CN111886916A - 用于设备到设备通信的技术 - Google Patents
用于设备到设备通信的技术 Download PDFInfo
- Publication number
- CN111886916A CN111886916A CN201880091247.5A CN201880091247A CN111886916A CN 111886916 A CN111886916 A CN 111886916A CN 201880091247 A CN201880091247 A CN 201880091247A CN 111886916 A CN111886916 A CN 111886916A
- Authority
- CN
- China
- Prior art keywords
- radio
- resources
- status message
- radio device
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/04—Scheduled access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0825—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
描述了一种用于在无线电通信中从第二无线电设备(200)向第一无线电设备(100)发送和接收数据(610)的技术。关于该技术的方法方面,基于在第一无线电设备(100)处接收的无线电信号(602)来确定一个或多个无线电资源(606)。该一个或多个无线电资源(606)包括在第一无线电设备(100)处可接收的不同空间流中的至少一个空间流。指示该一个或多个所确定的无线电资源(606)的状态消息(604)被发送给第二无线电设备(200)。在取决于所发送的状态消息(604)中指示的一个或多个无线电资源(606)的至少一个无线电资源上在第一无线电设备(100)处接收来自第二无线电设备(200)的数据(610)。
Description
技术领域
本公开涉及设备到设备的通信。更具体地且非限制性地,提供了用于在无线电设备之间的直接通信中分配无线电资源的方法和设备。
背景技术
用于道路交通的无线电通信可以主动避免事故并提高交通效率。为此,车辆对车辆(V2V)、车辆对行人(V2P)和车辆对基础设施(V2I)通信(统称为车辆对万物(V2X)通信)要求高可靠性和低端到端(E2E)延迟,这可通过设备到设备(D2D)通信(即直接通信)来实现,该D2D通信包括直接在参与交通的无线电设备之间的分组传输。
自LTE版本12开始,第三代合作伙伴计划(3GPP)通过在基于邻近的服务(ProSe,也称为LTE D2D)上构建V2X通信来扩展长期演进(LTE)平台。V2X通信(例如根据文档3GPP TS22.185版本14.3.0)包括针对车辆通信的特定特征(例如无线电设备的高速率(例如,高达250km/h)和高密度(例如,数千个相邻节点))的增强。
为了在满足V2X通信的延迟要求的同时增强高密度下的系统级性能,3GPP引入了用于V2X通信的分别涉及和不涉及无线电接入网络(RAN)的基础设施的副链路(SL)传输模式3和4(也称为资源分配模式)。RAN负责在模式3下向发送无线电设备分配无线电资源(即,集中调度),而在模式4下,发送无线电设备自主选择用于其自身传输的无线电资源(即,分布式调度)。
由于分布式调度要求发送无线电设备执行用于载波感测多路接入(CSMA)的接入机制,因此,分布式调度易受“隐藏节点问题”(HNP)的影响,如果发送无线电设备在接收无线电设备的范围之内并且在与接收无线电设备进行无线电通信的另一发送无线电设备(即“隐藏”节点)的范围之外,则会发生这种情况。Q.Gao等人在文档“Radio resourcemanagement of D2D communication(D2D通信的无线电资源管理)”(IEEE国际通信系统大会,澳门,2014年,第6-10页)中建议修改在发送无线电设备处的接入机制以缓解HNP。
然而,现有的接入机制依赖于竞争窗口,这导致时域中的无线电资源的丢失并增加了无线电通信的延迟。此外,如果无线电通信包括指向接收无线电设备的定向无线电传输,则现有的接入机制仍可导致HNP。因此,即使隐藏节点是无线电通信的发送无线电设备的相邻节点,也可能发生HNP。
发明内容
因此,需要避免或减轻定向无线电通信中的隐藏节点问题的D2D通信技术。替代地或附加地,需要更有效地使用无线电资源的D2D通信技术。
关于第一方法方面,提供了一种在无线电通信中在第一无线电设备处从第二无线电设备接收数据的方法。该方法可包括或发起基于在第一无线电设备处接收的无线电信号来确定一个或多个无线电资源的步骤。一个或多个无线电资源可包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。该方法可进一步包括或发起向第二无线电设备发送指示一个或多个所确定的无线电资源的状态消息的步骤。该方法可进一步包括或发起在取决于在所发送的状态消息中指示的一个或多个无线电资源的至少一个无线电资源上在第一无线电设备处从第二无线电设备接收数据的步骤。
第一和第二无线电设备之间的无线电通信可以是设备到设备(D2D)通信。第一无线电设备也可被称为数据接收无线电设备。第二无线电设备也可被称为数据发送无线电设备。
实施例使数据接收第一无线电设备能够借助于状态消息来影响、确定和/或控制从第二无线电设备到第一无线电设备的数据发送的无线电资源和/或参数。基于在第一无线电设备处接收的无线电信号,同一或另外的实施例可以通过在状态消息中指示至少一个空间流来避免或减轻无线电通信(特别是定向无线电通信)的隐藏节点问题。
第一无线电设备可基于所接收的无线电信号来在第一无线电设备处检测和/或避免无线电资源冲突。通过将状态消息发送给第二无线电设备,可以在冲突检测的情况下和/或为了避免冲突而纠正和/或控制用于数据发送的至少一个无线电资源。
替代地或附加地,实施例可以减少无线电通信的延迟和/或更有效地使用无线电资源,例如,因为第二无线电设备可依赖一个或多个所指示的无线电资源以用于数据发送。更具体地说,可例如通过使用取决于状态消息的至少一个无线电资源进行数据发送来避免竞争解决机制或竞争窗口。
该技术可以被实现为两个或更多个无线电设备之间的D2D或直接通信。无线电网络可包括第一无线电设备和第二无线电设备。无线电网络可以是车辆网络和/或自组织网络。无线电网络可包括多个无线电设备。
状态消息可在时间(例如,在时隙、子帧或时延方面)、频率(例如,在子载波方面)和/或空间(例如,在预编码、相干合成或空间流方面)或其组合(例如,在用于至少一个空间流中的每一个空间流的资源块方面)方面指示一个或多个无线电资源。
无线电信号可在第一无线电设备处从干扰器、无线电网络的一个或多个无线电设备、除了第一无线电设备之外的任何无线电源(radio source)、和/或无线电网络之外的任何无线电源接收。基于这种所接收的无线电信号确定的无线电资源可以在状态消息中被指示为排除。替代地或附加地,可在第一无线电设备处从例如携带先前被发送的数据或参考信号的第二无线电设备接收无线电信号。基于这种所接收的无线电信号确定的无线电资源可在状态消息中被指示为优选。
至少一个无线电设备(例如,第一和/或第二无线电设备)可被配置为与互联网和/或主机计算机交换数据或转发来自互联网和/或主机计算机的数据或向互联网和/或主机计算机转发数据。至少一个无线电设备(例如,第一和/或第二无线电设备)可用作去往互联网和/或主机计算机的网关。例如,数据可从主机计算机通过第二无线电设备被发送给第一无线电设备。来自主机计算机的数据可包括媒体流(例如,视频或音乐)、网络馈送(例如,图像和文本序列)、搜索引擎结果(例如,通用资源定位符列表)、语音识别服务(响应于被发送到主机计算机的已记录音频流而来自主机计算机的合成语音的音频流)、特定于位置的信息(例如,用于渲染增强现实的对象)和/或程序代码(例如,用于移动应用或“app”)。
第一无线电设备和/或第二无线电设备可包括天线阵列。第一无线电设备可使用天线阵列来接收无线电信号以用于确定和/或用于接收数据。第二无线电设备可使用天线阵列来发送数据。无线电通信可使用多输入多输出(MIMO)信道。
无线电通信可以是定向无线电通信。定向无线电通信可包括定向发送和/或定向接收。定向无线电发送的示例可包括以下至少一项:在发送无线电设备处对天线阵列进行预编码(例如,用于波束成形发送),在接收无线电设备处相干地合并天线阵列(例如,用于波束成形接收),以及在发送设备之间形成阴影效应(例如,受阻挡的无线电传播)。
第一方法方面可被实现为选择发送资源和/或接收资源作为一个或多个所指示的无线电资源的方法。第一方法方面可被实现为用于第一无线电设备借助状态消息来向一个或多个其他(例如,周围的)第二无线电设备建议或推荐、和/或拒绝或反对所确定的一个或多个无线电资源和某些发送参数的方法。在此,无线电资源可包括某些发送参数和/或接收参数,例如,用于来自第二无线电设备的数据发送的定向增益或预编码矩阵的无线电传播方向、和/或用于在第一无线电设备处的数据接收的定向增益或合并向量。发送参数和/或接收参数可定义至少一个空间流。
取决于在状态消息中指示的一个或多个无线电资源的至少一个无线电资源可进一步取决于在第二无线电设备处执行的信道感测过程的结果。
用于来自第二无线电设备的数据发送或相应地用于在第一无线电设备处的数据接收的至少一个无线电资源可取决于在所发送的状态消息中指示的一个或多个无线电资源。例如,在状态消息中指示的一个或多个无线电资源可包括用于数据通信的至少一个无线电资源。在状态消息中指示的一个或多个无线电资源可包括用于数据通信的本地空闲、预先确定和/或优选的无线电资源。替代地或附加地,用于数据通信的至少一个无线电资源可不同于在状态消息中指示的无线电资源中的一个、子集或所有无线电资源。在状态消息中指示的一个或多个无线电资源可包括用于数据通信的本地占用、被排除和/或不利的无线电资源。此处,“本地”可指第一无线电设备的位置或附近。替代地或附加地,“本地”可指在第一无线电设备处的无线电信号接收的结果。例如,所指示的空间流可在接收第一无线电设备处具有最大的信噪比和/或信干噪比。
第一无线电设备可包括多个天线端口。不同的空间流可对应于根据用于在第一无线电设备处的波束成形接收的不同的合并向量的来自多个天线端口的信号的合并。
信号合并可包括所接收的天线信号或基带信号的相干合并。可通过将每个信号与所应用的对应于天线端口的合并向量的分量相乘并加上所相乘的信号来合并信号。与分量相乘可对应于相移或复合增益(complex gain)。合并向量可(例如,借助于移相器)被应用在第一无线电设备的模拟域中和/或(例如,借助于信号处理器)被应用在第一无线电设备的数字域中。替代地或附加地,不同的空间流可对应于在第一设备处的不同定向增益。
在第一无线电设备处的波束成形接收可以是用于从第二无线电设备到第一无线电设备的无线电通信的MIMO信道或单输入多输出(SIMO)信道的接收端。
状态消息可通过指示在第一无线电设备处的波束成形接收的空间自由度(DoF)来指示与在第一无线电设备处的波束成形接收相对应的至少一个空间流。
状态消息可通过例如在有干扰在与数据接收的方向不同的方向和/或在抑制干扰的方向上到达第一无线电设备的情况下指示无线电通信的(例如,最大或优选的)秩或用于在第一无线电设备处的接收的空间自由度(DoF)和/或针对在第一无线电设备处的波束成形或定向接收的准备状态(readiness)来指示至少一个空间流。
第二无线电设备可包括多个天线端口。不同的空间流可对应于被应用于多个天线端口以用于在第二无线电设备处的波束成形发送的不同的预编码向量。
将要被发送的信号可被分裂为相干天线信号,每个相干天线信号乘以所应用的预编码向量的一个分量,并通过天线端口中的对应一个天线端口被发送。与分量相乘可对应于相移或复合增益。预编码向量可(例如,借助于移相器)被应用在第二无线电设备的模拟域中和/或(例如,借助于信号处理器)被应用在第二无线电设备的数字域中。替代地或附加地,不同的空间流可对应于在第二设备处的不同定向增益。
在第一无线电设备和/或第二无线电设备处的天线端口可对应于在相应的无线电设备处的天线阵列的天线元件。例如,每个天线端口可对应于不同的天线元件,或者可被耦接到不相交的天线元件集合中的一个。
第一无线电设备与第二无线电设备之间的多输入多输出(MIMO)信道可包括不同的空间流。
在第一无线电设备处接收的用于确定的无线电信号可包括来自不同于第二无线电设备的无线电源的无线电信号。一个或多个所确定的无线电资源可抑制来自另一无线电源的无线电信号,或者可不受来自另一无线电源的无线电信号干扰。
一个或多个所确定的无线电资源可通过在时间、频率和/或空间流中规避来自另一无线电源的无线电信号来抑制来自该另一无线电源的无线电信号。
被包括在一个或多个所确定的无线电资源中的至少一个空间流中的每一个空间流的合并向量可正交于与来自另一无线电源的无线电信号相对应的合并向量。
来自另一无线电源的无线电信号可在第一无线电设备处在第一方向上被接收。被包括在一个或多个所确定的无线电资源中的空间流可在第一无线电设备处在第二方向上具有最大接收机增益。第二方向可不同于第一方向。更具体地说,被包括在一个或多个所确定的无线电资源中的空间流可对应于在第一方向上最小的定向天线增益。
在第一无线电设备处接收的用于确定的无线电信号可包括参考信号或干扰。一个或多个无线电资源可基于在第一无线电设备处测量的无线电信号的接收功率来确定。
接收功率可包括以下中的至少一个:参考信号接收功率(RSRP),参考信号强度指示符(RSSI),噪声功率水平,和干扰功率水平。
来自另一无线电源的无线电信号的接收功率可在第一无线电设备处在抑制来自另一无线电源的无线电信号或不受来自该另一无线电源的无线电信号干扰的一个或多个所确定的无线电资源中的每个无线电资源上被测量。
状态消息可指示两个或更多个无线电资源以及与每个所指示的无线电资源相关联的数字偏好或偏好级别。数字偏好或偏好级别可取决于在对应的无线电资源上测量的接收功率和/或在对应的无线电资源上测量的干扰。
状态消息可指示优选用于数据接收的一个或多个无线电资源。
状态消息可指示针对一个或多个优选无线电资源中的每一个无线电资源的偏好级别。
如果在优选用于数据接收的一个或多个无线电资源上测量的接收功率小于预定义阈值,则该状态消息可指示相应的一个或多个优选无线电资源。
状态消息可还指示来自另一无线电源的将要在一个或多个优选无线电资源上被发送其他数据的优先级。
其他数据(或对应的数据分组)的优先级可取决于以下中的至少一个:基于其他数据的服务类型,其他数据的服务质量(QoS)类别标识符(QCI),以及其他数据的目的地。第一无线电设备可从另一无线电设备发送的预订消息中取得优先级。如果第二无线电设备的将要被发送的数据的优先级小于在状态消息中指示的优先级,则第二无线电设备可推迟其发送或者使用(例如,在所指示的无线电资源中的)另一无线电资源。
状态消息可指示被排除用于数据接收的一个或多个无线电资源。
优选无线电资源可与正偏好级别相关联。被排除的无线电资源可与负偏好级别相关联。
如果在被排除用于数据接收的一个或多个无线电资源上测量的接收功率大于预定义阈值,则状态消息可指示相应的一个或多个被排除的无线电资源。
状态消息可进一步指示阈值,例如用于优选无线电资源的阈值和/或用于被排除的无线电资源的阈值,或者用于两者的共同值。
在第一无线电设备处接收的用于确定的无线电信号可包括预订消息(或任何其他调度公告),其指示被调度的传输。一个或多个无线电资源例如通过在第一无线电设备处解码预订消息而基于被调度的传输来确定。
预订消息所指示的被调度的传输可与在第一无线电设备处的未来干扰有关。一个或多个所确定的无线电资源可在时间和/或频率上规避被调度的传输。预订消息可在第一无线电设备处从无线电网络中除了第二无线电设备之外的无线电设备接收。
在第一无线电设备处接收的用于确定的无线电信号可包括来自第二无线电设备的参考信号。(例如,被包括在一个或多个所确定的无线电资源中的)至少一个空间流中的每一个空间流的合并向量可对应于来自第二无线电设备的无线电信号的最大比合并(MRC)。
用于在第一无线电设备处的接收机波束成形的合并向量可对应于针对在第一无线电设备处从第二无线电设备接收的无线电信号而测量的合并向量。
从第二无线电设备接收的用于确定的不同的无线电信号可通过不同的预编码向量来预编码。不同的预编码向量可与在不同的无线电信号中被编码的不同的信号标识符相关联。状态消息可通过包括对对应的一个或多个信号标识符的引用来指示(被包括在一个或多个所确定的无线电资源中的)至少一个空间流。
可使用例如在时间和/或频率上不同的信号序列和/或不同的无线电资源模式来将信号标识符编码在来自第二无线电设备的无线电信号中。
所确定和/或指示的一个或多个无线电资源可以是至少一个空间流与在时域和频域中的至少一个上的约束的组合。例如,每个所确定和/或指示的无线电资源可定义一个空间流(也称为:空间无线电资源,例如一个预编码向量、一个合并向量或两者)、一个频率范围(例如一个或多个子载波)和一个时间段(例如,一个或多个子帧或时隙)的组合。该约束可取决于在第一无线电设备处接收的无线电信号和/或第一无线电设备的接收机能力。
时分复用(TDM)模式和/或频分复用(FDM)模式可指示在时域和频域中的至少一个上的约束。指示约束的模式可在还指示至少一个空间流(例如,分别在两个比特字段中)的状态消息中被发送或在单独的状态消息中被发送。
无线电通信可包括在第一无线电设备与第二无线电设备之间的半双工通信链路。第一无线电设备可从一个或多个所指示的无线电资源中排除用于从第一无线电设备到第二无线电设备的发送的时间资源。
无线电网络可包括第一无线电设备的多个实施例和/或第二无线电设备的多个实施例。指示不同空间流的不同状态消息可被发送给不同的第二无线电设备。
第一无线电设备可以能够同时接收最大数量的独立无线电信号。一个或多个无线电资源的确定可包括:基于所接收的无线电信号来确定可用无线电资源;以及选择满足最大数量的同时可接收无线电信号的可用无线电资源的子集。
状态消息可在物理副链路控制信道(PSCCH)上被发送和/或使用副链路控制信息(SCI)来被发送。状态消息可包括指示一个或多个所确定的无线电资源的一个或多个比特字段。
状态消息可在以下中的至少一个中发送:SCI的信息字段,物理副链路数据信道,物理副链路共享信道(PSSCH),专门设计用于发送状态消息的专门或专用物理信道。替代地或附加地,状态消息或其副本可在上行链路物理信道上被发送给基站。
该方法可进一步包括或发起从第一无线电设备向第二无线电设备发送用户数据的步骤。状态消息和用户数据可被包括在从第一无线电设备向第二无线电设备发送的相同数据分组中。
状态消息可以是下列至少一个:被周期性地发送、以及根据(例如,来自第二无线电设备的)请求被发送。
状态消息可以在下列至少一个模式下被发送:单播模式,多播模式,以及广播模式。例如,状态消息可被周期性地广播。替代地或附加地,状态消息可响应于从第二无线电设备接收的请求而在单播模式下被发送给第二无线电设备。
