构建方法与应用。The invention belongs to the field of genetic engineering, and in particular relates to a recombinant Aspergillus terreus strain with high-yield trans-aconitic acid and a construction method and application thereof.

背景技术Background technique

反式乌头酸(trans-Aconitic acid,CAS:4023-65-8)是一种不饱和三羧酸。因其含有不饱和双键和丰富的羟基,因此可以作为制备聚合材料的单体化合物,也可以作为其他化合物的合成前体,如三甲基反式乌头酸等。另外,反式乌头酸作为三羧酸循环关键中间体顺乌头酸(cis-Aconitic acid,CAS:585-84-2)的立体异构体,对三羧酸循环中的关键酶乌头酸酶具有一定的抑制作用,可以干扰三羧酸循环,从而影响生命活动,展现出一定的生物活性。多项研究表明反式乌头酸在线虫防治等方面具有较好的效果,因此在生物农药开发方面具有很好的潜力。Trans-Aconitic acid (CAS: 4023-65-8) is an unsaturated tricarboxylic acid. Because it contains unsaturated double bonds and abundant hydroxyl groups, it can be used as a monomer compound for the preparation of polymeric materials, and can also be used as a synthetic precursor for other compounds, such as trimethyl trans-aconitic acid, etc. In addition, trans-aconitic acid, as a stereoisomer of cis-Aconitic acid (CAS: 585-84-2), a key intermediate in the TCA cycle, is a key enzyme in the TCA cycle. Acidase has a certain inhibitory effect, which can interfere with the tricarboxylic acid cycle, thereby affecting life activities and showing certain biological activities. A number of studies have shown that trans-aconitic acid has a good effect on nematode control and other aspects, so it has a good potential in the development of biological pesticides.

目前,反式乌头酸主要是通过化学合成的方法生产,其生产工艺复杂,副产物多,成本高,而且没有形成规模化生产,这将不利于反式乌头酸的下游应用和产品的开发。为了开发更加绿色、高效的反式乌头酸生产工艺,研究人员通过在土曲霉中阻断催化顺乌头酸脱羧生成衣康酸的顺乌头酸脱羧酶基因(cadA),获得了一株能生产乌头酸的土曲霉工程菌株At-ΔcadA(图1中A)。根据生物合成途径及发酵结果分析,推测敲除cadA积累的直接产物是顺乌头酸,然而顺乌头酸作为三羧酸循环的中间体会很快被转化成异柠檬酸并进一步代谢。At present, trans-aconitic acid is mainly produced by chemical synthesis. Its production process is complicated, with many by-products, high cost, and there is no large-scale production, which will be unfavorable for the downstream application of trans-aconitic acid and product quality. development. In order to develop a greener and more efficient process for the production of trans-aconitic acid, researchers obtained a strain by blocking the cis-aconitic acid decarboxylase gene (cadA) that catalyzes the decarboxylation of cis-aconitic acid to itaconic acid in Aspergillus terreus. Aspergillus terreus engineered strain At-ΔcadA capable of producing aconitic acid (A in Figure 1). According to the analysis of biosynthetic pathway and fermentation results, it is speculated that the direct product of cadA knockout accumulation is cis-aconitic acid. However, cis-aconitic acid, as an intermediate of the tricarboxylic acid cycle, will be quickly converted into isocitrate and further metabolized.

发明内容SUMMARY OF THE INVENTION

为了解决反式乌头酸现有合成工艺存在的问题及提高反式乌头酸的产量,本发明提供了一种高产反式乌头酸的重组土曲霉菌株,所述重组土曲霉以土曲霉(Aspergillus terreus)为出发菌株,是在出发菌株中敲除顺乌头酸脱羧酶CadA基因,并过表达乌头酸异构酶Adi1而获得的。In order to solve the problems existing in the existing synthesis process of trans-aconitic acid and improve the yield of trans-aconitic acid, the present invention provides a recombinant Aspergillus terreus strain with high-yield trans-aconitic acid. ( Aspergillus terreus ) is the starting strain, which is obtained by knocking out the cis-aconitic acid decarboxylase CadA gene and overexpressing the aconitic acid isomerase Adi1 in the starting strain.

在本发明的一个实施例中,所述出发菌株为土曲霉CICC40205,土曲霉NRRL1960,土曲霉DSM23081,土曲霉TN484或土曲霉TN484-M1。In one embodiment of the present invention, the starting strain is Aspergillus terreus CICC40205, Aspergillus terreus NRRL1960, Aspergillus terreus DSM23081, Aspergillus terreus TN484 or Aspergillus terreus TN484-M1.

本发明中所述CadA是指土曲霉中的顺乌头酸脱羧酶,本发明中不对该基因的序列做强制性的限定;在优选的实施方式中,所述cadA的氨基酸序列如SEQ ID No.1所示;在其他的实施方式中,所述cadA还包括与所示序列具有高度同源性的氨基酸序列,优选的,所述高度同源性包括与目的序列的同源性至少99%、95%、90%、85%、80%、75%、70%、65%或60%的序列(即同源性60%以上)。The CadA in the present invention refers to the cis-aconitic acid decarboxylase in Aspergillus terreus, and the sequence of the gene is not limited in the present invention; in a preferred embodiment, the amino acid sequence of the cadA is as shown in SEQ ID No. 1; in other embodiments, the cadA also includes an amino acid sequence with a high degree of homology to the sequence shown, preferably, the high degree of homology includes at least 99% homology with the target sequence , 95%, 90%, 85%, 80%, 75%, 70%, 65% or 60% of the sequence (ie more than 60% homology).

在本发明的一个实施例中,所述乌头酸异构酶Adi1的氨基酸序列如SEQ ID NO.2所示。In an embodiment of the present invention, the amino acid sequence of the aconitate isomerase Adi1 is shown in SEQ ID NO.2.

在本发明的一个实施例中,编码所述乌头酸异构酶Adi1的基因核苷酸序列如SEQID NO.3所示。In one embodiment of the present invention, the nucleotide sequence of the gene encoding the aconitate isomerase Adi1 is shown in SEQ ID NO.3.

本发明还提供了上述的重组土曲霉的构建方法,是以所述土曲霉为出发菌株,敲除顺乌头酸脱羧酶CadA基因并将所述乌头酸异构酶Adi1的表达元件导入所述出发菌株中,构建重组土曲霉菌株。The present invention also provides a method for constructing the above-mentioned recombinant Aspergillus terreus, using the Aspergillus terreus as a starting strain, knocking out the CadA gene of cis-aconitic acid decarboxylase, and introducing the expression element of the aconitic acid isomerase Adi1 into the recombinant Aspergillus terreus. Among the above-mentioned starting strains, a recombinant Aspergillus terreus strain was constructed.

在本发明的一个实施例中,所述乌头酸异构酶Adi1的表达元件使用的启动子为PcadA启动子或PgpdAt启动子。In one embodiment of the present invention, the promoter used for the expression element of aconitate isomerase Adi1 is the P cadA promoter or the P gpdAt promoter.

本发明还提供了上述重组土曲霉在生产反式乌头酸中的应用。The present invention also provides the application of the above-mentioned recombinant Aspergillus terreus in the production of trans-aconitic acid.

在本发明的一个实施例中,所述应用是指将所述重组土曲霉经发酵培养后生产反式乌头酸,所述发酵条件为37 ℃,220 rpm发酵72 h-168 h。In one embodiment of the present invention, the application refers to the production of trans-aconitic acid after the recombinant Aspergillus terreus is fermented and cultured, and the fermentation conditions are 37° C., 220 rpm for 72 h to 168 h.

在本发明的一个实施例中,所述发酵所用的培养基配方为:100 g L-1葡萄糖,2 gL-1 NH4NO3,0.2 g L-1(NH42HPO4,20 mg L-1 FeSO4,0.4 g L-1 MgSO4,40 mg L-1 ZnSO4,40mg L-1 CuSO4,余量为水。In one embodiment of the present invention, the medium formula used in the fermentation is: 100 g L -1 glucose, 2 g L -1 NH 4 NO 3 , 0.2 g L -1 (NH 4 ) 2 HPO 4 , 20 mg L -1 FeSO 4 , 0.4 g L -1 MgSO 4 , 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , the balance being water.

进一步地限定,所述DNA修复相关蛋白ku80 Genbank登录号为EAU32303.1,所述顺乌头酸脱羧酶cadA Genbank登录号为MK026070.1。To be further defined, the DNA repair-related protein ku80 Genbank accession number is EAU32303.1, and the cis-aconitic acid decarboxylase cadA Genbank accession number is MK026070.1.

本发明的一个实施方式中,对cadA进行的阻断为将cadA基因进行完全敲除,所述工程菌株的基因组中不再保留cadA基因的任何片段。In one embodiment of the present invention, the blocking of cadA is to completely knock out the cadA gene, and no fragments of the cadA gene remain in the genome of the engineered strain.

在一个实施例中,以敲除了cadA的土曲霉At-∆cadA为出发菌株,用PgpdAt启动子定点表达adi1,获得整合了adi1表达元件的纯种转化子,记为At-∆cadA-ku80::PgpdAt-adi1;在另一个实施例中,进行了敲除cadA过表达adi1基因打靶元件的构建及异源表达adi1土曲霉工程菌株的构建,获得整合了adi1表达元件的纯种转化子,记为At-∆cadA::adi1。In one example, the cadA -knocked out Aspergillus terreus At-∆cadA was used as the starting strain, and the P gpdAt promoter was used to express adi1 in a site-directed manner to obtain a pure-bred transformant integrating the adi1 expression element, denoted as At-∆cadA-ku80 ::PgpdAt-adi1; In another embodiment, the construction of knockout cadA overexpression adi1 gene targeting element and the construction of heterologous expression adi1 Aspergillus terreus engineering strain are carried out to obtain a pure-bred transformant integrating the adi1 expression element, Denoted as At-∆cadA::adi1.

本发明提供的利用所述基因工程菌株生产反式乌头酸的方法,包括将所述菌株接种至培养基中进行发酵的步骤。发酵液经处理后通过高效液相色谱分析方法比较两个纯种转化子株及对照组的反式乌头酸产量、反式乌头酸与顺式乌头酸产量比例及经不同时间反式乌头酸与顺乌头酸的比例变化。The method for producing trans-aconitic acid using the genetically engineered strain provided by the present invention includes the step of inoculating the strain into a medium for fermentation. After the fermentation broth was treated, the production of trans-aconitic acid, the production ratio of trans-aconitic acid and cis-aconitic acid, and the trans-aconitic acid production ratio of the two pure-bred transformants and the control group were compared by high performance liquid chromatography. Changes in the ratio of cephalic acid to cis-aconitic acid.

有益效果beneficial effect

如图1中B所示,在玉蜀黍黑粉菌(Ustilago maydis)中有一种乌头酸异构酶Adi1,可以催化顺乌头酸异构化生成反式乌头酸(Geiser E. et al., Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate,Microbial Biotechnology, 2016, 9(1): 116–126)。本发明以不表达顺乌头酸脱羧酶的土曲霉(Aspergillus terreus)为出发菌株,通过在不同基因组位点、使用不同启动子在土曲霉中异源表达adi1基因的方式,获得了更高效的产反式乌头酸土曲霉工程菌株(图1中A),规避了反式乌头酸化学合成的缺陷,开发出了更加高效的通过微生物发酵生产反式乌头酸的绿色工艺。As shown in B in Figure 1, there is an aconitic acid isomerase Adi1 in Ustilago maydis , which can catalyze the isomerization of cis-aconitic acid to generate trans-aconitic acid (Geiser E. et al. , Ustilago maydis produces itaconic acid via the unusual intermediate trans -aconitate, Microbial Biotechnology, 2016, 9(1): 116–126). The present invention takes Aspergillus terreus which does not express cis-aconitic acid decarboxylase as the starting strain, and obtains a more efficient adi1 gene by heterologously expressing the adi1 gene in Aspergillus terreus at different genomic sites and using different promoters. The trans-aconitic acid-producing Aspergillus terreus engineered strain (A in Figure 1) circumvented the defects of the chemical synthesis of trans-aconitic acid, and developed a more efficient green process for the production of trans-aconitic acid through microbial fermentation.

经实验证明,本发明的基因工程菌株At-∆cadA::adi1 和At-∆cadA-ku80::PgpdAt-adi1相对于对照菌株At-∆cadA来说,具有更高的反式乌头酸的产量和更低的顺乌头酸产量,并且菌株At-∆cadA::adi1的反式乌头酸产量高于菌株At-∆cadA-ku80::PgpdAt-adi1。此外,本发明的基因工程菌株在发酵中期72h可以实现顺式乌头酸到反式乌头酸的转化,而对照菌株At-∆cadA实现顺式乌头酸到反式乌头酸相同比例的转化需要在168 h。因此adi1基因在PcadA启动子或PgpdAt启动子的驱动下引入均在一定程度上缩短了反式乌头酸的发酵时间。Experiments have shown that the genetically engineered strains At-∆cadA::adi1 and At-∆cadA-ku80::PgpdAt-adi1 of the present invention have higher trans-aconitic acid levels than the control strain At-∆cadA. yield and lower cis-aconitic acid production, and the trans-aconitic acid production of strain At-∆cadA::adi1 was higher than that of strain At-∆cadA-ku80::PgpdAt-adi1. In addition, the genetically engineered strain of the present invention can realize the conversion of cis-aconitic acid to trans-aconitic acid in 72h in the middle stage of fermentation, while the control strain At-∆cadA realizes the same ratio of cis-aconitic acid to trans-aconitic acid. Transformation takes 168 h. Therefore, the introduction of the adi1 gene under the drive of the P cadA promoter or the P gpdAt promoter shortened the fermentation time of trans-aconitic acid to a certain extent.

