CN111785748A - Method and structure for reducing dark current of backside illuminated image sensor - Google Patents
Method and structure for reducing dark current of backside illuminated image sensor Download PDFInfo
- Publication number
- CN111785748A CN111785748A CN202010796186.1A CN202010796186A CN111785748A CN 111785748 A CN111785748 A CN 111785748A CN 202010796186 A CN202010796186 A CN 202010796186A CN 111785748 A CN111785748 A CN 111785748A
- Authority
- CN
- China
- Prior art keywords
- layer
- dark current
- image sensor
- silicon
- illuminated image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 90
- 239000010703 silicon Substances 0.000 claims abstract description 90
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 239000002184 metal Substances 0.000 claims description 26
- 238000002955 isolation Methods 0.000 claims description 20
- 238000005468 ion implantation Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 21
- 239000000243 solution Substances 0.000 description 19
- 239000003989 dielectric material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/199—Back-illuminated image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/805—Coatings
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
本发明提供了一种降低背照式图像传感器暗电流的方法及结构,方法包括如下步骤:1)提供SOI衬底,所述SOI衬底包括硅衬底、埋氧层和顶层硅;2)在所述顶层硅中形成通过掺杂构成的钉扎层;3)在所述顶层硅上方形成外延层,并在所述外延层中形成光电二极管;4)以所述埋氧层作为减薄停止层,对所述硅衬底进行背面减薄。本发明在SOI衬底的顶层硅上形成钉扎层,并在背面减薄工艺中以埋氧层作为减薄停止层。通过引入钉扎层作为光电二极管的电荷捕获层,降低了电荷流入光电二级管形成暗电流的几率,钉扎层能在减薄工艺中得到埋氧层的保护。此外,通过配合背面生长高K介质层,更进一步降低了界面暗电流。
The present invention provides a method and structure for reducing the dark current of a backside illuminated image sensor. The method includes the following steps: 1) providing an SOI substrate, the SOI substrate comprising a silicon substrate, a buried oxide layer and a top layer of silicon; 2) forming a pinning layer by doping in the top layer silicon; 3) forming an epitaxial layer over the top layer silicon and forming a photodiode in the epitaxial layer; 4) using the buried oxide layer as a thinning A stop layer is used for backside thinning of the silicon substrate. In the present invention, a pinned layer is formed on the top silicon of the SOI substrate, and the buried oxide layer is used as a thinning stop layer in the backside thinning process. By introducing the pinning layer as the charge trapping layer of the photodiode, the probability of the electric charge flowing into the photodiode to form dark current is reduced, and the pinning layer can be protected by the buried oxide layer in the thinning process. In addition, by cooperating with the backside growth of a high-K dielectric layer, the interface dark current is further reduced.
Description
技术领域technical field
本发明涉及半导体集成电路制造领域,特别是涉及一种降低背照式图像传感器暗电流的方法及结构。The invention relates to the field of semiconductor integrated circuit manufacturing, in particular to a method and structure for reducing the dark current of a backside illuminated image sensor.
背景技术Background technique
在背照式图像传感器的制造工艺中,需要通过背面减薄工艺对硅衬底进行减薄。减薄后裸露的硅衬底表面所产生的缺陷、悬挂键和损伤等将导致硅表面出现暗电流。背照式图像传感器的表面暗电流将导致背照式图像传感器的噪点较前照式图像传感器会急剧增大,成像质量将会大幅下降,甚至难以有效成像。In the manufacturing process of the backside illuminated image sensor, the silicon substrate needs to be thinned by a backside thinning process. Defects, dangling bonds and damage on the exposed silicon substrate surface after thinning will lead to dark current on the silicon surface. The surface dark current of the back-illuminated image sensor will cause the noise of the back-illuminated image sensor to increase sharply compared with the front-illuminated image sensor, the image quality will be greatly reduced, and it will even be difficult to image effectively.
目前,为了降低背照式图像传感器的表面暗电流,已有针对硅表面设置导电结构并加负偏压等工艺,以形成硅表面空穴富集,改善表面暗电流。At present, in order to reduce the surface dark current of the back-illuminated image sensor, processes such as setting a conductive structure on the silicon surface and applying a negative bias voltage have been used to form hole enrichment on the silicon surface and improve the surface dark current.
然而,现有改善工艺仍存在改善效果不佳,或工艺集成复杂、成本高等缺点,无法满足先进背照式图像传感器制程的工艺需求。However, the existing improvement process still has the disadvantages of poor improvement effect, complex process integration and high cost, which cannot meet the process requirements of the advanced back-illuminated image sensor process.
因此,有必要提出一种新的降低背照式图像传感器暗电流的方法及结构,解决上述问题。Therefore, it is necessary to propose a new method and structure for reducing the dark current of the back-illuminated image sensor to solve the above problems.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种降低背照式图像传感器暗电流的方法及结构,用于解决现有技术中背照式图像传感器表面暗电流影响器件性能的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method and structure for reducing the dark current of a back-illuminated image sensor, so as to solve the problem that the surface dark current of the back-illuminated image sensor affects the performance of the device in the prior art. question.