状态消息的发送可通过一个或多个是确定的无线电资源例如相较于先前被指示给第二无线电设备的一个或多个无线电资源的改变来触发。
用于确定一个或多个无线电资源的无线电信号可在第一无线电设备处的信道感测过程中被接收。状态消息可还指示在第一无线电设备处执行信道感测过程的能力。
状态消息可指示由第一无线电设备执行的信道感测过程的范围,例如,执行完全感测还是部分感测。完全感测和部分感测可在信道感测的持续时间(例如,感测窗口)和/或无线电带宽方面不同。
关于第二方法方面,提供了一种在无线电通信中从第二无线电设备向第一无线电设备发送数据的方法。该方法可包括或发起从第一无线电设备接收指示基于在第一无线电设备处接收的无线电信号的一个或多个无线电资源的状态消息的步骤。一个或多个无线电资源可包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。该方法可进一步包括或发起基于在所接收的状态消息中指示的一个或多个无线电资源来确定至少一个无线电资源的步骤。该方法可进一步包括或发起使用所确定的至少一个无线电资源向第一无线电设备发送数据的步骤。
第二方法方面可被实现为用于第二无线电设备在确定(例如,选择)用于数据发送的至少一个无线电资源时考虑在状态消息中指示的一个或多个无线电资源的方法。所接收的状态消息可建议或推荐、和/或拒绝或反对所指示的无线电资源中的一个或多个。可选地,第二无线电设备可在第二无线电设备处例如在无线电资源选择过程(简称:基于感测的无线电资源选择)期间或一部分中将在状态消息中指示的建议与自己本地的感测过程(简称:信道感测)的结果相组合,以用于数据发送。
第二无线电设备可例如从作为数据传输的(例如,被寻址或潜在)接收机的多个第一无线电设备接收多个状态消息。换句话说,第二无线电设备可捕获多个建议。第二无线电设备可将多个建议与它自己本地的感测过程的结果相组合以确定至少一个无线电资源。
至少一个无线电资源可与数据传输的时间(例如,用于该传输的一个或多个时隙或子帧)、数据传输的频率(例如,用于该传输的一个或多个子载波)和/或用于数据传输的空间流有关。例如,确定至少一个无线电资源的步骤可包括确定是发送还是延迟该传输和/或决定发送资源和/或发送参数。
该方法可进一步包括或发起基于在第二无线电设备处接收的无线电信号来确定一个或多个无线电资源的步骤。确定用于发送的至少一个无线电资源可取决于由第一无线电设备指示的无线电资源与由第二无线电设备确定的无线电资源的组合。
基于在第二无线电设备处接收的无线电信号来确定一个或多个无线电资源可以是第二无线电设备执行的信道感测过程(也称为:本地感测),特别是基于感测的无线电资源分配的一部分。至少一个无线电资源可基于在状态消息中指示的一个或多个无线电资源并且还基于本地感测的结果(即,由第一无线电设备指示的无线电资源与由第二无线电设备确定的无线电资源的组合)来确定。
状态消息可还指示将要在状态消息中指示的一个或多个(例如,优选)无线电资源上发送的其他数据的优先级。确定用于发送数据的至少一个无线电资源可取决于与由第二无线电设备发送的数据相关联的优先级与在状态消息中被指示的优先级的比较。如果(例如,仅当)相关联的优先级高于所指示的优先级,则可发送数据。
如果(例如,仅当)状态消息的接收与数据发送之间的时间间隙小于预定义阈值,则可以基于在状态消息中指示的一个或多个无线电资源来确定用于数据发送的至少一个无线电资源。例如,状态消息或每个所指示的无线电资源可与到期时间相关联。
这种状态消息可从多个这种第一无线电设备接收。确定用于发送的至少一个无线电资源可取决于由多个第一无线电设备指示的无线电资源的组合。
替代地或附加地,这种状态消息可从网状无线电网络的多个第一无线电设备接收。该方法可进一步包括或发起基于状态消息在多个第一无线电设备中选择用于数据发送的第一无线电设备的步骤。从第二无线电设备到所选的第一无线电设备的无线电通信可提供数据的多跳无线电通信中的一跳。
替代地或附加地,这种状态消息从多个第一无线电设备(例如,作为数据的预期接收机)接收。该确定可包括:取决于状态消息所指示的优选无线电源的重叠,在单播模式和多播模式中确定用于数据发送的发送模式。例如,该确定可包括从由多个第一无线电设备指示的空间流中导出预编码向量,以用于在单播模式下的发送。
第二方法方面可进一步包括任何特征,或者可包括或发起在第一方法方面的上下文中公开的任何步骤或与其对应的特征或步骤。此外,第一方法方面可在第一无线电设备处执行或由第一无线电设备执行。替代地或组合地,第二方法方面可在第二无线电设备处执行或由第二无线电设备执行。第一无线电设备和第二无线电设备可被间隔开。第一无线电设备和第二无线电设备可仅借助无线电通信来处于数据或信号通信中。
在任何方面,第一无线电设备和第二无线电设备可形成无线电网络或者可以是无线电网络的一部分。无线电网络可以是例如根据第三代合作伙伴计划(3GPP)或根据标准系列IEEE 802.11(Wi-Fi)的车辆、自组织和/或网状网络。第一方法方面可由无线电网络中的第一无线电设备的一个或多个实施例来执行。第二方法方面可由无线电网络中的第二无线电设备的一个或多个实施例来执行。
第一和第二无线电设备中的任何一个可以是移动的或无线的无线电设备,例如3GPP用户设备(UE)或Wi-Fi站(STA)。第一无线电设备和/或第二无线电设备可以是移动站或便携式站、用于机器类型通信的设备(MTC)、用于窄带物联网的设备(NB-IoT)或其组合。UE和移动站的示例包括移动电话、平板计算机和自动驾驶车辆。便携式站的示例包括膝上型计算机和电视机。MTC设备或NB-IoT设备的示例包括例如在制造业、汽车通信和家庭自动化中的机器人、感测器和/或致动器。MTC设备或NB-IoT设备可在制造工厂、家用电器和消费类电子产品中实现。
任何无线电设备都可与基站无线连接或能够连接(例如,根据无线电资源控制(RRC)状态或激活模式),该基站也称为发送和接收点(TRP)、无线电接入节点或接入点(AP)。无线电接入网络(RAN)可包括一个或多个基站。在此,基站可包括被配置为向第一和第二无线电设备中的任何一个提供无线电接入的任何站。替代地或附加地,无线电设备中的至少一个可用作无线电网络与RAN和/或互联网之间的网关,特别是用于到提供数据的主机计算机的数据链路。基站的示例可包括3G基站或节点B、4G基站或eNodeB、5G基站或gNodeB、Wi-Fi AP和网络控制器(例如,根据蓝牙、ZigBee或Z-Wave)。
RAN可根据全球移动通信系统(GSM)、通用移动电信系统(UMTS)、3GPP长期演进(LTE)和/或3GPP新无线电(NR)来实现。
第一和第二无线电设备的任何实施例可在自主资源选择或分布式调度的模式下选择性地执行对应的方法方面,例如,如果无线电通信的第一无线电设备和/或第二无线电设备不在RAN的覆盖范围之内。
无线电通信可以是具有分布式调度和/或根据3GPP SL传输模式4的D2D副链路(SL,例如3GPP D2D SL)。该技术可与以下中的至少一个兼容或对其进行扩展:文档3GPP TS24.386(例如版本14.3.0)、文档3GPP TS 23.303(例如版本14.1.0)、文档3GPP TS 23.285(例如版本14.5.0)、以及文档3GPP TS 22.185(例如版本14.3.0)。
该技术的任何方面可在用于无线电通信的协议栈的物理层(PHY)、媒体访问控制(MAC)层、无线电链路控制(RLC)层和/或无线电资源控制(RRC)层上实现。
另一方面,提供了一种计算机程序产品。该计算机程序产品包括程序代码部分,该程序代码部分用于在由一个或多个计算设备执行计算机程序产品时执行本文公开的方法方面的任何一个步骤。该计算机程序产品可被存储在计算机可读记录介质上。计算机程序产品还可被提供用于经由无线电网络、RAN、互联网和/或主机计算机下载。替代地或附加地,该方法可被编码在现场可编程门阵列(FPGA)和/或专用集成电路(ASIC)中,或者该功能可借助于硬件描述语言被提供以供下载。
关于第一设备方面,提供了一种第一无线电设备,该第一无线电设备用于在无线电通信中在第一无线电设备处从第二无线电设备接收数据。第一无线电设备可被配置为执行第一方法方面的步骤中的任何一个。替代地或附加地,第一无线电设备可包括确定单元,该确定单元被配置为基于在第一无线电设备处接收的无线电信号来确定一个或多个无线电资源,该一个或多个无线电资源包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。替代地或附加地,第一无线电设备可包括发送单元,该发送单元被配置为向第二无线电设备发送指示一个或多个所确定的无线电资源的状态消息。替代地或附加地,第一无线电设备可包括接收单元,该接收单元被配置为在取决于在所发送的状态消息中指示的一个或多个无线电资源的至少一个无线电资源上在第一无线电设备处从第二无线电设备接收数据。
关于第二设备方面,提供了第二无线电设备,该第二无线电设备用于在无线电通信中从第二无线电设备向第一无线电设备发送数据。第二无线电设备可被配置为执行第二方法方面的步骤中的任何一个。替代地或附加地,第二无线电设备可包括接收单元,该接收单元被配置为从第一无线电设备接收指示基于在第一无线电设备处接收的无线电信号的一个或多个无线电资源的状态消息,该一个或多个无线电资源包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。替代地或附加地,第二无线电设备可包括确定单元,该确定单元被配置为基于在所接收的状态消息中指示的一个或多个无线电资源来确定至少一个无线电资源。替代地或附加地,第二无线电设备可包括发送单元,该发送单元被配置为使用所确定的至少一个无线电资源向第一无线电设备发送数据。
关于进一步的第一设备方面,提供了一种第一无线电设备,该第一无线电设备用于在无线电通信中在第一无线电设备处从第二无线电设备接收数据。第一无线电设备包括至少一个处理器和存储器。所述存储器可包括可由所述至少一个处理器执行的指令,由此所述第一无线电设备可操作为基于在所述第一无线电设备处接收的无线电信号来确定一个或多个无线电资源,所述一个或多个无线电资源包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。指令的执行还可使第一无线电设备可操作为:向第二无线电设备发送指示一个或多个所确定的无线电资源的状态消息。指令的执行还可使第一无线电设备可操作为:在取决于在所发送的状态消息中指示的一个或多个无线电资源的至少一个无线电资源上在第一无线电设备处从第二无线电设备接收数据。
关于进一步的第二设备方面,提供了一种第二无线电设备,用于在无线电通信中从第二无线电设备向第一无线电设备发送数据。第二无线电设备包括至少一个处理器和存储器。所述存储器可包括可由所述至少一个处理器执行的指令,由此第二无线电设备可操作为:从第一无线电设备接收指示基于在第一无线电设备处接收的无线电信号的一个或多个无线电资源的状态消息,该一个或多个无线电资源包括在第一无线电设备处可接收的不同空间流中的至少一个空间流。指令的执行还可使第二无线电设备基于在所接收的状态消息中指示的一个或多个无线电资源来确定至少一个无线电资源。指令的执行还可使第二无线电设备可操作为使用所确定的至少一个无线电资源向第一无线电设备发送数据。
关于再进一步的方面,提供了一种包括主机计算机的通信系统。主机计算机可包括处理电路,该处理电路被配置为例如取决于在定位步骤中确定的UE的位置来提供用户数据。主机计算机可进一步包括通信接口,该通信接口被配置为将用户数据转发给蜂窝网络以发送给用户设备(UE),其中,UE包括无线电接口和处理电路,该蜂窝网络的处理电路被配置为执行第一和/或第二方法方面的任何一个步骤。
通信系统可进一步包括UE。替代地或附加地,蜂窝网络可进一步包括一个或多个基站和/或网关,该网关被配置为与UE通信和/或使用第一方法方面和/或第二方法方面在UE与主机计算机之间提供数据链路。
主机计算机的处理电路可被配置为执行主机应用,从而提供用户数据和/或本文所述的任何主机计算机功能。替代地或附加地,UE的处理电路可被配置为执行与主机应用相关联的客户端应用。
第一和第二无线电设备(例如,UE)、基站、系统或用于体现该技术的任何节点或站可进一步包括在方法方面的上下文中公开的任何特征,反之亦然。特别地,单元和模块中的任何一个,或者专用单元或模块,可以被配置为执行或发起方法方面的一个或多个步骤。
附图说明
参考附图描述该技术的实施例的进一步细节,在附图中:
图1示出了用于在无线电通信中在第一无线电设备处从第二无线电设备接收数据的第一无线电设备的示意性框图;
图2示出了用于在无线电通信中从第二无线电设备向第一无线电设备发送数据的第二无线电设备的示意性框图;
图3示出了在无线电通信中在第一无线电设备处从第二无线电设备接收数据的方法的流程图,该方法可由图1的第一无线电设备实现;
图4示出了在无线电通信中从第二无线电设备向第一无线电设备发送数据的方法的流程图,该方法可由图2的第二无线电设备实现;
图5示意性地示出了包括图1和图2的无线电设备的实施例的示例性环境;
图6A示意性地示出了无线电环境的比较示例,该无线电环境包括易受隐藏节点问题影响的定向无线电通信中的无线电设备;
图6B示意性地示出了定向无线电通信中的包括图1和图2的无线电设备的实施例的无线电环境的示例;
图7示出了由定向无线电通信中的图1和图2的无线电设备的实施例产生的示意性信令图;
图8示意性地示出了在使用在图1的第一无线电设备处形成的至少一个空间流的定向无线电通信中的图1和图2的无线电设备的实施例;
图9示意性地示出了在使用在图2的第二无线电设备处形成的至少一个空间流的定向无线电通信中的图1和图2的无线电设备的实施例;
图10示意性地示出了在使用在图1的第一无线电设备和图2的第二无线电设备两者处形成的至少一个空间流的定向无线电通信中的图1和图2的无线电设备的实施例;
图11示出了图1的第一无线电设备的实施例的示意框图;
图12示出了图2的第二无线电设备的实施例的示意性框图;
图13示意性地示出了经由中间网络连接到主机计算机的电信网络;
图14示出了在部分无线的连接上经由基站或用作网关的无线电设备与用户设备进行通信的主机计算机的通用框图;以及
图15和图16示出了在通信系统中实现的方法的流程图,该通信系统包括主机计算机、基站或用作网关的无线电设备以及用户设备。
具体实施方式
在以下描述中,出于解释而非限制的目的,阐述了具体细节,例如具体的网络环境,以提供对本文公开的技术的透彻理解。对于本领域技术人员将显而易见的是,可以在背离这些具体细节的其他实施例中实践该技术。此外,虽然以下实施例主要是针对新无线电(NR)或5G实现而描述的,但很显然,本文所述的技术也可在根据标准系列IEEE 802.11的无线局域网(WLAN)中针对包括3GPP LTE(例如LTE-高级或例如MulteFire的相关无线电接入技术)的任何其他无线电通信技术来实现,用于根据蓝牙特殊兴趣小组(SIG)的蓝牙(尤其是蓝牙低功耗、蓝牙网状网络和蓝牙广播)、用于根据Z-Wave联盟的Z-Wave、或用于基于IEEE 802.15.4的ZigBee。
此外,本领域技术人员将理解,可使用结合经编程的微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)或通用计算机(例如,包括高级RISC机器(ARM))来工作的软件来实现本文说明的功能、步骤、单元和模块。还应当理解,虽然以下实施例主要是结合方法和设备来描述的,但是本发明也可体现在计算机程序产品以及包括至少一个计算机处理器和耦接到该至少一个处理器的存储器的系统中,其中该存储器用一个或多个程序编码,该程序可执行功能和步骤或实现本文公开的单元和模块。
此外,本文描述的实施例是例如部分或完全可组合的。例如,由相同附图标记指示的特征可对应于所述特征的等同或替代实施方式,并且可以在本文所述的实施例之间单独地互换。尽管在V2X通信的上下文中描述了该技术的实施例,但是这种实施例可容易地适用于无线电设备之间的任何其他直接通信,例如在涉及D2D通信的其他场景中。
图1示意性地示出了用于从第二无线电设备接收数据的第一无线电设备的框图。第一无线电设备通常由附图标记100表示。
第一无线电设备100可被简称为接收设备或接收机。第二无线电设备可被简称为发送设备或发射机。接收设备100和发送设备在无线电通信中至少用于在接收设备100处的数据接收。
接收设备100包括资源确定模块102,该资源确定模块102基于在接收设备100处接收的无线电信号来确定一个或多个无线电资源。一个或多个所确定的无线电资源包括在接收设备100处可接收的多个空间流中的至少一个空间流。接收设备100还包括状态发送模块104,该状态发送模块104向发送设备发送指示该一个或多个所确定的无线电资源的状态消息。接收设备100还包括数据接收模块106,该数据接收模块106在取决于在所发送的状态消息中指示的一个或多个无线电资源的至少一个无线电资源上从发送设备接收数据。
接收设备100的任何模块可由被配置为提供对应功能的单元来实现。
图2示意性地示出了用于向第一无线电设备发送数据的第二无线电设备的框图。第二无线电设备通常由附图标记200表示。
第一无线电设备可被简称为接收设备或接收机。第二无线电设备200可被简称为发送设备或发射机。接收设备和发送设备200在无线电通信中至少用于从发送设备200进行的数据发送。
发送设备200包括状态接收模块202,其基于在接收设备处接收的无线电信号从接收设备接收指示一个或多个无线电资源的状态消息。一个或多个所指示的无线电资源包括在接收设备处可接收的多个空间流中的至少一个空间流。发送设备200还包括资源确定模块204,该资源确定模块204基于在所接收的状态消息中指示的一个或多个无线电资源来确定至少一个无线电资源。发送设备200还包括数据发送模块206,该数据发送模块206使用所确定的至少一个无线电资源向接收设备发送数据。
设备200的任何模块可由被配置为提供对应功能的单元来实现。
接收设备100和/或发送设备200的实施例可选择要用于无线电通信的发送资源和/或某些发送参数。该技术的一方面使得接收设备100能够借助于状态消息(例如使用其自身的基于感测的无线电资源选择的结果)向其他无线电设备建议发送资源和/或发送参数。该技术的另一方面使得发送设备200能够通过例如在其自己的基于感测的无线电资源选择内考虑来自其他无线电设备的建议来选择发送资源和/或发送参数。
图3示出了用于在无线电通信中在接收设备处从发送设备接收数据的方法300的流程图。方法300包括或发起基于在接收设备处接收的无线电信号来确定一个或多个无线电资源的步骤302。一个或多个无线电资源包括在接收设备处可接收的不同空间流中的至少一个空间流。方法300还包括或发起向发送设备发送指示一个或多个所确定的无线电资源的状态消息的步骤304。此外,方法300还包括或发起在至少一个无线电资源上从发送设备接收数据的步骤306。该至少一个无线电资源取决于在所发送的状态消息中指示的一个或多个无线电资源。