附图说明Description of drawings

图1.A为高产反式乌头酸土曲霉工程菌株构建示意图,B为乌头酸异构酶Adi1的作用示意图;Figure 1.A is a schematic diagram of the construction of a high-yielding trans-aconitic acid Aspergillus terreus engineered strain, and B is a schematic diagram of the action of aconitic acid isomerase Adi1;

图2.表达乌头酸异构酶Adi1土曲霉重组菌株的构建策略示意图,A为以PgpdAt作为adi1异源表达启动子整合在ku80位点;B为敲除cadA的同时利用PcadA启动子驱动adi1的异源表达;Figure 2. Schematic diagram of the construction strategy of the recombinant strain of Aspergillus terreus expressing aconitic acid isomerase Adi1, A is PgpdAt as the adi1 heterologous expression promoter integrated at ku80 site; B is the knockout of cadA and the use of PcadA promoter to drive adi1 heterologous expression;

图3.构建的At-ΔcadA-ku80::PgpdAt-adi1工程菌株的基因组PCR验证结果,A为用引物U-ku80-F/adi-R(TtrpC)进行PCR验证的结果,WT为出发菌株At-ΔcadA;B为用引物adi-F/D-ku80-R验证的结果,WT为出发菌株At-Δku80-ΔpyrG;Figure 3. Genome PCR verification results of the constructed At-ΔcadA-ku80::PgpdAt-adi1 engineering strain, A is the result of PCR verification with primer U-ku80-F/adi-R(TtrpC), WT is the starting strain At -ΔcadA; B is the result verified with primer adi-F/D-ku80-R, WT is the starting strain At-Δku80-ΔpyrG;

图4.构建的At-ΔcadA::adi1工程菌株的基因组PCR验证结果;Figure 4. Genome PCR verification results of the constructed At-ΔcadA::adi1 engineering strain;

图5.菌株发酵产有机酸的HPLC分析图,CA71-1:(At-ΔcadA::adi1菌株的7号转化子3个平行实验中的第1瓶);GA11-2:(At-ΔcadA-ku80::PgpdAt-adi1菌株的1号转化子3个平行实验中的第2瓶);Δcad-1:(At-ΔcadA菌株3个平行实验中的第1瓶);Figure 5. HPLC analysis of organic acids produced by strain fermentation, CA71-1: (the 1st bottle of 3 parallel experiments of transformant No. 7 of At-ΔcadA::adi1 strain); GA11-2: (At-ΔcadA- ku80::PgpdAt-adi1 strain No. 1 transformant, the second bottle of 3 parallel experiments); Δcad-1: (the first bottle of 3 parallel experiments of At-ΔcadA strain);

图6.为工程菌株摇瓶发酵产反式乌头酸情况分析结果,A为顺式及反式乌头酸在72h的产量,左侧是反式乌头酸,右侧是顺乌头酸,B为不同转化子发酵中反式乌头酸与顺乌头酸的比例在72h(左)、112h(中)和168h(右)的变化。At-ΔcadA-ku80::PgpdAt-adi1工程菌的三个转化子:GA11、GA31和GA51,At-ΔcadA::adi1工程菌的三个转化子:CA21、CA71和CA101,出发菌株At-ΔcadA工程菌株的一个转化子:Δcad;A图中Error bar代表的三个平行实验的SEM,B图中柱高为三个平行实验中乌头酸与顺乌头酸比例的平均值。Figure 6. The analysis results of trans-aconitic acid produced by engineering strain shake flask fermentation, A is the output of cis- and trans-aconitic acid in 72h, the left side is trans-aconitic acid, and the right side is cis-aconitic acid , B is the change of the ratio of trans-aconitic acid to cis-aconitic acid in different transformants at 72h (left), 112h (middle) and 168h (right). Three transformants of At-ΔcadA-ku80::PgpdAt-adi1 engineered strain: GA11, GA31 and GA51, three transformants of At-ΔcadA::adi1 engineered strain: CA21, CA71 and CA101, starting strain At-ΔcadA engineering One transformant of the strain: Δcad; SEM of the three parallel experiments represented by the Error bar in Figure A, and the bar height in Figure B is the average of the ratio of aconitic acid to cis-aconitic acid in the three parallel experiments.

具体实施方式Detailed ways

以下结合具体实施例和附图,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。如按照Sambrook等人,分子克隆,实验室手册(New York:ColdSpring Harbor Laboratory Press,1989)所记载,或按照厂商的建议条件。The present invention will be further described in detail below with reference to specific embodiments and accompanying drawings, and the protection content of the present invention is not limited to the following embodiments. Variations and advantages that can occur to those skilled in the art without departing from the spirit and scope of the inventive concept are included in the present invention, and the appended claims are the scope of protection. The process, conditions, reagents, experimental methods, etc. for implementing the present invention, except for the contents specifically mentioned below, are all common knowledge and common knowledge in the field, and the present invention has no special limited contents. Conditions were as described in Sambrook et al., Molecular Cloning, Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or as suggested by the manufacturer.

按以下培养基配方配制培养基备用:Prepare the medium for use according to the following medium formula:

再生筛选培养基平板PDA-SH:3.9 g L-1马铃薯右旋糖琼脂培养基(DifcoTM PotatoDextrose Agar, BD, LOT:1165825),和1.2 M山梨醇,灭菌后冷却至约55 °C时加入潮霉素B(Solarbio,Catalog No.:M419099)至终浓度为100 μg/mL,制备平板。Regeneration selection medium plate PDA-SH: 3.9 g L -1 Potato Dextrose Agar (Difco TM PotatoDextrose Agar, BD, LOT: 1165825), and 1.2 M sorbitol, sterilized and cooled to about 55 °C Plates were prepared by adding hygromycin B (Solarbio, Catalog No.: M419099) to a final concentration of 100 μg/mL.

PDAS:3.9 g L-1马铃薯右旋糖琼脂培养基(DifcoTM Potato Dextrose Agar, BD,LOT:1165825)和1.2 M山梨醇,灭菌后制备平板。PDAS: 3.9 g L -1 Potato Dextrose Agar Medium (Difco Potato Dextrose Agar, BD, LOT: 1165825) and 1.2 M sorbitol, sterilized to prepare plates.

PDBS:2.4 g L-1马铃薯右旋糖培养基(DifcoTM Potato Dextrose Broth, BD,LOT:9239568)、1.2 M山梨醇和0.5%琼脂糖,灭菌后制成顶层琼脂。PDBS: 2.4 g L -1 potato dextrose medium (Difco Potato Dextrose Broth, BD, LOT: 9239568), 1.2 M sorbitol and 0.5% agarose, sterilized to make top agar.

土曲霉产孢培养基:10 g L-1葡萄糖,2 g L-1 NaNO3,0.2 g L-1 KH2PO4,5 g L-1MgSO4,0.02 g L-1 FeSO4,0.5 g L-1 NaCl,0.04 g L-1 ZnSO4,0.04 g L-1 CuSO4,0.5%麸皮,1.5%琼脂粉,115 ℃灭菌25 min,制备平板。Aspergillus terreus sporulation medium: 10 g L -1 glucose, 2 g L -1 NaNO 3 , 0.2 g L -1 KH 2 PO 4 , 5 g L -1 MgSO 4 , 0.02 g L -1 FeSO 4 , 0.5 g L -1 NaCl, 0.04 g L -1 ZnSO 4 , 0.04 g L -1 CuSO 4 , 0.5% bran, 1.5% agar powder, sterilize at 115 ℃ for 25 min, and prepare a plate.

有机酸发酵培养基IPM:100 g L-1葡萄糖,2 g L-1 NH4NO3,0.2 g L-1(NH42HPO4,20mg L-1 FeSO4,0.4 g L-1 MgSO4,40 mg L-1 ZnSO4,40 mg L-1 CuSO4,用硫酸调整pH至3.5,115 ℃灭菌30 min。Organic acid fermentation medium IPM: 100 g L -1 glucose, 2 g L -1 NH 4 NO 3 , 0.2 g L -1 (NH 4 ) 2 HPO 4 , 20 mg L -1 FeSO 4 , 0.4 g L -1 MgSO 4 , 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , adjust the pH to 3.5 with sulfuric acid, and sterilize at 115 °C for 30 min.

土曲霉产孢斜面培养基:10 g L-1葡萄糖,2 g L-1 NaNO3,0.2 g L-1, KH2PO4,20mg L-1 FeSO4,5 g L-1 MgSO4,0.5 g L-1 NaCl,40mg L-1 ZnSO4,40 mg L-1 CuSO4,0.5% 麸皮,1.5%琼脂,115 ℃灭菌15min,然后分装至试管,再115 ℃灭菌25 min,制备斜面。Aspergillus terreus sporulation medium: 10 g L -1 glucose, 2 g L -1 NaNO 3 , 0.2 g L -1 , KH 2 PO 4 , 20 mg L -1 FeSO 4 , 5 g L -1 MgSO 4 , 0.5 g L -1 NaCl, 40 mg L -1 ZnSO 4 , 40 mg L -1 CuSO 4 , 0.5% bran, 1.5% agar, sterilized at 115 ℃ for 15 min, then divided into test tubes, sterilized at 115 ℃ for 25 min, Prepare bevels.

本发明所用的土曲霉(Aspergillus terreus),从中国工业微生物菌种保藏管理中心获得,保藏号为CICC 40205。The Aspergillus terreus used in the present invention is obtained from the China Industrial Microorganism Culture Collection and Management Center, and the deposit number is CICC 40205.

土曲霉工程菌株At-∆cadA(记载在:吕雪峰等,一种乌头酸的土曲霉菌株及其构建方法与应用,CN 201910649851.1 ,公众可通过中国科学院青岛生物能源与过程研究所获得。)Aspergillus terreus engineered strain At-∆cadA (recorded in: Lv Xuefeng et al., Aconitic acid-containing Aspergillus terreus strain and its construction method and application, CN 201910649851.1, available to the public through Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences.)

本发明中质粒提取采用OMEGA公司Plasmid Mini KitI试剂盒(D6943-02),DNA片段回收采用OMEGA公司Cycle-Pure Kit试剂盒(D6492-02),凝胶回收采用OMEGA公司GelExtraction Kit试剂盒(D2500-01)。In the present invention, plasmid extraction adopts OMEGA's Plasmid Mini KitI kit (D6943-02), DNA fragment recovery adopts OMEGA's Cycle-Pure Kit (D6492-02), and gel recovery adopts OMEGA's GelExtraction Kit (D2500- 01).

质粒pSGF957(由Seoul National university得到,质粒记载在 Kim,J.G.,Choi,Y.D., Chang,Y.J., Kim,S.U., Genetic transformation of Monascus purpureusDSM1379, Biotechnology Letters, 2003, 25, 1509-1514)。Plasmid pSGF957 (obtained by Seoul National university, the plasmid is recorded in Kim, J.G., Choi, Y.D., Chang, Y.J., Kim, S.U., Genetic transformation of Monascus purpureusDSM1379, Biotechnology Letters, 2003, 25, 1509-1514).

质粒pXH-106(记载在:吕雪峰等,一种乌头酸的土曲霉菌株及其构建方法与应用,CN 201910649851.1 ,公众可通过中国科学院青岛生物能源与过程研究所获得)。Plasmid pXH-106 (recorded in: Lu Xuefeng et al., Aconitic acid-containing Aspergillus terreus strain and its construction method and application, CN 201910649851.1, available to the public through the Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences).

质粒pXH2-1(记载在:Huang X et al. Cloning, characterization andapplication of a native glyceraldehyde-3-phosphate dehydrogenase promoter forAspergillus terreus. J Ind Microbiol Biotechnol 2014, 41:585–592. 公众可通过中国科学院青岛生物能源与过程研究所获得)Plasmid pXH2-1 (recorded in: Huang X et al. Cloning, characterization and application of a native glyceraldehyde-3-phosphate dehydrogenase promoter for Aspergillus terreus . J Ind Microbiol Biotechnol 2014, 41:585–592. Publicly available through Qingdao Biotechnology, Chinese Academy of Sciences obtained by the Institute of Energy and Processes)

本发明中使用的DNA Marker从北京全式金生物购买,产品名称为:1Kb DNALadder,产品目录号为:BM201-01。The DNA Marker used in the present invention was purchased from Beijing Quanshijin Biology, the product name is: 1Kb DNALadder, and the product catalog number is: BM201-01.

在实施例1和实施例2中所述重组土曲霉以土曲霉(Aspergillus terreus)为出发菌株,是在出发菌株中敲除顺乌头酸脱羧酶CadA基因,并过表达乌头酸异构酶Adi1而获得的。出发菌株为目前已知常用的土曲霉,如土曲霉CICC40205、土曲霉NRRL1960、土曲霉DSM23081、土曲霉TN484 、土曲霉TN484-M1或其他能够生产衣康酸的基因工程菌或者野生菌株等均可,本实施例中使用的出发菌株为土曲霉CICC40205。The recombinant Aspergillus terreus described in Example 1 and Example 2 uses Aspergillus terreus as the starting strain, and the starting strain is to knock out the cis-aconitic acid decarboxylase CadA gene and overexpress aconitic acid isomerase obtained from Adi1. The starting strain is the commonly used Aspergillus terreus, such as Aspergillus terreus CICC40205, Aspergillus terreus NRRL1960, Aspergillus terreus DSM23081, Aspergillus terreus TN484, Aspergillus terreus TN484-M1 or other genetically engineered bacteria or wild strains capable of producing itaconic acid, etc. , the starting strain used in this example is Aspergillus terreus CICC40205.