为实现上述目的及其它相关目的,本发明提供了一种降低背照式图像传感器暗电流的方法,其特征在于,包括如下步骤:In order to achieve the above object and other related objects, the present invention provides a method for reducing the dark current of a backside illuminated image sensor, which is characterized in that it includes the following steps:
1)提供SOI衬底,所述SOI衬底包括硅衬底、埋氧层和顶层硅;1) providing an SOI substrate, the SOI substrate includes a silicon substrate, a buried oxide layer and a top layer silicon;
2)在所述顶层硅中形成通过掺杂构成的钉扎层;2) forming a pinning layer formed by doping in the top layer silicon;
3)在所述顶层硅上方形成外延层,并在所述外延层中形成光电二极管;3) forming an epitaxial layer over the top layer silicon, and forming a photodiode in the epitaxial layer;
4)以所述埋氧层作为减薄停止层,对所述硅衬底进行背面减薄。4) Using the buried oxide layer as a thinning stop layer, perform backside thinning on the silicon substrate.
作为本发明的一种可选方案,所述钉扎层的掺杂类型与所述光电二极管的掺杂类型相反。As an optional solution of the present invention, the doping type of the pinning layer is opposite to that of the photodiode.
作为本发明的一种可选方案,形成所述钉扎层的方法包括对所述顶层硅进行离子注入。As an optional solution of the present invention, the method for forming the pinning layer includes ion implantation into the top layer silicon.
作为本发明的一种可选方案,所述离子注入的掺杂剂量为5×1012至5×1014cm-2。As an optional solution of the present invention, the doping dose of the ion implantation is 5×10 12 to 5×10 14 cm −2 .
作为本发明的一种可选方案,所述外延层的掺杂浓度为1×1014至5×1015cm-3,所述外延层的厚度为2.5至10μm。As an optional solution of the present invention, the doping concentration of the epitaxial layer is 1×10 14 to 5×10 15 cm −3 , and the thickness of the epitaxial layer is 2.5 to 10 μm.
作为本发明的一种可选方案,所述埋氧层的厚度大于1μm。As an optional solution of the present invention, the thickness of the buried oxide layer is greater than 1 μm.
作为本发明的一种可选方案,在步骤3)中形成所述光电二极管后,还包括在所述外延层上方形成金属布线层的步骤。As an optional solution of the present invention, after the photodiode is formed in step 3), a step of forming a metal wiring layer over the epitaxial layer is also included.
作为本发明的一种可选方案,在所述外延层和所述金属布线层之间还形成有顶层钉扎层。As an optional solution of the present invention, a top pinning layer is further formed between the epitaxial layer and the metal wiring layer.
作为本发明的一种可选方案,在步骤4)中对所述硅衬底进行背面减薄前,还包括将所述SOI衬底远离所述硅衬底的一面键合于载片上的步骤。As an optional solution of the present invention, before the backside thinning of the silicon substrate in step 4), the step of bonding the side of the SOI substrate away from the silicon substrate to a carrier is also included .
作为本发明的一种可选方案,在步骤4)中以所述埋氧层作为减薄停止层,对所述硅衬底进行背面减薄后,还包括去除对所述硅衬底减薄后剩余的所述埋氧层,并在暴露出的所述钉扎层上依次形成高K介质层、颜色滤镜层和微透镜结构的步骤。As an optional solution of the present invention, in step 4), the buried oxide layer is used as a thinning stop layer, and after the backside thinning is performed on the silicon substrate, the method further includes removing the thinning on the silicon substrate. The remaining buried oxide layer is then formed, and a high-K dielectric layer, a color filter layer and a microlens structure are sequentially formed on the exposed pinned layer.
作为本发明的一种可选方案,所述光电二极管为多个,在去除对所述硅衬底减薄后剩余的所述埋氧层后,还包括在所述外延层中形成分隔多个所述光电二极管的背面深沟槽隔离结构的步骤。As an optional solution of the present invention, there are multiple photodiodes, and after removing the remaining buried oxide layer after thinning the silicon substrate, the method further includes forming a plurality of partitions in the epitaxial layer. The steps of the backside deep trench isolation structure of the photodiode.
本发明还提供了一种降低背照式图像传感器暗电流的结构,其特征在于,包括:The present invention also provides a structure for reducing the dark current of the back-illuminated image sensor, which is characterized by comprising:
外延层;epitaxial layer;
光电二极管,其形成于所述外延层中;a photodiode formed in the epitaxial layer;
顶层硅,其位于所述外延层上方;a top layer of silicon over the epitaxial layer;
钉扎层,其位于所述顶层硅中,通过对所述顶层硅进行掺杂后形成。A pinning layer, which is located in the top layer silicon, is formed by doping the top layer silicon.
作为本发明的一种可选方案,所述钉扎层的掺杂类型与所述光电二极管的掺杂类型相反。As an optional solution of the present invention, the doping type of the pinning layer is opposite to that of the photodiode.
作为本发明的一种可选方案,所述外延层的掺杂浓度为1×1014至5×1015cm-3,所述外延层的厚度为2.5至10μm。As an optional solution of the present invention, the doping concentration of the epitaxial layer is 1×10 14 to 5×10 15 cm −3 , and the thickness of the epitaxial layer is 2.5 to 10 μm.