方法300可由接收设备100执行。例如,模块102、104和106可分别执行步骤302、304和306。
图4示出了用于在无线电通信中从发送设备向接收设备发送数据的方法400的流程图。方法400包括或发起基于在接收设备处接收的无线电信号从接收设备接收指示一个或多个无线电资源的状态消息的步骤402,该一个或多个无线电资源包括在接收设备处可接收的多个空间流中的至少一个空间流。方法400还包括或发起基于所接收的状态消息中指示的一个或多个无线电资源来确定至少一个无线电资源的步骤404。此外,方法400还包括或发起使用所确定的至少一个无线电资源向接收设备发送数据的步骤406。
方法400可由发送设备200执行。例如,模块202、204和206可分别执行步骤402、404和406。
在此,任何无线电设备,例如接收设备100和/或发送设备200,可以是移动站或便携式站或可无线连接到RAN或另一无线电设备的无线电设备。任何无线电设备可以是用户设备(UE)、用于机器类型通信(MTC)的设备和/或用于(例如,窄带)物联网(IoT)的设备。
该技术可应用于UE之间的任何直接通信。方法300或400可由UE执行,以用于选择发送资源和/或接收资源,例如包括发送和/或接收参数。
方法300可以由接收UE 100来实现,该接收UE 100在步骤304中在状态消息中向其他(例如,周围)UE(例如包括发送UE 200)建议或推荐发送和/或接收资源以及可选地某些发送和/或接收参数。
方法400可由在其无线电资源选择过程404期间考虑在所接收的状态消息中指示的无线电资源建议(并且可选地,将所接收的建议与其自身的本地感测过程的结果组合)的发送UE 200来实现。此外,捕获多个建议(例如,来自不同UE 100的多个状态消息)的发送UE200可将多个建议与其自身的本地感测过程的结果组合起来以确定是发送还是延迟传输和/或决定发送资源和参数。
图5是包括无线电设备100和/或200的实施例的无线电网络500(例如LTE实施方式)的实施例的描述性图示。无线电网络500的实施例包括V2X场景。无线电设备100和200的实施例被配置用于包括直接V2V功能的车辆通信。可选地,无线电设备100和200还被配置用于V2X通信,包括V2P或V2I功能。
在V2V通信中,发送无线电设备200和接收设备100被安装在车辆上或被集成到车辆中。被安装或集成在车辆上/之中的接收设备100或发送设备200的实施例也可被称为车辆UE(或简称为V-UE)。V2P通信涉及V-UE和行人UE(或简称为P-UE)作为无线电设备100和200的实施例。P-UE的示例包括手持设备和可穿戴设备。
P-UE和V-UE可具有不同的要求和约束集。例如,P-UE受能量约束,而V-UE由车辆发动机或牵引储能器(例如高压电池)供电,并且因此对其无线电链或信号处理没有供电约束。这意味着V-UE和P-UE具有处理V2X通信的不同能力。例如,与可具有有限能力的P-UE相比,V-UE是高级无线电设备。此外,P-UE可进一步包括不同的类别,例如,具有SL Rx/Tx(副链路接收或发送)能力的P-UE和没有SL Rx/Tx能力的P-UE。接收设备100可以由具有SL Rx/Tx能力的P-UE来体现。
无线电网络500可包括RAN覆盖的区域。例如,无线电网络500包括固定RAN,该固定RAN包括至少一个基站502。每个基站502服务至少一个小区504。基站502可以是演进的节点B(eNodeB或eNB)或下一代节点B(gNodeB或gNB)。
对于有RAN覆盖,没有RAN覆盖,并且在无线电设备100、200和/或RAN之间具有变化的直接交互程度,V2X操作是可以的。在RAN覆盖范围之外,无线电设备100和200可在独立或无RAN的操作中分别执行方法300和400。如果无线电设备100和/或200在基站502所服务的小区504之外,则可选择性地执行方法300和400。然而,当无线电设备100和/或200位于基站502服务的小区504内时,也可以执行方法300和400。
对于具有RAN覆盖的D2D通信,例如根据3GPP SL传输模式3,RAN负责分配无线电资源。对于没有RAN覆盖的D2D通信,例如根据3GPP SL传输模式4,发送设备200自主地选择用于其自身发送406的无线电资源。
可使用3GPP SL传输模式4的特征来实现该技术。即,无线电设备100与无线电设备200之间的无线电通信可将3GPP SL传输模式4用于D2D通信。在3GPP SL传输模式4中,采用无线电资源的分布式选择。没有用于调度的中央节点,并且无线电设备在自主资源选择中扮演着相同的角色。
根据3GPP新无线电(NR)和/或3GPP LTE的将来版本的V2X通信不仅支持广播服务。例如,单播和多播V2X传输对于某些增强型V2X(eV2X)用例(例如,队列行驶(platooning)、透视(see-through)和协作操纵)很重要。
对于单播和多播传输,定向无线电通信有益于改善从源无线电设备到至少一个目标无线电设备的数据发送。例如,来自发送设备200的定向发送可改善在目标无线电设备(例如,作为数据发送的目标的接收设备100的至少一个实施例)处的数据接收。此外,在接收设备100处的定向接收可改善数据接收。替代地或附加地,来自发送设备200的定向发送可减少对不是数据发送的目标无线电设备的其他无线电设备的干扰。此外,在接收设备100处的定向接收可减少由不以接收设备100为目标的其他发送引起的干扰。
定向通信可包括定向发送和/或定向接收。定向发送可在发送设备200处使用天线阵列或任何其他多天线配置来实现。定向接收可在接收设备100处使用天线阵列或任何其他多天线配置来实现。
3GPP SL发送模式4包括两个功能,即,无线电资源的半持久发送和基于感测的分配(也称为:选择)。两个功能中的至少一个可与方法300和/或400组合。例如,确定404可基于在发送设备200处的信道感测和在从接收设备100接收的状态消息中指示的一个或多个无线电资源的组合。
为了实现对无线电资源的基于感测的分配,发送设备200可在根据步骤404对至少一个无线电资源的选择的触发或重新选择触发之前在一段时间上(例如,在感测窗口期间)感测信道(例如,在状态消息中被指示为优选的无线电资源)。信道感测可包括测量信道上的能量和/或解码信道上的预订消息。例如,发送设备200可收集来自无线电网络500中的其他无线电设备(例如,发送设备200的其他实施例)的预订消息。
用于接收尽可能多或所需要数量的预订消息的感测窗口越长,则(例如,基于在发送设备200处的观察而成功地检测或避免冲突的)性能越好。感测窗口的大小可足够长以(例如,粗略地)覆盖最长的可能预订消息,这被称为全感测过程。由于长的感测窗口可能需要更多的能量消耗来进行信道感测(例如,接收预订消息)和/或由于长的感测窗口可能需要发送设备200快速执行复杂的操作(例如,对预订消息进行解码),对于在能力和/或能量方面受到限制的某些类型的发送设备200(例如,P-UE),可以避免信道感测和/或可以约束感测窗口的长度。
对于具有有限能力的发送设备200的实施例,可使用部分感测过程和/或随机资源选择来实现基于感测的无线电资源分配。在部分感测过程中,发送设备200可仅感测在全感测过程的感测窗口内的无线电资源的(适当)子集,例如,仅仅是在状态消息中指示的一个或多个无线电资源的(适当)子集。在随机资源选择中,可由发送设备200以随机方式选择(即,在步骤404中确定)至少一个无线电资源,即,不使用信道感测。例如,可在步骤404中从在状态消息604中指示的一个或多个无线电资源中随机选择至少一个无线电资源。本文中,可以在时域(例如,使用更短的感测窗口)、频域(例如,使用更窄的带宽)、空间域(例如,使用更少的天线元件)或它们的组合中相对于完全感测来降低部分感测涉及的复杂性。
替代地或除了信道感测之外(例如,在步骤404中的基于感测的分配期间),发送设备200的每个实施例可以可选地将步骤406执行为半持久发送。半持久发送包括从发送设备200发送通知消息。该通知消息被发送给接收设备100或被广播给无线电网络500的所有无线电设备(例如,在数据发送406的范围内)。
通知消息向无线电设备(例如,在步骤302中接收通知消息的接收设备100的其他实施例)通知发送设备200根据步骤406在稍后时间点使用至少一个无线电资源进行发送的意图。可以在时间、频率和/或空间中指定至少一个无线电资源。例如,用于数据的发送406的频率和/或空间(即,发送的方向,例如,预编码向量)可以对应于用于通知消息的发送的频率和/或空间。例如,在时间T处发送通知消息的发送设备200可向接收机通知该发送设备200将在时间T+100ms处使用相同的频率资源进行发送的通知消息。通知消息的发送也可被称为资源预留或资源预订。通知消息也可被称为预订消息。资源预订对于依赖于分组的周期性发送的车辆应用(例如,以3GPP LTE版本14为目标的那些车辆应用)可以是有益的。
半持久发送(例如,对作为根据步骤302接收的无线电信号的示例的预订消息的接收)允许无线电设备(例如接收设备100的实施例)预测无线电资源的未来利用。也就是说,通过监听另一无线电设备(例如,发送设备200的实施例,并且可能但不一定是与接收预订消息的接收设备100进行无线电通信的设备)的当前发送,接收设备100获取有关潜在未来发送的信息。接收设备100可使用该信息来避免在选择它自己的资源时发生冲突和/或用于确定302一个或多个所指示的无线电资源。
例如,接收设备100通过解码(即,读取)所接收的一个或多个预订消息来预测一个或多个无线电资源的未来利用。基于一个或多个预订消息,接收设备100可调度其当前传输(例如,对数据接收306的响应)和/或在步骤302中确定一个或多个所指示的无线电资源,以避免使用正在发送预订消息的无线电设备所使用的相同无线电资源。这也可被称为基于感测的无线电资源选择。
接收设备100和/或发送设备200的任何实施例可例如分别在步骤302和404中实现基于感测的资源选择。基于感测的资源选择可根据3GPP版本14或更高版本(例如,文档3GPPTS 36.213,版本14.5.0中的第14.1.1.6节)来实现。
替代地或附加地,基于感测的无线电资源选择的示例性实施方式可包括以下感测步骤中的至少一个。在第一感测步骤中,所有无线电资源(例如,在对应无线电设备处可接收的所有无线电资源)被认为是可用的。在第二感测步骤中,无线电设备100和/或200基于信道感测来排除无线电资源。信道感测可包括以下中的至少一项:解码对相应的无线电资源的调度分配(SA)(例如,来自基站502,如果在小区504内)和/或一个或多个预订消息、感测(或测量)相应的无线电资源上的能量以及可选的附加条件。如果无线电资源被所解码的SA指示或预留,则排除该无线电资源。替代地或附加地,如果无线电资源的能量或功率大于预定义阈值,则排除该无线电资源。例如,如果无线电资源在相关联的无线电资源中的物理(PHY)副链路共享信道(PSSCH)上测量的参考信号接收功率(RSRP)高于预定义阈值,则该无线电资源被排除。在第三感测步骤中,无线电设备基于对接收信号强度指示(RSSI)的测量来对剩余的PSSCH资源进行测量和排序,并选择子集。该子集是具有最低总接收能量的候选无线电资源集合。该子集的大小例如是选择窗口内的总资源的20%。所得到的至少一个无线电资源由发送设备200用于步骤406,或者所得到的一个或多个无线电资源由接收设备100根据步骤304指示。
参考图6A和6B描述了该技术的实施例可获得的优点。
图6A示意性地示出了包括常规无线电设备10、20和30(例如,现有的V-UE)的无线电环境的比较示例。在传统的自主资源选择(例如根据用于V2X的3GPP LTE版本14的用于模式4的UE的资源分配方案)中,由发送UE基于其自身的感测结果来选择资源。该机制对于例如针对3GPP LTE所指定的SL广播很好地起作用。然而,如果一个或多个常规UE例如在定向发送的情况下使用定向通信,则常规自主资源选择可能是不合适的,因为这可能导致发送UE选择了错误的资源。当前现有的自主资源选择方案可能导致冲突。
在定向发送的情况下,常规的自主资源选择方案可能无法很好地工作,即,由发送设备选择的资源可能不适用于在接收设备处的信号接收。在图6A中示意性地示出了冲突的示例。在该示例中,无线电设备30意图将资源X(即,时频域中的无线电块(RB)的集合)用于其传输,并且通过SA(例如,通过发送对应的预订消息)来向其他UE通知资源预留。但是,设备20在设备30的通信范围外,并且因此不知道该通知。结果,设备20也可能基于其感测结果来选择资源X以用于到设备10的发送。在这种情况下,由于设备10处于设备30的通信范围内的事实,在设备10处的信号接收可能被设备30引起的干扰显著恶化。这可能会建立针对隐藏节点问题(HNP)的定向通信的特定情况。
图6B示意性地示出了无线电网络500的实施例,其包括在定向无线电通信中的接收设备100的至少一个实施例和发送设备200的至少一个实施例。无线电网络500还包括干扰器250,其可以是无线电网络500的另一发送设备。
根据从干扰器250接收的无线电信号602,一个或多个无线电资源可在接收设备100处被占用。所接收的无线电信号602可包括干扰(例如,一些其他数据发送)或者可指示(例如,至少一些)被占用的无线电资源,例如预订消息。所接收的无线电信号使接收设备100能够在步骤302中确定一个或多个无线电资源606。
本文中,空间流可与以下中的至少一个有关:定向发送的方向或参数,定向接收的方向或参数,以及多输入多输出(MIMO)信道或MIMO信道的参数。空间流也可被称为空间无线电资源。
被占用的无线电资源可在时间、频率、空间流或其任何组合或子组合方面被定义。一个或多个所指示的无线电资源606可在时间、频率、空间流或其任何组合或子组合方面被定义。例如,一个或多个所指示的无线电资源606可包括被占用的无线电资源作为被排除的资源。特别地,状态消息604可指示被占用的空间流是被排除的。替代地或附加地,一个或多个所指示的无线电资源606可包括在接收设备100处可接收并且基于所接收的无线电信号602是未被占用的无线电资源。特别地,状态消息604可指示未被占用的空间流是优选的。
接收设备100在步骤304中发送指示一个或多个所确定的无线电资源的状态消息604。发送设备200在步骤406中使用一个或多个所指示的无线电资源606来发送数据610。
无线电网络500可以是3GPP NR实现方式。发送设备200和接收设备100之间的无线电通信可采用SL单播和/或SL多播。对于单播或多播,定向发送在波束成形增益方面更有效和/或对不参与无线电通信的其他UE250的干扰更少。更具体地,对于SL单播或SL多播,可将SA(例如,预订消息)和/或数据定向地发送给一个或多个目标UE,例如,接收设备100的实施例。
在下文中,尤其描述了在接收UE 100的实施例处或针对接收UE 100的实施例的方法300的3GPP实现方式。方法300可被实现为向其他UE建议无线电资源的方法。
由图6B中的UE1例示的接收UE 100可具有从它的角度来看的优选无线电资源606的集合,该集合例如在步骤302中从接收UE 100自己的本地信道感测中(例如,基于所接收的无线电信号)获得。本文中,优选无线电资源606可包括被接收UE 100解释为空闲的、空的或未被占用的无线电资源。接收UE 100可以向其他UE 200指示它的用于接收306的最新的优选无线电资源606,作为用于从其他UE 200到接收UE 100的发送406的无线电资源建议604。
在接收UE 100处用于接收306的优选无线电资源的集合还可与指示在一定时间段内在无线电资源处测量的干扰水平(例如,采用RSRP或RSSI或拥塞测量表示的平均干扰)的测量值集合相关联,该优选无线电资源的集合可以由eNB或gNB 502预先配置或配置。
在方法300的一种实施方式中,接收UE 100可结合至少一个空间流来仅指示优选时频资源,即在至少一个无线电流上的测量干扰602低于预定义阈值的那些无线电资源,以便接收这种信息604的UE 200应当优先考虑在这种无线电资源606上的发送406。在与该一个实施方式可组合的另一实施方式中,接收UE 100仅指示干扰高于预定义阈值的无线电资源606,在这种情况下,接收这种信息604的UE 200将不优先考虑在这种无线电资源606上的发送。
该至少一个空间流可由状态消息604暗示。例如,如果接收设备200在步骤302中确定它能够在有干扰602(例如,在相同的频率上和/或在相同的时间)在另一方向上到达接收设备100的情况下使用定向接收306来接收数据610。可选地,接收UE 100可借助于状态消息来信号发送用于例如在特定无线电资源606处的MIMO接收306的剩余自由度,该特定无线电资源606作为优选无线电资源,或者如果无线电资源被预定用于即将到来的发送和/或接收,则作为被排除的无线电资源。
例如,如果接收UE 100正在使用2个接收天线在资源X上接收数据流并且具有另外两个(即,未使用的)接收天线,则接收UE 100可以将2个剩下的自由度相关联以用于可能的接收306和解码。状态消息604可指示未使用的空间自由度的数量。
在任何实施例或实施方式中,状态消息604可在步骤304中通过在副链路控制信息(SCI)中包括指示无线电资源606的(例如,专用)字段而被发送。即,状态消息604可通过在副链路控制信道中发送的控制信令来实现。实现状态消息604的该资源建议字段用于协助其他UE 200选择无线电资源以用于到接收UE 100的未来发送406。状态消息604不同于例如在常规SCI中的用于资源预留的现有字段,其由发送UE 200发送和/或用于指示UE 100为其自身的未来发送而预留的资源(例如,对数据610的触发或响应)。
在一些实施例中,接收UE 100从其本地可用无线电资源的候选者中排除一个或多个优选资源606或它们的子集。
替代地或附加地,一个或多个所指示的无线电资源606与接收UE 100的其他数据(即,图7中的608)一起被发送。例如,状态消息604被捎带(piggyback)在由接收UE 100在PSSCH中发送的数据分组中。
图7示出了用于实现例如被包括在从接收设备100到发送设备200的数据发送608中的状态消息604的示意性信令图700。接收UE 100意图将分组608发送给发送UE 200。接收UE 100可以将一个或多个所确定的无线电资源606的指示(即状态消息604)捎带在分组608中。
在任何实施例中,在步骤404中在发送设备200处感测信道702可类似于在步骤302中在接收设备100处接收302无线电信号602来实现。差异(例如,唯一的差异)可以是步骤302的结果在步骤304中借助于状态消息604被发送给发送设备200,该状态消息604在步骤402中在发送设备200处被接收。在发送设备200处感测信道702的结果可与在步骤404中的状态消息604中指示的一个或多个无线电资源606组合,以产生在步骤406中在发送设备200处使用的至少一个无线电资源。