实施例1、用PgpdAt启动子定点表达adi1 Embodiment 1, with P gpdAt promoter site-specific expression adi1

1)表达adi1基因打靶元件的构建1) Construction of targeting element expressing adi1 gene

ku80位点:该位点为DNA修复相关蛋白,Genbank登录号EAU32303.1ku80 site: This site is a DNA repair-related protein, Genbank accession number EAU32303.1

SEQ ID NO.2是玉蜀黍黑粉菌的乌头酸异构酶Adi1的氨基酸序列,按照土曲霉密码子偏好性优化并合成Adi1的编码核苷酸片段如SEQ ID NO.3。SEQ ID NO. 2 is the amino acid sequence of the aconitate isomerase Adi1 of A. zeae, optimized according to the codon preference of Aspergillus terreus, and the nucleotide fragment encoding Adi1 is synthesized as SEQ ID NO. 3.

根据基因序列信息设计并合成如下引物:The following primers were designed and synthesized according to the gene sequence information:

U-ku80-F: 5’- cgcgggtttctagaagtcacatcagc -3’;U-ku80-F: 5’-cgcgggtttctagaagtcacatcagc-3’;

U-ku80-R(PgpdAt): 5’- gtacctggatcctcccagagtgtaaggtggatctggagcagagg -3’;U-ku80-R(PgpdAt): 5’-gtacctggatcctcccagagtgtaaggtggatctggagcagagg-3’;

PgpdAt-F743: 5’- ttacactctgggaggatccaggta -3’;PgpdAt-F743: 5'-ttacactctgggaggatccaggta-3';

PgpdAt-R(adi1) : 5’- gtgtcgatggggtgcagcattgtgatgattgatgagttg -3’;PgpdAt-R(adi1) : 5'-gtgtcgatggggtgcagcattgtgatgattgatgagttg-3';

adi1-F : 5’- atgctgcaccccatcgacac -3’;adi1-F : 5'-atgctgcaccccatcgacac-3';

adi1-R(TtrpC) : 5’- cagtaacgttaagtggatccttaggacaggctacggtcgctag -3’;adi1-R(TtrpC): 5'-cagtaacgttaagtggatccttaggacaggctacggtcgctag-3';

TtrpC-F : 5’- ggatccacttaacgttactg -3’;TtrpC-F: 5'-ggatccacttaacgttactg-3';

hph-R(-TtrpC) : 5’- cggtcggcatctactctattcc -3’;hph-R(-TtrpC) : 5'-cggtcggcatctactctattcc-3';

D-ku80-F(hph-TtrpC) : 5’- ggaatagagtagatgccgaccgtagcccggagttaggtagatag -3’;D-ku80-F(hph-TtrpC): 5’-ggaatagagtagatgccgaccgtagcccggagttaggtagatag-3’;

D-ku80-R : 5’- catcaccgaccctacgctgt -3’;D-ku80-R : 5'-catcaccgaccctacgctgt-3';

C-ku80-F : 5’- ggtggtttctctctatcatgg -3’;C-ku80-F: 5'-ggtggtttctctctatcatgg-3';

C-ku80-R : 5’- gcgaaggcgaaaagtagtctc -3’;C-ku80-R : 5'-gcgaaggcgaaaagtagtctc-3';

以土曲霉At-∆cadA基因组DNA为模板,采用pfu DNA聚合酶(全式金, 产品目录号: AS231-01)进行PCR扩增,用引物U-ku80-F/U-ku80-R(PgpdAt)可以扩增获得大小约为1.0 kb的ku80基因的上游同源臂U-ku80,用引物D-ku80-F(hph-TtrpC)/D-ku80-R可以扩增获得大小为1.0 kb的ku80基因下游同源臂D-ku80。Using Aspergillus terreus At-∆cadA genomic DNA as template, pfu DNA polymerase (full gold, catalog number: AS231-01) was used for PCR amplification, and primers U-ku80-F/U-ku80-R (PgpdAt ) can amplify the upstream homology arm U-ku80 of the ku80 gene with a size of about 1.0 kb, and use the primers D-ku80-F(hph-TtrpC)/D-ku80-R to amplify the ku80 with a size of 1.0 kb Gene downstream homology arm D-ku80.

以质粒pXH2-1为模板,用引物PgpdAt-F743/PgpdAt-R(adi1)进行PCR扩增得到土曲霉组成型启动子PgpdAt,即PgpdAt片段。Using plasmid pXH2-1 as a template, PCR amplification was performed with primers PgpdAt-F743/PgpdAt-R(adi1) to obtain the Aspergillus terreus constitutive promoter P gpdAt , namely the PgpdAt fragment.

同样以质粒pXH2-1为模板,用引物TtrpC-F/hph-R(-TtrpC)进行终止子TtrpC和潮霉素抗性基因hph的PCR扩增,得到TtrpC-hph片段。Similarly, using plasmid pXH2-1 as a template, PCR amplification of terminator TtrpC and hygromycin resistance gene hph was performed with primer TtrpC-F/hph-R(-TtrpC) to obtain TtrpC-hph fragment.

Adi1片段的获得则是以合成adi1基因所在质粒为模板,用引物adi1-F/adi1-R(TtrpC)PCR扩增得到。The Adi1 fragment was obtained by using the plasmid where the adi1 gene was synthesized as a template and PCR amplification with primers adi1-F/adi1-R (TtrpC).

将所有PCR产物经1.0%琼脂糖凝胶电泳检测并进行割胶回收纯化。用融合PCR的方法将U-ku80片段、PgpdAt片段、Adi1片段、TtrpC-hph片段和D-ku80片段进行融合,并以该融合PCR的产物作为模板,以C-ku80-F/C-ku80-R作为引物扩增获得大小约为7.0 kb的基因打靶元件ku80::PgpdAt-adi1-hph片段,可用于ku80位点用PgpdAt启动子定点表达Adi1的工作。All PCR products were detected by 1.0% agarose gel electrophoresis and recovered and purified by gel tapping. U-ku80 fragment, PgpdAt fragment, Adi1 fragment, TtrpC-hph fragment and D-ku80 fragment are fused by the method of fusion PCR, and the product of this fusion PCR is used as a template, and C-ku80-F/C-ku80- R was used as a primer to amplify the gene targeting element ku80::PgpdAt-adi1-hph fragment with a size of about 7.0 kb, which can be used for the work of expressing Adi1 with the PgpdAt promoter at the ku80 site.

2)ku80位点异源表达adi1土曲霉工程菌株的构建2) Construction of an engineered strain of Aspergillus terreus heterologously expressing adi1 at the ku80 locus

土曲霉At-∆cadA是通过敲除cadA基因得到的产乌头酸工程菌株。将工程菌株At-∆cadA的孢子接种至50 mL IPM液体培养基中,使孢子浓度约为107个/mL,在200 rpm、32℃培养12-18 h。用无菌单层500目尼龙布过滤收集长出的菌丝,并用灭菌的0.6 M MgSO4溶液冲洗三次,压干后置于无菌的50 mL三角瓶中,根据菌丝重量加入适量酶解液(每1 g菌丝加入10 mL酶解液),在30 ℃、60 rpm处理1-3 h。将上述酶解后的混合液用300目尼龙布或擦镜纸过滤,收集滤液。在4 ℃、4000 rpm离心收集原生质体,用预冷1.0 M山梨醇溶液洗涤一次,再用预冷的STC(STC组成:1.0 M山梨醇,50 mM Tris-HCl(pH 8.0),50 mM CaCl2)洗涤一次,最后把原生质体重悬于预冷的STC中,并用STC将原生质体浓度调整为5×107个/mL,得到原生质体悬液。向150 μL该原生质体悬液中加入10 μL打靶元件ku80::PgpdAt-adi1-hph的DNA片段(约2 μg)。再加入50 μL冰浴的PSTC(PSTC组成:40% PEG4000,1.2 M山梨醇,50 mM Tris-HCl(pH8.0),50 mM CaCl2),轻轻混匀,冰浴30 min。加入1 mL常温的PSTC,混匀后室温放置20 min。然后与30 mL的PDBS顶层琼脂混合后倾注于10块PDA-SH平板上进行再生筛选培养,在30 ℃黑暗条件下培养5-7天。Aspergillus terreus At-∆cadA is an aconitic acid-producing engineered strain obtained by knocking out the cadA gene. The spores of the engineered strain At-∆cadA were inoculated into 50 mL of IPM liquid medium to make the spore concentration about 10 7 /mL, and cultured at 200 rpm and 32 °C for 12-18 h. The grown mycelia were collected by filtration with a sterile single-layer 500-mesh nylon cloth, rinsed three times with sterile 0.6 M MgSO 4 solution, pressed dry and placed in a sterile 50 mL conical flask, and an appropriate amount of enzyme was added according to the weight of the mycelium. The solution (10 mL of enzymatic solution was added to each 1 g of mycelium) was treated at 30 °C and 60 rpm for 1-3 h. The mixed solution after enzymolysis was filtered with 300-mesh nylon cloth or lens paper, and the filtrate was collected. Protoplasts were collected by centrifugation at 4 °C, 4000 rpm, washed once with pre-cooled 1.0 M sorbitol solution, and then washed with pre-cooled STC (STC composition: 1.0 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ) Wash once, and finally resuspend the protoplasts in pre-cooled STC, and adjust the protoplast concentration to 5×10 7 /mL with STC to obtain a protoplast suspension. To 150 μL of this protoplast suspension was added 10 μL of the DNA fragment (about 2 μg) of the targeting element ku80::PgpdAt-adi1-hph. Then add 50 μL of PSTC in ice bath (PSTC composition: 40% PEG4000, 1.2 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ), mix gently, and ice bath for 30 min. Add 1 mL of PSTC at room temperature, mix well and place at room temperature for 20 min. Then, it was mixed with 30 mL of PDBS top agar and poured onto 10 PDA-SH plates for regeneration screening culture, and cultured at 30 °C in the dark for 5-7 days.

从转化筛选平板上挑取生长状况良好的转化子转接至PDAH(添加了100 mg/L潮霉素B的PDA平板)平板上,在30 ℃培养5天进行传代纯化。将稳定传代转化子的孢子接种于IPM液体培养基中,30℃、200 rpm培养48 h,收集菌丝提取基因组DNA,用引物U-ku80-F/adi-R(TtrpC)和adi-F/D-ku80-R这两对引物进行PCR验证,同时用At-∆cadA菌株的基因组作为对照。阳性转化子能扩增出大小分别约为3.0 kb和5.5 kb的条带,对照不能扩增出条带。选取5个阳性转化子进行单孢分离纯化,每个转化子验证3个单孢,并再次用引物U-ku80-F/adi-R(TtrpC)和adi-F/D-ku80-R进行基因组PCR验证,如图3所示,获得ku80位点整合了adi1表达元件的纯种转化子,即用于高产反式乌头酸的基因工程菌株,记为At-∆cadA-ku80::PgpdAt-adi1。The transformants with good growth conditions were picked from the transformation screening plate and transferred to PDAH (PDA plate supplemented with 100 mg/L hygromycin B) plate, and cultured at 30 °C for 5 days for passage purification. The spores of the stable passage transformants were inoculated in IPM liquid medium, cultured at 30 °C and 200 rpm for 48 h, and the hyphae were collected to extract genomic DNA. The primers U-ku80-F/adi-R (TtrpC) and adi-F/ The two pairs of primers D-ku80-R were verified by PCR, and the genome of the At-∆cadA strain was used as a control. The positive transformants could amplify the bands with sizes of about 3.0 kb and 5.5 kb, respectively, while the control could not amplify the bands. 5 positive transformants were selected for single spore isolation and purification, and 3 single spores were verified for each transformant, and the primers U-ku80-F/adi-R (TtrpC) and adi-F/D-ku80-R were used for genome again. PCR verification, as shown in Figure 3, obtained a pure-bred transformant integrating the adi1 expression element at the ku80 site, that is, a genetically engineered strain for high-yield trans-aconitic acid, denoted as At-∆cadA-ku80::PgpdAt- adi1.