作为本发明的一种可选方案,所述钉扎层上还依次形成有高K介质层、颜色滤镜层和微透镜结构。As an optional solution of the present invention, a high-K dielectric layer, a color filter layer and a microlens structure are formed on the pinning layer in sequence.
作为本发明的一种可选方案,所述外延层的下方还形成有金属布线层。As an optional solution of the present invention, a metal wiring layer is further formed under the epitaxial layer.
作为本发明的一种可选方案,在所述外延层和所述金属布线层之间还形成有顶层钉扎层。As an optional solution of the present invention, a top pinning layer is further formed between the epitaxial layer and the metal wiring layer.
作为本发明的一种可选方案,所述光电二极管为多个,所述外延层中形成有分隔多个所述光电二极管的背面深沟槽隔离结构。As an optional solution of the present invention, there are multiple photodiodes, and a backside deep trench isolation structure separating the multiple photodiodes is formed in the epitaxial layer.
作为本发明的一种可选方案,所述顶层硅为SOI衬底的一部分,所述SOI衬底还包括硅衬底和埋氧层;所述埋氧层位于所述顶层硅上方,所述硅衬底位于所述埋氧层上方;对所述硅衬底进行背面减薄时,以所述埋氧层作为减薄停止层。As an optional solution of the present invention, the top layer silicon is a part of an SOI substrate, and the SOI substrate further includes a silicon substrate and a buried oxide layer; the buried oxide layer is located above the top layer silicon, and the The silicon substrate is located above the buried oxide layer; when the backside thinning of the silicon substrate is performed, the buried oxide layer is used as a thinning stop layer.
如上所述,本发明提供一种降低背照式图像传感器暗电流的方法及结构,具有以下有益效果:As described above, the present invention provides a method and structure for reducing the dark current of a backside illuminated image sensor, which has the following beneficial effects:
本发明在SOI衬底的顶层硅上形成钉扎层,并在背面减薄工艺中以埋氧层作为减薄停止层。通过引入钉扎层作为光电二极管的电荷捕获层,降低了电荷流入光电二级管形成暗电流的几率,钉扎层能在减薄工艺中得到埋氧层的保护。此外,通过配合背面生长高K介质层,更进一步降低了界面暗电流。In the present invention, a pinned layer is formed on the top silicon of the SOI substrate, and the buried oxide layer is used as a thinning stop layer in the backside thinning process. By introducing the pinning layer as the charge trapping layer of the photodiode, the probability of the electric charge flowing into the photodiode to form dark current is reduced, and the pinning layer can be protected by the buried oxide layer in the thinning process. In addition, by cooperating with the backside growth of a high-K dielectric layer, the interface dark current is further reduced.
附图说明Description of drawings
图1显示为本发明实施例一中提供的一种降低背照式图像传感器暗电流的方法的流程图。FIG. 1 is a flowchart of a method for reducing the dark current of a backside-illuminated image sensor provided in Embodiment 1 of the present invention.
图2显示为本发明实施例一中提供的SOI衬底的截面示意图。FIG. 2 is a schematic cross-sectional view of the SOI substrate provided in Embodiment 1 of the present invention.
图3显示为本发明实施例一中提供的形成钉扎层后的截面示意图。FIG. 3 is a schematic cross-sectional view after forming the pinning layer provided in the first embodiment of the present invention.
图4显示为本发明实施例一中提供的形成外延层后的截面示意图。FIG. 4 is a schematic cross-sectional view after forming an epitaxial layer according to Embodiment 1 of the present invention.
图5显示为本发明实施例一中提供的形成光电二极管后的截面示意图。FIG. 5 is a schematic cross-sectional view after forming the photodiode provided in the first embodiment of the present invention.
图6显示为本发明实施例一中提供的形成金属布线层后的截面示意图。FIG. 6 is a schematic cross-sectional view after forming a metal wiring layer according to Embodiment 1 of the present invention.
图7显示为本发明实施例一中提供的键合于载片后的截面示意图。FIG. 7 is a schematic cross-sectional view of the first embodiment of the present invention after being bonded to the carrier sheet.
图8显示为本发明实施例一中提供的研磨减薄并去除埋氧层后的截面示意图。FIG. 8 is a schematic cross-sectional view after grinding and thinning and removing the buried oxide layer provided in Embodiment 1 of the present invention.
图9显示为本发明实施例一中提供的形成背面深沟槽隔离结构后的截面示意图。FIG. 9 is a schematic cross-sectional view of the backside deep trench isolation structure provided in Embodiment 1 of the present invention.
图10显示为本发明实施例一中提供的形成颜色滤镜层和微透镜结构后的截面示意图。FIG. 10 is a schematic cross-sectional view of the color filter layer and the microlens structure provided in the first embodiment of the present invention.
图11显示为本发明实施例二中提供的形成有顶层钉扎层的背照式图像传感器的截面示意图。FIG. 11 is a schematic cross-sectional view of the backside illuminated image sensor provided with the top pinned layer provided in Embodiment 2 of the present invention.
图12显示为本发明实施例三中提供的不形成高K介质层的背照式图像传感器的截面示意图。FIG. 12 is a schematic cross-sectional view of a back-illuminated image sensor provided in Embodiment 3 of the present invention without forming a high-K dielectric layer.