替代地或附加地,即使没有数据分组608将要从接收UE 100发送给发送UE 200,接收UE 100也可以在PSSCH上向其他UE 200发送资源建议606。这可以基于预先配置的周期来完成或由来自其他UE 200的请求而触发。
在任何实施例或实施方式中,仅当一个或多个(例如,优选或被排除的)所确定的无线电资源与先前用于无线电通信的无线电资源相比(例如,与从接收UE 100发送的先前子帧相比)有改变时,一个或多个无线电资源606的指示604才可被发送。该改变可包括时间(例如,相对于周期性无线电帧结构)、频率和/或无线电资源的至少一个空间流的改变。替代地或附加地,仅当一个或多个无线电资源(例如,时间、频率或空间资源)的测量(例如,干扰测量)与先前指示604相比显著改变时,才发送一个或多个无线电资源606的指示604。例如,可响应于先前被指示的无线电资源606的RSRP和/或RSSI的改变(例如,如果当前被测量的相同(或时间上对应的)无线电资源的RSRP和/或RSSI相对于先前的测量超出和/或低于(例如,绝对或相对)阈值)来发送状态消息604。
替代地或附加地,在专门或专用信道中发送指示一个或多个所确定的无线电资源606的状态消息604(例如,建议和/或排除)。该信道可被专门或排他地定义或预留用于状态消息604的发送304,即,一个或多个无线电资源606的指示以及可选地其他相关信息的任何实施方式。
在任何实施例或实施方式中,状态消息604可暗示某个空间流作为至少一个空间流。例如,状态消息604可暗示先前用于无线电通信的空间流和/或用于在接收设备100处对发送设备200的定向接收的参数。替代地或附加地,状态消息604可在时频域中的资源位置方面明确指示一个或多个无线电资源606。例如,如果暗示至少一个空间流,则状态消息604可明确地仅指示时频域中的资源位置。
至少一个空间流可在状态消息604中通过接收设备100能够用于接收306的空间自由度(DoF)来指示。即,如在状态消息604中(例如,作为无线电资源推荐)指示的至少一个空间流可包括无线电通信的(例如,最大或优选)秩或至少一个空间流的(例如,最大或优选)数量。例如,无线电通信可包括MIMO信道或SIMO信道。DoF可对应于在接收设备100的末端处的信道的(例如,最大或优选)秩。在用于无线电通信的SIMO信道的情况下,所指示的DoF可以是一(1)。SIMO信道可以由在接收设备100处的定向接收306来实现。状态消息604的发送304可暗示DoF等于1或大于1。例如,状态消息604的发送304可暗示接收设备100已经准备好接收306,其中借助于定向接收在接收设备100处抑制干扰。
在任何实施例或实施方式中,一个或多个所指示的无线电资源604(例如,无线电资源建议)不仅可包括至少一个空间流,还可包括时频域中的资源位置和/或其他相关信息。相关信息可包括但不限于接收UE 100的能力(例如,在可接收带宽、子载波的数量、接收机链的数量等方面)、在接收UE 100处用于步骤302的信道感测中使用的阈值(例如,在上述第二感测步骤中使用的阈值)、与在步骤302中(例如,通过接收信号602)测量的时间和/或频率资源相关联的载波和/或频率、等等。
在状态消息604中,接收UE 100可例如与一个或多个所指示的无线电资源606一起信号发送优先级。优先级可指示被调度为在对应的无线电资源606上从另一无线电设备(例如,无线电设备250、发送UE 200的另一实施例、或无线电网络500中的任何无线电设备)发送的其他数据。例如,优先级可与一个或多个无线电资源606中的每一个相关联。优先级可取决于以下中的至少一个:绝对优先级或排名,其他数据的类型、服务类型、用于数据和/或服务的服务质量(QoS)类别标识符(QCI)、其他数据的目的地等。优先级可以是数据和/或发送其他数据的其他无线电设备的特征。
接收UE 100可基于从其他无线电设备接收的SA、预订消息或SCI来确定将要使用一个或多个所指示的无线电资源(例如,某些时频资源)中的至少一个来被发送的其他数据的优先级。替代地或附加地,缓冲器状态报告可指示将要由其他无线电设备发送的其他数据的大小,并且优先级可取决于该大小。
如果在一个或多个所指示的无线电资源之一上调度了不同优先级的其他数据,则状态消息604可指示不同优先级中的最高优先级。
如果其他数据被调度用于在接收UE 100处的接收(即,UE 100也是其他数据的接收机)并且接收UE 100能够(例如,在相同的时间和频率)接收不同空间流上的数据610和其他数据,则接收UE 100可向发送UE 200指示剩余用于数据610的接收306的空间DoF(例如,不指示其他数据的优先级)。替代地或附加地,不同的状态消息604可在步骤304中被单播到被调度用于相同时间和频率的发送UE 200的不同实施例,其中不同的状态消息604指示在接收UE 100处可独立接收的不同空间流。
在任何实施例或实施方式中,接收UE 100可例如取决于它的能力和/或是否执行了完全感测过程(例如,作为步骤302的一部分)来选择性地执行方法300,特别是步骤304。例如,接收UE 100仅在它能够进行完全感测并且实际上已经执行了完全感测的情况下才执行无线电资源建议。替代地或附加地,在RAN覆盖的时段期间,RAN 500(例如服务基站502)可配置UE(或UE的适当子集)以执行方法300(即,资源建议)。任何UE 100可被选择性地配置为基于例如相应的UE 100的能力和/或无线电资源池的配置来执行方法300。无线电资源池可包括在无线电网络500中可用于SL通信的无线电资源。
在接收UE 100的任何实施例中,步骤304可以在单播或多播模式下实现无线电资源建议604的发送。替代地或附加地,步骤304可以在广播模式下实现无线电资源建议604的发送。
在接收UE 100的任何实施例中,例如,对于无线电通信具有半双工限制,当将可用无线电资源606的集合确定为步骤302中的优选无线电资源时,接收UE 100可不仅仅考虑信道测量。例如,接收UE 100可考虑时间资源X,在该时间资源X中预期或调度了来自接收UE100的另一传输(例如,对数据610的触发或对数据610的响应)。接收UE 100没有例如在状态消息604中向发送UE 200指示的可用或优选无线电资源606的列表中指示接收UE 100预期在其中执行它自己的传输的子帧X。举例来说,如果接收UE 100已经在子帧X中预留了一些频率资源用于它自己的传输(例如,已经在SCI中被信号发送),则接收UE 100从可用或优选无线电资源606的列表中排除子帧X中的所有无线电资源和/或指示子帧X中的无线电资源606作为被排除的无线电资源606。
在接收UE 100处或由接收UE 100支持的(例如,独立操作的)接收机链(RX链)的数量可受到限制。换句话说,接收UE 100的实施例可以能够同时接收一定数量的副链路载波或副链路信道。在步骤304中被发送到发送UE 200的指示一个或多个优选无线电资源的集合的状态消息604考虑了RX链的数量。
在一个实现方式的示例中,接收UE 100可在优选无线电资源606的集合中指示针对给定频率A的某些子帧。由于在接收UE 100处的RX链数量有限,因此,可从该优选无线电资源的集合中排除这些子帧用于在接收UE 100无法用频率A同时接收的所有那些频率上的数据接收306。这种子帧(例如,仅可用于频率A的子帧)的集合可用时分复用(TDM)模式表示。可从在步骤302中被感测为空的(也被称为空闲或未被占用的)无线电资源(例如,用于至少一个空间流中的每个空间流的时频资源)分别在相同的状态消息604中(例如,在另一字段中)或在另一状态消息604中信号发送TDM模式。
在另一实现方式的示例中,通过排除由于接收UE 100的有限的RX能力而导致的RX冲突,减少在步骤302中被确定为空的一个或多个无线电资源606。换句话说,在状态消息604中指示的一个或多个无线电资源606共同考虑了TDM模式(其中接收UE 100由于有限的RX能力而不可用于接收)以及被测量为空的时频资源。例如,即使某个时频资源被测量为空,如果接收UE 100由于有限的RX能力而不能在所述无线电资源上接收,则也从在状态消息604中指示的优选无线电资源606的列表中排除它。
在下文中,尤其描述了在发送UE 200的实施例处或针对发送UE 200的实施例的方法400的3GPP实施方式。方法400可被实现为通过考虑所接收的针对一个或多个无线电资源的建议和/或排除来选择无线电资源的方法。
当在步骤402中,除了接收UE 100之外的UE 200的一个或多个实施例从接收UE100接收状态消息604(例如,指示无线电资源建议)时,UE 200可以在步骤404中在其自身的资源选择过程期间考虑一个或多个所指示的无线电资源(例如,无线电资源建议)。图6B和7示意性地图示了UE 200的实施例。UE 200可被称为发送UE 200,因为它向接收UE 100发送或选择性地发送数据610。
可选地,在步骤402中,发送UE 200从UE 100的多个实施例中的每一个接收状态消息604。由UE 200的一个实施例执行的步骤404可基于在从多个UE 100接收的多个状态消息604中所指示的无线电资源来确定至少一个无线电资源。例如,至少一个无线电资源可包括数据610将在步骤406中被多播到的多个UE 100所指示的一个或多个无线电资源的集合的交集。
如何考虑一个或多个所指示的无线电资源(例如,无线电资源建议)可取决于许多因素,例如,包括以下中的至少一个:发送UE 200的能力,发送UE 200的一个或多个预期接收机,在发送UE 200处的接收402与来自发送UE 200的发送406之间的时间间隙,一个或多个所指示的无线电资源(例如,所建议或优选的无线电资源)与在步骤404中在发送UE 200处执行的信道感测的结果之间的比较,以及来自多个周围UE 100的多个状态消息604(例如,所捕获的建议)的组合。
发送UE 200的一些实施例可仅考虑在来自接收UE 100的状态消息604中指示的一个或多个(例如,优选)无线电资源606。例如,P-UE可依赖于所接收的无线电资源建议。
发送UE 200的一些替代实施例包括高级UE,例如,V-UE。高级UE200可具有在步骤404中实现基于完全感测的无线电资源选择的能力。在这种情况下,发送UE 200可比较接收UE 100所指示(例如,建议)的一个或多个无线电资源606与由它的本地信道感测所产生的它自己的优选无线电资源(例如,本地空的无线电资源)。
如果两组资源之间存在交集,则发送UE 200可以选择交集内的至少一个无线电资源,以用于它的到接收UE 100的发送406。可选地,如果存在多个相交的无线电资源,则发送UE 200可例如基于某一标准或随机地(例如,借助于伪随机发生器)选择它们中的一个。
在图6B所示的示例中,发送UE 200在步骤404中确定(例如选择)资源Y作为用于它的到接收UE 100的发送406的至少一个无线电资源。通过这种方式,由于信号接收306不受干扰UE 250的发送602的干扰,因此可以改善在接收UE 100处的信号接收306的质量,例如信噪比(SINR)。
在一个变体中,如果在接收UE 100和发送UE 200的两个优选资源的集合(即,在状态消息604中指示的一个或多个优选无线电资源的集合与在步骤404中由本地信道感测得到的一个或多个优选无线电资源的集合)之间没有交集(即,重叠),则发送UE 200可通过仅考虑其自身的偏好来确定(例如,选择)至少一个无线电资源。在另一变体中,如果不存在交集,则发送UE 200不进行发送,例如,直到根据步骤402接收到另一状态消息604为止。在另一变体中,如果没有交集,则发送UE 200从这两个集合中受到更少或最少干扰的无线电资源中确定(例如,选择)至少一个无线电资源。换句话说,发送UE 200可按照干扰增加的顺序(例如,将两个集合合并的一个顺序)来将这两个集合中的可用无线电资源排序。发送UE200可从这种有序列表中挑选发送数据610所需的无线电资源的数量以例如容纳MAC PDU。在又一个变体中,发送UE 200在从两个集合中随机选择的某些资源中进行发送。
在任何实施例或实施方式中,例如,如在接收设备100的一些先前实施例的上下文中所公开的,接收UE 100信号发送不太优选或被排除的无线电资源606。例如,状态消息604可指示在接收UE 100处受到更多或最多干扰的一个或多个无线电资源的集合。在这种情况下,发送UE 200从它的发送无线电资源的集合(例如,从步骤404中的它的本地信道感测而得到的)中排除或避免在来自接收UE 100的状态消息604中被指示为被排除或被干扰的一个或多个无线电资源。换句话说,发送UE 200在步骤404中通过在发送UE 200处执行本地感测来确定(或选择)资源,从而产生用于所确定的无线电资源的本地候选者。如果用于至少一个无线电资源的本地候选者的集合与由接收UE 100指示为被排除的一个或多个无线电资源606重叠,则从该本地候选者的集合中排除这种重叠的无线电资源。如果用于至少一个无线电资源的整个本地候选者的集合与被排除的无线电资源重叠,则发送UE 200优选地不进行发送,例如直到接收到402另一状态消息604为止。
替代地或附加地,发送UE 200从其无线电资源的本地候选者的集合中排除在其中发送UE 200意图或被调度为向除接收UE 100之外的某个UE发送的无线电资源,例如如果在其中发送UE 200意图或被调度为进行发送的时间和/或频率资源被接收UE 100信号发送为优选无线电资源606。也就是说,发送UE 200忽略了由接收UE 100指示的这样一个或多个优选无线电资源(例如,偏好或建议)。
在任何实施例中,当根据步骤404确定至少一个无线电资源时,发送UE 200可考虑在状态消息604中指示的一个或多个无线电资源中的每一个的优先级。替代地或附加地,例如,在步骤404中,发送UE 200可使用至少一个所确定的无线电资源来考虑将要在步骤406中被发送的数据610(或对应的数据分组)的优先级。可将数据610的优先级与在对应的无线电资源中被调度用于发送的其他数据的优先级进行比较,例如,如在接收UE 100的一些先前实施例的上下文中所公开的。在与接收设备100在状态消息604中指示的某些无线电资源606相关联的优先级高于发送UE 200意图或被调度以发送的数据610的优先级的情况下,发送UE 200将这种无线电资源从用于发送406的至少一个无线电资源的候选者的集合中排除。否则,发送UE 200可在候选者的集合中包括或不排除状态消息604指示低优先级数据的那些无线电资源。
替代地或附加地,发送UE 200是具有有限能力和/或能量约束的UE,例如P-UE。这种UE 200可在步骤404中仅执行简化的资源选择过程,例如,包括以下中的至少一个:基于部分感测的无线电资源选择,纯随机资源选择,和具有降低的复杂度的基于完全感测的无线电资源选择(例如通过在无线电资源选择过程中省略一些感测步骤)。
在一些实施方式中,发送UE 200在步骤404中基于部分信道感测(简称:部分感测)并结合一个或多个所指示的无线电资源606来执行资源选择。部分感测意味着发送UE 200仅感测(例如,并且仅能感测到)有限的无线电资源候选者的集合,例如集合E或所感测的候选者,并根据步骤404确定(例如选择)集合E内的至少一个无线电资源。如果在从接收UE100接收的状态消息604中指示的一个或多个优选无线电资源606(简称:UE 100的所指示的候选者)与从在发送UE 200处的部分感测所得到的一个或多个无线电资源(简称:UE 200的本地候选者,其是感测候选者的子集)之间存在交集,则发送UE 200确定(例如,选择)交集内的至少一个无线电源以用于到接收UE 100的发送406。可选地和附加地,如果集合E中的所有感测候选者被感知为在发送UE 200处被占用(例如,具有高能量,即通过使用这些资源进行发送406会产生严重干扰),则发送UE 200可在接收UE 100的所指示的候选者中确定(例如,选择)至少一个无线电资源以用于发送406,例如即使该至少一个无线电资源不属于发送UE200的原始感测候选者(即不在集合E中)。
替代地或附加地,发送UE 200实现无线电资源的纯随机选择,其根本不考虑任何本地感测过程。发送UE 200在步骤404中从在来自接收UE100的状态消息604中指示的一个或多个优选无线电资源(简称:UE 100的所指示的候选者)中选择至少一个无线电资源,这是至少接收UE 100看起来是空闲的无线电资源。通过这种方式,例如,与在发送UE 200处在发送UE 200的本地候选者中的纯随机资源选择相比,整个无线电网络500中的干扰情况可被改善。
替代地或附加地,发送UE 200在步骤404中基于完全感测过程并结合接收UE 100的所指示的候选者来实现资源选择方案。可选地,省略一个或多个感测步骤以减少复杂性。为了省略一个或多个感测步骤,发送UE200可利用由接收UE 100指示的一个或多个优选无线电资源(即,建议)来跳过感测步骤,例如上述第三感测步骤。更具体地,发送UE 200可将从上述第二感测步骤得到的可用无线电资源与在来自接收UE 100的状态消息604中指示的一个或多个优选无线电资源(即,所建议的资源)进行比较。比较可包括找到它们的交集(例如,如果存在)。
在任何实施例或实施方式中,如果在状态消息604的接收402(例如,资源建议的接收)与数据610的发送406(例如,发送UE 200开始向接收UE 100发送)之间的时间间隙小于阈值,则在步骤404的无线电资源选择过程期间,发送UE 200可考虑在从接收UE 100接收到的状态消息604(例如,建议)中指示的一个或多个无线电资源606。
在任何实施例或实施方式中,如果在状态消息604的接收402(例如,资源建议的接收)与数据610的发送406(例如,发送UE 200开始向接收UE 100发送)之间的时间间隙大于阈值(例如,上述阈值),则发送UE200优选地在步骤404的无线电资源选择过程期间不考虑在状态消息604(例如,建议)中指示的一个或多个无线电资源606。
在任何实施例或实施方式中,如果接收UE 100是发送UE 200的预期接收机,则发送UE 200在其自身的资源选择过程期间考虑接收UE 100所指示的一个或多个优选无线电资源(例如,资源建议)。替代地或附加地,如果接收UE 100不是发送UE 200的预期接收机,或者如果发送UE 200以多个接收机为目标(例如,在多播或广播发送模式下),可选地不考虑来自接收UE 100的状态消息604(例如,资源建议)。
在任何实施例或实施方式中,状态消息604可通过在状态消息604中包括至少一个(例如,优选的)空间无线电通信参数(例如,作为空间无线电资源推荐)来指示至少一个空间流。空间无线电通信参数可包括空间发送参数和/或空间接收参数。空间无线电通信参数(例如空间接收参数)可包括在接收UE 100处的DoF。
举例来说,状态消息604可通过包括接收UE 100可用于接收306的DoF来指示至少一个空间流。