实施例2、在cadA位点用PcadA启动子定点表达Adi1Example 2. Site-directed expression of Adi1 at the cadA site using the P cadA promoter

1)敲除cadA过表达adi1基因打靶元件的构建1) Construction of knockout cadA overexpression adi1 gene targeting element

根据土曲霉基因组信息和SEQ ID NO.3基因序列信息设计并合成如下引物:The following primers were designed and synthesized according to the genome information of Aspergillus terreus and the gene sequence information of SEQ ID NO.3:

U-cadA-F: 5’- gcgataaatgttgaacgaggc-3’;U-cadA-F: 5’-gcgataaatgttgaacgaggc-3’;

U-cadA-R(adi1) : 5’- gtgtcgatggggtgcagcattggtcaatttaataggacaattttc-3’;U-cadA-R(adi1) : 5'-gtgtcgatggggtgcagcattggtcaatttaataggacaattttc-3';

adi1-F: 5’- atgctgcaccccatcgacac-3’;adi1-F: 5'-atgctgcaccccatcgacac-3';

adi1-R(TtrpC) : 5’- cagtaacgttaagtggatccttaggacaggctacggtcgctag-3’;adi1-R(TtrpC): 5'-cagtaacgttaagtggatccttaggacaggctacggtcgctag-3';

TtrpC-F: 5’- ggatccacttaacgttactg-3’;TtrpC-F: 5'-ggatccacttaacgttactg-3';

TtrpC-R: 5’- aagaaggttacctctaaacaag-3’;TtrpC-R: 5'-aagaaggttacctctaaacaag-3';

pyrG/loxp-F(TtrpC) : 5’- cttgtttagaggtaaccttctttaagggagatggtgattgaactag-3’;pyrG/loxp-F(TtrpC): 5'-cttgtttagaggtaaccttctttaagggagatggtgattgaactag-3';

pyrGAn-R(PgpdAtF743) : 5’- gcatcaaatcgtcgtaccgca-3’;pyrGAn-R(PgpdAtF743): 5'-gcatcaaatcgtcgtaccgca-3';

D-cadA-F(pyrGAn) : 5’- tgcggtacgacgatttgatgctaaatgggaagcgatatggaaac-3’;D-cadA-F(pyrGAn): 5'-tgcggtacgacgatttgatgctaaatgggaagcgatatggaaac-3';

D-cadA-R: 5’- cattgcagggaagtatatgcttc-3’;D-cadA-R: 5’-cattgcagggaagtatatgcttc-3’;

C-cadA-F: 5’- tgtggttcctaccaaggtggc-3’;C-cadA-F: 5'-tgtggttcctaccaaggtggc-3';

C-cadA-R: 5’-cgactatagctggattgatcac-3’;C-cadA-R: 5’-cgactatagctggattgatcac-3’;

以土曲霉At-∆ku80(土曲霉At-∆ku80是针对土曲霉CICC40205进行ku80基因敲除的工程菌株)(吕雪峰等,一种提高基因打靶技术在土曲霉中应用效率的方法与应用,ZL201510275491.5)基因组DNA为模板,采用pfu DNA聚合酶(Fermentas, 产品目录号:EP0501)进行PCR扩增,用引物U-cadA-F/U-cadA-R(adi1)可以扩增获得大小约为1.2 kb的cadA基因的上游同源臂U-cadA,用引物D-cadA-F(pyrGAn)/D-cadA-R可以扩增获得大小为1.3 kb的cadA基因下游同源臂D-cadA。Using Aspergillus terreus At-∆ku80 (Aspergillus terreus At-∆ku80 is an engineered strain with ku80 gene knockout for Aspergillus terreus CICC40205) (Lu Xuefeng et al., A method and application for improving the application efficiency of gene targeting technology in Aspergillus terreus, ZL201510275491 .5) The genomic DNA is used as the template, and pfu DNA polymerase (Fermentas, catalog number: EP0501) is used for PCR amplification, and the primer U-cadA-F/U-cadA-R (adi1) can be used for amplification to obtain a size of about The upstream homology arm U-cadA of the 1.2 kb cadA gene can be amplified with primers D-cadA-F(pyrGAn)/D-cadA-R to obtain the 1.3 kb downstream homology arm D-cadA of the cadA gene.

以质粒pXH2-1为模板,用引物TtrpC-F/TtrpC-R进行终止子TtrpC的PCR扩增,得到TtrpC片段。Using plasmid pXH2-1 as a template, PCR amplification of terminator TtrpC was performed with primers TtrpC-F/TtrpC-R to obtain TtrpC fragment.

以质粒pXH-106为模板,用引物pyrG/loxp-F(TtrpC)/pyrGAn-R(PgpdAtF743)进行PCR扩增黑曲霉pyrG An 基因表达元件作为筛选标记,即pyrGAn片段。Using plasmid pXH-106 as a template, PCR amplification was performed with primers pyrG/loxp-F(TtrpC)/pyrGAn-R(PgpdAtF743) to amplify the Aspergillus niger pyrG An gene expression element as a selection marker, that is, a pyrG An fragment.

Adi1片段的获得是以合成adi1基因所在质粒为模板,用引物adi1-F/adi1-R(TtrpC)。The Adi1 fragment was obtained using the plasmid where the adi1 gene was synthesized as a template, and the primers adi1-F/adi1-R (TtrpC) were used.

将所有PCR产物经1.0%琼脂糖凝胶电泳检测并进行割胶回收纯化。用融合PCR的方法将U-cadA片段、adi1片段、TtrpC片段、pyrGAn片段和D-cadA片段进行融合,并以该融合PCR的产物作为模板,以C-cadA-F/C-cadA-R作为引物扩增获得大小约为5.7 kb的∆cadA::adi1基因打靶元件,可用于在cadA位点用PcadA启动子定点表达Adi1工作。All PCR products were detected by 1.0% agarose gel electrophoresis and recovered and purified by gel tapping. U-cadA fragment, adi1 fragment, TtrpC fragment, pyrG An fragment and D-cadA fragment were fused by fusion PCR method, and the product of the fusion PCR was used as a template, and C-cadA-F/C-cadA-R was used as a template. The ΔcadA::adi1 gene targeting element with a size of about 5.7 kb was obtained as primer amplification, which can be used to express Adi1 at the cadA site using the PcadA promoter.

2)cadA位点异源表达adi1土曲霉工程菌株的构建2) Construction of an engineered strain of Aspergillus terreus heterologously expressing adi1 at the cadA site

At-∆ku80-∆pyrG是在At-∆ku80菌株基础上敲除了pyrG基因之后得到的尿嘧啶营养缺陷型工程菌株(吕雪峰等,一种提高基因打靶技术在土曲霉中应用效率的方法与应用,ZL201510275491.5)。将工程菌株At-∆ku80-∆pyrG的孢子接种至50 mL IPM-FU(添加了1 g L-1 5-氟乳清酸和10 mM尿嘧啶核苷的IPM)液体培养基中,使孢子浓度约为107个/mL,在200 rpm、32 ℃培养12-18 h。用无菌单层500目尼龙布过滤收集长出的菌丝,并用灭菌的0.6 M MgSO4溶液冲洗三次,压干后置于无菌的50 mL三角瓶中,根据菌丝重量加入适量酶解液(每1 g菌丝加入10 mL酶解液),在30 ℃、60 rpm处理1-3 h。将上述酶解后的混合液用300目尼龙布或擦镜纸过滤,收集滤液。在4℃、4000 rpm离心收集原生质体,用预冷1.0M 山梨醇溶液洗涤一次,再用预冷的STC(STC组成:1.0 M 山梨醇,50 mM Tris-HCl(pH8.0),50 mM CaCl2)洗涤一次,最后把原生质体重悬于预冷的STC中,并用STC将原生质体浓度调整为5×107个/mL,得到原生质体悬液。向150 μL该原生质体悬液中加入10 μL打靶元件∆cadA::adi1的DNA片段(约2 μg)。再加入50 μL冰浴的PSTC(PSTC 组成:40%PEG4000,1.2M山梨醇,50 mM Tris-HCl(pH8.0),50 mM CaCl2),轻轻混匀,冰浴30 min。加入1 mL常温的PSTC,混匀后室温放置20 min。然后与30 mL的PDBS顶层琼脂混合后倾注于10块PDAS平板上进行再生筛选培养,在30 ℃黑暗条件下培养5-7天。At-∆ku80-∆pyrG is a uracil auxotrophic engineered strain obtained by knocking out the pyrG gene on the basis of the At-∆ku80 strain (Lu Xuefeng et al., A method and application for improving the application efficiency of gene targeting technology in Aspergillus terreus) , ZL201510275491.5). The spores of the engineered strain At-∆ku80-∆pyrG were inoculated into 50 mL of IPM-FU (IPM supplemented with 1 g L -1 5-fluoroorotic acid and 10 mM uridine) liquid medium to make the spores. The concentration was about 10 7 cells/mL, and cultured at 200 rpm and 32 °C for 12-18 h. The grown mycelia were collected by filtration with a sterile single-layer 500-mesh nylon cloth, rinsed three times with sterile 0.6 M MgSO 4 solution, pressed dry and placed in a sterile 50 mL conical flask, and an appropriate amount of enzyme was added according to the weight of the mycelium. The solution (10 mL of enzymatic solution was added to each 1 g of mycelium) was treated at 30 °C and 60 rpm for 1-3 h. The mixed solution after enzymolysis was filtered with 300-mesh nylon cloth or lens paper, and the filtrate was collected. Protoplasts were collected by centrifugation at 4°C, 4000 rpm, washed once with pre-chilled 1.0 M sorbitol solution, and then with pre-chilled STC (STC composition: 1.0 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ) was washed once, and finally the protoplasts were resuspended in pre-cooled STC, and the protoplast concentration was adjusted to 5×10 7 /mL with STC to obtain a protoplast suspension. To 150 μL of this protoplast suspension was added 10 μL of the DNA fragment (approximately 2 μg) of the targeting element ∆cadA::adi1. Then add 50 μL of PSTC in ice bath (PSTC composition: 40% PEG4000, 1.2 M sorbitol, 50 mM Tris-HCl (pH 8.0), 50 mM CaCl 2 ), mix gently, and ice bath for 30 min. Add 1 mL of PSTC at room temperature, mix well and place at room temperature for 20 min. Then, it was mixed with 30 mL of PDBS top agar and poured onto 10 PDAS plates for regeneration screening and cultured at 30 °C in the dark for 5-7 days.

从转化筛选平板上挑取生长状况良好的转化子转接至PDA平板上,在30 ℃培养5天进行传代纯化。将稳定传代转化子的孢子接种于IPM液体培养基中,30 ℃、200 rpm培养48 h,收集菌丝提取基因组DNA,用引物U-cadA-F/D-cadA-R进行PCR验证,同时用At-∆ku80-∆pyrG菌株的基因组作为对照。阳性转化子能扩增出大小约为6.0 kb的条带,对照能扩增大小约为4.5 kb的条带。选取5个阳性转化子进行单孢分离纯化,每个转化子验证3个单孢,并再次用引物U-cadA-F/D-cadA-R进行基因组PCR验证,如图4所示,获得cadA位点整合了adi1表达元件的纯种转化子,即用于高产反式乌头酸的基因工程菌株,记为At-∆cadA::adi1。The transformants with good growth conditions were picked from the transformation screening plate and transferred to the PDA plate, and cultured at 30 °C for 5 days for passage purification. The spores of the stable passage transformants were inoculated in IPM liquid medium, cultured at 30 °C and 200 rpm for 48 h, and the hyphae were collected to extract genomic DNA, which was verified by PCR with primers U-cadA-F/D-cadA-R. The genome of the At-∆ku80-∆pyrG strain served as a control. Positive transformants can amplify a band of about 6.0 kb in size, and the control can amplify a band of about 4.5 kb in size. 5 positive transformants were selected for single spore isolation and purification, each transformant was verified for 3 single spores, and the primers U-cadA-F/D-cadA-R were used again for genomic PCR verification, as shown in Figure 4, to obtain cadA The pure-bred transformants with the adi1 expression element integrated into the site, that is, the genetically engineered strain for high production of trans-aconitic acid, were recorded as At-∆cadA::adi1.

实施例3、异源表达adi1土曲霉工程菌株的发酵产乌头酸的摇瓶分析Example 3. Shake flask analysis of aconitic acid produced by fermentation of heterologous expression of adi1 Aspergillus terreus engineering strain

分别选取3个At-∆cadA-ku80::PgpdAt-adi1(实施例1)和At-∆cadA::adi1(实施例2)的阳性转化子株,同时以At-∆cadA作为对照菌株,分别接种至土曲霉产孢斜面培养基,32 ℃培养7天获得成熟的孢子。再分别将一支斜面上的孢子接种至一瓶IPM中(500 mL三角瓶中装有55 mL培养基),接种量约为终浓度2x105个孢子/mL,每个转化子设置3个摇瓶作为平行,37 ℃,220 rpm发酵70-170 h。Three positive transformants of At-∆cadA-ku80::PgpdAt-adi1 (Example 1) and At-∆cadA::adi1 (Example 2) were selected respectively, and At-∆cadA was used as a control strain to inoculate respectively To Aspergillus terreus sporulation slant medium, cultivated at 32 °C for 7 days to obtain mature spores. Then inoculate a spore on the slant into a bottle of IPM (55 mL medium in a 500 mL conical flask), the inoculum volume is about the final concentration of 2×10 5 spores/mL, and each transformant is set with 3 shakers. Flasks were fermented for 70-170 h at 37 °C, 220 rpm as parallel.

