CN111884631A - A Digital Pulse Width Modulation Module Using Hybrid Structure - Google Patents
A Digital Pulse Width Modulation Module Using Hybrid Structure Download PDFInfo
- Publication number
- CN111884631A CN111884631A CN202010360191.8A CN202010360191A CN111884631A CN 111884631 A CN111884631 A CN 111884631A CN 202010360191 A CN202010360191 A CN 202010360191A CN 111884631 A CN111884631 A CN 111884631A
- Authority
- CN
- China
- Prior art keywords
- delay
- module
- signal
- dpwm
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 238000007493 shaping process Methods 0.000 claims abstract description 6
- 238000013139 quantization Methods 0.000 claims description 9
- 239000000872 buffer Substances 0.000 claims description 6
- 238000012986 modification Methods 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract description 4
- 238000012938 design process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 102100038026 DNA fragmentation factor subunit alpha Human genes 0.000 description 4
- 102100038023 DNA fragmentation factor subunit beta Human genes 0.000 description 4
- 101100277639 Homo sapiens DFFB gene Proteins 0.000 description 4
- 101000950906 Homo sapiens DNA fragmentation factor subunit alpha Proteins 0.000 description 4
- 101100445834 Drosophila melanogaster E(z) gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- OUXCBPLFCPMLQZ-WOPPDYDQSA-N 4-amino-1-[(2r,3s,4s,5r)-4-hydroxy-5-(hydroxymethyl)-3-methyloxolan-2-yl]-5-iodopyrimidin-2-one Chemical compound C[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=C(N)C(I)=C1 OUXCBPLFCPMLQZ-WOPPDYDQSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation ; Duty cycle modulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/38—Calibration
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明公开了一种基于ASIC设计流程的数字脉冲宽度调制模块,属于电子技术领域,主要包括Sigma‑Delta调制器和Core DPWM两部分。Core DPWM由计数‑比较模块,延迟链和RS触发器组成,Sigma‑Delta调制器采用噪声整形技术,将Core DPWM模块的有效分辨率进行扩展。延迟链由可调节延迟单元和多路选择器串联组成,并配有校准模块控制延迟链的总延迟约为一个时钟周期。本发明使用多种结构组成混合结构,避免了单一结构在实现高分辨率DPWM模块时的各种缺点,具备线性度高、面积小、功耗低、容易修改的优点,有着极强的可移植性。
The invention discloses a digital pulse width modulation module based on an ASIC design process, which belongs to the field of electronic technology and mainly includes two parts: a Sigma-Delta modulator and a Core DPWM. The Core DPWM consists of a count-compare module, a delay chain and an RS flip-flop. The Sigma-Delta modulator uses noise shaping technology to extend the effective resolution of the Core DPWM module. The delay chain consists of an adjustable delay unit and a multiplexer in series, and a calibration block controls the total delay of the delay chain to be about one clock cycle. The invention uses a variety of structures to form a mixed structure, avoids various shortcomings of a single structure when implementing a high-resolution DPWM module, has the advantages of high linearity, small area, low power consumption, easy modification, and is extremely portable. sex.
Description
技术领域technical field
本发明涉及一种数字脉冲宽度调制电路,产生的调制信号可以应用于开关电源、直流电机控制等,属于电子技术领域。The invention relates to a digital pulse width modulation circuit, the generated modulation signal can be applied to switching power supply, direct current motor control, etc., and belongs to the field of electronic technology.
背景技术Background technique
由于模拟电路存在设计难度大,可移植性差,器件性能容易受到工艺误差、工作电压、环境温度的影响的固有缺点,随着集成电路的发展,传统的模拟脉冲宽度调制(AnalogPulse Width Modulation,APWM)逐渐向着数字脉冲宽度调制(Digital Pulse WidthModulation,DPWM)过度。但是相比于APWM,DPWM在分辨率、线性度、开关频率方面还有一定的差距,如何提高这三个指标是DPWM设计时需要考虑的重点。Due to the inherent shortcomings of analog circuits, such as difficult design, poor portability, and device performance easily affected by process errors, operating voltage, and ambient temperature, with the development of integrated circuits, traditional analog pulse width modulation (Analog Pulse Width Modulation, APWM) Gradually move towards digital pulse width modulation (Digital Pulse Width Modulation, DPWM). However, compared with APWM, DPWM still has a certain gap in resolution, linearity and switching frequency. How to improve these three indicators is the key point to be considered when designing DPWM.