对于至少一个空间流中的每一个,状态消息604可指示一个或多个空间无线电通信参数。可选地,对于至少一个空间流中的每一个,状态消息604可在时间和/或频率方面指示至少一个无线电资源。即,状态消息604可指示与至少一个空间流中的每一个相关联的至少一个时间和/或频率资源。例如,状态消息604可包括与一个或多个时间和/或频率资源相关联的参数列表(例如,包括至少一个空间控制参数和/或空间DoF)。
基于在状态消息604中指示的DoF,在步骤404中,发送UE 200可确定传输秩。发送UE 200可被配备有多个发送天线,例如天线阵列的天线元件。例如,由接收UE 100指示的DoF是N,发送UE 200可选择至多N和M中的最大值(即,max(N,M))的传输秩,其中,M是在发送UE 200处的发送天线的数量。
此外,来自接收UE 100的状态消息604可结合至少一个空间流(例如,当根据DoF相干地合并多个天线元件时)来指示在时间和/或频率资源Z处的低测量干扰。基于在步骤402中接收的状态消息604和在步骤404中确定的传输秩,发送UE 200可应用具有使用时间和/或频率资源Z确定的秩的用于MIMO发送406的预编码器。替代地或附加的,基于由在接收UE100的实施例的状态消息604中的资源建议隐式或显式指示的干扰级别,发送UE 200可在步骤404中确定(例如,选择)适当的调制和编码方案(MCS)以用于它的到接收UE 100的发送406。
发送UE 200的一些实施例被配置为在步骤404中通过联合考虑来自无线电网络500中的接收UE 100的多个(例如,几个)实施例的多个所接收的状态消息604(例如,所捕获的建议)来确定(例如,选择)至少一个无线电资源。联合考虑可通过确定在相应的状态消息604中指示的一个或多个优选无线电资源606的多个集合的交集来实现。替代地或附加地,联合考虑可通过确定在相应的状态消息604中指示的一个或多个被排除的无线电资源606的多个集合的并集来实现。
替代地或附加地,发送UE 200通过联合考虑来自接收UE 100的多个实施例的多个所接收的状态消息604(例如,所捕获的建议或所接收的推荐)来确定(例如,选择)预期的接收机作为无线电通信的接收UE 100,每个接收UE 100的实施例都是针对数据610的接收306的候选者。例如,接收UE 100的多个实施例可包括网状无线电网络500的多个周围UE。在这种情况下,没有针对发送UE 200的特定的先验接收机。例如,发送UE200确定用于数据610的多跳通信的下一跳。
替代地或附加地,发送UE 200可参与超过一个的副链路通信会话。即,发送UE 200的无线电通信包括多个副链路通信会话。每个副链路通信会话与接收UE 100的实施例(即,相应的预期接收机)相关联。发送UE 200根据步骤402从一些或每个预期接收机接收状态消息604。发送UE 200在步骤404中的其自身的资源选择过程期间考虑来自所有预期接收机的所接收的状态消息604(例如,资源建议)(如果可用)。例如,发送UE 200可从跨越在相应的所接收的状态消息604中指示的一个或多个无线电资源606的多个集合的重叠的无线电资源集合中确定(例如,选择)至少一个无线电资源。
替代地或附加地,在步骤404中,发送UE 200可在步骤404中基于从接收UE 100的多个实施例(简称:预期接收机)接收的多个状态消息604并考虑多个预期接收机的(例如,当前)位置中的相关性来确定至少一个无线电资源。对于不同的预期接收机,将要被发送给多个预期接收机中的每一个的相应数据610可以不同或者可以不必不同。例如,发送UE 200可联合考虑在从相应的预期接收机接收的相应的状态消息604中指示的一个或多个优选无线电资源的集合,以例如在时间和/或频率资源方面加强选择无线电资源的单纯或单一使用。举例来说,发送UE 200在无线电网络500中具有多个(例如3个)UE 100(即,预期接收机)。预期接收机100可以是UE 200的周围或相邻UE 100。全部或大多数预期接收机100指示无线电资源X是优选的。例如,来自每个预期接收机100(或大多数预期接收机100中的每个)的相应的状态消息604指示X为优选无线电资源606。此外,少数的预期接收机100(例如3个中的1个)指示无线电资源Y为优选无线电资源606。在这种情况下,发送UE 200将无线电资源X确定为用于发送406的至少一个无线电资源。
替代地或附加地,发送UE 200可取决于对来自相应的预期接收机的一个或多个无线电资源的集合的联合考虑来确定在步骤406中是在多播模式下还是在单播模式下进行发送,其中每个预期接收机体现为接收UE 100。例如,如果发送UE 200想要向3个UE发送相同的数据610(例如,相同的数据分组),并且所有3个UE都建议相同的资源,则发送UE 200可选择多播模式以用于高效的无线电资源利用。
图8示意性地示出了在使用至少一个空间流以用于在接收设备100处从发送设备200接收数据610的定向无线电通信中的接收设备100(即,第一无线电设备)和发送设备200(即,第二无线电设备)的实施例。
至少一个空间流在接收设备100处被形成。接收设备100基于在步骤302中在接收设备100处接收的无线电信号来确定一个或多个无线电资源606-R1。确定302所基于的无线电信号包括以下中的至少一个:从发送设备200接收的无线电信号,以及从某个其他无线电源接收的无线电信号(例如预订消息或干扰602)。例如,从发送设备200接收的无线电信号携带一些先前被发送的数据。
在步骤302中,基于在接收设备100处接收的无线电信号,一个或多个无线电资源606-R1被确定为由第一定向接收定义的空间流606-R1,该第一定向接收放大从发送设备200接收的无线电信号和/或抑制干扰602。因此,一个或多个所确定的无线电资源包括在接收设备100处可接收的不同空间流606-R1和606-R2中的至少一个空间流606-R1。另一可接收空间流606-R2对应于由干扰602定义的第二定向接收。
每个空间流可与包括复值增益的合并向量相关联,用于相干地合并针对相应的定向接收的天线元件的无线电信号。在方法300的简化实施方式中,通过最大化朝向对发送设备200的接收方向的定向增益和/或通过最大化针对从发送设备200接收的无线电信号的RSRP或RSSI,仅计算用于空间流606-R1的第一定向接收的合并向量。在高级实施方式中,使用附加约束确定用于来自发送设备200的无线电信号的每个无线电信号和干扰602的合并向量,该附加约束是分别与发送设备200和干扰602对应的合并向量在复值向量空间中相互正交。
在步骤304中,指示一个或多个所确定的无线电资源606-R1的状态消息604被发送给发送设备200。例如,状态消息604(例如,显式或隐式地)指示在接收设备100处可用以在空间流606-R1上进行接收的空间DoF(例如,等于1)。
举例来说,发送设备200可以观察到干扰602。尽管常规的发射机可以避免在干扰602所占用的时间和/或频率资源上向接收机100发送数据610,但是状态消息604指示接收设备100在步骤306中在空间流606-R1上接收数据610的能力,例如,即使使用相同的时间和/或频率资源。这是可以的,因为在存在干扰602的情况下,接收设备100具有至少一个可用于接收306的空间DoF。
因此,数据610在步骤306中在接收设备100处在作为至少一个无线电资源的空间流606-R1上从发送设备200接收,通过指示DoF,该至少一个无线电资源对应于在所发送的状态消息604中指示的一个或多个无线电资源606-R1。
如参考图8的实施例所例示的,方法300可被实现为在接收机100处选择定向接收(也称为:波束成形接收306)的方法。方法400可被实现为在存在干扰602的情况下基于指示广播或全向发送406的定向接收306的状态消息接收402来执行广播或全向发送406的方法。
图9示意性地示出了在使用至少一个空间流以用于在接收设备100处从发送设备200接收数据610的定向无线电通信中的接收设备100(即,第一无线电设备)和发送设备200(即,第二无线电设备)的实施例。
至少一个空间流606-T1在发送设备200处被形成。接收设备100基于在步骤302中在接收设备100处接收的无线电信号904来确定一个或多个无线电资源606-T1和606-T2。
针对来自发送设备200的不同定向发送,使用不同的空间预编码器来发送确定302所基于的无线电信号904。不同定向发送的至少一个子集可在接收设备100处接收,并因此定义可在接收设备100处接收的不同空间流606-T1和606-T2。
用不同的信号标识符906对不同定向发送的无线电信号904进行编码。即,不同的预编码向量被应用于从发送设备200发送的无线电信号904,其中,不同的预编码向量唯一地对应于被编码在无线电信号904中的不同信号标识符906。
状态消息604通过引用对应的一个或多个信号标识符906来指示一个或多个所确定的无线电资源606-T1和606-T2。可选地,如图9示意性所示,状态消息604进一步指示与一个或多个所指示的无线电资源606-T1和606-T2中的每一个相关联的偏好级别902。
如参考图9的实施例所例示的,方法300可被实现为在接收机100处选择定向发送(也称为:波束成形发送406)的方法。方法400可被实现为基于指示定向发送406的状态消息接收402来执行定向发送406的方法。
图10示意性地示出了在使用包括至少一个空间流的MIMO信道以用于在接收设备100处从发送设备200接收数据610的无线电通信中的接收设备100(即,第一无线电设备)和发送设备200(即,第二无线电设备)的实施例。
图10中的设备100和200的实施例可通过组合分别来自图8和9的设备100和200的实施例的特征来实现。
在图10的示例中,至少一个空间流包括两个空间流606-1和606-2。至少一个空间流中的每个空间流通过预编码并且相干地合并天线元件而被分别形成在接收设备100和发送设备200两者处。接收设备100基于在步骤302中在接收设备100处接收的参考信号(RS,例如,移动性RS或解调RS),确定包括空间流606-1和606-2中的至少一个的一个或多个无线电资源。
状态消息604指示一个或多个所确定的空间无线电资源,即一个或多个空间流606-1和606-2。例如,状态消息604指示用于包括一个或多个空间流606-1和606-2的MIMO信道的秩。
如参考图10的实施例所例示的,方法300可被实现为在接收机100处选择一个或多个空间流606-1和606-2用于MIMO信道的方法。方法400可被实现为基于状态消息接收402来执行MIMO发送406的方法,该状态消息接收402指示了MIMO信道,例如,将要用于MIMO发送406的秩和/或预编码矩阵。
图11示出了设备100的实施例的示意性框图。设备100包括一个或多个用于执行方法300的处理器1104和被耦接到处理器1104的存储器1106。例如,存储器1106可用实现模块102、104和106中的至少一个模块的指令来被编码。
一个或多个处理器1104可以是以下中的一个或多个的组合:微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列、或任何其他合适的计算设备、资源、或可操作以单独地或与设备100的其他组件(例如存储器1106)一起提供接收机功能的硬件、微码和/或编码逻辑的组合。例如,一个或多个处理器1104可执行存储在存储器1106中的指令。这种功能可包括提供本文所讨论的各种特征和步骤,包括本文所公开的任何益处。表述“设备可操作以执行动作”可表示设备100被配置为执行该动作。
如图11中示意性示出的,设备100可由例如用作接收UE的第一无线电设备1100来体现。第一无线电设备1100包括被耦接到设备100的无线电接口1102,用于与一个或多个无线电设备和/或一个或多个其他基站进行无线电通信。
图12示出了设备200的实施例的示意性框图。设备200包括用于执行方法400的一个或多个处理器1204和被耦接到处理器1204的存储器1206。例如,存储器1206可用实现模块202、204和206中的至少一个模块的指令来被编码。
一个或多个处理器1204可以是以下中的一个或多个的组合:微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列、或任何其他合适的计算设备、资源、或可操作以单独地或与设备200的其他组件(例如存储器1206)一起提供接收机功能的硬件、微码和/或编码逻辑的组合。例如,一个或多个处理器1204可执行存储在存储器1206中的指令。这种功能可包括提供本文所讨论的各种特征和步骤,包括本文所公开的任何益处。表述“设备可操作以执行动作”可表示设备200被配置为执行该动作。
如图12中示意性示出的,设备200可由例如用作发送UE的第二无线电设备1200来体现。第二无线电设备1200包括被耦接到设备200的无线电接口1202,用于与一个或多个无线电设备和/或一个或多个其他基站进行无线电通信。
参考图13,根据实施例,通信系统1300包括诸如3GPP型蜂窝网络的电信网络1310,其包括诸如无线电接入网络的接入网络1311和核心网络1314。接入网1311包括多个基站1312a、1312b、1312c,例如NB、eNB、gNB或其他类型的无线接入点,每个无线接入点定义对应的覆盖区域1313a、1313b、1313c。每个基站1312a、1312b、1312c可通过有线或无线连接1315连接到核心网络1314。位于覆盖区域1313c中的第一用户设备UE 1391被配置为无线连接到对应的基站1312c或被其寻呼。覆盖区域1313a中的第二UE 1392可无线连接到对应的基站1312a。尽管在该示例中示出了多个UE 1391、1392,但是所公开的实施例同样适用于唯一UE在覆盖区域中或唯一UE连接到对应的基站1312的情况。
电信网络1310本身连接到主机计算机1330,主机计算机1330可体现在独立服务器、云实现的服务器、分布式服务器的硬件和/或软件中,或作为服务器群中的处理资源。主机计算机1330可归属于服务提供商的所有权或控制,或者可由服务提供商或代表服务提供商来操作。电信网络1310与主机计算机1330之间的连接1321和1322可直接从核心网络1314扩展到主机计算机1330,或者可通过可选的中间网络1320。中间网络1320可以是以下中的一个或者以下中的多于一个的组合:公共网络、私有网络、或托管网络;中间网络1320(如果有的话)可以是骨干网或互联网;特别地,中间网络1320可包括两个或更多个子网络(未示出)。
图13的通信系统作为一个整体实现了所连接的UE 1391、1392中的一个与主机计算机1330之间的连接。该连接可被描述为过顶(OTT)连接1350。主机计算机1330和所连接的计算机UE 1391、1392被配置为使用接入网络1311、核心网络1314、任何中间网络1320以及可能的其他基础设施(未示出)作为中介来经由OTT连接1350传递数据和/或信令。在OTT连接1350通过的参与通信设备不知道上行链路和下行链路通信的路由的意义上,OTT连接1350可以是透明的。例如,可以不向或者不需要向基站1312通知输入(incoming)下行链路通信的过去路由,该输入下行链路通信具有源自主机计算机1330的将向所连接的UE 1391转发(例如移交)的数据。类似地,基站1312不需要知道从源自UE 1391朝向主机计算机1330的输出(outgoing)上行链路通信的未来路由。
现在将参考图14描述在前面的段落中讨论的UE、基站和主机计算机的根据一个实施例的示例实现方式。在通信系统1400中,主机计算机1410包括硬件1415,该硬件1415包括被配置为建立和维护与通信系统1400的不同通信设备的接口的有线或无线连接的通信接口1416。主机计算机1410还包括处理电路1418,处理电路1418可具有存储和/或处理能力。特别地,处理电路1418可包括一个或多个适于执行指令的可编程处理器、专用集成电路、现场可编程门阵列或这些的组合(未示出)。主机计算机1410还包括软件1411,该软件1411存储在主机计算机1410中或可由主机计算机1410访问并且可由处理电路1418执行。软件1411包括主机应用1412。主机应用1412可操作为向诸如UE 1430的远程用户提供服务,UE 1430经由终止于UE 1430和主机计算机1410的OTT连接1450来连接。在向远程用户提供服务时,主机应用1412可提供使用OTT连接1450发送的用户数据。用户数据可取决于在步骤206中确定的UE 1430的位置。用户数据可包括传递给UE 1430的辅助信息或精确广告(也称为:ad)。该位置可由UE 1430例如使用OTT连接1450和/或由基站1420例如使用连接1460报告给主机计算机。
通信系统1400还包括基站1420,该基站1420在电信系统中提供并且包括使其能够与主机计算机1410以及与UE 1430通信的硬件1425。硬件1425可包括用于建立和维护与通信系统1400的不同通信设备的接口的有线或无线连接的通信接口1426,以及用于建立和维护与位于由基站1420服务的覆盖区域(图14中未示出)中的UE 1430的至少无线连接1470的无线电接口1427。通信接口1426可被配置为促进到主机计算机1410的连接1460。连接1460可以是直接的,或者可通过电信系统的核心网络(图14中未示出)和/或通过电信系统外部的一个或多个中间网络。在所示的实施例中,基站1420的硬件1425还包括处理电路1428,处理电路1428可包括一个或多个适于执行指令的可编程处理器、专用集成电路、现场可编程门阵列或这些的组合(未示出)。基站1420还具有在内部存储或可经由外部连接访问的软件1421。
通信系统1400还包括已经提到的UE 1430。其硬件1435可包括无线电接口1437,无线电接口1437被配置为在基站服务于UE 1430当前所在的覆盖区域的情况下,建立并维护无线连接1470。UE 1430的硬件1435还包括处理电路1438,处理电路1438可包括一个或多个适于执行指令的可编程处理器、专用集成电路、现场可编程门阵列或这些的组合(未示出)。UE 1430进一步包括存储在UE 1430中或可由UE 1430访问并且可由处理电路1438执行的软件1431。软件1431包括客户端应用1432。客户端应用1432可操作为在主机计算机1410的支持下经由UE 1430向人类或非人类用户提供服务。在主机计算机1410中,执行主机应用1012可经由终止于UE 1430和主机计算机1410的OTT连接1450与该执行客户端应用1432通信。在向用户提供服务中,客户端应用1432可从主机应用1412接收请求数据,并响应于该请求数据提供用户数据。OTT连接1450可传送请求数据和用户数据两者。客户端应用1432可与用户交互以生成其提供的用户数据。
注意,图14所示的主机计算机1410、基站1420和UE 1430可分别与图13的主机计算机1130、基站1112a、1112b、1112c之一以及UE 1191、1192之一相同。也就是说,这些实体的内部工作原理可以如图14所示,而独立地,周围网络拓扑结构可以是图13的那样。
在图14中,已经抽象地绘制了OTT连接1450,以示出主机计算机1410与用户设备1430之间经由基站1420的通信,而没有明确地参考任何中间设备以及经由这些设备的消息的精确路由。网络基础设施可确定路由,该网络基础设施可被配置为将该路由对UE 1430或对操作主机计算机1410的服务提供商或两者隐藏。当OTT连接1450是活动的时,网络基础设施可进一步做出决定,通过该决定它动态地改变路由(例如基于负载平衡考虑或网络的重新配置)。
UE 1430和基站1420之间的无线连接1470根据贯穿本公开描述的实施例的教导。各种实施例中的一个或多个实施例改进了使用OTT连接1450提供给UE 1430的OTT服务的性能,在OTT连接1450中无线连接1470形成最后的段。更精确地,这些实施例的教导可减少延迟并改善数据速率,从而提供诸如更好的响应能力的益处。
可出于监控数据速率、延迟和一个或多个实施例在其上改善的其他因素的目的而提供测量过程。可能还存在可选的网络功能,用于响应于测量结果的变化来重新配置主机计算机1410和UE 1430之间的OTT连接1450。用于重新配置OTT连接1450的测量过程和/或网络功能可在主机计算机1410的软件1411中或在UE 1430的软件1431中或两者中实现。在实施例中,可将传感器(未示出)部署在OTT连接1450所经过的通信设备中或与之相关联;传感器可通过提供以上例示的监控量的值或提供软件1411、1431可以从中计算或估计监控量的其他物理量的值来参与测量过程。OTT连接1450的重配置可包括消息格式、重传设置、优选的路由等;重新配置不必影响基站1420,并且它可能对于基站1420是未知的或不可感知的。这种过程和功能在本领域中是已知的和实践的。在某些实施例中,测量可涉及专有UE信令,其促进主机计算机1410对吞吐量、传播时间、延迟等的测量。可以实现测量,以便软件1411和1431在监控传播时间、错误等的同时使用OTT连接1450发送消息(尤其是空消息或“虚设(dummy)”消息)。
图15是示出根据一个实施例的在通信系统中实现的方法的流程图。该通信系统包括主机计算机、基站和UE,它们可以是参考图13和图14描述的那些。为了本公开简单起见,本部分仅包括对图15的附图参考。在方法的第一步骤1510,主机计算机提供用户数据。在第一步骤1510的可选子步骤1511中,主机计算机通过执行主机应用来提供用户数据。在第二步骤1520中,主机计算机发起到UE的携带用户数据的传输。在可选第三步骤1530中,根据贯穿本公开所描述的实施例的教导,基站向UE发送由主机计算机发起的传输中携带的用户数据。在可选第四步骤1540中,UE执行与由主机计算机执行的主机应用相关联的客户端应用。
图16是示出根据一个实施例的在通信系统中实现的方法的流程图。该通信系统包括主机计算机、基站和UE,它们可以是参考图13和图14描述的那些。为了本公开简单起见,本部分仅包括对图16的附图参考。在该方法的第一步骤1610中,主机计算机提供用户数据。在可选的子步骤(未示出)中,主机计算机通过执行主机应用来提供用户数据。在第二步骤1620中,主机计算机向UE发起携带用户数据的传输。根据贯穿本公开所描述的实施例的教导,传输可通过基站。在可选第三步骤1630中,UE接收在传输中携带的用户数据。
在任何实施例中,接收无线电设备可向其他UE建议或推荐资源。发送设备可在其资源选择过程期间利用资源建议。
从以上描述中显而易见的是,该技术的实施例使得能够选择适当的发送资源,这在改善信号接收、改善资源利用效率和/或减少资源选择复杂性方面具有优势,这对于能力有限的无线电设备特别有价值。
对于具有有限能力的UE,例如P-UE,可应用基于在状态消息中指示的一个或多个无线电资源的部分感测或基于在状态消息中指示的一个或多个无线电资源的随机资源选择。在这种情况下,即使将有限数量和/或不完整数量的无线电资源视为候选者和/或即使使用纯粹的随机选择机制,也可以选择适当的发送资源。
从前面的描述中将充分理解本发明的许多优点,并且显而易见的是,在不脱离本发明的范围和/或不牺牲其所有优势的情况下,可以对单元和设备的形式、构造和布置进行各种改变。由于本发明可以多种方式改变,因此将认识到,本发明应仅由所附权利要求的范围限制。
Claims (51)
1.一种在无线电通信中在第一无线电设备(100)处从第二无线电设备(200)接收数据(610)的方法(300),所述方法(300)包括或发起以下步骤:
基于在所述第一无线电设备(100)处接收的无线电信号(602;904)来确定(302)一个或多个无线电资源,所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(606-1,606-2;606-R1,606-R2;606-T1,606-T2)中的至少一个空间流;
向所述第二无线电设备(200)发送(304)指示所述一个或多个所确定的无线电资源(606)的状态消息(604);以及
在取决于在所发送的状态消息(604)中指示的所述一个或多个无线电资源(606)的至少一个无线电资源上在所述第一无线电设备(100)处从所述第二无线电设备(200)接收(306)所述数据(610)。
2.根据权利要求1所述的方法,其中,所述第一无线电设备(100)包括多个天线端口,并且其中,不同的空间流(606-R1,606-R2;606-1,606-2)对应于根据用于在所述第一无线电设备(100)处的波束成形接收的不同的合并向量的来自所述多个天线端口的信号的合并。
3.根据权利要求1或2所述的方法,其中,所述状态消息(604)通过指示在所述第一无线电设备处的所述波束成形接收的空间自由度DoF来指示与在所述第一无线电设备(100)处的波束成形接收相对应的所述至少一个空间流。
4.根据权利要求1至3中任一项所述的方法,其中,所述第二无线电设备(200)包括多个天线端口,并且其中,不同的空间流(606-T1,606-T2;606-1,606-2)对应于被应用于所述多个天线端口以用于在所述第二无线电设备(200)处的波束成形发送的不同的预编码向量。
5.根据权利要求1至4中任一项所述的方法,其中,所述第一无线电设备(100)和所述第二无线电设备(200)之间的多输入多输出MIMO信道包括所述不同的空间流(606-1,606-2)。
6.根据权利要求1至5中的任一项所述的方法,其中,在所述第一无线电设备(100)处接收的用于所述确定(302)的无线电信号包括来自不同于所述第二无线电设备(200)的无线电源(250)的无线电信号(602),并且其中,所述一个或多个所确定的无线电资源(606)抑制来自另一无线电源(250)的无线电信号(602)或者不受来自所述另一无线电源(250)的无线电信号(602)干扰。
7.根据权利要求6所述的方法,其中,被包括在所述一个或多个所确定的无线电资源(606)中的所述至少一个空间流中的每一个空间流的合并向量正交于与来自所述另一无线电源(250)的无线电信号(602)相对应的合并向量。
8.根据权利要求1至7中的任一项所述的方法,其中,在所述第一无线电设备(100)处接收的用于所述确定(302)的无线电信号(602)包括参考信号或干扰,并且其中,所述一个或多个无线电资源(606)基于在所述第一无线电设备(100)处测量的所述无线电信号(602)的接收功率来确定。
9.根据权利要求6至8中任一项所述的方法,其中,来自所述另一无线电源(250)的无线电信号(602)的所述接收功率在所述第一无线电设备(100)处在抑制来自所述另一无线电源(250)的无线电信号(602)或不受所述另一无线电源(250)的无线电信号(602)干扰的所述一个或多个所确定的无线电资源(606)中的每个无线电资源上被测量。
10.根据权利要求9所述的方法,其中,所述状态消息(604)指示两个或更多个无线电资源(606)以及与每个所指示的无线电资源(606)相关联的数字偏好或偏好级别(902),所述数字偏好取决于在对应的无线电资源(606)上测量的所述接收功率和干扰(602)中的至少一个。
11.根据权利要求1至10中的任一项所述的方法,其中,所述状态消息(604)指示优选用于所述数据接收(306)的一个或多个无线电资源(606)。
12.根据权利要求9或10所述的方法,其中,如果在优选用于所述数据接收(306)的一个或多个无线电资源(606)上测量的所述接收功率小于预定义阈值,则所述状态消息(604)指示所述一个或多个优选无线电资源。
13.根据权利要求11或12所述的方法,其中,所述状态消息(604)还指示来自另一无线电源(250)的将要在所述优选无线电资源(606)的一个或多个上被发送的其他数据的优先级。
14.根据权利要求1至13中的任一项所述的方法,其中,所述状态消息(604)指示被排除用于所述数据接收(306)的一个或多个无线电资源(606)。
15.根据权利要求1至14中任一项所述的方法,其中,如果在被排除用于所述数据接收(306)的一个或多个无线电资源(606)上测量的所述接收功率大于预定义阈值,则所述状态消息(604)指示所述一个或多个被排除的无线电资源。
16.根据权利要求12或15所述的方法,其中,所述状态消息(604)还指示所述阈值。
17.根据权利要求1至16中的任一项所述的方法,其中,在所述第一无线电设备(100)处接收的用于所述确定(302)的无线电信号(602)包括预订消息,每个预订消息指示被调度的传输,并且其中,基于所述被调度的传输来确定所述一个或多个无线电资源(606)。
18.根据权利要求1至17中的任一项所述的方法,其中,在所述第一无线电设备(100)处接收的用于所述确定(302)的无线电信号包括来自所述第二无线电设备(200)的参考信号,并且其中,被包括在所述一个或多个所确定的无线电资源(606)中的所述至少一个空间流(606-R1)中的每一个空间流的合并向量对应于来自所述第二无线电设备(200)的所述无线电信号的最大比合并。
19.根据权利要求1至18中的任一项所述的方法,其中,从所述第二无线电设备(200)接收的用于所述确定(302)的不同的无线电信号(904)通过不同的预编码向量来预编码,所述不同的预编码向量与在所述不同的无线电信号(904)中被编码的不同的信号标识符(906)相关联,并且其中,所述状态消息(604)通过引用对应的一个或多个信号标识符(906)来指示被包括在所述一个或多个所确定的无线电资源(606)中的所述至少一个空间流(606-T1,606-T2)。
20.根据权利要求1至19中的任一项所述的方法,其中,所述所确定的一个或多个无线电资源是所述至少一个空间流与时域和频域中的至少一个中的约束的组合,所述约束取决于在所述第一无线电设备(100)处接收的无线电信号(602;904)。
21.根据权利要求1至20中任一项所述的方法,其中,所述无线电通信包括所述第一无线电设备(100)与所述第二无线电设备(200)之间的半双工通信链路,并且其中,所述第一无线电设备(100)从所述一个或多个所指示的无线电资源(606)中排除用于从所述第一无线电设备(100)到所述第二无线电设备(200)的发送的时间资源。
22.根据权利要求1至21中的任一项所述的方法,其中,所述第一无线电设备(100)能够同时接收最大数量的独立无线电信号,并且其中,所述确定(302)包括:基于所接收的无线电信号(602;904)来确定可用无线电资源,以及选择满足所述最大数量的同时可接收无线电信号的所述可用无线电资源的子集。
23.根据权利要求1至22中的任一项所述的方法,其中,所述状态消息(604)在物理副链路控制信道PSCCH上被发送和/或使用副链路控制信息SCI来发送,所述SCI包括指示所述一个或多个所确定的无线电资源(606)的至少一个比特字段。
24.根据权利要求1至23中任一项所述的方法,进一步包括或发起以下步骤:
从所述第一无线电设备(100)向所述第二无线电设备(200)发送用户数据,其中所述状态消息(604)和所述用户数据被包括在从所述第一无线电设备(100)向所述第二无线电设备(200)发送的数据分组中。
25.根据权利要求1至24中的任一项所述的方法,其中,所述状态消息(604)是下列至少一个:被周期性地发送,以及根据请求被发送。
26.根据权利要求1至25中的任一项所述的方法,其中,所述状态消息(604)在下列至少一个模式下被发送:单播模式,多播模式,以及广播模式。
27.根据权利要求1至26中任一项所述的方法,其中,所述状态消息(604)的所述发送(304)通过所述一个或多个所确定的无线电资源(606)相较于先前被指示给所述第二无线电设备(200)的一个或多个无线电资源的改变来触发。
28.根据权利要求1至27中任一项所述的方法,其中,在所述第一无线电设备(100)处的信道感测过程中接收用于所述确定(302)所述一个或多个无线电资源(606)的无线电信号,并且其中,所述状态消息(604)还指示在所述第一无线电设备(100)处执行所述信道感测过程的能力。
29.一种在无线电通信中从第二无线电设备(200)向第一无线电设备(100)发送数据(610)的方法(400),所述方法(400)包括或发起以下步骤:
从所述第一无线电设备(100)接收(402)指示基于在所述第一无线电设备(100)处接收的无线电信号(602,904)的一个或多个无线电资源(606)的状态消息(604),所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(600-1,606-2;606-T1,606-T2;606-R1,606-R2)中的至少一个空间流;
基于在所接收的状态消息(604)中指示的所述一个或多个无线电资源(606)来确定(404)至少一个无线电资源;以及
使用所确定的至少一个无线电资源向所述第一无线电设备(100)发送(406)所述数据(610)。
30.根据权利要求29所述的方法,还包括或发起以下步骤:
基于在所述第二无线电设备(200)处接收的无线电信号来确定一个或多个无线电资源,其中,所述确定(404)用于所述发送(406)的所述至少一个无线电资源取决于由所述第一无线电设备(100)指示的无线电资源(606)和由所述第二无线电设备(200)确定的无线电资源的组合。
31.根据权利要求29或30所述的方法,其中,所述状态消息(604)还指示将要在所述状态消息(604)中指示的一个或多个无线电资源上发送的其他数据的优先级,并且其中,所述确定(404)用于所述发送(406)所述数据(610)的所述至少一个无线电资源取决于与由所述第二无线电设备(200)发送的所述数据(610)相关联的优先级与在所述状态消息(604)中被指示的所述优先级的比较。
32.根据权利要求29或31所述的方法,其中,如果所述状态消息(604)的所述接收(402)与所述数据发送之间的时间间隙小于预定义阈值,则所述确定(404)用于所述数据发送(406)的所述至少一个无线电资源是基于在所述状态消息(604)中指示的所述一个或多个无线电资源(606)。
33.根据权利要求29至32中任一项所述的方法,其中,状态消息(604)从多个第一无线电设备(100)接收,并且其中,所述确定(404)用于所述发送(406)的所述至少一个无线电资源取决于由所述多个第一无线电设备(100)指示的无线电资源(606)的组合。
34.根据权利要求29至33中任一项所述的方法,其中,状态消息(604)从网状无线电网络(500;1420)的多个第一无线电设备(100)接收,所述方法还包括或发起以下步骤:
基于所述状态消息(604),在所述多个第一无线电设备(100)中选择用于所述数据(610)的所述发送(406)的第一无线电设备(100)。
35.根据权利要求29至34中任一项所述的方法,其中,状态消息(604)从作为所述数据(610)的预期接收机的多个第一无线电设备(100)接收,并且其中,所述确定(404)包括:取决于所述状态消息(604)所指示的优选无线电源(606)的重叠,在单播模式和多播模式中确定用于所述数据发送(406)的发送模式。
36.根据权利要求35所述的方法,其中,所述确定(404)包括:从由所述多个第一无线电设备(100)指示的空间流中导出预编码向量,以用于在所述单播模式下的所述发送(406)。
37.根据权利要求29至36中的任一项所述的方法,还包括或发起根据权利要求1至28中的任一项所述的步骤或与其相对应的步骤。
38.一种包括程序代码部分的计算机程序产品,所述程序代码部分用于当在一个或多个计算设备(1104;1204)上执行所述计算机程序产品时执行根据权利要求1至37中的任一项所述的步骤,所述程序代码部分可选地被存储在计算机可读记录介质(1106;1206)上。
39.一种第一无线电设备(100),用于在无线电通信中在所述第一无线电设备(100)处从第二无线电设备(200)接收数据(610),所述第一无线电设备(100)包括:
确定单元(102),其被配置为基于在所述第一无线电设备(100)处接收的无线电信号(602;904)来确定一个或多个无线电资源,所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(606-1,606-2;606-R1,606-R2;606-T1,606-T2)中的至少一个空间流;
发送单元(104),其被配置为向所述第二无线电设备(200)发送指示所述一个或多个所确定的无线电资源(606)的状态消息(604);以及
接收单元(106),其被配置为在取决于在所发送的状态消息(604)中指示的所述一个或多个无线电资源(606)的至少一个无线电资源上在所述第一无线电设备(100)处从所述第二无线电设备(200)接收所述数据(610)。
40.根据权利要求39所述的第一无线电设备(100),还被配置为执行根据权利要求1至28中的任一项所述的步骤。
41.一种第二无线电设备(200),用于在无线电通信中从所述第二无线电设备(200)向第一无线电设备(100)发送数据(610),所述第二无线电设备(200)包括:
接收单元(202),其被配置为从所述第一无线电设备(100)接收指示基于在所述第一无线电设备(100)处接收的无线电信号(602、904)的一个或多个无线电资源(606)的状态消息(604),所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(606-1,606-2;606-T1,606-T2;606-R1,606-R2)中的至少一个空间流;
确定单元(204),其被配置为基于在所接收的状态消息(604)中指示的所述一个或多个无线电资源(606)来确定至少一个无线电资源;以及
发送单元(206),其被配置为使用所确定的至少一个无线电资源向所述第一无线电设备(100)发送所述数据(610)。
42.根据权利要求34所述的第二无线电设备(200),还被配置为执行根据权利要求29至37中的任一项所述的步骤。
43.一种第一无线电设备(100),用于在无线电通信中在所述第一无线电设备(100)处从第二无线电设备(200)接收数据(610),所述第一无线电设备(100)包括至少一个处理器(1104)和存储器(1106),所述存储器(1106)包括能够由所述至少一个处理器(1104)执行的指令,由此所述第一无线电设备(100)可操作为:
基于在所述第一无线电设备(100)处接收的无线电信号(602;904)来确定一个或多个无线电资源(606),所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(606-1,606-2;606-R1,606-R2;606-T1,606-T2)中的至少一个空间流;
向所述第二无线电设备(200)发送指示所述一个或多个所确定的无线电资源(606)的状态消息(604);以及
在取决于在所发送的状态消息(604)中指示的所述一个或多个无线电资源(606)的至少一个无线电资源上在所述第一无线电设备(100)处从所述第二无线电设备(200)接收所述数据(610)。
44.根据权利要求36所述的第一无线电设备(100),还可操作为执行根据权利要求1至28中任一项所述的步骤。
45.一种第二无线电设备(200),用于在无线电通信中从所述第二无线电设备(200)向第一无线电设备(100)发送数据(610),所述第二无线电设备(200)包括至少一个处理器(1204)和存储器(1206),所述存储器(1206)包括能够由所述至少一个处理器(1204)执行的指令,由此所述第二无线电设备(200)可操作为:
从所述第一无线电设备(100)接收指示基于在所述第一无线电设备(100)处接收的无线电信号(602、904)的一个或多个无线电资源(606)的状态消息(604),所述一个或多个无线电资源(606)包括在所述第一无线电设备(100)处可接收的不同空间流(606-1,606-2;606-T1,606-T2;606-R1,606-R2)中的至少一个空间流;
基于在所接收的状态消息(604)中指示的所述一个或多个无线电资源(606)来确定至少一个无线电资源;以及
使用所确定的至少一个无线电资源向所述第一无线电设备(100)发送所述数据(610)。
46.根据权利要求38所述的第二无线电设备(200),还可操作为执行根据权利要求29至37中的任一项所述的步骤。
47.一种用户设备UE(100;200;1100;1200;1391;1392;1430),其被配置为与基站(502;1312;1420)或用作网关的无线电设备进行通信,所述UE(100;200;1100;1200;1391;1392;1430)包括无线电接口(1102;1437)和被配置为执行根据权利要求1至37中任一项所述的步骤的处理电路(1104;1204;1438)。
48.一种通信系统(1300;1400),包括主机计算机(1330;1410),所述主机计算机(1330;1410)包括:
处理电路(1418),其被配置为提供用户数据;以及
通信接口(1416),其被配置为将用户数据转发到蜂窝或自组织无线电网络(500;1420),以用于发送到用户设备UE(100;200;1100;1200;1391;1392;1430),其中,所述UE(100;200;1100;1200;1391;1392;1430)包括无线电接口(1102;1202;1437)和处理电路(1104;1204;1438),所述UE(100;200;1100;1200;1391;1392;1430)的所述处理电路(1104;1204;1438)被配置为执行根据权利要求1至37中任一项所述的步骤。
49.根据权利要求48所述的通信系统(1300;1400),还包括所述UE(100;200;1100;1200;1391;1392;1430)。
50.根据权利要求48或49所述的通信系统(1300;1400),其中,所述无线电网络(500;1420)还包括基站(502;1312;1420)或用作网关的无线电设备(100;200),其被配置为与所述UE(100;200;1100;1300;1391;1392;1430)进行通信。
51.根据权利要求48至50中的任一项所述的通信系统(1300;1400),其中:
所述主机计算机(1330;1410)的所述处理电路(1418)被配置为执行主机应用(1412),从而提供所述用户数据;以及
所述UE(100;200;1100;1200;1391;1392;1430)的所述处理电路(1104;1204;1438)被配置为执行与所述主机应用(1412)相关联的客户端应用(1432)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311204673.4A CN117042200A (zh) | 2018-03-16 | 2018-03-16 | 用于设备到设备通信的技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2018/056683 WO2019174742A1 (en) | 2018-03-16 | 2018-03-16 | Technique for device-to-device communication |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311204673.4A Division CN117042200A (zh) | 2018-03-16 | 2018-03-16 | 用于设备到设备通信的技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111886916A true CN111886916A (zh) | 2020-11-03 |
Family
ID=61691996
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311204673.4A Pending CN117042200A (zh) | 2018-03-16 | 2018-03-16 | 用于设备到设备通信的技术 |
CN201880091247.5A Pending CN111886916A (zh) | 2018-03-16 | 2018-03-16 | 用于设备到设备通信的技术 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311204673.4A Pending CN117042200A (zh) | 2018-03-16 | 2018-03-16 | 用于设备到设备通信的技术 |
Country Status (6)
Country | Link |
---|---|
US (3) | US11483861B2 (zh) |
EP (2) | EP4084565A1 (zh) |
JP (3) | JP7097455B2 (zh) |
CN (2) | CN117042200A (zh) |
BR (1) | BR112020018848A2 (zh) |
WO (1) | WO2019174742A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022213232A1 (en) * | 2021-04-05 | 2022-10-13 | Apple Inc. | Partial sensing for resource selection, reevaluation, and preemption |
US11683753B2 (en) | 2021-04-09 | 2023-06-20 | Inventec Appliances (Pudong) Corporation | Wireless transmission system and power saving method thereof |
US12232113B2 (en) | 2020-08-06 | 2025-02-18 | Apple Inc. | Reduced sensing schemes for sidelink enhancement |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7112892B2 (ja) * | 2018-06-14 | 2022-08-04 | フォルシアクラリオン・エレクトロニクス株式会社 | 車車間通信装置、車車間通信システムおよび車車間通信方法 |
WO2020065369A1 (en) * | 2018-09-24 | 2020-04-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Connectivity control for platooning of user equipments |
CN111294756B (zh) * | 2019-03-29 | 2022-02-01 | 北京紫光展锐通信技术有限公司 | 用于v2x业务的资源分配方法及装置、存储介质、终端、基站 |
US12200808B2 (en) * | 2019-06-21 | 2025-01-14 | Qualcomm Incorporated | DRX and wake-up operation based on predetermined state variation |
US11394510B2 (en) * | 2019-06-25 | 2022-07-19 | Qualcomm Incorporated | Collision avoidance and implicit location encoding in vehicle-to-pedestrian networks |
WO2021046835A1 (en) * | 2019-09-13 | 2021-03-18 | Qualcomm Incorporated | Interference power control for full-duplex sidelink communications |
EP4050926A4 (en) * | 2019-11-25 | 2022-10-19 | Huawei Technologies Co., Ltd. | Method and apparatus for determining hidden node |
CN113347592A (zh) * | 2020-02-18 | 2021-09-03 | 展讯通信(上海)有限公司 | V2x通信中资源分配的处理方法、系统、设备及介质 |
JP7556399B2 (ja) | 2020-04-14 | 2024-09-26 | 日本電気株式会社 | 通信方法 |
CN114946237A (zh) * | 2020-04-24 | 2022-08-26 | 华为技术有限公司 | 资源选择方法及通信装置 |
US20230189292A1 (en) * | 2020-05-18 | 2023-06-15 | Lenovo (Singapore) Pte. Ltd. | Triggering a report of a set of resources |
CN111885620B (zh) * | 2020-06-29 | 2023-01-17 | 中国信息通信研究院 | 一种信道部分侦听方法、终端设备 |
US11917616B2 (en) * | 2020-07-24 | 2024-02-27 | Samsung Electronics Co., Ltd. | Method and apparatus for configuration and signaling of SL resources for inter-UE co-ordination |
WO2022077376A1 (zh) * | 2020-10-15 | 2022-04-21 | 富士通株式会社 | 资源选择和资源指示方法及装置 |
WO2022093988A1 (en) | 2020-10-30 | 2022-05-05 | XCOM Labs, Inc. | Clustering and/or rate selection in multiple-input multiple-output communication systems |
US11832165B2 (en) * | 2020-11-24 | 2023-11-28 | Qualcomm Incorporated | State-based sensing procedure |
CN115250445A (zh) * | 2021-04-25 | 2022-10-28 | 展讯通信(上海)有限公司 | 资源确定方法及装置 |
WO2022241436A1 (en) | 2021-05-14 | 2022-11-17 | XCOM Labs, Inc. | Scrambling identifiers for wireless communication systems |
US12193044B2 (en) * | 2022-02-25 | 2025-01-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Resource selection for 5G NR V2X communications |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7075902B2 (en) * | 2002-02-11 | 2006-07-11 | Hrl Laboratories, Llc | Apparatus, method, and computer program product for wireless networking using directional signaling |
CN101611644B (zh) * | 2007-01-16 | 2013-11-06 | 皇家飞利浦电子股份有限公司 | 具有信标的多信道定向设备 |
US20090312044A1 (en) * | 2008-06-13 | 2009-12-17 | Ari Hottinen | Channel Estimation, Scheduling, and Resource Allocation using Pilot Channel Measurements |
EP2368401B1 (en) * | 2008-11-21 | 2018-10-03 | Telefonaktiebolaget LM Ericsson (publ) | Transmission method and devices in a communication system with contention-based data transmission |
JP5428508B2 (ja) * | 2009-05-08 | 2014-02-26 | ソニー株式会社 | 通信システム、通信装置及び通信方法、並びにコンピューター・プログラム |
BR112012001654B1 (pt) * | 2009-07-24 | 2021-07-13 | Panasonic Intellectual Property Corporation Of America | Dispositivo e método de comunicação sem fio e circuito integrado para executar transmissão de multiplexação espacial |
KR101883944B1 (ko) * | 2010-02-22 | 2018-07-31 | 한국전자통신연구원 | 무선 통신 시스템에서의 사운딩 방법 및 이를 수행하는 장치 |
US9485069B2 (en) * | 2010-04-15 | 2016-11-01 | Qualcomm Incorporated | Transmission and reception of proximity detection signal for peer discovery |
KR101919797B1 (ko) * | 2011-03-18 | 2018-11-19 | 엘지전자 주식회사 | 장치-대-장치 통신 방법 및 장치 |
CN102958179B (zh) * | 2011-08-25 | 2015-06-17 | 华为技术有限公司 | 传输、获取调度信息的方法及装置 |
US8885569B2 (en) * | 2011-12-19 | 2014-11-11 | Ofinno Technologies, Llc | Beamforming signaling in a wireless network |
US10149256B2 (en) * | 2012-07-05 | 2018-12-04 | Lg Electronics Inc. | Method for controlling power for device-to-device (D2D) communication in wireless communication system and apparatus for same |
WO2014015101A1 (en) * | 2012-07-18 | 2014-01-23 | Kyocera Corporation | Interference managment of device-to-device communication in a cellular communication system |
WO2014045345A1 (ja) * | 2012-09-19 | 2014-03-27 | 富士通株式会社 | 無線通信システム、無線通信装置、及び無線通信システムにおける無線通信方法 |
KR101710817B1 (ko) * | 2013-02-22 | 2017-02-27 | 인텔 아이피 코포레이션 | 액세스 네트워크 선택 및 트래픽 라우팅을 위한 시스템 및 방법 |
CN105191178B (zh) * | 2013-05-01 | 2019-06-28 | 三星电子株式会社 | 用于设备到设备通信系统的方法和装置 |
US9839018B2 (en) * | 2013-07-03 | 2017-12-05 | Futurewei Technologies, Inc. | Systems and methods for transmitting data information messages on a downlink of a wireless communication system |
WO2015111909A1 (ko) * | 2014-01-21 | 2015-07-30 | 엘지전자(주) | 단말 간 통신을 지원하는 무선 통신 시스템에서 단말 식별자를 결정하기 위한 방법 및 이를 위한 장치 |
CN104812086B (zh) * | 2014-01-24 | 2018-10-26 | 索尼公司 | 用于进行设备到设备通信的用户设备、基站和方法 |
KR101849481B1 (ko) * | 2014-01-31 | 2018-04-16 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말 |
KR101910663B1 (ko) * | 2014-02-22 | 2018-10-23 | 엘지전자 주식회사 | 단말 간 통신을 지원하는 무선 통신 시스템에서 간섭 완화 방법 및 이를 위한 장치 |
EP3122126A4 (en) * | 2014-03-20 | 2017-11-15 | LG Electronics Inc. | Method for transmitting and receiving signal in wireless communication system and device therefor |
US10136462B2 (en) * | 2014-04-17 | 2018-11-20 | Lg Electronics Inc. | Method for determining resource for transmitting signal in wireless communications system and apparatus therefor |
US10383096B2 (en) * | 2014-07-29 | 2019-08-13 | Lg Electronics Inc. | Method for transmitting resource information for D2D communication and apparatus therefor in wireless communication system |
WO2016021929A1 (ko) * | 2014-08-05 | 2016-02-11 | 엘지전자(주) | 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치 |
WO2016021585A1 (ja) * | 2014-08-05 | 2016-02-11 | シャープ株式会社 | 端末装置、集積回路、および、通信方法 |
EP3179811B1 (en) * | 2014-08-07 | 2020-06-24 | LG Electronics Inc. | Method for transmitting and receiving data in wireless communication system, and device for same |
CN106471752A (zh) * | 2014-08-08 | 2017-03-01 | 富士通株式会社 | 基于波束的信息传输方法、装置以及通信系统 |
KR20170044657A (ko) * | 2014-08-14 | 2017-04-25 | 엘지전자 주식회사 | 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치 |
JP6650406B2 (ja) * | 2014-09-26 | 2020-02-19 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
US20160112996A1 (en) * | 2014-10-17 | 2016-04-21 | Asustek Computer Inc. | Method and apparatus for improving resource control in a wireless communication system |
EP3217752B1 (en) * | 2014-11-03 | 2020-08-05 | LG Electronics Inc. | Signal transmission method and device of device to device terminal in wireless communication system |
US20160128027A1 (en) * | 2014-11-03 | 2016-05-05 | Qualcomm Incorporated | Adjacent channel co-existence for d2d |
WO2016076301A1 (ja) * | 2014-11-14 | 2016-05-19 | 株式会社Nttドコモ | ユーザ装置、フィードバック制御方法、及び再送制御方法 |
US9888450B2 (en) * | 2014-12-16 | 2018-02-06 | Lg Electronics Inc. | Method and apparatus for detecting synchronization signal in wireless communication system |
JP6626846B2 (ja) * | 2015-01-28 | 2019-12-25 | 京セラ株式会社 | ユーザ端末、基地局、及び方法 |
US9955469B2 (en) * | 2015-02-27 | 2018-04-24 | Intel Corporation | Joint encoding of wireless communication allocation information |
WO2016163767A1 (ko) * | 2015-04-07 | 2016-10-13 | 삼성전자 주식회사 | 단말간 직접 통신 방법 및 장치 |
US20180116007A1 (en) * | 2015-04-09 | 2018-04-26 | Ntt Docomo, Inc. | Communication terminal |
WO2016163430A1 (ja) * | 2015-04-10 | 2016-10-13 | 京セラ株式会社 | 無線端末及び制御方法 |
US10485012B2 (en) * | 2015-04-30 | 2019-11-19 | Lg Electronics Inc. | Method for performing D2D operation by terminal in wireless communication system and terminal using same method |
US10148332B2 (en) * | 2015-05-28 | 2018-12-04 | Futurewei Technologies, Inc. | System and method for multi-level beamformed non-orthogonal multiple access communications |
WO2017010761A1 (ko) * | 2015-07-13 | 2017-01-19 | 엘지전자(주) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치 |
US9913233B2 (en) * | 2015-07-28 | 2018-03-06 | Qualcomm Incorporated | Synchronization for device-to-device positioning in wireless networks |
JP6343719B2 (ja) * | 2015-08-13 | 2018-06-13 | 株式会社Nttドコモ | 情報処理方法及び移動局 |
US20170064638A1 (en) * | 2015-09-01 | 2017-03-02 | Qualcomm Incorporated | Method and apparatus for power control in d2d/wan coexistence networks |
US10887736B2 (en) * | 2016-04-01 | 2021-01-05 | Lg Electronics Inc. | Method for V2X transmission resource selection performed by means of terminal in wireless communication system and terminal using same |
US10201006B2 (en) * | 2016-04-01 | 2019-02-05 | Qualcomm Incorporated | Downlink control information for multi-layer transmissions |
US11395325B2 (en) * | 2016-04-01 | 2022-07-19 | Lg Electronics Inc. | Method for transmitting downlink control information for sidelink scheduling in wireless communication system and terminal using same |
EP3504926A4 (en) * | 2016-09-30 | 2019-07-17 | Samsung Electronics Co., Ltd. | METHOD AND DEVICES FOR TRANSMITTING AND RECEIVING SIGNALS |
US10172071B2 (en) * | 2016-10-21 | 2019-01-01 | Qualcomm Incorporated | Directional synchronization in assisted millimeter wave systems |
US10735143B2 (en) * | 2017-11-07 | 2020-08-04 | Huawei Technologies Co., Ltd. | System and method for bit mapping in multiple access |
US11044748B2 (en) * | 2018-05-01 | 2021-06-22 | Huawei Technologies Co., Ltd. | Methods and apparatus for sidelink communications and resource allocation |
US11432117B2 (en) * | 2018-08-10 | 2022-08-30 | Mediatek Inc. | Multiplexing of physical sidelink control channel (PSCCH) and physical sidelink shared channel (PSSCH) |
-
2018
- 2018-03-16 WO PCT/EP2018/056683 patent/WO2019174742A1/en active Application Filing
- 2018-03-16 CN CN202311204673.4A patent/CN117042200A/zh active Pending
- 2018-03-16 CN CN201880091247.5A patent/CN111886916A/zh active Pending
- 2018-03-16 US US15/775,651 patent/US11483861B2/en active Active
- 2018-03-16 BR BR112020018848-4A patent/BR112020018848A2/pt unknown
- 2018-03-16 EP EP22180167.3A patent/EP4084565A1/en active Pending
- 2018-03-16 EP EP18712181.9A patent/EP3766298B1/en active Active
- 2018-03-16 JP JP2020548751A patent/JP7097455B2/ja active Active
-
2022
- 2022-06-27 JP JP2022102302A patent/JP7614141B2/ja active Active
- 2022-09-20 US US17/949,148 patent/US12058732B2/en active Active
-
2024
- 2024-07-02 US US18/761,973 patent/US20240357641A1/en active Pending
- 2024-09-20 JP JP2024163927A patent/JP2025013769A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12232113B2 (en) | 2020-08-06 | 2025-02-18 | Apple Inc. | Reduced sensing schemes for sidelink enhancement |
WO2022213232A1 (en) * | 2021-04-05 | 2022-10-13 | Apple Inc. | Partial sensing for resource selection, reevaluation, and preemption |
US11683753B2 (en) | 2021-04-09 | 2023-06-20 | Inventec Appliances (Pudong) Corporation | Wireless transmission system and power saving method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20230020393A1 (en) | 2023-01-19 |
EP3766298B1 (en) | 2022-08-03 |
US20200296762A1 (en) | 2020-09-17 |
JP7097455B2 (ja) | 2022-07-07 |
BR112020018848A2 (pt) | 2021-02-09 |
JP2021517766A (ja) | 2021-07-26 |
JP7614141B2 (ja) | 2025-01-15 |
CN117042200A (zh) | 2023-11-10 |
US12058732B2 (en) | 2024-08-06 |
JP2022153369A (ja) | 2022-10-12 |
JP2025013769A (ja) | 2025-01-28 |
WO2019174742A1 (en) | 2019-09-19 |
EP3766298A1 (en) | 2021-01-20 |
US20240357641A1 (en) | 2024-10-24 |
US11483861B2 (en) | 2022-10-25 |
EP4084565A1 (en) | 2022-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12058732B2 (en) | Technique for device-to-device communication based on radio signals received from one or more radio sources | |
CN112385280B (zh) | 用于副链路反馈发送的技术 | |
CN109644405B (zh) | 侧向链路中的清除发送(cts)功率控制 | |
EP3092839B1 (en) | System and method for virtual multi-point transceivers | |
WO2018059292A1 (en) | System and method for d2d communication | |
EP3311625B1 (en) | Path selection in wireless mesh networks | |
CN112703782A (zh) | 用于车辆到车辆通信中的多天线传输的方法和设备 | |
CN114128322A (zh) | 侧链路通信中的资源分配方法 | |
US11729812B2 (en) | Preemption and cancellation in sidelink and uplink access | |
WO2022238340A1 (en) | Sidelink inter-ue coordination procedures | |
JP2023532069A (ja) | サイドリンクueのためのリソース予約の予測 | |
US20230216572A1 (en) | Beam restriction considerations in presence of a reconfigurable intelligent surface | |
CN116711425A (zh) | 基于ue间协调来分配侧链路资源的方法和装置 | |
US12010757B2 (en) | Vehicle-to-vehicle unicast/groupcast communications based on a periodic discovery channel broadcast | |
WO2024076265A1 (en) | Method performed by a first user equipment for coordinating resources for sidelink communication between user equipments. | |
CN116711422A (zh) | 侧链路通信中基于模式2的资源选择的方法和装置 | |
CN116746263A (zh) | 在侧链路通信中发送和接收ue间协调信息的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40039880 Country of ref document: HK |