取上清液经0.45 μm滤器过滤后进行适当稀释,用高效液相色谱分析方法(HighPerformance Liquid Chromatography, HPLC)检测有机酸含量。色谱柱:Bio-rad AminexHPX-87H, 300 mm x 7.8 mm;流动相:5 mM硫酸;流速:0.5 mL/min;柱温:55 ℃;检查温度:35 ℃;紫外检测器(210 nm)。结果如图5和图6所示,菌株At-∆cadA、At-∆cadA-ku80::PgpdAt-adi1和At-∆cadA::adi1的顺/反式乌头酸的HPLC色谱图和发酵产量统计比较分析显示在摇瓶发酵中期72 h:At-∆cadA::adi1转化子CA71(15.34g/L)的反式乌头酸产量和峰图远高于At-∆cadA-ku80::PgpdAt-adi1的转化子GA11(9.46g/L)和出发菌株At-∆cadA转化子∆cad(5.52g/L),而顺式乌头酸的产量CA71(1.48g/L) GA11(2.53g/L)和峰图却低于出发菌株At-∆cadA转化子∆cad(4.12g/L),其中, At-∆cadA::adi1的转化子CA71反式乌头酸产量最优,比较反式乌头酸/顺式乌头酸产量比例可以明显的发现在72 h发酵中期At-∆cadA::adi1转化子CA101(9:1)、CA71(10:1)及CA21(10:1)At-∆pgpdAt::adi1转化子GA11(7:2)、GA31(4:1)及GA51(2:1)都远大于出发菌株At-∆cadA转化子∆cad(4:3),并且如图6中A所示,比较转化子在发酵72 h,112 h及168 h三个时间点的反式乌头酸/顺式乌头酸产量比例可以明显的发现,转化子CA71在发酵72 h时的反式乌头酸/顺式乌头酸产量比例最高。综合以上反式乌头酸产量和反式乌头酸/顺式乌头酸产量比例结果证明引入异构酶Adi1可以实现在发酵中期72 h顺式乌头酸到反式乌头酸的转化,其中PcadA启动子引导的Adi1异构酶最优,在比例提高的同时实现了产量提高,PgpdAt启动子引导的Adi1异构酶次之,通过我们选择最优的启动子PcadA启动子引入Adi1异构酶可以提高反式乌头酸的产量及缩短发酵时间。The supernatant was filtered through a 0.45 μm filter and then appropriately diluted, and the content of organic acids was detected by high performance liquid chromatography (High Performance Liquid Chromatography, HPLC). Column: Bio-rad AminexHPX-87H, 300 mm x 7.8 mm; mobile phase: 5 mM sulfuric acid; flow rate: 0.5 mL/min; column temperature: 55 °C; inspection temperature: 35 °C; UV detector (210 nm). The results are shown in Figures 5 and 6, HPLC chromatograms and fermentation yields of cis/trans aconitic acid of strains At-∆cadA, At-∆cadA-ku80::PgpdAt-adi1 and At-∆cadA::adi1 Statistical comparative analysis showed that in the middle 72 h of shake flask fermentation: the trans-aconitic acid production and peak profile of At-∆cadA::adi1 transformant CA71 (15.34 g/L) were much higher than those of At-∆cadA-ku80::PgpdAt -adi1 transformant GA11 (9.46g/L) and the starting strain At-∆cadA transformant ∆cad (5.52g/L), while the yield of cis-aconitic acid CA71 (1.48g/L) GA11 (2.53g/L) L) and peaks were lower than the original strain At-∆cadA transformant ∆cad (4.12g/L). Among them, the transformant CA71 of At-∆cadA::adi1 produced the best trans-aconitic acid. The ratio of aconitic acid/cis-aconitic acid production can be clearly found in At-∆cadA::adi1 transformants CA101 (9:1), CA71 (10:1) and CA21 (10:1) At-∆cadA::adi1 in the middle of 72 h fermentation. The -∆pgpdAt::adi1 transformants GA11 (7:2), GA31 (4:1) and GA51 (2:1) are all much larger than the starting strain At-∆cadA transformant ∆cad (4:3), and are shown in the figure As shown in A in 6, comparing the production ratio of trans-aconitic acid/cis-aconitic acid at three time points of fermentation at 72 h, 112 h and 168 h, it can be clearly found that the transformant CA71 was fermented at 72 h. The ratio of trans-aconitic acid/cis-aconitic acid production was the highest. Based on the above results of trans-aconitic acid production and trans-aconitic acid/cis-aconitic acid production ratio, it is proved that the introduction of isomerase Adi1 can realize the conversion of cis-aconitic acid to trans-aconitic acid in 72 h in the middle stage of fermentation, Among them, the Adi1 isomerase guided by the P cadA promoter is the best, and the yield can be increased while the ratio is increased, and the Adi1 isomerase guided by the P gpdAt promoter is the second. Adi1 isomerase can increase the production of trans-aconitic acid and shorten the fermentation time.

以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above descriptions are merely examples of the present application, and are not intended to limit the present application. Various modifications and variations of this application are possible for those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the scope of the claims of this application.

本发明涉及的基因及氨基酸序列:Gene and amino acid sequence involved in the present invention:

SEQ ID NO.1顺乌头酸脱羧酶CadASEQ ID NO.1 Cisaconitic acid decarboxylase CadA

MTKQSADSNAKSGVTSEICHWASNLATDDIPSDVLERAKYLILDGIACAWVGARVPWSEKYVQATMSFEPPGACRVIGYGQKLGPVAAAMTNSAFIQATELDDYHSEAPLHSASIVLPAVFAASEVLAEQGKTISGIDVILAAIVGFESGPRIGKAIYGSDLLNNGWHCGAVYGAPAGALATGKLLGLTPDSMEDALGIACTQACGLMSAQYGGMVKRVQHGFAARNGLLGGLLAHGGYEAMKGVLERSYGGFLKMFTKGNGREPPYKEEEVVAGLGSFWHTFTIRIKLYACCGLVHGPVEAIENLQGRYPELLNRANLSNIRHVHVQLSTASNSHCGWIPEERPISSIAGQMSVAYILAVQLVDQQCLLSQFSEFDDNLERPEVWDLARKVTSSQSEEFDQDGNCLSAGRVRIEFNDGSSITESVEKPLGVKEPMPNERILHKYRTLAGSVTDESRVKEIEDLVLGLDRLTDISPLLELLNCPVKSPLVMTKQSADSNAKSGVTSEICHWASNLATDDIPSDVLERAKYLILDGIACAWVGARVPWSEKYVQATMSFEPPGACRVIGYGQKLGPVAAAMTNSAFIQATELDDYHSEAPLHSASIVLPAVFAASEVLAEQGKTISGIDVILAAIVGFESGPRIGKAIYGSDLLNNGWHCGAVYGAPAGALATGKLLGLTPDSMEDALGIACTQACGLMSAQYGGMVKRVQHGFAARNGLLGGLLAHGGYEAMKGVLERSYGGFLKMFTKGNGREPPYKEEEVVAGLGSFWHTFTIRIKLYACCGLVHGPVEAIENLQGRYPELLNRANLSNIRHVHVQLSTASNSHCGWIPEERPISSIAGQMSVAYILAVQLVDQQCLLSQFSEFDDNLERPEVWDLARKVTSSQSEEFDQDGNCLSAGRVRIEFNDGSSITESVEKPLGVKEPMPNERILHKYRTLAGSVTDESRVKEIEDLVLGLDRLTDISPLLELLNCPVKSPLV

SEQ ID NO.2SEQ ID NO.2

序列特征:Sequence features:

长度:443aaLength: 443aa

分子类型:氨基酸序列Molecular Type: Amino Acid Sequence

最初来源:玉蜀黍黑粉菌(Ustilago maydisOriginal Source: Ustilago maydis

特异性名称:乌头酸异构酶Adi1Specificity name: aconitate isomerase Adi1

MLHPIDTTIYRAGTSRGLYFLASDLPAEPSERDAALISIMGSGHPLQIDGMGGGNSLTSKVAIVSASTQRSEFDVDYLFCQVGITERFVDTAPNCGNLMSGVAAFAIERGLVQPHPSDTTCLVRIFNLNSRQASELVIPVYNGRVHYDDIDDMHMQRPSARVGLRFLDTVGSCTGKLLPTGNASDWIDGLKVSIIDSAVPVVFIRQHDVGITGSEAPATLNANTALLDRLERVRLEAGRRMGLGDVSGSVVPKLSLIGPGTETTTFTARYFTPKACHNAHAVTGAICTAGAAYIDGSVVCEILSSRASACSASQRRISIEHPSGVLEVGLVPPENAAQSLVDVAVVERSIALIAHARVYYTTPDRRRSYDSPLTSPSTPADTHNLFDAAYRPVIQPSDTDVEAPHMLALENKEQCVSRCDTALHHIVASYGASDAHASDRSLSMLHPIDTTIYRAGTSRGLYFLASDLPAEPSERDAALISIMGSGHPLQIDGMGGGNSLTSKVAIVSASTQRSEFDVDYLFCQVGITERFVDTAPNCGNLMSGVAAFAIERGLVQPHPSDTTCLVRIFNLNSRQASELVIPVYNGRVHYDDIDDMHMQRPSARVGLRFLDTVGSCTGKLLPTGNASDWIDGLKVSIIDSAVPVVFIRQHDVGITGSEAPATLNANTALLDRLERVRLEAGRRMGLGDVSGSVVPKLSLIGPGTETTTFTARYFTPKACHNAHAVTGAICTAGAAYIDGSVVCEILSSRASACSASQRRISIEHPSGVLEVGLVPPENAAQSLVDVAVVERSIALIAHARVYYTTPDRRRSYDSPLTSPSTPADTHNLFDAAYRPVIQPSDTDVEAPHMLALENKEQCVSRCDTALHHIVASYGASDAHASDRSLS

SEQ ID NO.3SEQ ID NO.3

序列特征:Sequence features:

长度:1332bpLength: 1332bp

分子类型:DNA序列Molecular Type: DNA Sequence

最初来源:玉蜀黍黑粉菌(Ustilago maydisOriginal Source: Ustilago maydis

特异性名称:乌头酸异构酶adi1基因Specificity name: aconitate isomerase adi1 gene

ATGCTGCACCCCATCGACACCACCATCTACCGCGCCGGCACCAGCCGCGGTCTGTACTTCCTGGCCTCCGACCTGCCCGCCGAGCCTTCTGAGCGCGACGCTGCTCTGATCTCCATCATGGGCTCCGGCCACCCCCTGCAAATCGACGGCATGGGCGGCGGCAACTCCCTGACCTCCAAGGTCGCCATCGTCTCCGCCTCCACCCAGCGCAGCGAGTTCGACGTCGACTACCTGTTCTGCCAGGTCGGCATCACCGAGCGCTTCGTCGACACCGCCCCCAACTGCGGCAACCTGATGTCCGGCGTCGCCGCCTTCGCCATCGAGCGTGGTCTGGTCCAGCCCCACCCCTCCGACACCACCTGCCTGGTCCGCATCTTCAACCTGAACTCCCGCCAGGCCTCCGAGCTGGTCATCCCCGTCTACAACGGCCGCGTCCACTACGACGACATCGACGACATGCACATGCAGCGCCCCAGCGCCCGCGTCGGTTTGCGTTTCCTGGACACCGTCGGCAGCTGCACCGGCAAGCTGCTGCCCACCGGCAACGCCAGCGACTGGATCGACGGCCTGAAGGTCAGCATCATCGACTCCGCCGTCCCCGTCGTCTTCATCCGCCAGCACGACGTCGGCATCACGGGCAGCGAGGCCCCTGCTACCCTGAACGCCAACACCGCCCTGCTGGACCGCCTGGAGCGCGTTCGTCTGGAGGCCGGTCGCCGTATGGGCCTGGGTGACGTCTCCGGCAGCGTCGTCCCCAAGCTGAGCCTGATCGGCCCCGGCACCGAGACCACCACCTTCACCGCCCGCTACTTCACCCCCAAGGCCTGCCACAACGCCCACGCCGTCACCGGTGCCATCTGCACCGCCGGTGCCGCTTACATCGACGGCAGCGTCGTGTGCGAGATCCTGTCCAGCCGCGCCTCCGCCTGCTCCGCTTCTCAGCGTCGCATCAGCATCGAGCACCCCAGCGGCGTCCTGGAGGTCGGTCTGGTCCCCCCTGAGAACGCCGCCCAGTCCCTGGTCGACGTCGCCGTTGTCGAGCGCAGCATCGCCCTGATCGCCCACGCCCGTGTCTACTACACCACCCCCGACCGCCGCCGCTCCTACGATAGCCCTCTGACCTCCCCCTCCACCCCCGCTGACACCCACAACCTGTTCGACGCCGCCTACCGCCCCGTCATCCAGCCTAGCGACACCGACGTCGAGGCCCCCCACATGCTGGCCCTGGAGAACAAGGAGCAGTGCGTCTCCCGCTGCGACACCGCCCTGCACCACATCGTCGCCTCCTACGGCGCCAGCGACGCCCATGCTAGCGACCGTAGCCTGTCCTAAATGCTGCACCCCATCGACACCACCATCTACCGCGCCGGCACCAGCCGCGGTCTGTACTTCCTGGCCTCCGACCTGCCCGCCGAGCCTTCTGAGCGCGACGCTGCTCTGATCTCCATCATGGGCTCCGGCCACCCCCTGCAAATCGACGGCATGGGCGGCGGCAACTCCCTGACCTCCAAGGTCGCCATCGTCTCCGCCTCCACCCAGCGCAGCGAGTTCGACGTCGACTACCTGTTCTGCCAGGTCGGCATCACCGAGCGCTTCGTCGACACCGCCCCCAACTGCGGCAACCTGATGTCCGGCGTCGCCGCCTTCGCCATCGAGCGTGGTCTGGTCCAGCCCCACCCCTCCGACACCACCTGCCTGGTCCGCATCTTCAACCTGAACTCCCGCCAGGCCTCCGAGCTGGTCATCCCCGTCTACAACGGCCGCGTCCACTACGACGACATCGACGACATGCACATGCAGCGCCCCAGCGCCCGCGTCGGTTTGCGTTTCCTGGACACCGTCGGCAGCTGCACCGGCAAGCTGCTGCCCACCGGCAACGCCAGCGACTGGATCGACGGCCTGAAGGTCAGCATCATCGACTCCGCCGTCCCCGTCGTCTTCATCCGCCAGCACGACGTCGGCATCACGGGCAGCGAGGCCCCTGCTACCCTGAACGCCAACACCGCCCTGCTGGACCGCCTGGAGCGCGTTCGTCTGGAGGCCGGTCGCCGTATGGGCCTGGGTGACGTCTCCGGCAGCGTCGTCCCCAAGCTGAGCCTGATCGGCCCCGGCACCGAGACCACCACCTTCACCGCCCGCTACTTCACCCCCAAGGCCTGCCACAACGCCCACGCCGTCACCGGTGCCATCTGCACCGCCGGTGCCGCTTACATCGACGGCAGCGTCGTGTGCGAGATCCTGTCCAGCCGCGCCTCCGCCTGCTCCGCTTCTCAGCGTCGCATCAGCATCGAGCACCCCAGCGGCGTCCTGGAGGTCGGTCTGGTCCCCCCTG AGAACGCCGCCCAGTCCCTGGTCGACGTCGCCGTTGTCGAGCGCAGCATCGCCCTGATCGCCCACGCCCGTGTCTACTACACCACCCCCGACCGCCGCCGCTCCTACGATAGCCCTCTGACCTCCCCCTCCACCCCCGCTGACACCCACAACCTGTTCGACGCCGCCTACCGCCCCGTCATCCAGCCTAGCGACACCGACGTCGAGGCCCCCCACATGCTGGCCCTGGAGAACAAGGAGCAGTGCGTCTCCCGCTGCGACACCGCCCTGCACCACATCGTCGCCTCCTACGGCGCCAGCGACGCCCATGCTAGCGACCGTAGCCTGTCCTAA