基本的DPWM结构主要有三种:计数-比较型,延迟链型和环形振荡器型。计数-比较型的线性度高,但是实现高分辨率时需要极高时钟频率;延迟链型的开关频率与输入的时钟频率相同,但在实现高分辨率时会消耗大量芯片面积,线性度较差;环形振荡器型的原理与延迟链相似,不需要外部的时钟输入,面积消耗比延迟链型小,但是起振频率难以控制。There are three basic DPWM structures: count-compare, delay chain, and ring oscillator. The count-comparison type has high linearity, but requires a very high clock frequency to achieve high resolution; the delay chain type has the same switching frequency as the input clock frequency, but consumes a lot of chip area to achieve high resolution, and the linearity is higher. Poor; the principle of the ring oscillator type is similar to that of the delay chain, no external clock input is required, and the area consumption is smaller than that of the delay chain type, but the starting frequency is difficult to control.
由于单一结构的局限性,难以利用有限的设计资源达到设计指标的要求。因此,在实现高分辨率DPWM模块时,通常采用混合结构,利用不同基本结构的优点,并加入校准模块,降低工艺偏差、工作电压和环境温度带来的影响。同时,可以适当的采用数字抖动、Sigma-Delta调制等算法进一步提高DPWM模块的有效分辨率。Due to the limitations of a single structure, it is difficult to use limited design resources to meet the requirements of design indicators. Therefore, when implementing a high-resolution DPWM module, a hybrid structure is usually used, the advantages of different basic structures are used, and a calibration module is added to reduce the influence of process deviation, operating voltage and ambient temperature. At the same time, algorithms such as digital jitter and Sigma-Delta modulation can be appropriately used to further improve the effective resolution of the DPWM module.
发明内容SUMMARY OF THE INVENTION
为了克服现有的DPWM模块的精度低、线性度差的缺点,本发明提出了一种适用于ASIC流程的混合型数字脉冲宽度调制电路,利用噪声整形原理提高了有效分辨率位数,并具有很高的可移植性。本发明采用的技术方案如下:提出了一种数字脉冲宽度调制电路,包括:Sigma-Delta调制器,由计数器、比较器组成的计数-比较模块,由可调节延迟单元、校准模块组成的延迟链,及RS触发器。其中,计数-比较模块和延迟链组合为由硬件实现9-bit分辨率的Core DPWM模块,再由Sigma-Delta调制器通过噪声整形技术将有效分辨率提高至12-bit。所有的模块均工作在统一的时钟源clk下。In order to overcome the shortcomings of low precision and poor linearity of the existing DPWM module, the present invention proposes a hybrid digital pulse width modulation circuit suitable for the ASIC process. High portability. The technical scheme adopted by the present invention is as follows: a digital pulse width modulation circuit is proposed, including: a Sigma-Delta modulator, a counting-comparison module composed of a counter and a comparator, and a delay chain composed of an adjustable delay unit and a calibration module , and RS flip-flops. Among them, the count-comparison module and the delay chain are combined into a Core DPWM module with a 9-bit resolution achieved by hardware, and then the Sigma-Delta modulator is used to increase the effective resolution to 12-bit through noise shaping technology. All modules work under the unified clock source clk.
所述Sigma-Delta调制器使用了二阶Sigma-Delta调制,收到外部输入的12-bit控制信号DPWM_duty[11:0]后,通过噪声整形技术转化为9-bit的输出信号D[8:0],抑制量化噪声,并传递给Core DPWM模块中的计数-比较模块。The Sigma-Delta modulator uses second-order Sigma-Delta modulation. After receiving the externally input 12-bit control signal DPWM_duty[11:0], it is converted into a 9-bit output signal D[8] through noise shaping technology: 0], suppress the quantization noise, and pass it to the count-compare block in the Core DPWM block.
所述计数-比较模块由6-bit位宽的计数器和比较器组成,计数器根据时钟信号clk进行计数,生成内部计数信号cnt[5:0];比较器与占空比信号的高6位D[8:3]及计数信号cnt[5:0]连接。计数-比较模块会生成RS触发器的置位信号Set和延迟链的输入信号dlyclk。The counting-comparison module is composed of a 6-bit wide counter and a comparator, the counter counts according to the clock signal clk, and generates an internal counting signal cnt[5:0]; the high 6-bit D of the comparator and the duty cycle signal [8:3] and the count signal cnt[5:0] are connected. The count-compare module generates the set signal Set of the RS flip-flop and the input signal dlyclk of the delay chain.
所述延迟链由8级可调节延迟单元串联组成,将输入信号dlyclk进行延迟,理想的总延迟时间为时钟clk的周期T。每一个延迟单元的输出连接在8-to-1多路选择器的输入端,多路选择器的选择信号与占空比信号的低3位D[2:0]连接,最终多路选择器的输出信号作为复位信号Reset送往RS触发器。校准模块会对输入信号dlyclk及第8级延迟单元的输出信号dlyclk_net8进行相位检测,根据相位差生成校准信号fix[5:0],与所有的可调节延迟单元连接,对延迟进行调整。The delay chain is composed of 8-stage adjustable delay units connected in series to delay the input signal dlyclk, and the ideal total delay time is the period T of the clock clk. The output of each delay unit is connected to the input of the 8-to-1 multiplexer, the selection signal of the multiplexer is connected to the lower 3 bits D[2:0] of the duty cycle signal, and the final multiplexer The output signal is sent to the RS flip-flop as the reset signal Reset. The calibration module performs phase detection on the input signal dlyclk and the output signal dlyclk_net8 of the eighth-stage delay unit, generates a calibration signal fix[5:0] according to the phase difference, and connects with all adjustable delay units to adjust the delay.
所述可调节延迟单元使用标准单元库的时钟缓冲器和多路选择器组成图5的结构,通过校准信号fix[5:0],可以改变输入信号IN到输出信号OUT之间的通路,进而选择期望的延迟时间。The adjustable delay unit uses the clock buffer and multiplexer of the standard cell library to form the structure of FIG. 5, and through the calibration signal fix[5:0], the path between the input signal IN and the output signal OUT can be changed, and then Select the desired delay time.
所述校准模块对延迟链的总延迟时间进行检测,当输入信号dlyclk的下降沿比输入信号dlyclk_net8的上升沿更晚到来时,说明延迟时间小于一个时钟周期,通过校准信号fix[5:0]增大延迟单元的实际延迟;当输入信号dlyclk的下降沿比输入信号dly_clk_net8的上升沿更早到来时,说明延迟时间大于一个时钟周期,校准结束。The calibration module detects the total delay time of the delay chain. When the falling edge of the input signal dlyclk arrives later than the rising edge of the input signal dlyclk_net8, it means that the delay time is less than one clock cycle, and the calibration signal fix[5:0] Increase the actual delay of the delay unit; when the falling edge of the input signal dlyclk arrives earlier than the rising edge of the input signal dly_clk_net8, the delay time is greater than one clock cycle, and the calibration is over.
所述RS触发器根据输入的置位信号Set和复位信号Reset生成对应的DPWM输出信号。The RS flip-flop generates a corresponding DPWM output signal according to the input set signal Set and reset signal Reset.
本发明与传统的DPWM结构相比,具备线性度高、面积小、功耗低、容易修改的优点,有着极强的可移植性。采用了包含计数-比较结构和延迟链的混合结构,抛弃了基于PLL/DLL相移的结构,并加入二阶Sigma-Delta调制器,适用于基于ASIC的设计流程。延迟链采用标准单元库的器件搭建,在更换工艺时容易进行移植;设计了配套使用的校准模块,保证延迟链的总延迟时间约等于一个时钟周期,可以对工艺误差、工作电压和环境温度改变引起的延迟变化进行一定程度的校准。二阶Sigma-Delta调制器则通过噪声整形技术进一步提高了分辨率,只需要调节前级补偿器的带宽就可达到理想的有效位数。Compared with the traditional DPWM structure, the present invention has the advantages of high linearity, small area, low power consumption, easy modification and strong portability. A hybrid structure including count-compare structure and delay chain is adopted, the structure based on PLL/DLL phase shift is abandoned, and a second-order Sigma-Delta modulator is added, which is suitable for ASIC-based design flow. The delay chain is built with the devices of the standard cell library, which is easy to be transplanted when the process is replaced; the matching calibration module is designed to ensure that the total delay time of the delay chain is approximately equal to one clock cycle, which can change the process error, operating voltage and ambient temperature. The resulting delay variation is calibrated to some extent. The second-order sigma-delta modulator further improves the resolution through noise shaping technology, and only needs to adjust the bandwidth of the pre-compensator to achieve the ideal effective number of bits.
附图说明Description of drawings
图1是DPWM模块的整体框图。Figure 1 is the overall block diagram of the DPWM module.
图2是二阶Sigma-Delta调制器的z域建模。Figure 2 is a z-domain modeling of a second-order sigma-delta modulator.
图3是由计数-比较模块和延迟链组成的Core DPWM结构框图。Figure 3 is a block diagram of the Core DPWM structure composed of a count-compare module and a delay chain.
图4是计数-比较模块的结构图。Figure 4 is a block diagram of a count-compare module.
图5是可调节延迟模块的内部结构图。Fig. 5 is the internal structure diagram of the adjustable delay module.
图6是校准模块的内部结构图。FIG. 6 is an internal structure diagram of the calibration module.
图7是校准状态机的状态转移图。Figure 7 is a state transition diagram of the calibration state machine.
图8是Core DPWM的工作波形图。Figure 8 is the working waveform diagram of Core DPWM.
图9是不同工艺角下经过校准后延迟链延迟时间的统计图。Figure 9 is a statistical graph of the delay chain delay time after calibration under different process corners.
具体实施方式Detailed ways
为了更清楚的阐述本专利的方案,下面将以本实施例中的12-bit分辨率混合型DPWM模块为例,结合图1-图9进行详细说明。In order to explain the solution of the present patent more clearly, the following will take the 12-bit resolution hybrid DPWM module in this embodiment as an example, and describe in detail with reference to FIGS. 1 to 9 .
参照图1所示,本发明的DPWM模块包含两个部分。外部的Sigma-Delta调制器通过噪声整形技术,将12-bit的原始占空比控制信号DPWM_duty[11:0]转化为9-bit的控制信号D[8:0],并传输到后级9-bit分辨率的Core DPWM模块,Core DPWM的分辨率完全由硬件实现。所有的同步电路全部工作在统一的时钟clk下。本实施例中时钟clk的频率为100MHz。Referring to FIG. 1, the DPWM module of the present invention includes two parts. The external Sigma-Delta modulator converts the 12-bit original duty cycle control signal DPWM_duty[11:0] into a 9-bit control signal D[8:0] through noise shaping technology, and transmits it to the subsequent stage 9 -bit resolution Core DPWM module, the resolution of Core DPWM is completely realized by hardware. All synchronous circuits all work under the unified clock clk. In this embodiment, the frequency of the clock clk is 100 MHz.
本实施例中使用的Sigma-Delta调制器采用二阶Sigma-Delta调制,其z域模型如图2所示。信号Y(z)在经过位截断器后相当于叠加了一个量化噪声E(z),反馈回路将低有效位数的输出信号V(z)反馈回输入,相当于将量化误差进行积分并叠加在输入信号U(z)上,生成下一时刻的输出信号V(z),该过程的z域方程如式(1)所示:The Sigma-Delta modulator used in this embodiment adopts second-order Sigma-Delta modulation, and its z-domain model is shown in FIG. 2 . The signal Y(z) is equivalent to superimposing a quantization noise E(z) after passing through the bit truncator. The feedback loop feeds back the output signal V(z) of the low significant number of bits to the input, which is equivalent to integrating and superimposing the quantization error. On the input signal U(z), the output signal V(z) at the next moment is generated, and the z-domain equation of this process is shown in equation (1):
V(z)=U(z)+(1-2z-1+z-2)E(z)V(z)=U(z)+(1-2z -1 +z -2 )E(z)
其中,输入信号的传输函数为1,量化噪声的传输函数如式(2)所示:Among them, the transfer function of the input signal is 1, and the transfer function of the quantization noise is shown in formula (2):
E(z)=1-2z-1+z-2=(1-z-1)-2 E(z)=1-2z -1 +z -2 =(1-z -1 ) -2
当频率较低时,量化噪声的传输函数远小于1,量化噪声被抑制,而高分辨率的输入信号几乎没有被改变,输出信号与输入信号近似相等。虽然系统的频率不可能永远为零,必然会引入量化噪声,但是二阶Sigma-Delta调制模块已经对低频的量化噪声进行了有效抑制,可以用来提高分辨率位数。When the frequency is low, the transfer function of the quantization noise is much smaller than 1, the quantization noise is suppressed, and the high-resolution input signal is hardly changed, and the output signal is approximately equal to the input signal. Although the frequency of the system cannot always be zero, quantization noise will inevitably be introduced, but the second-order Sigma-Delta modulation module has effectively suppressed the low-frequency quantization noise and can be used to increase the number of bits of resolution.
Core DPWM模块的结构如图3所示。其中,高6bit分辨率由计数-比较结构实现,低3bit分辨率由8个可调节延迟单元串联的延迟链实现。计数-比较结构如图4所示,rst_n为全局复位信号,计数器为6-bit二进制计数器,生成的内部计数信号cnt[5:0]连接到比较器的一个输入端口。比较器的另一个输入端口则与占空比信号的高6位D[8:3]相连,其输出信号为发送到延迟链的dlyclk和发送到RS触发器置位端的Set。延迟链中所有可调节延迟单元的输出均连接在8-to-1多路选择器的不同输入端,其总延迟时间为一个时钟周期,占空比信号的低3位D[2:0]作为多路选择器的选择信号,通过选通不同的路径将输入信号进行1/8、2/8、3/8、4/8、5/8、6/8、7/8或8/8个时钟周期的相移。延迟链配有专门的校准模块,通过校准信号fix[4:0]改变可调节延迟单元的延迟,保证总延迟时间接近一个时钟周期。The structure of the Core DPWM module is shown in Figure 3. Among them, the high 6-bit resolution is realized by a count-comparison structure, and the low 3-bit resolution is realized by a delay chain of 8 adjustable delay units in series. The count-comparison structure is shown in Figure 4, rst_n is a global reset signal, the counter is a 6-bit binary counter, and the generated internal count signal cnt[5:0] is connected to an input port of the comparator. The other input port of the comparator is connected with the upper 6 bits D[8:3] of the duty cycle signal, and its output signal is dlyclk sent to the delay chain and Set sent to the set end of the RS flip-flop. The outputs of all adjustable delay elements in the delay chain are connected to different inputs of the 8-to-1 multiplexer with a total delay time of one clock cycle, the lower 3 bits of the duty cycle signal D[2:0] As the selection signal of the multiplexer, the input signal is 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 or 8/8 by gating different paths phase shift of clock cycles. The delay chain is equipped with a special calibration module, which changes the delay of the adjustable delay unit through the calibration signal fix[4:0] to ensure that the total delay time is close to one clock cycle.
本实施例中可调节延迟单元的内部结构如图5所示。所有的器件都是SMIC 130nm工艺库中的标准单元,其中包括2个CLKBUFX4,1个CLKBUFX8,17个CLKBUFX12及15个多路选择器CLKMX2X4。时钟树缓冲器相比于一般的缓冲器具有上升沿转换时间、下降沿转换时间平衡的特点,而且大尺寸的器件不仅传播延迟低,当PVT改变时其传播延迟的改变幅度较小,因此选择15个CLKBUFX12作为校准时的变化量;为了使CLKBUFX12的工作环境近似一致,前级插入了三个单元作为缓冲,按照驱动能力由小到大级联,并在最后添加了dummy cell匹配输出负载;15个CLKMX2X4组成16-to-1的多路选择器,最终的输出信号由CLKBUFX4缓冲,防止多路选择器驱动能力不足导致时序恶化。该结构中基础延迟为2个CLKBUFX2,1个CLKBUFX8,1个CLKBUFX12和4个CLKMX2X4的总延迟,需要小于一个时钟周期T;同时,所有标准单元的总延迟应当大于一个时钟周期T。所有用于校准的CLKBUFX12的输出信号都连接16-to-1多路选择器的输入端,校准信号fix[4:0]在16个通路中选择一个延迟时间最接近理想值的路径。在本实施例中,时钟缓冲器CLKBUFX12的传播延迟约为0.07ns,因此每一次调节后延迟单元的最小延迟增加量0.07ns,延迟链总延迟时间的最小增加量为0.56ns。The internal structure of the adjustable delay unit in this embodiment is shown in FIG. 5 . All devices are standard units in the SMIC 130nm process library, including 2 CLKBUFX4, 1 CLKBUFX8, 17 CLKBUFX12 and 15 multiplexers CLKMX2X4. Compared with the general buffer, the clock tree buffer has the characteristics of balanced rising edge transition time and falling edge transition time, and the large-sized device not only has low propagation delay, but also has a small change in propagation delay when the PVT changes. 15 CLKBUFX12s are used as the amount of variation during calibration; in order to make the working environment of CLKBUFX12 approximately the same, three units are inserted as buffers in the front stage, cascaded according to the driving capability from small to large, and dummy cells are added at the end to match the output load; 15 CLKMX2X4 form a 16-to-1 multiplexer, and the final output signal is buffered by CLKBUFX4 to prevent timing deterioration due to insufficient drive capability of the multiplexer. The basic delay in this structure is the total delay of 2 CLKBUFX2, 1 CLKBUFX8, 1 CLKBUFX12 and 4 CLKMX2X4, which needs to be less than one clock cycle T; at the same time, the total delay of all standard cells should be greater than one clock cycle T. All output signals of the CLKBUFX12 used for calibration are connected to the input of the 16-to-1 multiplexer, and the calibration signal fix[4:0] selects a path with a delay time closest to the ideal value among the 16 paths. In this embodiment, the propagation delay of the clock buffer CLKBUFX12 is about 0.07ns, so the minimum delay increment of the delay unit after each adjustment is 0.07ns, and the minimum increment of the total delay time of the delay chain is 0.56ns.
本发明中校准模块的结构如图6所示,对输入信号dlyclk和dlyclk_net8进行相位检测,包括数字鉴相器、复位模块、时钟生成模块和校准状态机四部分。dlyclk_net8为第8个可调节延迟单元的输出;rst_n为系统的全局复位信号;fix_en为外部输入的校准使能信号,高电平时校准模块可以正常工作,执行延迟校准;fix[4:0]为校准模块的输出信号,用来调节延迟单元的延迟时间。如果延迟链总延迟时间小于一个时钟周期,信号dlyclk的下降沿比信号dlyclk_net8的上升沿到来的晚,寄存器DFF1、DFF2的输出会保持一段时间的2’b01,随后改变为2’b11,内部信号flag始终保持0,复位通路被选通,当信号dlyclk_net8的下降沿到来时将寄存器DFF1、DFF2、DFF3、DFF4复位,时钟生成模块可以正常的检测两个信号下降沿的相位差,并作为时钟信号fix_clk输出,校准状态机进行状态转移;如果延迟链的总延迟时间大于一个时钟周期,信号dlyclk的下降沿比信号dlyclk_net8的上升沿到来的早,寄存器DFF1、DFF2的输出会保持一段时间的2’b10,随后改变为2’b11,内部信号flag被置位1,复位通路被关断,寄存器DFF1、DFF2、DFF3、DFF4无法被复位,同时flag信号关断了时钟生成模块到校准状态机的路径,fix_clk信号保持低电平,校准状态机不再进行状态转移。The structure of the calibration module in the present invention is shown in FIG. 6 , which performs phase detection on the input signals dlyclk and dlyclk_net8, including four parts: a digital phase detector, a reset module, a clock generation module and a calibration state machine. dlyclk_net8 is the output of the 8th adjustable delay unit; rst_n is the global reset signal of the system; fix_en is the externally input calibration enable signal. When the high level is high, the calibration module can work normally and perform delay calibration; fix[4:0] is The output signal of the calibration module is used to adjust the delay time of the delay unit. If the total delay time of the delay chain is less than one clock cycle, the falling edge of the signal dlyclk arrives later than the rising edge of the signal dlyclk_net8, the outputs of the registers DFF1 and DFF2 will keep 2'b01 for a period of time, and then change to 2'b11, the internal signal The flag is always kept at 0, and the reset path is gated. When the falling edge of the signal dlyclk_net8 arrives, the registers DFF1, DFF2, DFF3, and DFF4 are reset. The clock generation module can normally detect the phase difference between the falling edges of the two signals and use it as a clock signal fix_clk output, the calibration state machine performs state transition; if the total delay time of the delay chain is greater than one clock cycle, the falling edge of the signal dlyclk arrives earlier than the rising edge of the signal dlyclk_net8, and the outputs of the registers DFF1 and DFF2 will remain 2' for a period of time b10, then changed to 2'b11, the internal signal flag is set to 1, the reset path is turned off, the registers DFF1, DFF2, DFF3, DFF4 cannot be reset, and the flag signal turns off the clock generation module. The path to the calibration state machine , the fix_clk signal remains low, and the calibration state machine no longer performs state transitions.
校准状态机的状态转移图如图7所示。当时钟信号fix_clk的上升沿到来时,校准状态机进行状态转移,除复位外其余状态转移是不可逆的,校准模块只有增加延迟时间的作用。系统复位时,状态state_0对应的可调节延迟单元的延迟时间最小,此时延迟链的总延迟应当小于一个时钟周期;直到延迟链的延迟时间略大于一个时钟周期时,时钟信号fix_clk开始保持低电平,校准状态机保持原状态不变,校准结束。理论上这种校准方法在Typical工艺角下造成的最大误差为可调节延迟单元的最小延迟增加量乘以延迟链的串联级数,在本实施例中为0.56ns。The state transition diagram of the calibration state machine is shown in Figure 7. When the rising edge of the clock signal fix_clk arrives, the calibration state machine performs state transition. Except for reset, the rest of the state transitions are irreversible, and the calibration module only has the effect of increasing the delay time. When the system is reset, the delay time of the adjustable delay unit corresponding to the state state_0 is the smallest. At this time, the total delay of the delay chain should be less than one clock cycle; until the delay time of the delay chain is slightly greater than one clock cycle, the clock signal fix_clk starts to remain low. level, the calibration state machine remains unchanged, and the calibration ends. Theoretically, the maximum error caused by this calibration method under the Typical process angle is the minimum delay increase of the adjustable delay unit multiplied by the number of series stages of the delay chain, which is 0.56ns in this embodiment.
Core DPWM模块的工作波形图如图8所示。外部时钟信号输入后,计数-比较模块开始工作,计数信号cnt[6:0]为0时,输出端口Set会保持一个时钟周期的高电平,将RS触发器的输出置位为1,产生PWM波的上升沿;计数信号与占空比信号的高6位D[8:3]相等时,输出端口dlyclk会保持一个时钟周期的高电平,并将信号发送至延迟链,由计数-比较结构实现的6bit粗调结束;dlyclk信号进入延迟链后,8-to-1多路选择器根据占空比信号的低3位D[2:0]选择对应的通路,得到的输出信号Reset会发送至RS触发器的复位端将其复位,产生PWM波的下降沿,由延迟链结构实现的3bit细调结束,Core DPWM模块硬件实现了9-bit分辨率。结合二阶Sigma-Delta调制器组成图1所示的混合型DPWM模块,通过牺牲很小的面积和功耗就可以将有效分辨率提高到12-bit。The working waveform of the Core DPWM module is shown in Figure 8. After the external clock signal is input, the count-comparison module starts to work. When the count signal cnt[6:0] is 0, the output port Set will maintain a high level for one clock cycle, and the output of the RS flip-flop is set to 1, resulting in The rising edge of the PWM wave; when the count signal is equal to the upper 6 bits D[8:3] of the duty cycle signal, the output port dlyclk will maintain a high level for one clock cycle, and the signal will be sent to the delay chain, by the count- The 6bit coarse adjustment realized by the comparison structure ends; after the dlyclk signal enters the delay chain, the 8-to-1 multiplexer selects the corresponding channel according to the lower 3 bits D[2:0] of the duty cycle signal, and the obtained output signal Reset It will be sent to the reset terminal of the RS flip-flop to reset it, and the falling edge of the PWM wave will be generated. The 3-bit fine adjustment realized by the delay chain structure ends, and the Core DPWM module hardware realizes 9-bit resolution. Combined with the second-order Sigma-Delta modulator to form the hybrid DPWM module shown in Figure 1, the effective resolution can be increased to 12-bit by sacrificing a small area and power consumption.
不同工艺角下经过校准后延迟链延迟时间的统计图如图9所示。可以看出,在Typical和Fast的工艺角下,实际延迟时间与理想延迟时间相差不大;在Slow的工艺角由于器件性能降低,每次校准的最小步进增大,导致完成校准后延迟时间超出理想值较多。但是工作温度125℃、工艺使得MOS管的延迟增大、工作电压下降至1.08V本身是一种极端的情况,其与fast_1v32cm40工艺角一样是为了测试芯片在极端条件下是否可以正常工作,属于正态分布中(μ-3σ,μ+3σ)区间的左右两个端点,大多数情况下芯片仍然在Typical的工艺角附近工作。因此,可以认为延迟链达到了预期的设计指标。Figure 9 shows the statistics of the delay chain delay time after calibration under different process corners. It can be seen that in the typical and fast process corners, the actual delay time is not much different from the ideal delay time; in the slow process corner, due to the degradation of device performance, the minimum step of each calibration increases, resulting in the delay time after completion of calibration. more than the ideal value. However, the operating temperature is 125°C, the process makes the delay of the MOS tube increase, and the operating voltage drops to 1.08V. It is an extreme situation. Like the fast_1v32cm40 process angle, it is to test whether the chip can work normally under extreme conditions. The left and right endpoints of the (μ-3σ, μ+3σ) interval in the state distribution, in most cases, the chip still works near the typical process corner. Therefore, the delay chain can be considered to meet the expected design specifications.
以上实施例应理解为仅用于说明本发明,而不是用于限定本发明的保护范围。在阅读了本发明的内容后,本领域的人员可以对根据上述揭示的方法和技术内容对本发明的方案提出各种修改,这些等效变化和修饰同样包含在本发明权利要求所限定的范围内。The above embodiments should be understood as only for illustrating the present invention, rather than for limiting the protection scope of the present invention. After reading the content of the present invention, those skilled in the art can propose various modifications to the solution of the present invention according to the methods and technical contents disclosed above, and these equivalent changes and modifications are also included in the scope defined by the claims of the present invention .
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360191.8A CN111884631A (en) | 2020-04-30 | 2020-04-30 | A Digital Pulse Width Modulation Module Using Hybrid Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360191.8A CN111884631A (en) | 2020-04-30 | 2020-04-30 | A Digital Pulse Width Modulation Module Using Hybrid Structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111884631A true CN111884631A (en) | 2020-11-03 |
Family
ID=73153775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010360191.8A Pending CN111884631A (en) | 2020-04-30 | 2020-04-30 | A Digital Pulse Width Modulation Module Using Hybrid Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111884631A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113364434A (en) * | 2021-06-23 | 2021-09-07 | 中国科学院微电子研究所 | Duty ratio calibration circuit and method |
WO2022121389A1 (en) * | 2020-12-08 | 2022-06-16 | 华大半导体有限公司 | High-resolution pulse width modulation signal generation circuit |
CN114861589A (en) * | 2022-04-22 | 2022-08-05 | 电子科技大学 | Method for generating anti-irradiation CMOS standard unit |
CN116015253A (en) * | 2022-12-13 | 2023-04-25 | 上海极海盈芯科技有限公司 | Self-correcting delay circuit, micro-processing chip and motor control system |
TWI850072B (en) * | 2023-08-21 | 2024-07-21 | 國立中山大學 | Digital pwm modulator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101061627A (en) * | 2004-10-01 | 2007-10-24 | 亚历山大·普罗迪奇 | Digital Controller for DC-DC Switching Converters Operating at Ultra-High Stable Switching Frequency |
US20080278361A1 (en) * | 2007-05-10 | 2008-11-13 | Lee Yong-Hee | Asymmetric PWM signal generator, method thereof, and data processing apparatus including the same |
CN102282765A (en) * | 2008-11-21 | 2011-12-14 | L&L建筑公司 | Method and systems for digital pulse width modulator |
CN104022762A (en) * | 2013-02-28 | 2014-09-03 | 德克萨斯仪器股份有限公司 | Pulse-width modulator with average phase position |
CN109039312A (en) * | 2018-08-01 | 2018-12-18 | 电子科技大学 | Mixed type digital pulse-width modulator with delay chain optimization function |
US10566962B2 (en) * | 2017-10-02 | 2020-02-18 | Cirrus Logic, Inc. | Pulse-width modulation |
-
2020
- 2020-04-30 CN CN202010360191.8A patent/CN111884631A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101061627A (en) * | 2004-10-01 | 2007-10-24 | 亚历山大·普罗迪奇 | Digital Controller for DC-DC Switching Converters Operating at Ultra-High Stable Switching Frequency |
US20080278361A1 (en) * | 2007-05-10 | 2008-11-13 | Lee Yong-Hee | Asymmetric PWM signal generator, method thereof, and data processing apparatus including the same |
CN102282765A (en) * | 2008-11-21 | 2011-12-14 | L&L建筑公司 | Method and systems for digital pulse width modulator |
CN104022762A (en) * | 2013-02-28 | 2014-09-03 | 德克萨斯仪器股份有限公司 | Pulse-width modulator with average phase position |
US10566962B2 (en) * | 2017-10-02 | 2020-02-18 | Cirrus Logic, Inc. | Pulse-width modulation |
CN109039312A (en) * | 2018-08-01 | 2018-12-18 | 电子科技大学 | Mixed type digital pulse-width modulator with delay chain optimization function |
Non-Patent Citations (1)
Title |
---|
B.J. PATELLA 等: "High-frequency digital PWM controller IC for DC-DC converters", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022121389A1 (en) * | 2020-12-08 | 2022-06-16 | 华大半导体有限公司 | High-resolution pulse width modulation signal generation circuit |
CN113364434A (en) * | 2021-06-23 | 2021-09-07 | 中国科学院微电子研究所 | Duty ratio calibration circuit and method |
CN113364434B (en) * | 2021-06-23 | 2024-03-01 | 中国科学院微电子研究所 | Duty cycle calibration circuit and method |
CN114861589A (en) * | 2022-04-22 | 2022-08-05 | 电子科技大学 | Method for generating anti-irradiation CMOS standard unit |
CN116015253A (en) * | 2022-12-13 | 2023-04-25 | 上海极海盈芯科技有限公司 | Self-correcting delay circuit, micro-processing chip and motor control system |
CN116015253B (en) * | 2022-12-13 | 2024-04-09 | 上海极海盈芯科技有限公司 | Self-correcting delay circuit, micro-processing chip and motor control system |
WO2024125371A1 (en) * | 2022-12-13 | 2024-06-20 | 上海领帆微电子有限公司 | Self-tuning delay circuit, micro-processing chip and motor control system |
TWI850072B (en) * | 2023-08-21 | 2024-07-21 | 國立中山大學 | Digital pwm modulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111884631A (en) | A Digital Pulse Width Modulation Module Using Hybrid Structure | |
US8138843B2 (en) | Gated ring oscillator for a time-to-digital converter with shaped quantization noise | |
CN101888243B (en) | Digital phase-locked loop circuit and its method | |
CN106533401A (en) | DPWM module for synchronous segmentation delay chain based on FPGA | |
CN110649922B (en) | A digital clock frequency multiplier | |
CN109891843B (en) | Computer-implemented method and system for executing computer-implemented method | |
US7071751B1 (en) | Counter-controlled delay line | |
CN102394643A (en) | Digital pulse width modulator based on digital delayed-locked loop (DLL) | |
CN110120798B (en) | DPWM circuit with double-edge trigger mixed structure and control method thereof | |
WO2020140782A1 (en) | Analog-to-digital converter and clock generation circuit thereof | |
CN108199699A (en) | A kind of stable duty ratio and low-jitter clock circuit | |
CN107222189A (en) | Digital pulse width modulator | |
CN202364200U (en) | Digital pulse width modulator based on digital delay phase-locked loop | |
CN103427798A (en) | Multiphase clock generation circuit | |
CN106301357B (en) | An all-digital phase-locked loop | |
CN115685723A (en) | A Time-to-Digital Converter Based on Pulse Stretching | |
CN210157160U (en) | Digital clock frequency multiplication circuit system | |
CN106354001A (en) | Time-to-digital conversion circuit | |
US11275344B2 (en) | Time to digital converter | |
CN113206668B (en) | Two-stage interpolation time digital converter circuit | |
CN214480526U (en) | A residual time sampling circuit and time-to-digital converter based on differential sampling | |
CN117097338A (en) | Voltage digital conversion circuit based on TDC with adjustable delay precision | |
CN104917517B (en) | For realize low-power consumption, Wide measuring range time-to-digit converter energy-saving circuit | |
Cheng et al. | A high‐resolution hybrid digital pulse width modulator with dual‐edge‐triggered flip‐flops and hardware compensation | |
Gupta et al. | Performance Investigation of Binary Counter with Different Clock Gating Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201103 |