元件标号说明Component label description
101 SOI衬底101 SOI substrate
101a 硅衬底101a silicon substrate
101b 埋氧层101b Buried Oxygen Layer
101c 顶层硅101c top layer silicon
102 钉扎层102 pinned layer
103 外延层103 Epitaxial layer
104 光电二极管104 Photodiode
105 金属布线层105 Metal wiring layer
105a 金属互连结构105a Metal Interconnect Structure
105b 金属间介质层105b Intermetal dielectric layer
106 载片106 slides
107 高K介质层107 High-K dielectric layer
108 颜色滤镜层108 color filter layers
109 微透镜结构109 Micro lens structure
110 背面深沟槽隔离结构110 Backside Deep Trench Isolation Structure
202 钉扎层202 pinned layer
203 外延层203 Epitaxial layer
204 光电二极管204 Photodiode
205 金属布线层205 Metal wiring layer
206 载片206 slides
207 高K介质层207 High-K dielectric layer
208 颜色滤镜层208 color filter layers
209 微透镜结构209 Micro lens structure
210 背面深沟槽隔离结构210 Backside Deep Trench Isolation Structure
211 顶层钉扎层211 Top pinned layer
302 钉扎层302 pinned layer
303 外延层303 Epitaxial layer
304 光电二极管304 Photodiode
305 金属布线层305 metal wiring layer
306 载片306 slides
307 高K介质材料307 High-K Dielectric Materials
308 颜色滤镜层308 color filter layers
309 微透镜结构309 Micro lens structure
310 背面深沟槽隔离结构310 backside deep trench isolation structure
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图12。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。See Figures 1 to 12. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, although the diagrams only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the shape, quantity and proportion of each component can be arbitrarily changed during actual implementation, and the component layout shape may also be more complicated.
实施例一Example 1
请参阅图1至图10,本实施例提供了一种降低背照式图像传感器暗电流的方法,其特征在于,包括如下步骤:Referring to FIG. 1 to FIG. 10 , this embodiment provides a method for reducing the dark current of a backside-illuminated image sensor, which is characterized by including the following steps:
1)提供SOI衬底101,所述SOI衬底101自下而上依次包括硅衬底101a、埋氧层101b和顶层硅101c;1) providing an
2)在所述顶层硅101c中形成通过掺杂构成的钉扎层102;2) forming a pinning
3)在所述顶层硅101c上方形成外延层103,并在所述外延层103中形成光电二极管104;3) forming an
4)以所述埋氧层101b作为减薄停止层,对所述硅衬底101a进行背面减薄。4) Using the buried
在步骤1)中,请参阅图1的S1步骤和图2,提供SOI衬底101,所述SOI衬底101自下而上依次包括硅衬底101a、埋氧层101b和顶层硅101c。In step 1), referring to step S1 of FIG. 1 and FIG. 2, an
作为示例,所述SOI衬底101即绝缘体上硅(Silicon-On-Insulator),其可以通过智能剥离工艺或注氧隔离工艺制备得到。可选地,所述埋氧层101b的厚度大于1μm,以确保背面研磨减薄时,其作为减薄停止层具有足够的厚度,能够对其所覆盖的钉扎层进行保护。As an example, the
在步骤2)中,请参阅图1的S2步骤和图3,在所述顶层硅101c中形成通过掺杂构成的钉扎层102。In step 2), referring to step S2 in FIG. 1 and FIG. 3, a pinning
作为示例,形成所述钉扎层102的方法包括对所述顶层硅101c进行离子注入。所述离子注入的掺杂剂量为5×1012至5×1014cm-2。在本实施例中,所述离子注入范围覆盖整个所述顶层硅101c的厚度,使其在离子注入后完全转为所述钉扎层102,而在本发明的其他实施案例中,当所述顶层硅的厚度较厚时,根据器件设计和工艺需求,可以仅在所述顶层硅的部分深度上转为所述钉扎层。As an example, a method of forming the pinned
作为示例,所述钉扎层102的掺杂类型与后续形成的光电二极管的掺杂类型相反。例如,当光电二极管的掺杂类型为N型时,通过离子注入形成具有P型掺杂的所述钉扎层102。其作为光电二极管表面的钉扎层,钉扎(pinned)结构使硅表面形成一层空穴富集区,作为光电二极管表面电荷捕获(trap)层,实现对界面处产生的电子进行快速复合,从而阻止界面处形成的电子进入光电二极管形成暗电流信号。这将能够有效降低硅表面暗电流,解决噪点问题,进而改善背照式图像传感器的成像质量。As an example, the doping type of the pinning
在步骤3)中,请参阅图1的S3步骤和图4至图6,在所述顶层硅101c上方形成外延层103,并在所述外延层103中形成光电二极管104。In step 3), referring to step S3 of FIG. 1 and FIGS. 4 to 6 , an
如图4所示,在所述顶层硅101c上方形成外延层103。所述外延层103可以是用于制备光电二极管的高阻硅外延层。可选地,所述外延层103的掺杂浓度为1×1014至5×1015cm-3,所述外延层103的厚度为2.5至10μm。As shown in FIG. 4, an
如图5所示,在图4中外延生长得到的所述外延层103中形成光电二极管104(PD,Photo-Diode)。所述光电二极管104的结构和制备工艺可以参考现有技术,图5中仅示意性标示出其在所述外延层103中的位置。可选地,所述光电二极管104的侧边还形成有图中未示出的光电二极管隔离结构(PDI,Photo-Diode Isolation),以隔离单个光电二极管与其周边的外延层。As shown in FIG. 5 , a photodiode 104 (PD, Photo-Diode) is formed in the
作为示例,如图6所示,在形成所述光电二极管104后,还包括在所述外延层103上方形成金属布线层105的步骤。所述金属布线层105包括提供电性连接的金属互连结构105a和用于绝缘的金属间介质层105b。所述金属布线层105用于电性连接光电二极管等传感器器件,并引出电信号。As an example, as shown in FIG. 6 , after the
在步骤4)中,请参阅图1的S4步骤和图7至图10,以所述埋氧层101b作为减薄停止层,对所述硅衬底101a进行背面减薄。In step 4), referring to step S4 in FIG. 1 and FIGS. 7 to 10 , the backside thinning of the
如图7所示,将图6中得到的器件结构倒置;在对所述硅衬底101a进行背面减薄前,还包括将所述SOI衬底101远离所述硅衬底101a的一面键合于载片106上的步骤。所述载片106作为支撑衬底,可以在减薄等后续工艺中对减薄晶圆提供支撑,防止因应力引发的碎片。具体地,在本实施中,是将所述金属布线层105在倒置后朝下的一面键合于所述载片106上。此外,除了仅具备支撑功能的载片外,所述载片也可以是已形成有其他器件结构的功能片,通过与所述SOI衬底键合后形成完整的图像传感器器件。As shown in FIG. 7 , the device structure obtained in FIG. 6 is inverted; before the backside thinning of the
如图7至图8所示,以所述埋氧层101b作为减薄停止层,对所述硅衬底101a进行背面减薄。如图8所示,在研磨减薄后,可以通过湿法刻蚀等方法去除剩余的埋氧层,暴露出下层完整未受损的所述钉扎层102,以便进行后续工艺。As shown in FIGS. 7 to 8 , the backside thinning of the
如图9所示,所述光电二极管104为多个,在去除对所述硅衬底101a减薄后剩余的所述埋氧层101b后,还包括在所述外延层103中形成分隔多个所述光电二极管104的背面深沟槽隔离结构110(BDTI,Back-side Deep Trench Isolation)的步骤。所述背面深沟槽隔离结构110的深沟槽可以通过各向异性的干法刻蚀工艺形成,并进一步在所述深沟槽中填充绝缘介质材料,以形成所述背面深沟槽隔离结构110。在本实施例中,所述深沟槽中所填充的绝缘介质材料为高K介质材料。具体地,如图9所示,在形成所述背面深沟槽隔离结构110后,还包括在所述背面深沟槽隔离结构110中以及所述钉扎层102上形成高K介质层107的步骤。可选地,所述高K介质层107由AlO或HfO等高K介质材料构成。本实施例中,通过引入所述高K介质层107配合所述钉扎层102,其共同作用可以增强硅表面的空穴富集区,以进一步降低暗电流。As shown in FIG. 9 , there are
如图10所示,在形成所述高K介质层107后,还包括在所述高K介质层107上依次形成颜色滤镜层108和微透镜结构109的步骤。可选地,所述颜色滤镜层108可以分为红色(R)、绿色(G)和蓝色(B)滤镜层。不同颜色滤镜层的数量、分组和排列可以根据传感器的具体设计进行调整。对于非可见光等其他波段的传感器也可以对应设置其他类型的滤镜层。还需要指出的是,在本申请实施例中,背照式图像传感器的背面指的是所述颜色滤镜层108和所述微透镜结构109所在的一面,而正面指的则是与其相对的所述金属布线层105所在的另一面。As shown in FIG. 10 , after the high-
如图10所示,本实施例提供了一种降低背照式图像传感器暗电流的结构,其特征在于,包括:As shown in FIG. 10 , this embodiment provides a structure for reducing the dark current of a backside illuminated image sensor, which is characterized by comprising:
外延层103;
光电二极管104,其形成于所述外延层103中;a
顶层硅101c,其位于所述外延层103上方;
钉扎层102,其位于所述顶层硅101c中,通过对所述顶层硅101c进行掺杂后形成。The pinning
作为示例,所述钉扎层102的掺杂类型与所述光电二极管104的掺杂类型相反。所述外延层103的掺杂浓度为1×1014至5×1015cm-3,所述外延层103的厚度为2.5至10μm。As an example, the doping type of the pinning
作为示例,如图10所示,所述钉扎层102上还依次形成有高K介质层107、颜色滤镜层108和微透镜结构109。所述外延层103的下方还形成有金属布线层105。所述光电二极管104为多个,所述外延层103中形成有分隔多个所述光电二极管104的背面深沟槽隔离结构110。As an example, as shown in FIG. 10 , a high-
作为示例,如图7所示,本实施例还提供了一种降低背照式图像传感器暗电流的结构,其特征在于,包括外延层103、光电二极管104和钉扎层102。其中,所述顶层硅101c为SOI衬底101的一部分,所述SOI衬底101还包括硅衬底101a和埋氧层101b;所述埋氧层101b位于所述顶层硅101c上方,所述硅衬底101a位于所述埋氧层101b上方;对所述硅衬底101a进行背面减薄时,以所述埋氧层101b作为减薄停止层。As an example, as shown in FIG. 7 , this embodiment also provides a structure for reducing dark current of a backside illuminated image sensor, which is characterized in that it includes an
本实施例通过离子注入形成所述钉扎层102,其掺杂浓度可调,无需在背面工艺中针对该道掺杂追加高温退火工艺。其作为光电二极管表面电荷捕获层,降低了电荷流入光电二级管形成暗电流的几率;配合在器件背面生长所述高K介质层107,更大限度地降低了界面暗电流。本实施的工艺方法解决了噪点问题,进而改善了背照式图像传感器的成像质量。In this embodiment, the pinning
实施例二Embodiment 2
请参阅图11,本实施例提供了一种降低背照式图像传感器暗电流的方法。相比实施例一中提供的方案,本实施例的区别在于:在步骤3)中,在所述外延层203和所述金属布线层205之间还形成有顶层钉扎层211。所述顶层钉扎层211可以通过从正面对所述外延层203进行离子注入形成,也能够起到降低暗电流的作用。Referring to FIG. 11 , this embodiment provides a method for reducing the dark current of a back-illuminated image sensor. Compared with the solution provided in the first embodiment, the difference of this embodiment is that in step 3), a top pinning
如图11所示,本实施例中所制备得到的背照式图像传感器除了上述的外延层203、金属布线层205和顶层钉扎层211外,还包括钉扎层202和形成于所述外延层203的光电二极管204。在所述外延层203下方还形成有金属布线层205和载片206。在所述外延层203上方还形成有高K介质层207、颜色滤镜层208和微透镜结构209。在多个所述光电二极管204之间还形成有背面深沟槽隔离结构210,其中也填充有所述高K介质层207。As shown in FIG. 11 , in addition to the above-mentioned
如图11所示,本实施例还提供了一种降低背照式图像传感器暗电流的结构,相比实施例一中图10所示结构,本实施例所提供结构的区别在于,在所述外延层203和所述金属布线层205之间还形成有顶层钉扎层211。As shown in FIG. 11 , this embodiment also provides a structure for reducing the dark current of a backside-illuminated image sensor. Compared with the structure shown in FIG. 10 in Embodiment 1, the difference between the structure provided in this embodiment is that in the A
本实施例的其他实施方案与实施例一相同,此处不再赘述。Other implementations of this embodiment are the same as those of Embodiment 1, and are not repeated here.
实施例三Embodiment 3
请参阅图12,本实施例提供了一种降低背照式图像传感器暗电流的方法。相比实施例一中提供的方案,本实施例的区别在于:不在外延层303表面形成高K介质层,仅通过引入钉扎层302降低暗电流。本实施例说明,仅通过引入钉扎层也可以降低界面暗电流,解决噪点问题,从而起到改善背照式图像传感器的成像质量的效果。Referring to FIG. 12 , this embodiment provides a method for reducing the dark current of a backside-illuminated image sensor. Compared with the solution provided in the first embodiment, the difference of this embodiment is that the high-K dielectric layer is not formed on the surface of the
如图12所示,本实施例中所制备得到的背照式图像传感器包括外延层303、金属布线层305、钉扎层302和形成于所述外延层303的光电二极管304。在所述外延层303下方还形成有金属布线层305和载片306。在所述外延层303上方还形成有颜色滤镜层308和微透镜结构309。在多个所述光电二极管304之间还形成有背面深沟槽隔离结构310,其中填充有绝缘介质材料,可以是高K介质材料307。As shown in FIG. 12 , the backside illuminated image sensor prepared in this embodiment includes an
如图12所示,本实施例还提供了一种降低背照式图像传感器暗电流的结构,相比实施例一中图10所示结构,本实施例所提供结构的区别在于,在所述外延层303表面不形成高K介质层,仅通过引入所述钉扎层302降低暗电流。As shown in FIG. 12 , this embodiment also provides a structure for reducing the dark current of a backside-illuminated image sensor. Compared with the structure shown in FIG. 10 in Embodiment 1, the difference between the structure provided in this embodiment is that in the No high-K dielectric layer is formed on the surface of the
本实施例的其他实施方案与实施例一相同,此处不再赘述。Other implementations of this embodiment are the same as those of Embodiment 1, and are not repeated here.
综上所述,本发明提供了一种降低背照式图像传感器暗电流的方法及结构,所述方法如下步骤:1)提供SOI衬底,所述SOI衬底包括硅衬底、埋氧层和顶层硅;2)在所述顶层硅中形成通过掺杂构成的钉扎层;3)在所述顶层硅上方形成外延层,并在所述外延层中形成光电二极管;4)以所述埋氧层作为减薄停止层,对所述硅衬底进行背面减薄。本发明在SOI衬底的顶层硅上形成钉扎层,并在背面减薄工艺中以埋氧层作为减薄停止层。通过引入钉扎层作为光电二极管的电荷捕获层,降低了电荷流入光电二级管形成暗电流的几率,钉扎层能在硅衬底减薄工艺中得到埋氧层的保护。此外,通过配合背面生长高K介质层,更进一步降低了界面暗电流。In summary, the present invention provides a method and structure for reducing the dark current of a back-illuminated image sensor. The method includes the following steps: 1) providing an SOI substrate, where the SOI substrate includes a silicon substrate and a buried oxide layer. and top layer silicon; 2) forming a pinning layer formed by doping in the top layer silicon; 3) forming an epitaxial layer over the top layer silicon, and forming a photodiode in the epitaxial layer; 4) using the The buried oxide layer acts as a thinning stop layer for backside thinning of the silicon substrate. In the present invention, a pinned layer is formed on the top silicon of the SOI substrate, and the buried oxide layer is used as a thinning stop layer in the backside thinning process. By introducing the pinned layer as the charge trapping layer of the photodiode, the probability of the electric charge flowing into the photodiode to form dark current is reduced, and the pinned layer can be protected by the buried oxide layer in the silicon substrate thinning process. In addition, by cooperating with the backside growth of a high-K dielectric layer, the interface dark current is further reduced.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010796186.1A CN111785748A (en) | 2020-08-10 | 2020-08-10 | Method and structure for reducing dark current of backside illuminated image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010796186.1A CN111785748A (en) | 2020-08-10 | 2020-08-10 | Method and structure for reducing dark current of backside illuminated image sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111785748A true CN111785748A (en) | 2020-10-16 |
Family
ID=72762030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010796186.1A Pending CN111785748A (en) | 2020-08-10 | 2020-08-10 | Method and structure for reducing dark current of backside illuminated image sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785748A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112637512A (en) * | 2020-12-14 | 2021-04-09 | 联合微电子中心有限责任公司 | Global shutter image sensor, control method and camera device |
WO2023155099A1 (en) * | 2022-02-17 | 2023-08-24 | 深圳市大疆创新科技有限公司 | Back-illuminated avalanche photodiode array chip, receiving chip, ranging apparatus and movable platform |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050139828A1 (en) * | 2003-11-04 | 2005-06-30 | Yasushi Maruyama | Solid-state imaging device and method for manufacturing the same |
JP2006019360A (en) * | 2004-06-30 | 2006-01-19 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
US20080197436A1 (en) * | 2007-02-19 | 2008-08-21 | Shinji Uya | Electronic device, method for manufacturing the same, and silicon substrate for electronic device |
US20100059843A1 (en) * | 2008-09-10 | 2010-03-11 | Sony Corporation | Solid-state imaging device and method for making the same, and manufacturing substrate for solid-state imaging device |
JP2010109398A (en) * | 2010-02-19 | 2010-05-13 | Sony Corp | Solid state imaging apparatus and method for manufacturing the same, and semiconductor device and method for manufacturing the same |
CN101908552A (en) * | 2007-01-11 | 2010-12-08 | 索尼公司 | Solid-state imaging device, electronic module and electronic equipment |
CN102194846A (en) * | 2010-03-19 | 2011-09-21 | 株式会社东芝 | Solid-state imaging device and method of manufacturing the same |
CN102569323A (en) * | 2012-02-10 | 2012-07-11 | 格科微电子(上海)有限公司 | Image sensor and method for manufacturing the same |
US20120205730A1 (en) * | 2011-02-14 | 2012-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Transparent conductive film for improving charge transfer in backside illuminated image sensor |
US20130001730A1 (en) * | 2011-06-28 | 2013-01-03 | Sony Corporation | Solid-state imaging device, method for manufacturing the same, and electronic apparatus |
US20130001651A1 (en) * | 2010-04-14 | 2013-01-03 | Hamamatsu Photonics K.K. | Semiconductor light detecting element |
CN103500750A (en) * | 2013-10-21 | 2014-01-08 | 上海华力微电子有限公司 | Structure of active pixel of CMOS (Complementary Metal Oxide Semiconductor) image sensor and manufacturing method thereof |
US20150054149A1 (en) * | 2011-01-29 | 2015-02-26 | International Business Machines Corporation | Novel 3D Integration Method Using SOI Substrates And Structures Produced Thereby |
CN106611765A (en) * | 2015-10-27 | 2017-05-03 | 台湾积体电路制造股份有限公司 | Extra doped region for back-side deep trench isolation |
US20190096929A1 (en) * | 2017-09-28 | 2019-03-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Back-side deep trench isolation (bdti) structure for pinned photodiode image sensor |
CN111129052A (en) * | 2019-12-23 | 2020-05-08 | 上海集成电路研发中心有限公司 | CMOS image sensor structure and manufacturing method |
CN111129054A (en) * | 2019-12-23 | 2020-05-08 | 上海集成电路研发中心有限公司 | CMOS image sensor structure and manufacturing method |
CN111432100A (en) * | 2020-03-30 | 2020-07-17 | 上海果纳半导体技术有限公司 | Image sensor, forming method thereof, under-screen fingerprint recognition device and electronic equipment |
-
2020
- 2020-08-10 CN CN202010796186.1A patent/CN111785748A/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050139828A1 (en) * | 2003-11-04 | 2005-06-30 | Yasushi Maruyama | Solid-state imaging device and method for manufacturing the same |
JP2006019360A (en) * | 2004-06-30 | 2006-01-19 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
CN101908552A (en) * | 2007-01-11 | 2010-12-08 | 索尼公司 | Solid-state imaging device, electronic module and electronic equipment |
US20080197436A1 (en) * | 2007-02-19 | 2008-08-21 | Shinji Uya | Electronic device, method for manufacturing the same, and silicon substrate for electronic device |
US20100059843A1 (en) * | 2008-09-10 | 2010-03-11 | Sony Corporation | Solid-state imaging device and method for making the same, and manufacturing substrate for solid-state imaging device |
JP2010109398A (en) * | 2010-02-19 | 2010-05-13 | Sony Corp | Solid state imaging apparatus and method for manufacturing the same, and semiconductor device and method for manufacturing the same |
CN102194846A (en) * | 2010-03-19 | 2011-09-21 | 株式会社东芝 | Solid-state imaging device and method of manufacturing the same |
US20130001651A1 (en) * | 2010-04-14 | 2013-01-03 | Hamamatsu Photonics K.K. | Semiconductor light detecting element |
US20150054149A1 (en) * | 2011-01-29 | 2015-02-26 | International Business Machines Corporation | Novel 3D Integration Method Using SOI Substrates And Structures Produced Thereby |
US20120205730A1 (en) * | 2011-02-14 | 2012-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Transparent conductive film for improving charge transfer in backside illuminated image sensor |
US20130001730A1 (en) * | 2011-06-28 | 2013-01-03 | Sony Corporation | Solid-state imaging device, method for manufacturing the same, and electronic apparatus |
CN102569323A (en) * | 2012-02-10 | 2012-07-11 | 格科微电子(上海)有限公司 | Image sensor and method for manufacturing the same |
CN103500750A (en) * | 2013-10-21 | 2014-01-08 | 上海华力微电子有限公司 | Structure of active pixel of CMOS (Complementary Metal Oxide Semiconductor) image sensor and manufacturing method thereof |
CN106611765A (en) * | 2015-10-27 | 2017-05-03 | 台湾积体电路制造股份有限公司 | Extra doped region for back-side deep trench isolation |
US20190096929A1 (en) * | 2017-09-28 | 2019-03-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Back-side deep trench isolation (bdti) structure for pinned photodiode image sensor |
CN111129052A (en) * | 2019-12-23 | 2020-05-08 | 上海集成电路研发中心有限公司 | CMOS image sensor structure and manufacturing method |
CN111129054A (en) * | 2019-12-23 | 2020-05-08 | 上海集成电路研发中心有限公司 | CMOS image sensor structure and manufacturing method |
CN111432100A (en) * | 2020-03-30 | 2020-07-17 | 上海果纳半导体技术有限公司 | Image sensor, forming method thereof, under-screen fingerprint recognition device and electronic equipment |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112637512A (en) * | 2020-12-14 | 2021-04-09 | 联合微电子中心有限责任公司 | Global shutter image sensor, control method and camera device |
WO2023155099A1 (en) * | 2022-02-17 | 2023-08-24 | 深圳市大疆创新科技有限公司 | Back-illuminated avalanche photodiode array chip, receiving chip, ranging apparatus and movable platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101864481B1 (en) | Image sensor and method of forming the same | |
US10950645B2 (en) | Semiconductor device with a radiation sensing region and method for forming the same | |
US8278130B2 (en) | Back side illumination image sensor and method for manufacturing the same | |
CN104637968A (en) | Image sensor adopting deep groove isolation and manufacturing method thereof | |
KR101348818B1 (en) | Solid-state imaging device and manufacturing method thereof | |
TW201351512A (en) | Image sensing device and method of manufacturing same | |
KR20180027852A (en) | Backside illuminated image sensor and method of manufacturing the same | |
CN110783356B (en) | Time delay integral image sensor and forming method thereof | |
CN101771065A (en) | Back side illuminaton image sensor and method for manufacturing the same | |
CN206574713U (en) | Back side illumination image sensor | |
CN111785748A (en) | Method and structure for reducing dark current of backside illuminated image sensor | |
US20140217541A1 (en) | Back-side illuminated image sensor with a junction insulation | |
CN111009540B (en) | A CMOS image sensor structure and manufacturing method | |
KR20200091252A (en) | Backside illuminated image sensor and method of manufacturing the same | |
CN105810696A (en) | Backside deep trench-isolated backside-illuminated image sensor manufacturing method | |
CN110400818A (en) | Method of manufacturing back-illuminated CMOS image sensor | |
CN110085608A (en) | A kind of high-performance CMOS imaging sensor structure and preparation method thereof | |
CN101388361A (en) | Method of manufacturing an image sensor | |
KR20100076522A (en) | Back side illumination image sensor and method for manufacturing the same | |
CN112259624B (en) | Image sensor and method of forming the same | |
US20230163152A1 (en) | Backside illuminated image sensor and method of manufacturing the same | |
CN112599548B (en) | Image sensor and method of manufacturing the same | |
CN204558466U (en) | Adopt the imageing sensor of deep trench isolation | |
CN110137196B (en) | Image sensor and method of forming the same | |
CN101383366B (en) | Image sensor and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201016 |