SEQ ID NO.4编码顺乌头酸脱羧酶CadA的基因SEQ ID NO.4 Gene encoding cis-aconitic acid decarboxylase CadA

ATGACCAAACAATCTGCGGACAGCAACGCAAAGTCAGGAGTTACGTCCGAAATATGTCATTGGGCATCCAACCTGGCCACTGACGACATCCCTTCGGACGTATTAGAAAGAGCAAAATACCTTATTCTCGACGGTATTGCATGTGCCTGGGTTGGTGCAAGAGTGCCTTGGTCAGAGAAGTATGTTCAGGCAACGATGAGCTTTGAGCCGCCGGGGGCCTGCAGGGTGATTGGATATGGACAGGTAAATTTTATTCACTCTAGACGGTCCACAAAGTATACTGACGATCCTTCGTATAGAAACTGGGGCCTGTTGCAGCAGCCATGACCAATTCCGCTTTCATACAGGCTACGGAGCTTGACGACTACCACAGCGAAGCCCCCCTACACTCTGCAAGCATTGTCCTTCCTGCGGTCTTTGCAGCAAGTGAGGTCTTAGCCGAGCAGGGCAAAACAATTTCCGGTATAGATGTTATTCTAGCCGCCATTGTGGGGTTTGAATCTGGCCCACGGATCGGCAAAGCAATCTACGGATCGGACCTCTTGAACAACGGCTGGCATTGTGGAGCTGTGTATGGCGCTCCAGCCGGTGCGCTGGCCACAGGAAAGCTCCTCGGTCTAACTCCAGACTCCATGGAAGATGCTCTCGGAATTGCGTGCACGCAAGCCTGTGGTTTAATGTCGGCGCAATACGGAGGCATGGTAAAGCGTGTGCAACACGGATTCGCAGCGCGTAATGGTCTTCTTGGGGGACTGTTGGCCCATGGTGGGTACGAGGCAATGAAAGGTGTCCTGGAGAGATCTTACGGCGGTTTCCTCAAGATGTTCACCAAGGGCAACGGCAGAGAGCCTCCCTACAAAGAGGAGGAAGTGGTGGCTGGTCTCGGTTCATTCTGGCATACCTTTACTATTCGCATCAAGCTCTATGCCTGCTGCGGACTTGTCCATGGTCCAGTCGAGGCTATCGAAAACCTTCAGGGGAGATACCCCGAGCTCTTGAATAGAGCCAACCTCAGCAACATTCGCCATGTTCATGTACAGCTTTCAACGGCCTCGAACAGTCACTGTGGATGGATACCAGAGGAGAGACCCATCAGTTCAATCGCAGGGCAGATGAGTGTCGCATACATTCTCGCCGTCCAGCTGGTCGACCAGCAATGTCTTTTGTCCCAGTTTTCTGAGTTTGATGACAACCTGGAGAGGCCAGAAGTTTGGGATCTGGCCAGGAAGGTTACTTCATCTCAAAGCGAAGAGTTTGATCAAGACGGCAACTGTCTCAGTGCGGGTCGCGTGAGGATTGAGTTCAACGATGGTTCTTCTATTACGGAAAGTGTCGAGAAGCCTCTTGGTGTCAAAGAGCCCATGCCAAACGAACGGATTCTCCACAAATACCGAACCCTTGCTGGTAGCGTGACGGACGAATCCCGGGTGAAAGAGATTGAGGATCTTGTCCTCGGCCTGGACAGGCTCACCGACATTAGCCCATTGCTGGAGCTGCTGAATTGCCCCGTGAAATCGCCACTGGTATAAATGACCAAACAATCTGCGGACAGCAACGCAAAGTCAGGAGTTACGTCCGAAATATGTCATTGGGCATCCAACCTGGCCACTGACGACATCCCTTCGGACGTATTAGAAAGAGCAAAATACCTTATTCTCGACGGTATTGCATGTGCCTGGGTTGGTGCAAGAGTGCCTTGGTCAGAGAAGTATGTTCAGGCAACGATGAGCTTTGAGCCGCCGGGGGCCTGCAGGGTGATTGGATATGGACAGGTAAATTTTATTCACTCTAGACGGTCCACAAAGTATACTGACGATCCTTCGTATAGAAACTGGGGCCTGTTGCAGCAGCCATGACCAATTCCGCTTTCATACAGGCTACGGAGCTTGACGACTACCACAGCGAAGCCCCCCTACACTCTGCAAGCATTGTCCTTCCTGCGGTCTTTGCAGCAAGTGAGGTCTTAGCCGAGCAGGGCAAAACAATTTCCGGTATAGATGTTATTCTAGCCGCCATTGTGGGGTTTGAATCTGGCCCACGGATCGGCAAAGCAATCTACGGATCGGACCTCTTGAACAACGGCTGGCATTGTGGAGCTGTGTATGGCGCTCCAGCCGGTGCGCTGGCCACAGGAAAGCTCCTCGGTCTAACTCCAGACTCCATGGAAGATGCTCTCGGAATTGCGTGCACGCAAGCCTGTGGTTTAATGTCGGCGCAATACGGAGGCATGGTAAAGCGTGTGCAACACGGATTCGCAGCGCGTAATGGTCTTCTTGGGGGACTGTTGGCCCATGGTGGGTACGAGGCAATGAAAGGTGTCCTGGAGAGATCTTACGGCGGTTTCCTCAAGATGTTCACCAAGGGCAACGGCAGAGAGCCTCCCTACAAAGAGGAGGAAGTGGTGGCTGGTCTCGGTTCATTCTGGCATACCTTTACTATTCGCATCAAGCTCTATGCCTGCTGCGGACTTGTCCATGGTCCAGTCGAGGCTATCGAAAACCTTCAGGGGAGATACCCCGAGCTCTTGAA TAGAGCCAACCTCAGCAACATTCGCCATGTTCATGTACAGCTTTCAACGGCCTCGAACAGTCACTGTGGATGGATACCAGAGGAGAGACCCATCAGTTCAATCGCAGGGCAGATGAGTGTCGCATACATTCTCGCCGTCCAGCTGGTCGACCAGCAATGTCTTTTGTCCCAGTTTTCTGAGTTTGATGACAACCTGGAGAGGCCAGAAGTTTGGGATCTGGCCAGGAAGGTTACTTCATCTCAAAGCGAAGAGTTTGATCAAGACGGCAACTGTCTCAGTGCGGGTCGCGTGAGGATTGAGTTCAACGATGGTTCTTCTATTACGGAAAGTGTCGAGAAGCCTCTTGGTGTCAAAGAGCCCATGCCAAACGAACGGATTCTCCACAAATACCGAACCCTTGCTGGTAGCGTGACGGACGAATCCCGGGTGAAAGAGATTGAGGATCTTGTCCTCGGCCTGGACAGGCTCACCGACATTAGCCCATTGCTGGAGCTGCTGAATTGCCCCGTGAAATCGCCACTGGTATAA

SEQUENCE LISTINGSEQUENCE LISTING

<110> 中国科学院青岛生物能源与过程研究所<110> Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences

山东鲁抗舍里乐药业有限公司Shandong Lukang Sherile Pharmaceutical Co., Ltd.

<120> 一种高产反式乌头酸的重组土曲霉菌株及其构建方法与应用<120> A recombinant Aspergillus terreus strain with high-yield trans-aconitic acid and its construction method and application

<130><130>

<160> 4<160> 4

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 490<211> 490

<212> PRT<212> PRT

<213> 顺乌头酸脱羧酶CadA<213> Cisaconitic acid decarboxylase CadA

<400> 1<400> 1

Met Thr Lys Gln Ser Ala Asp Ser Asn Ala Lys Ser Gly Val Thr SerMet Thr Lys Gln Ser Ala Asp Ser Asn Ala Lys Ser Gly Val Thr Ser

1 5 10 151 5 10 15

Glu Ile Cys His Trp Ala Ser Asn Leu Ala Thr Asp Asp Ile Pro SerGlu Ile Cys His Trp Ala Ser Asn Leu Ala Thr Asp Asp Ile Pro Ser

20 25 30 20 25 30

Asp Val Leu Glu Arg Ala Lys Tyr Leu Ile Leu Asp Gly Ile Ala CysAsp Val Leu Glu Arg Ala Lys Tyr Leu Ile Leu Asp Gly Ile Ala Cys

35 40 45 35 40 45

Ala Trp Val Gly Ala Arg Val Pro Trp Ser Glu Lys Tyr Val Gln AlaAla Trp Val Gly Ala Arg Val Pro Trp Ser Glu Lys Tyr Val Gln Ala

50 55 60 50 55 60

Thr Met Ser Phe Glu Pro Pro Gly Ala Cys Arg Val Ile Gly Tyr GlyThr Met Ser Phe Glu Pro Pro Gly Ala Cys Arg Val Ile Gly Tyr Gly

65 70 75 8065 70 75 80

Gln Lys Leu Gly Pro Val Ala Ala Ala Met Thr Asn Ser Ala Phe IleGln Lys Leu Gly Pro Val Ala Ala Ala Met Thr Asn Ser Ala Phe Ile

85 90 95 85 90 95

Gln Ala Thr Glu Leu Asp Asp Tyr His Ser Glu Ala Pro Leu His SerGln Ala Thr Glu Leu Asp Asp Tyr His Ser Glu Ala Pro Leu His Ser

100 105 110 100 105 110

Ala Ser Ile Val Leu Pro Ala Val Phe Ala Ala Ser Glu Val Leu AlaAla Ser Ile Val Leu Pro Ala Val Phe Ala Ala Ser Glu Val Leu Ala

115 120 125 115 120 125

Glu Gln Gly Lys Thr Ile Ser Gly Ile Asp Val Ile Leu Ala Ala IleGlu Gln Gly Lys Thr Ile Ser Gly Ile Asp Val Ile Leu Ala Ala Ile

130 135 140 130 135 140

Val Gly Phe Glu Ser Gly Pro Arg Ile Gly Lys Ala Ile Tyr Gly SerVal Gly Phe Glu Ser Gly Pro Arg Ile Gly Lys Ala Ile Tyr Gly Ser

145 150 155 160145 150 155 160

Asp Leu Leu Asn Asn Gly Trp His Cys Gly Ala Val Tyr Gly Ala ProAsp Leu Leu Asn Asn Gly Trp His Cys Gly Ala Val Tyr Gly Ala Pro

165 170 175 165 170 175

Ala Gly Ala Leu Ala Thr Gly Lys Leu Leu Gly Leu Thr Pro Asp SerAla Gly Ala Leu Ala Thr Gly Lys Leu Leu Gly Leu Thr Pro Asp Ser

180 185 190 180 185 190

Met Glu Asp Ala Leu Gly Ile Ala Cys Thr Gln Ala Cys Gly Leu MetMet Glu Asp Ala Leu Gly Ile Ala Cys Thr Gln Ala Cys Gly Leu Met

195 200 205 195 200 205

Ser Ala Gln Tyr Gly Gly Met Val Lys Arg Val Gln His Gly Phe AlaSer Ala Gln Tyr Gly Gly Met Val Lys Arg Val Gln His Gly Phe Ala

210 215 220 210 215 220

Ala Arg Asn Gly Leu Leu Gly Gly Leu Leu Ala His Gly Gly Tyr GluAla Arg Asn Gly Leu Leu Gly Gly Leu Leu Ala His Gly Gly Tyr Glu

225 230 235 240225 230 235 240

Ala Met Lys Gly Val Leu Glu Arg Ser Tyr Gly Gly Phe Leu Lys MetAla Met Lys Gly Val Leu Glu Arg Ser Tyr Gly Gly Phe Leu Lys Met

245 250 255 245 250 255

Phe Thr Lys Gly Asn Gly Arg Glu Pro Pro Tyr Lys Glu Glu Glu ValPhe Thr Lys Gly Asn Gly Arg Glu Pro Pro Tyr Lys Glu Glu Glu Val

260 265 270 260 265 270

Val Ala Gly Leu Gly Ser Phe Trp His Thr Phe Thr Ile Arg Ile LysVal Ala Gly Leu Gly Ser Phe Trp His Thr Phe Thr Ile Arg Ile Lys

275 280 285 275 280 285

Leu Tyr Ala Cys Cys Gly Leu Val His Gly Pro Val Glu Ala Ile GluLeu Tyr Ala Cys Cys Gly Leu Val His Gly Pro Val Glu Ala Ile Glu

290 295 300 290 295 300

Asn Leu Gln Gly Arg Tyr Pro Glu Leu Leu Asn Arg Ala Asn Leu SerAsn Leu Gln Gly Arg Tyr Pro Glu Leu Leu Asn Arg Ala Asn Leu Ser

305 310 315 320305 310 315 320

Asn Ile Arg His Val His Val Gln Leu Ser Thr Ala Ser Asn Ser HisAsn Ile Arg His Val His Val Gln Leu Ser Thr Ala Ser Asn Ser His

325 330 335 325 330 335

Cys Gly Trp Ile Pro Glu Glu Arg Pro Ile Ser Ser Ile Ala Gly GlnCys Gly Trp Ile Pro Glu Glu Arg Pro Ile Ser Ser Ile Ala Gly Gln

340 345 350 340 345 350

Met Ser Val Ala Tyr Ile Leu Ala Val Gln Leu Val Asp Gln Gln CysMet Ser Val Ala Tyr Ile Leu Ala Val Gln Leu Val Asp Gln Gln Cys

355 360 365 355 360 365

Leu Leu Ser Gln Phe Ser Glu Phe Asp Asp Asn Leu Glu Arg Pro GluLeu Leu Ser Gln Phe Ser Glu Phe Asp Asp Asn Leu Glu Arg Pro Glu

370 375 380 370 375 380

Val Trp Asp Leu Ala Arg Lys Val Thr Ser Ser Gln Ser Glu Glu PheVal Trp Asp Leu Ala Arg Lys Val Thr Ser Ser Gln Ser Glu Glu Phe

385 390 395 400385 390 395 400

Asp Gln Asp Gly Asn Cys Leu Ser Ala Gly Arg Val Arg Ile Glu PheAsp Gln Asp Gly Asn Cys Leu Ser Ala Gly Arg Val Arg Ile Glu Phe

405 410 415 405 410 415

Asn Asp Gly Ser Ser Ile Thr Glu Ser Val Glu Lys Pro Leu Gly ValAsn Asp Gly Ser Ser Ile Thr Glu Ser Val Glu Lys Pro Leu Gly Val

420 425 430 420 425 430

Lys Glu Pro Met Pro Asn Glu Arg Ile Leu His Lys Tyr Arg Thr LeuLys Glu Pro Met Pro Asn Glu Arg Ile Leu His Lys Tyr Arg Thr Leu

435 440 445 435 440 445

Ala Gly Ser Val Thr Asp Glu Ser Arg Val Lys Glu Ile Glu Asp LeuAla Gly Ser Val Thr Asp Glu Ser Arg Val Lys Glu Ile Glu Asp Leu

450 455 460 450 455 460

Val Leu Gly Leu Asp Arg Leu Thr Asp Ile Ser Pro Leu Leu Glu LeuVal Leu Gly Leu Asp Arg Leu Thr Asp Ile Ser Pro Leu Leu Glu Leu

465 470 475 480465 470 475 480

Leu Asn Cys Pro Val Lys Ser Pro Leu ValLeu Asn Cys Pro Val Lys Ser Pro Leu Val

485 490 485 490

<210> 2<210> 2

<211> 443<211> 443

<212> PRT<212> PRT

<213> 乌头酸异构酶Adi1<213> aconitate isomerase Adi1

<400> 2<400> 2

Met Leu His Pro Ile Asp Thr Thr Ile Tyr Arg Ala Gly Thr Ser ArgMet Leu His Pro Ile Asp Thr Thr Ile Tyr Arg Ala Gly Thr Ser Arg

1 5 10 151 5 10 15

Gly Leu Tyr Phe Leu Ala Ser Asp Leu Pro Ala Glu Pro Ser Glu ArgGly Leu Tyr Phe Leu Ala Ser Asp Leu Pro Ala Glu Pro Ser Glu Arg

20 25 30 20 25 30

Asp Ala Ala Leu Ile Ser Ile Met Gly Ser Gly His Pro Leu Gln IleAsp Ala Ala Leu Ile Ser Ile Met Gly Ser Gly His Pro Leu Gln Ile

35 40 45 35 40 45

Asp Gly Met Gly Gly Gly Asn Ser Leu Thr Ser Lys Val Ala Ile ValAsp Gly Met Gly Gly Gly Asn Ser Leu Thr Ser Lys Val Ala Ile Val

50 55 60 50 55 60

Ser Ala Ser Thr Gln Arg Ser Glu Phe Asp Val Asp Tyr Leu Phe CysSer Ala Ser Thr Gln Arg Ser Glu Phe Asp Val Asp Tyr Leu Phe Cys

65 70 75 8065 70 75 80

Gln Val Gly Ile Thr Glu Arg Phe Val Asp Thr Ala Pro Asn Cys GlyGln Val Gly Ile Thr Glu Arg Phe Val Asp Thr Ala Pro Asn Cys Gly

85 90 95 85 90 95

Asn Leu Met Ser Gly Val Ala Ala Phe Ala Ile Glu Arg Gly Leu ValAsn Leu Met Ser Gly Val Ala Ala Phe Ala Ile Glu Arg Gly Leu Val

100 105 110 100 105 110

Gln Pro His Pro Ser Asp Thr Thr Cys Leu Val Arg Ile Phe Asn LeuGln Pro His Pro Ser Asp Thr Thr Cys Leu Val Arg Ile Phe Asn Leu

115 120 125 115 120 125

Asn Ser Arg Gln Ala Ser Glu Leu Val Ile Pro Val Tyr Asn Gly ArgAsn Ser Arg Gln Ala Ser Glu Leu Val Ile Pro Val Tyr Asn Gly Arg

130 135 140 130 135 140

Val His Tyr Asp Asp Ile Asp Asp Met His Met Gln Arg Pro Ser AlaVal His Tyr Asp Asp Ile Asp Asp Met His Met Gln Arg Pro Ser Ala

145 150 155 160145 150 155 160

Arg Val Gly Leu Arg Phe Leu Asp Thr Val Gly Ser Cys Thr Gly LysArg Val Gly Leu Arg Phe Leu Asp Thr Val Gly Ser Cys Thr Gly Lys

165 170 175 165 170 175

Leu Leu Pro Thr Gly Asn Ala Ser Asp Trp Ile Asp Gly Leu Lys ValLeu Leu Pro Thr Gly Asn Ala Ser Asp Trp Ile Asp Gly Leu Lys Val

180 185 190 180 185 190

Ser Ile Ile Asp Ser Ala Val Pro Val Val Phe Ile Arg Gln His AspSer Ile Ile Asp Ser Ala Val Pro Val Val Phe Ile Arg Gln His Asp

195 200 205 195 200 205

Val Gly Ile Thr Gly Ser Glu Ala Pro Ala Thr Leu Asn Ala Asn ThrVal Gly Ile Thr Gly Ser Glu Ala Pro Ala Thr Leu Asn Ala Asn Thr

210 215 220 210 215 220

Ala Leu Leu Asp Arg Leu Glu Arg Val Arg Leu Glu Ala Gly Arg ArgAla Leu Leu Asp Arg Leu Glu Arg Val Arg Leu Glu Ala Gly Arg Arg

225 230 235 240225 230 235 240

Met Gly Leu Gly Asp Val Ser Gly Ser Val Val Pro Lys Leu Ser LeuMet Gly Leu Gly Asp Val Ser Gly Ser Val Val Pro Lys Leu Ser Leu

245 250 255 245 250 255

Ile Gly Pro Gly Thr Glu Thr Thr Thr Phe Thr Ala Arg Tyr Phe ThrIle Gly Pro Gly Thr Glu Thr Thr Thr Phe Thr Ala Arg Tyr Phe Thr

260 265 270 260 265 270

Pro Lys Ala Cys His Asn Ala His Ala Val Thr Gly Ala Ile Cys ThrPro Lys Ala Cys His Asn Ala His Ala Val Thr Gly Ala Ile Cys Thr

275 280 285 275 280 285

Ala Gly Ala Ala Tyr Ile Asp Gly Ser Val Val Cys Glu Ile Leu SerAla Gly Ala Ala Tyr Ile Asp Gly Ser Val Val Cys Glu Ile Leu Ser

290 295 300 290 295 300

Ser Arg Ala Ser Ala Cys Ser Ala Ser Gln Arg Arg Ile Ser Ile GluSer Arg Ala Ser Ala Cys Ser Ala Ser Gln Arg Arg Ile Ser Ile Glu

305 310 315 320305 310 315 320

His Pro Ser Gly Val Leu Glu Val Gly Leu Val Pro Pro Glu Asn AlaHis Pro Ser Gly Val Leu Glu Val Gly Leu Val Pro Pro Glu Asn Ala

325 330 335 325 330 335

Ala Gln Ser Leu Val Asp Val Ala Val Val Glu Arg Ser Ile Ala LeuAla Gln Ser Leu Val Asp Val Ala Val Val Glu Arg Ser Ile Ala Leu

340 345 350 340 345 350

Ile Ala His Ala Arg Val Tyr Tyr Thr Thr Pro Asp Arg Arg Arg SerIle Ala His Ala Arg Val Tyr Tyr Thr Thr Pro Asp Arg Arg Arg Ser

355 360 365 355 360 365

Tyr Asp Ser Pro Leu Thr Ser Pro Ser Thr Pro Ala Asp Thr His AsnTyr Asp Ser Pro Leu Thr Ser Pro Ser Thr Pro Ala Asp Thr His Asn

370 375 380 370 375 380

Leu Phe Asp Ala Ala Tyr Arg Pro Val Ile Gln Pro Ser Asp Thr AspLeu Phe Asp Ala Ala Tyr Arg Pro Val Ile Gln Pro Ser Asp Thr Asp

385 390 395 400385 390 395 400

Val Glu Ala Pro His Met Leu Ala Leu Glu Asn Lys Glu Gln Cys ValVal Glu Ala Pro His Met Leu Ala Leu Glu Asn Lys Glu Gln Cys Val

405 410 415 405 410 415

Ser Arg Cys Asp Thr Ala Leu His His Ile Val Ala Ser Tyr Gly AlaSer Arg Cys Asp Thr Ala Leu His His Ile Val Ala Ser Tyr Gly Ala

420 425 430 420 425 430

Ser Asp Ala His Ala Ser Asp Arg Ser Leu SerSer Asp Ala His Ala Ser Asp Arg Ser Leu Ser

435 440 435 440

<210> 3<210> 3

<211> 1332<211> 1332

<212> DNA<212> DNA

<213> 乌头酸异构酶adi1基因<213> aconitate isomerase adi1 gene

<400> 3<400> 3

atgctgcacc ccatcgacac caccatctac cgcgccggca ccagccgcgg tctgtacttc 60atgctgcacc ccatcgacac caccatctac cgcgccggca ccagccgcgg tctgtacttc 60

ctggcctccg acctgcccgc cgagccttct gagcgcgacg ctgctctgat ctccatcatg 120ctggcctccg acctgcccgc cgagccttct gagcgcgacg ctgctctgat ctccatcatg 120

ggctccggcc accccctgca aatcgacggc atgggcggcg gcaactccct gacctccaag 180ggctccggcc accccctgca aatcgacggc atgggcggcg gcaactccct gacctccaag 180

gtcgccatcg tctccgcctc cacccagcgc agcgagttcg acgtcgacta cctgttctgc 240gtcgccatcg tctccgcctc cacccagcgc agcgagttcg acgtcgacta cctgttctgc 240

caggtcggca tcaccgagcg cttcgtcgac accgccccca actgcggcaa cctgatgtcc 300caggtcggca tcaccgagcg cttcgtcgac accgccccca actgcggcaa cctgatgtcc 300

ggcgtcgccg ccttcgccat cgagcgtggt ctggtccagc cccacccctc cgacaccacc 360ggcgtcgccg ccttcgccat cgagcgtggt ctggtccagc cccacccctc cgacaccacc 360

tgcctggtcc gcatcttcaa cctgaactcc cgccaggcct ccgagctggt catccccgtc 420tgcctggtcc gcatcttcaa cctgaactcc cgccaggcct ccgagctggt catccccgtc 420

tacaacggcc gcgtccacta cgacgacatc gacgacatgc acatgcagcg ccccagcgcc 480tacaacggcc gcgtccacta cgacgacatc gacgacatgc acatgcagcg ccccagcgcc 480

cgcgtcggtt tgcgtttcct ggacaccgtc ggcagctgca ccggcaagct gctgcccacc 540cgcgtcggtt tgcgtttcct ggacaccgtc ggcagctgca ccggcaagct gctgcccacc 540

ggcaacgcca gcgactggat cgacggcctg aaggtcagca tcatcgactc cgccgtcccc 600ggcaacgcca gcgactggat cgacggcctg aaggtcagca tcatcgactc cgccgtcccc 600

gtcgtcttca tccgccagca cgacgtcggc atcacgggca gcgaggcccc tgctaccctg 660gtcgtcttca tccgccagca cgacgtcggc atcacgggca gcgaggcccc tgctaccctg 660

aacgccaaca ccgccctgct ggaccgcctg gagcgcgttc gtctggaggc cggtcgccgt 720aacgccaaca ccgccctgct ggaccgcctg gagcgcgttc gtctggaggc cggtcgccgt 720

atgggcctgg gtgacgtctc cggcagcgtc gtccccaagc tgagcctgat cggccccggc 780atgggcctgg gtgacgtctc cggcagcgtc gtccccaagc tgagcctgat cggccccggc 780

accgagacca ccaccttcac cgcccgctac ttcaccccca aggcctgcca caacgcccac 840accgagacca ccaccttcac cgcccgctac ttcaccccca aggcctgcca caacgcccac 840

gccgtcaccg gtgccatctg caccgccggt gccgcttaca tcgacggcag cgtcgtgtgc 900gccgtcaccg gtgccatctg caccgccggt gccgcttaca tcgacggcag cgtcgtgtgc 900

gagatcctgt ccagccgcgc ctccgcctgc tccgcttctc agcgtcgcat cagcatcgag 960gagatcctgt ccagccgcgc ctccgcctgc tccgcttctc agcgtcgcat cagcatcgag 960

caccccagcg gcgtcctgga ggtcggtctg gtcccccctg agaacgccgc ccagtccctg 1020caccccagcg gcgtcctgga ggtcggtctg gtcccccctg agaacgccgc ccagtccctg 1020

gtcgacgtcg ccgttgtcga gcgcagcatc gccctgatcg cccacgcccg tgtctactac 1080gtcgacgtcg ccgttgtcga gcgcagcatc gccctgatcg cccacgcccg tgtctactac 1080

accacccccg accgccgccg ctcctacgat agccctctga cctccccctc cacccccgct 1140accacccccg accgccgccg ctcctacgat agccctctga cctccccctc cacccccgct 1140

gacacccaca acctgttcga cgccgcctac cgccccgtca tccagcctag cgacaccgac 1200gacacccaca acctgttcga cgccgcctac cgccccgtca tccagcctag cgacaccgac 1200

gtcgaggccc cccacatgct ggccctggag aacaaggagc agtgcgtctc ccgctgcgac 1260gtcgaggccc cccacatgct ggccctggag aacaaggagc agtgcgtctc ccgctgcgac 1260

accgccctgc accacatcgt cgcctcctac ggcgccagcg acgcccatgc tagcgaccgt 1320accgccctgc accacatcgt cgcctcctac ggcgccagcg acgcccatgc tagcgaccgt 1320

agcctgtcct aa 1332agcctgtcct aa 1332

<210> 4<210> 4

<211> 1529<211> 1529

<212> DNA<212> DNA

<213> 编码顺乌头酸脱羧酶CadA的基因<213> Gene encoding cis-aconitic acid decarboxylase CadA

<400> 4<400> 4

atgaccaaac aatctgcgga cagcaacgca aagtcaggag ttacgtccga aatatgtcat 60atgaccaaac aatctgcgga cagcaacgca aagtcaggag ttacgtccga aatatgtcat 60

tgggcatcca acctggccac tgacgacatc ccttcggacg tattagaaag agcaaaatac 120tgggcatcca acctggccac tgacgacatc ccttcggacg tattagaaag agcaaaatac 120

cttattctcg acggtattgc atgtgcctgg gttggtgcaa gagtgccttg gtcagagaag 180cttattctcg acggtattgc atgtgcctgg gttggtgcaa gagtgccttg gtcagagaag 180

tatgttcagg caacgatgag ctttgagccg ccgggggcct gcagggtgat tggatatgga 240tatgttcagg caacgatgag ctttgagccg ccgggggcct gcagggtgat tggatatgga 240

caggtaaatt ttattcactc tagacggtcc acaaagtata ctgacgatcc ttcgtataga 300caggtaaatt ttattcactc tagacggtcc acaaagtata ctgacgatcc ttcgtataga 300

aactggggcc tgttgcagca gccatgacca attccgcttt catacaggct acggagcttg 360aactggggcc tgttgcagca gccatgacca attccgcttt catacaggct acggagcttg 360

acgactacca cagcgaagcc cccctacact ctgcaagcat tgtccttcct gcggtctttg 420acgactacca cagcgaagcc cccctacact ctgcaagcat tgtccttcct gcggtctttg 420

cagcaagtga ggtcttagcc gagcagggca aaacaatttc cggtatagat gttattctag 480cagcaagtga ggtcttagcc gagcagggca aaacaatttc cggtatagat gttattctag 480

ccgccattgt ggggtttgaa tctggcccac ggatcggcaa agcaatctac ggatcggacc 540ccgccattgt ggggtttgaa tctggcccac ggatcggcaa agcaatctac ggatcggacc 540

tcttgaacaa cggctggcat tgtggagctg tgtatggcgc tccagccggt gcgctggcca 600tcttgaacaa cggctggcat tgtggagctg tgtatggcgc tccagccggt gcgctggcca 600

caggaaagct cctcggtcta actccagact ccatggaaga tgctctcgga attgcgtgca 660caggaaagct cctcggtcta actccagact ccatggaaga tgctctcgga attgcgtgca 660

cgcaagcctg tggtttaatg tcggcgcaat acggaggcat ggtaaagcgt gtgcaacacg 720cgcaagcctg tggtttaatg tcggcgcaat acggaggcat ggtaaagcgt gtgcaacacg 720

gattcgcagc gcgtaatggt cttcttgggg gactgttggc ccatggtggg tacgaggcaa 780gattcgcagc gcgtaatggt cttcttgggg gactgttggc ccatggtggg tacgaggcaa 780

tgaaaggtgt cctggagaga tcttacggcg gtttcctcaa gatgttcacc aagggcaacg 840tgaaaggtgt cctggagaga tcttacggcg gtttcctcaa gatgttcacc aagggcaacg 840

gcagagagcc tccctacaaa gaggaggaag tggtggctgg tctcggttca ttctggcata 900gcagagagcc tccctacaaa gaggaggaag tggtggctgg tctcggttca ttctggcata 900

cctttactat tcgcatcaag ctctatgcct gctgcggact tgtccatggt ccagtcgagg 960cctttactat tcgcatcaag ctctatgcct gctgcggact tgtccatggt ccagtcgagg 960

ctatcgaaaa ccttcagggg agataccccg agctcttgaa tagagccaac ctcagcaaca 1020ctatcgaaaa ccttcagggg agataccccg agctcttgaa tagagccaac ctcagcaaca 1020

ttcgccatgt tcatgtacag ctttcaacgg cctcgaacag tcactgtgga tggataccag 1080ttcgccatgt tcatgtacag ctttcaacgg cctcgaacag tcactgtgga tggataccag 1080

aggagagacc catcagttca atcgcagggc agatgagtgt cgcatacatt ctcgccgtcc 1140aggagagacc catcagttca atcgcagggc agatgagtgt cgcatacatt ctcgccgtcc 1140

agctggtcga ccagcaatgt cttttgtccc agttttctga gtttgatgac aacctggaga 1200agctggtcga ccagcaatgt cttttgtccc agttttctga gtttgatgac aacctggaga 1200

ggccagaagt ttgggatctg gccaggaagg ttacttcatc tcaaagcgaa gagtttgatc 1260ggccagaagt ttgggatctg gccaggaagg ttacttcatc tcaaagcgaa gagtttgatc 1260

aagacggcaa ctgtctcagt gcgggtcgcg tgaggattga gttcaacgat ggttcttcta 1320aagacggcaa ctgtctcagt gcgggtcgcg tgaggattga gttcaacgat ggttcttcta 1320

ttacggaaag tgtcgagaag cctcttggtg tcaaagagcc catgccaaac gaacggattc 1380ttacggaaag tgtcgagaag cctcttggtg tcaaagagcc catgccaaac gaacggattc 1380

tccacaaata ccgaaccctt gctggtagcg tgacggacga atcccgggtg aaagagattg 1440tccacaaata ccgaaccctt gctggtagcg tgacggacga atcccgggtg aaagagattg 1440

aggatcttgt cctcggcctg gacaggctca ccgacattag cccattgctg gagctgctga 1500aggatcttgt cctcggcctg gacaggctca ccgacattag cccattgctg gagctgctga 1500

attgccccgt gaaatcgcca ctggtataa 1529attgccccgt gaaatcgcca ctggtataa 1529

Claims (7)

1.A recombinant Aspergillus terreus strain for producing trans-aconitic acid is characterized in that the recombinant Aspergillus terreus is obtained by taking Aspergillus terreus (Aspergillus terreus) as an initial strain, knocking out a aconitate decarboxylase cadA gene in the initial strain and overexpressing aconitate isomerase Adi 1; the amino acid sequence of the aconitate isomerase Adi1 is shown as SEQ ID NO.2, and the nucleotide sequence of the gene coding the aconitate isomerase Adi1 is shown as SEQ ID NO. 3; the promoter used by the expression element of the aconitate isomerase Adi1 is Pcad A promoter or PgpdAt promoter.
2. The recombinant Aspergillus terreus strain of claim 1, wherein the starting strain is constructed as Aspergillus terreus CICC40205, Aspergillus terreus NRRL1960, Aspergillus terreus DSM23081, Aspergillus terreus TN484 or Aspergillus terreus TN 484-M1.
3. The recombinant aspergillus terreus strain of claim 1, wherein the aconitate decarboxylase CadA has the amino acid sequence shown in SEQ ID No. 1.
4. The method for constructing a recombinant Aspergillus terreus strain according to any one of claims 1 to 3, characterized in that an Aspergillus terreus is used as a starting strain, the aconitate decarboxylase cadA gene is knocked out, and the expression element of the aconitate isomerase Adi1 is introduced into the starting strain to construct a recombinant Aspergillus terreus strain.
5. Use of a recombinant Aspergillus terreus strain according to any one of claims 1 to 3 for the production of trans-aconitic acid.
6. The use according to claim 5, wherein the use is to produce trans-aconitic acid by fermentation culture of the recombinant aspergillus terreus strain under the following fermentation conditions: the fermentation time at 37 ℃ and 220rpm is 72-168 h.
7. The use according to claim 6, wherein the fermentation is carried out using a medium formulation comprising: 100 g L-1Glucose, 2g L-1 NH4NO3,0.2 g L-1 (NH4)2HPO4,20 mg L-1 FeSO4,0.4 g L-1 MgSO4,40 mg L-1 ZnSO4,40 mg L-1 CuSO4And the balance being water.
CN202010866728.8A 2020-08-26 2020-08-26 A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application Active CN112011469B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010866728.8A CN112011469B (en) 2020-08-26 2020-08-26 A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010866728.8A CN112011469B (en) 2020-08-26 2020-08-26 A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application

Publications (2)

Publication Number Publication Date
CN112011469A CN112011469A (en) 2020-12-01
CN112011469B true CN112011469B (en) 2022-07-05

Family

ID=73503518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010866728.8A Active CN112011469B (en) 2020-08-26 2020-08-26 A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application

Country Status (1)

Country Link
CN (1) CN112011469B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024235233A1 (en) * 2023-05-15 2024-11-21 中国科学院青岛生物能源与过程研究所 Bio-based trans-aconitate, preparation method therefor and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017344A1 (en) * 2007-07-20 2009-01-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Production of itaconic acid
LU92409B1 (en) * 2014-03-21 2015-09-22 Philipps Universit T Marburg Means and methods for itaconic acid production
US11066681B2 (en) * 2016-08-26 2021-07-20 Lesaffre Et Compagnie Production of itaconic acid
WO2019152757A1 (en) * 2018-02-01 2019-08-08 Invista North America S.A.R.L. Methods and materials for the biosynthesis of compounds involved in the tricarboxylic acid cycle and derivatives and compounds related thereto
CN110527637B (en) * 2019-07-18 2021-10-15 中国科学院青岛生物能源与过程研究所 Aconitic acid-producing Aspergillus terreus strain and construction method and application thereof

Also Published As

Publication number Publication date
CN112011469A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
CN110527637B (en) Aconitic acid-producing Aspergillus terreus strain and construction method and application thereof
CN103834582B (en) A kind of improve itaconic acid fermentation output bacterial strain and structure thereof and utilize bacterial strain to produce the method for methylene-succinic acid
CN112029752B (en) Ulva lactuca polysaccharide lyase as well as coding gene and application thereof
CN110117602B (en) Grifola frondosa UDP-glucose pyrophosphorylase and its application
CN112143764B (en) A kind of method for preparing brivaracetam intermediate compound catalyzed by biological enzyme
CN105441517A (en) Identification and Application of Synthetic Gene Cluster of Cordycepin
CN112011469B (en) A recombinant Aspergillus terreus strain producing trans-aconitic acid and its construction method and application
CN112011470B (en) A kind of genetically engineered bacteria producing trans-aconitic acid and its construction method and application
CN111944706B (en) A recombinant Aspergillus terreus strain producing itaconic acid and its construction method and application
CN112029671B (en) Recombinant aspergillus terreus strain for producing trans-aconitic acid and preparation method and application thereof
CN112011468B (en) A kind of recombinant Aspergillus terreus producing trans-aconitic acid and its preparation method and application
CN109402086B (en) 2-methylbutyrate side chain hydrolase, expression strain and application thereof
CN112029670B (en) Recombinant aspergillus terreus for producing itaconic acid and construction method and application thereof
CN115820601B (en) A polyester plastic hydrolase and its application
CN110862952B (en) 5-aminolevulinic acid producing strain and its construction method and application
CN108118042B (en) 2-methylbutyrate side chain hydrolase, Monacolin J-producing aspergillus strain, and construction method and application thereof
CN1285721C (en) Gibberella gene engineering bacterium and its preparation and application
CN115895916B (en) Bacterial strain for accumulating ergot neomycin and construction method and application thereof
CN112725315A (en) Application of chitosanase and mutant thereof in preparation of chitosan oligosaccharide
CN114891822B (en) Method for constructing recombinant bacteria of Mucor circinelloides with high gamma-linolenic acid production, recombinant bacteria constructed by the method, and applications thereof
CN112899172B (en) Homologous recombination efficient gene engineering bacterium of phoma sphingomyelina and construction method and application thereof
CN116254286B (en) Cyanamide-induced saccharomyces cerevisiae engineering bacteria and construction method thereof
CN119570642A (en) Recombinant aspergillus niger capable of high yield of trans-aconitic acid as well as construction method and application thereof
CN119570831A (en) Engineering bacterium for high-yield trans-aconitic acid and construction method and application thereof
CN107723308A (en) A kind of compound balanol biological synthesis method and gene cluster

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant