[go: up one dir, main page]

CN204558466U - Adopt the imageing sensor of deep trench isolation - Google Patents

Adopt the imageing sensor of deep trench isolation Download PDF

Info

Publication number
CN204558466U
CN204558466U CN201520108715.9U CN201520108715U CN204558466U CN 204558466 U CN204558466 U CN 204558466U CN 201520108715 U CN201520108715 U CN 201520108715U CN 204558466 U CN204558466 U CN 204558466U
Authority
CN
China
Prior art keywords
layer
image sensor
deep trench
isolation structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201520108715.9U
Other languages
Chinese (zh)
Inventor
赵立新
杨瑞坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geke Microelectronics Zhejiang Co ltd
Original Assignee
Galaxycore Shanghai Ltd Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galaxycore Shanghai Ltd Corp filed Critical Galaxycore Shanghai Ltd Corp
Priority to CN201520108715.9U priority Critical patent/CN204558466U/en
Application granted granted Critical
Publication of CN204558466U publication Critical patent/CN204558466U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

本实用新型提供一种采用深沟槽隔离的图像传感器,包括:衬底;位于所述衬底上的若干隔离结构,所述隔离结构隔离像素单元;覆盖隔离结构的外延单晶硅层;位于所述外延单晶硅层中的部分图像传感器器件。本实用新型的技术方案中,于形成图像传感器器件之前形成深沟槽隔离结构,该隔离结构的表面形状较好、缺陷较少,并且可以通过外延高温过程进行修复,进一步消除缺陷的影响,使得隔离结构的界面更加优良,由于深沟槽隔离结构在器件之前形成,工艺手段、环境的可选择性较广,无需考虑对器件的损害,用于形成器件的外延单晶硅层在隔离结构形成后生长,高温制程保证了不会有应力传导进硅器件区域,保证了图像传感器器件性能。

The utility model provides an image sensor adopting deep trench isolation, comprising: a substrate; a plurality of isolation structures located on the substrate, and the isolation structures isolate pixel units; an epitaxial monocrystalline silicon layer covering the isolation structure; Part of the image sensor device in the epitaxial single crystal silicon layer. In the technical solution of the present utility model, a deep trench isolation structure is formed before the image sensor device is formed, the surface shape of the isolation structure is better, and the defect is less, and it can be repaired by an epitaxial high-temperature process, and the influence of the defect is further eliminated, so that The interface of the isolation structure is more excellent. Since the deep trench isolation structure is formed before the device, the selectivity of process means and environment is wide, and there is no need to consider the damage to the device. The epitaxial single crystal silicon layer used to form the device is formed before the isolation structure. Post-growth, the high-temperature process ensures that no stress will be conducted into the silicon device area, ensuring the performance of the image sensor device.

Description

采用深沟槽隔离的图像传感器Image sensor with deep trench isolation

技术领域 technical field

本实用新型涉及图像传感器领域,尤其涉及一种采用深沟槽隔离的图像传感器。 The utility model relates to the field of image sensors, in particular to an image sensor adopting deep trench isolation.

背景技术 Background technique

图像传感器可分为互补金属氧化物(CMOS)图像传感器和电荷耦合器件(CCD)图像传感器。CCD图像传感器的优点是对图像敏感度较高且噪声小,但是CCD图像传感器与其他器件的集成比较困难,而且CCD图像传感器的功耗较高。相比之下,CMOS图像传感器具有工艺简单、易与其他器件集成、体积小、重量轻、功耗小、成本低等优点。因此,随着技术发展,CMOS图像传感器越来越多地取代CCD图像传感器应用于各类电子产品中。目前CMOS图像传感器已经广泛应用于静态数码相机、照相手机、数码摄像机、医疗用摄像装置(例如胃镜)、车用摄像装置等。 Image sensors can be classified into complementary metal oxide (CMOS) image sensors and charge-coupled device (CCD) image sensors. The advantage of the CCD image sensor is that it has high image sensitivity and low noise, but it is difficult to integrate the CCD image sensor with other devices, and the power consumption of the CCD image sensor is relatively high. In contrast, CMOS image sensors have the advantages of simple process, easy integration with other devices, small size, light weight, low power consumption, and low cost. Therefore, with the development of technology, CMOS image sensors are increasingly used in various electronic products instead of CCD image sensors. At present, CMOS image sensors have been widely used in still digital cameras, camera phones, digital video cameras, medical imaging devices (such as gastroscopes), and automotive imaging devices.

现有的CMOS图像传感器的制作过程中于像素区的阵列排布的像素单元需要通过沟槽进行物理隔离、电学隔离,现有技术中往往采用先做图像传感器器件再制作深沟槽隔离结构的方法,但这种方法会引起深沟槽隔离结构的缺陷难以去除,若采用高温热氧化工艺去除,由于加热温度往往高于800摄氏度,会导致图像传感器器件的功能损害,影响图像传感器器件的质量。为了提高光电二级管的感光性(Sensitivity) 和电子饱和度(range),传统的方法是加深光电二级管的深度,并提供高能粒子注入的方式,会引入较大的注入缺陷,此外,CMOS图像传感器制作方式中也在寻求如何提高载流子的迁移效率、防止暗电流、提高信噪比的解决方案。 In the manufacturing process of the existing CMOS image sensor, the pixel units arranged in an array in the pixel area need to be physically isolated and electrically isolated through trenches. In the prior art, the image sensor device is often made first and then the deep trench isolation structure method, but this method will cause the defects of the deep trench isolation structure to be difficult to remove. If a high-temperature thermal oxidation process is used to remove them, since the heating temperature is often higher than 800 degrees Celsius, it will cause functional damage to the image sensor device and affect the quality of the image sensor device. . In order to improve the sensitivity (Sensitivity) and electron saturation (range) of photodiodes, the traditional method is to deepen the depth of photodiodes and provide high-energy particle injection, which will introduce large injection defects. In addition, CMOS image sensor manufacturing methods are also seeking solutions to improve carrier transfer efficiency, prevent dark current, and improve signal-to-noise ratio.

发明内容 Contents of the invention

本实用新型的目的是提供一种采用深沟槽隔离的图像传感器,以解决深沟槽隔离的缺陷难以去除,若采用高温热氧化工艺去除,由于加热温度往往高于800摄氏度,会导致图像传感器器件的功能损害,影响图像传感器器件质量的问题。 The purpose of this utility model is to provide an image sensor using deep trench isolation to solve the problem that the deep trench isolation is difficult to remove. If it is removed by high temperature thermal oxidation process, the heating temperature is often higher than 800 degrees Celsius, which will cause the image sensor The functional damage of the device affects the quality of the image sensor device.

为解决上述问题, 本实用新型提供一种采用深沟槽隔离的图像传感器,包括:衬底;位于所述衬底上的若干隔离结构,所述隔离结构隔离像素单元;覆盖隔离结构的外延单晶硅层;位于所述外延单晶硅层中的部分图像传感器器件。 In order to solve the above problems, the utility model provides an image sensor using deep trench isolation, comprising: a substrate; a plurality of isolation structures located on the substrate, the isolation structures isolate pixel units; an epitaxial cell covering the isolation structure A crystalline silicon layer; a part of the image sensor device located in the epitaxial single crystalline silicon layer.

优选地,所述隔离结构包括位于所述衬底中的若干深沟槽,以及填充至所述深沟槽中的介质和导电材质。 Preferably, the isolation structure includes several deep trenches in the substrate, and dielectric and conductive materials filled in the deep trenches.

优选地,所述隔离结构包括位于所述外延单晶硅层中的若干深沟槽,以及填充至所述深沟槽中的介质和导电材质。 Preferably, the isolation structure includes several deep trenches in the epitaxial single crystal silicon layer, and dielectric and conductive materials filled in the deep trenches.

优选地,所述隔离结构中的导电材质与预设电压相连。 Preferably, the conductive material in the isolation structure is connected to a preset voltage.

优选地,所述深沟槽的深度为1微米~5微米。 Preferably, the depth of the deep groove is 1 micron to 5 microns.

优选地,所述深沟槽的关键尺寸为0.01微米~1微米。 Preferably, the critical dimension of the deep trench is 0.01 micron to 1 micron.

优选地,所述隔离结构包围区域的硅具有由界面向硅中心方向的浓度梯度分布的掺杂层。 Preferably, the silicon in the region surrounded by the isolation structure has a doped layer with a concentration gradient distribution from the interface to the center of the silicon.

与现有技术相比,本实用新型的技术方案具有以下优势: Compared with the prior art, the technical solution of the utility model has the following advantages:

本实用新型的技术方案中,于形成图像传感器器件之前形成深沟槽隔离结构,该隔离结构的表面形状较好、缺陷较少,并且可以通过外延高温过程进行修复,进一步消除缺陷的影响,使得隔离结构的界面更加优良,由于深沟槽隔离结构在器件之前形成,工艺手段、环境的可选择性较广,无需考虑对器件的损害,用于形成器件的外延单晶硅层在隔离结构形成后生长,高温制程保证了不会有应力传导进硅器件区域,保证了图像传感器器件性能。 In the technical solution of the present utility model, a deep trench isolation structure is formed before the image sensor device is formed, the surface shape of the isolation structure is better, and the defect is less, and it can be repaired by an epitaxial high-temperature process, and the influence of the defect is further eliminated, so that The interface of the isolation structure is more excellent. Since the deep trench isolation structure is formed before the device, the selectivity of process means and environment is wide, and there is no need to consider the damage to the device. The epitaxial single crystal silicon layer used to form the device is formed before the isolation structure. Post-growth, the high-temperature process ensures that no stress will be conducted into the silicon device area, ensuring the performance of the image sensor device.

附图说明 Description of drawings

通过说明书附图以及随后与说明书附图一起用于说明本实用新型某些原理的具体实施方式,本实用新型所具有的其它特征和优点将变得清楚或得以更为具体地阐明。 Other features and advantages of the utility model will become clear or be more specifically explained through the accompanying drawings and the specific implementation methods used to illustrate some principles of the utility model together with the accompanying drawings.

图1为本实用新型采用深沟槽隔离的图像传感器的制作方法的步骤流程图; Fig. 1 is the flow chart of the steps of the manufacturing method of the image sensor adopting the deep trench isolation of the utility model;

图2至图9为本实用新型第一实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图; 2 to 9 are structural schematic diagrams corresponding to some steps of the manufacturing method of the image sensor using deep trench isolation provided by the first embodiment of the present invention;

图2至图13为本实用新型第二实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图; 2 to 13 are structural schematic diagrams corresponding to some steps of the manufacturing method of the image sensor using deep trench isolation provided by the second embodiment of the present invention;

图14至图18、图19A、20A、21A、22A、23A、24A、25A、26A、27A、图28至图30为本实用新型第三实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图; Figures 14 to 18, Figures 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, and Figures 28 to 30 are images of the image sensor using deep trench isolation provided by the third embodiment of the present invention. Schematic diagram of the structure corresponding to each step of the manufacturing method;

图14至图18、图19B、20B、21B、22B、23B、24B、25B、26B、图28至图30为本实用新型第四实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图; Figures 14 to 18, Figures 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, and Figures 28 to 30 are the manufacturing method of the image sensor using deep trench isolation provided by the fourth embodiment of the present invention Schematic diagram of the structure corresponding to some steps;

图14至图18、图19A、20A、21A、22A、23A、24A、25A、26A、27A、图31至图35为本实用新型第五实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图; Figures 14 to 18, Figures 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, and Figures 31 to 35 are images of the image sensor using deep trench isolation provided by the fifth embodiment of the present invention. Schematic diagram of the structure corresponding to each step of the manufacturing method;

图14至图18、图19B、20B、21B、22B、23B、24B、25B、26B、图31至图35为本实用新型第六实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图; Fig. 14 to Fig. 18, Fig. 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, Fig. 31 to Fig. 35 are the manufacturing method of the image sensor using deep trench isolation provided by the sixth embodiment of the present invention Schematic diagram of the structure corresponding to some steps;

图36至图39为本实用新型第七、第八实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图; 36 to 39 are structural schematic diagrams corresponding to some steps of the manufacturing method of the image sensor using deep trench isolation provided by the seventh and eighth embodiments of the present invention;

图40A、40B分别为本实用新型第九、第十实施例所提供的采用深沟槽隔离的图像传感器的制作方法中一步骤的结构示意图。 40A and 40B are schematic structural diagrams of a step in the manufacturing method of the image sensor using deep trench isolation provided by the ninth and tenth embodiments of the present invention, respectively.

具体实施方式 Detailed ways

现有的图像传感器制作过程中,于图像传感器器件完成后再进行深沟槽隔离结构的制作,由于关键器件已经形成,在后续深沟槽隔离结构形成过程中需要温度、环境的多种因素考量,既要保证隔离结构表面的界面良好性又要防止损伤器件。由于在形成隔离结构过程中会带来表面缺陷,表面缺陷会导致载流子的依附,会增大噪声,修复该类缺陷一般又需要高温等多种特殊环境,会影响甚至损害图像传感器器件性能。 In the existing image sensor manufacturing process, the deep trench isolation structure is fabricated after the image sensor device is completed. Since the key devices have been formed, various factors such as temperature and environment need to be considered in the subsequent formation of the deep trench isolation structure. , it is necessary to ensure the good interface of the surface of the isolation structure and prevent damage to the device. Because surface defects are brought about during the formation of the isolation structure, the surface defects will lead to the attachment of carriers and increase the noise. Repairing such defects generally requires a variety of special environments such as high temperature, which will affect or even damage the performance of image sensor devices. .

因此,本实用新型提出一种采用深沟槽隔离的图像传感器,于形成图像传感器器件之前预先形成隔离结构,该隔离结构的表面形状较好、缺陷较少,并且可以通过外延高温过程进行修复,进一步消除缺陷的影响,使得隔离结构的界面更加优良。此外,形成深沟槽隔离结构在形成器件之前,工艺手段、环境的可选择性较广,无需考虑对器件的损害,用于形成器件的外延单晶硅层在隔离结构形成后生长,高温制程保证了不会有应力传导进硅器件区域,保证了图像传感器器件性能。 Therefore, the utility model proposes an image sensor using deep trench isolation, and an isolation structure is pre-formed before forming an image sensor device. The surface shape of the isolation structure is better, and there are fewer defects, and it can be repaired by an epitaxial high-temperature process. The influence of defects is further eliminated, so that the interface of the isolation structure is more excellent. In addition, before the formation of the deep trench isolation structure, the choice of process means and environment is wide, and there is no need to consider the damage to the device. The epitaxial single crystal silicon layer used to form the device is grown after the formation of the isolation structure, and the high temperature process It is ensured that stress will not be conducted into the silicon device region, and the performance of the image sensor device is guaranteed.

下面结合本实用新型的说明书附图及如下若干实施例对本实用新型进行具体阐述。 The utility model is described in detail below in conjunction with the accompanying drawings of the specification of the utility model and the following several embodiments.

如图1所示,本实用新型的采用深沟槽隔离的图像传感器的制作方法包括如下步骤:提供衬底;于所述衬底上形成隔离像素单元的隔离结构;采用选择性外延的方式形成覆盖隔离结构的外延单晶硅层;在所述外延单晶硅层中形成图像传感器的部分器件。 As shown in Figure 1, the method for manufacturing an image sensor using deep trench isolation of the present invention includes the following steps: providing a substrate; forming an isolation structure for isolating pixel units on the substrate; An epitaxial single crystal silicon layer covering the isolation structure; forming part of devices of the image sensor in the epitaxial single crystal silicon layer.

其中,在本实用新型的一个优选实施例中,形成隔离结构的步骤可以为:在衬底上形成若干深沟槽,填充介质和导电材质至深沟槽中以形成隔离结构。 Wherein, in a preferred embodiment of the present invention, the step of forming the isolation structure may be: forming several deep trenches on the substrate, and filling the deep trenches with dielectric and conductive material to form the isolation structure.

在本实用新型的另一优选实施例中,形成隔离结构的步骤也可以为:在衬底上形成介质层,刻蚀介质层以形成若干凸起的隔离结构。 In another preferred embodiment of the present invention, the step of forming the isolation structure may also be: forming a dielectric layer on the substrate, and etching the dielectric layer to form several raised isolation structures.

图2至图9为本实用新型第一实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图。 2 to 9 are structural diagrams corresponding to each step of the method for manufacturing an image sensor using deep trench isolation provided by the first embodiment of the present invention.

参见图2,首先提供衬底100,该衬底100为制作图像传感器器件的载体,采用外延晶圆、SOI晶圆均可。在本实施例中,采用具有基底层1002和外延层1001的衬底100,其中,基底层1002为P型,外延层1001为N型或P型;或者基底层1002为N型,外延层1001为P型或N型。衬底100具有靠近外延层1001的第一面A以及靠近基底层1002的第二面B。 Referring to FIG. 2 , firstly, a substrate 100 is provided. The substrate 100 is a carrier for manufacturing an image sensor device, and either an epitaxial wafer or an SOI wafer can be used. In this embodiment, a substrate 100 with a base layer 1002 and an epitaxial layer 1001 is used, wherein the base layer 1002 is P-type, and the epitaxial layer 1001 is N-type or P-type; or the base layer 1002 is N-type, and the epitaxial layer 1001 It is P-type or N-type. The substrate 100 has a first surface A close to the epitaxial layer 1001 and a second surface B close to the base layer 1002 .

参见图3、图4,于衬底100的第一面A依次形成氧化层106、氮化硅层107和光阻层(未示出),通过曝光、显影、刻蚀步骤在外延层1001中形成若干深沟槽108,深沟槽108的深度为:1微米~5微米(本实施例为:2.5微米);关键尺寸为0.01微米~1微米(本实施例为0.1微米),然后去除光阻层,并对衬底表面进行清洁。此外,还可采用热氧化、刻蚀、热过程修复深沟槽108,此时形成的深沟槽108的表面即为后续工艺中形成的隔离结构的表面,由于在形成图像传感器器件之前形成该隔离结构的表面,可对该表面进行修复,而无需考虑因环境、温度对器件的影响。 3 and 4, an oxide layer 106, a silicon nitride layer 107, and a photoresist layer (not shown) are sequentially formed on the first surface A of the substrate 100, and are formed in the epitaxial layer 1001 through exposure, development, and etching steps. Some deep trenches 108, the depth of deep trenches 108 is: 1 micron ~ 5 microns (this embodiment is: 2.5 microns); critical dimension is 0.01 micron ~ 1 micron (this embodiment is 0.1 micron), then remove photoresist layer and clean the surface of the substrate. In addition, thermal oxidation, etching, and thermal processes can also be used to repair the deep trench 108. The surface of the deep trench 108 formed at this time is the surface of the isolation structure formed in the subsequent process. The surface of the isolation structure can be repaired without considering the influence of the environment and temperature on the device.

参见图5至图7,接下来形成介质层109以覆盖深沟槽108的底部和侧壁,于深沟槽108中填充导电材质层110直至填满深沟槽108,反刻蚀导电材质层110以使导电材质层110的上表面低于衬底100的第一面A,再次形成介质层109以覆盖导电材质层110,通过化学机械研磨或者刻蚀的方式依次去除位于深沟槽108之外的介质层109、氮化硅层107、氧化层106以暴露出衬底100的第一面A,并将位于深沟槽108之中的介质层109减薄至其上表面与衬底100的第一面A对齐,由此形成介质层109和导电材质层110填充在深沟槽108中并且介质层109完全包围导电材质层110的隔离结构(图7),该隔离结构用于隔离像素单元。其中,介质层109优选为氧化层,导电材质层110优选为多晶硅、金属或多晶硅和金属的组合,在本实施例中采用N型掺杂多晶硅材质。 Referring to FIG. 5 to FIG. 7, a dielectric layer 109 is formed next to cover the bottom and sidewalls of the deep trench 108, the deep trench 108 is filled with a conductive material layer 110 until the deep trench 108 is filled, and the conductive material layer is etched back. 110 so that the upper surface of the conductive material layer 110 is lower than the first surface A of the substrate 100, a dielectric layer 109 is formed again to cover the conductive material layer 110, and the layers located between the deep trenches 108 are sequentially removed by chemical mechanical grinding or etching. The outer dielectric layer 109, silicon nitride layer 107, and oxide layer 106 are used to expose the first surface A of the substrate 100, and the dielectric layer 109 located in the deep trench 108 is thinned to its upper surface and the substrate 100. Align the first surface A of the first surface A, thereby forming an isolation structure ( FIG. 7 ) in which the dielectric layer 109 and the conductive material layer 110 are filled in the deep trench 108 and the dielectric layer 109 completely surrounds the conductive material layer 110 ( FIG. 7 ), which is used to isolate pixels unit. Among them, the dielectric layer 109 is preferably an oxide layer, and the conductive material layer 110 is preferably polysilicon, metal or a combination of polysilicon and metal, and N-type doped polysilicon is used in this embodiment.

优选地,还可以对基底层1002和隔离结构中的介质层109进行预掺杂,以便通过自掺杂使得隔离结构包围区域的硅具有由界面向硅中心方向的浓度梯度分布的掺杂层,例如形成光电二极管116的部分区域,该光电二极管116的部分区域掺杂更加平均,并且于器件形成之前形成该区域,能将光电二极管116的部分区域掺杂的更深,工艺控制自由度非常大,掺杂形成的图形的掺杂浓度具有梯度的不规则分布。光电二极管的深度为:1微米至5微米之间,在本实施例中为2.8微米;浓度为:1e14CM3至5e17CM3,在本实施例中为1e16 CM3Preferably, the base layer 1002 and the dielectric layer 109 in the isolation structure can also be pre-doped, so that through self-doping, the silicon in the area surrounded by the isolation structure has a doped layer with a concentration gradient distribution from the interface to the center of the silicon, For example, forming a partial region of the photodiode 116, the doping of the partial region of the photodiode 116 is more uniform, and forming this region before the device is formed, can dope the partial region of the photodiode 116 deeper, and the process control degree of freedom is very large, The doping concentration of the pattern formed by doping has a gradient irregular distribution. The depth of the photodiode is: 1 micron to 5 microns, 2.8 microns in this embodiment; the concentration is 1e14CM 3 to 5e17CM 3 , 1e16 CM 3 in this embodiment.

参见图8,对衬底100进行选择性外延工艺以形成覆盖隔离结构的外延单晶硅层111。具体地,从衬底100的第一面A向上延伸,对硅进行选择性外延,于最初时采用N型掺杂的外延,在结束时采用无掺杂的外延。此外,选择性外延步骤中,选择同一晶向方向进行外延,形成的外延单晶硅层111的晶格较好,在后续工艺步骤中掺杂的导电材质能较好的分布。选择性外延后对硅表面进行研磨及表面清洁。 Referring to FIG. 8 , a selective epitaxial process is performed on the substrate 100 to form an epitaxial single crystal silicon layer 111 covering the isolation structure. Specifically, extending upward from the first surface A of the substrate 100 , selective epitaxy is performed on silicon, using N-type doped epitaxy at the beginning, and non-doped epitaxy at the end. In addition, in the selective epitaxy step, the epitaxial monocrystalline silicon layer 111 formed in the same crystal direction is selected for epitaxy, and the crystal lattice of the epitaxial single crystal silicon layer 111 is better, and the conductive material doped in the subsequent process steps can be better distributed. After selective epitaxy, the silicon surface is polished and cleaned.

参见图9,在外延单晶硅层111中形成图像传感器的部分器件(未示出),以及对应于隔离结构的若干浅沟槽隔离区域和/或掺杂隔离区域112,并在外延单晶硅层111上方依次形成金属互连层118、彩色滤光层(未示出)、微透镜层(未示出)等结构以完成前照式图像传感器的制作。 Referring to FIG. 9, some devices (not shown) of the image sensor are formed in the epitaxial single crystal silicon layer 111, and several shallow trench isolation regions and/or doped isolation regions 112 corresponding to the isolation structure are formed, and the epitaxial single crystal A metal interconnection layer 118 , a color filter layer (not shown), a microlens layer (not shown) and other structures are sequentially formed on the silicon layer 111 to complete the fabrication of the front-illuminated image sensor.

对于前照式图像传感器,可以直接从衬底100的第一面A通过硅穿孔将导电材质层110连接至预设电压,例如,导电材质层110接负压可耗尽深沟槽108内表面形成钉扎层,有效减少缺陷。图像传感器的像素阵列通常包括位于中心区域的有效像素单元和位于边缘区域的虚拟像素单元,优选通过虚拟像素单元的隔离结构中的导电材质层110连接至预设电压。 For a front-illuminated image sensor, the conductive material layer 110 can be connected to a preset voltage directly from the first surface A of the substrate 100 through silicon vias, for example, the conductive material layer 110 can be connected to a negative pressure to deplete the inner surface of the deep trench 108 Form a pinning layer to effectively reduce defects. A pixel array of an image sensor generally includes effective pixel units located in a central area and dummy pixel units located in an edge area, preferably connected to a preset voltage through the conductive material layer 110 in the isolation structure of the dummy pixel units.

图2至图13为本实用新型第二实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图。 2 to 13 are structural schematic diagrams corresponding to each step of the manufacturing method of the image sensor using deep trench isolation provided by the second embodiment of the present invention.

本实施例中,图2至图9所示的步骤与第一实施例完全相同。参见图10,金属互连层118形成之后,由衬底100的第一面A的方向上与支承晶圆400进行键合,对键合好的衬底100与支承晶圆400进行翻转,翻转后的结构如图11所示,然后由衬底100的第二面B(即远离外延单晶硅层111的一侧)进行减薄并停止于隔离结构表面(图12)。减薄的方式,可以通过化学机械研磨、物理机械研磨的方式进行,并结合刻蚀方式。参见图13,然后依次沉积隔离介质层、带电介质层、防反射层113覆盖于所述衬底100的第二面B,其中,隔离介质层可采用二氧化硅层起到隔离衬底100表面与上层的作用;带电介质层采用二氧化铪层和氧化钽层,由于该带电介质层带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。随后,进一步形成金属栅格层114、彩色滤光层117、微透镜层115以完成背照式图像传感器的制作。 In this embodiment, the steps shown in FIG. 2 to FIG. 9 are exactly the same as those in the first embodiment. Referring to FIG. 10, after the metal interconnection layer 118 is formed, it is bonded to the support wafer 400 from the direction of the first surface A of the substrate 100, and the bonded substrate 100 and the support wafer 400 are turned over. The final structure is shown in FIG. 11 , and then thinned from the second surface B of the substrate 100 (ie, the side away from the epitaxial monocrystalline silicon layer 111 ) and stops on the surface of the isolation structure ( FIG. 12 ). The thinning method can be carried out by chemical mechanical polishing, physical mechanical polishing, and combined with etching. Referring to FIG. 13 , an isolation dielectric layer, a charged dielectric layer, and an anti-reflection layer 113 are sequentially deposited on the second surface B of the substrate 100, wherein the isolation dielectric layer can use a silicon dioxide layer to isolate the surface of the substrate 100 The effect with the upper layer; the charged dielectric layer adopts a hafnium dioxide layer and a tantalum oxide layer. Since the charged dielectric layer has a negative charge, the inner surface of the substrate 100 can be depleted to form a pinning layer, which can effectively prevent defects on the interface surface ;Anti-reflection layer prevents crosstalk of light. Subsequently, the metal grid layer 114 , the color filter layer 117 , and the microlens layer 115 are further formed to complete the fabrication of the back-illuminated image sensor.

对于背照式图像传感器,可以通过金属栅格层114连通导电材质层110并从衬底100的第二面B连接至预设电压,例如,导电材质层110接负压可耗尽深沟槽108内表面形成钉扎层,有效减少缺陷。图像传感器的像素阵列通常包括位于中心区域的有效像素单元和位于边缘区域的虚拟像素单元,优选通过虚拟像素单元的隔离结构中的导电材质层110连接至预设电压。 For a back-illuminated image sensor, the conductive material layer 110 can be connected through the metal grid layer 114 and connected to a preset voltage from the second surface B of the substrate 100, for example, the conductive material layer 110 can be connected to negative pressure to deplete the deep trench A pinning layer is formed on the inner surface of 108 to effectively reduce defects. A pixel array of an image sensor generally includes effective pixel units located in a central area and dummy pixel units located in an edge area, preferably connected to a preset voltage through the conductive material layer 110 in the isolation structure of the dummy pixel units.

图14至图18、图19A、20A、21A、22A、23A、24A、25A、26A、27A、图28至图30为本实用新型第三实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图。 Figures 14 to 18, Figures 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, and Figures 28 to 30 are images of the image sensor using deep trench isolation provided by the third embodiment of the present invention. Schematic diagram of the structure corresponding to each step of the manufacturing method.

参见图14,首先提供衬底100,该衬底100为制作图像传感器器件的载体,采用外延晶圆、SOI晶圆均可。在本实施例中,采用具有基底层1002和外延层1001的衬底100,其中,基底层1002为P型,外延层1001为N型或P型;或者基底层1002为N型,外延层1001为P型或N型。衬底100具有靠近外延层1001的第一面A以及靠近基底层1002的第二面B。 Referring to FIG. 14 , first, a substrate 100 is provided. The substrate 100 is a carrier for manufacturing an image sensor device, and either an epitaxial wafer or an SOI wafer can be used. In this embodiment, a substrate 100 with a base layer 1002 and an epitaxial layer 1001 is used, wherein the base layer 1002 is P-type, and the epitaxial layer 1001 is N-type or P-type; or the base layer 1002 is N-type, and the epitaxial layer 1001 It is P-type or N-type. The substrate 100 has a first surface A close to the epitaxial layer 1001 and a second surface B close to the base layer 1002 .

参见图15,于衬底100第一面A形成介质层200,由于在后续过程中需采用选择性外延的方式处理,介质层200起到了外延隔离层的作用,通过化学气相沉积、物理气相沉积等薄膜工艺形成该介质层200,该介质层200可采用二氧化硅,氮化硅或者氧化铝;该介质层的厚度为:1微米至5微米之间,在本实施例中为2.5微米。 Referring to FIG. 15 , a dielectric layer 200 is formed on the first surface A of the substrate 100. Since the subsequent process needs to be processed by selective epitaxy, the dielectric layer 200 plays the role of an epitaxial isolation layer. Through chemical vapor deposition and physical vapor deposition The dielectric layer 200 is formed by a thin-film process, and the dielectric layer 200 can be made of silicon dioxide, silicon nitride or aluminum oxide; the thickness of the dielectric layer is between 1 micron and 5 microns, and in this embodiment, it is 2.5 microns.

参见图16至图18,于介质层200的表面铺设刻蚀阻挡层300,刻蚀阻挡层300可采用硬掩膜或光阻层,可使用氮化硅层、二氧化硅层;刻蚀阻挡层300的厚度为: 0.05微米至2微米之间,在本实施例中为0.2微米;若刻蚀阻挡层300为硬掩膜则于其表面再铺设一层另一光阻层301,通过曝光、显影、刻蚀图形化介质层200并停止于衬底的第一面A上,此时形成若干隔离结构101,该隔离结构101凸出于周边区域的衬底100的第一面A。图19A中,去除光阻层301,并对衬底表面进行清洁。此外,还可采用热氧化、刻蚀、热过程修复隔离结构101的表面,由于在形成图像传感器器件之前形成该结构的表面,可对该表面进行修复,而无需考虑因环境、温度对器件影响。 Referring to FIGS. 16 to 18, an etch stop layer 300 is laid on the surface of the dielectric layer 200. The etch stop layer 300 can be a hard mask or a photoresist layer, and a silicon nitride layer or a silicon dioxide layer can be used; the etch stop layer The thickness of the layer 300 is: between 0.05 microns and 2 microns, in this embodiment, it is 0.2 microns; if the etch stop layer 300 is a hard mask, another layer of photoresist layer 301 is laid on its surface, and through exposure , develop, and etch the patterned dielectric layer 200 and stop on the first surface A of the substrate. At this time, several isolation structures 101 are formed, and the isolation structures 101 protrude from the first surface A of the substrate 100 in the peripheral region. In FIG. 19A, the photoresist layer 301 is removed, and the substrate surface is cleaned. In addition, thermal oxidation, etching, and thermal processes can also be used to repair the surface of the isolation structure 101. Since the surface of the structure is formed before the image sensor device is formed, the surface can be repaired without considering the influence of the environment and temperature on the device. .

参见图20A,对衬底100进行选择性外延工艺以形成覆盖隔离结构101的外延单晶硅层105。从衬底100的第一面A向上延伸,对硅进行选择性外延,于最初时采用N型掺杂的外延,在结束时采用无掺杂的外延,选择性外延步骤中,选择同一晶向方向进行外延,形成的外延单晶硅层105的晶格较好,在后续工艺步骤中掺杂的导电材质能较好的分布,并可以根据需求掺杂阱区域,选择性外延衬底100之前,对衬底100和介质层200进行预掺杂,以便通过自掺杂使得选择性外延衬底100后,隔离结构101包围区域的硅具有由界面向硅中心方向的浓度梯度分布的掺杂层,例如:形成光电二极管102的部分区域,该光电二极管102的部分区域掺杂更加平均,并且于器件形成之前形成该区域,能将光电二极管102的部分区域掺杂的更深,工艺控制自由度非常大,掺杂形成的图形的掺杂浓度具有梯度的不规则分布;光电二极管102的部分区域选择性外延最终覆盖隔离结构101,光电二极管的深度为:1微米至5微米之间,在本实施例中为2.8微米;浓度为:1e14CM3至5e17 CM在本实施例中为采用1e16 CM3。现有的做法中光电二极管的做法:高能离子注入N型或P型掺杂,并利用高温退火工艺做掺杂离子激活,缺陷修复处理。此外,选择性外延能保护该隔离结构101,避免在后续的工艺步骤中对隔离结构101表面的损害。图21A中,对选择性外延后的硅表面进行研磨及表面清洁。 Referring to FIG. 20A , a selective epitaxial process is performed on the substrate 100 to form an epitaxial single crystal silicon layer 105 covering the isolation structure 101 . Extend upward from the first surface A of the substrate 100, and carry out selective epitaxy on silicon, adopt N-type doped epitaxy at the beginning, and adopt non-doped epitaxy at the end, select the same crystal orientation in the selective epitaxy step direction, the formed epitaxial single crystal silicon layer 105 has a better crystal lattice, and the conductive material doped in the subsequent process steps can be better distributed, and the well region can be doped according to requirements, before the selective epitaxial substrate 100 , the substrate 100 and the dielectric layer 200 are pre-doped, so that after the selective epitaxial substrate 100 is self-doped, the silicon in the area surrounded by the isolation structure 101 has a doped layer with a concentration gradient distribution from the interface to the center of the silicon. , for example: forming a partial region of the photodiode 102, the doping of the partial region of the photodiode 102 is more uniform, and forming this region before the device is formed, the partial region of the photodiode 102 can be doped deeper, and the process control degree of freedom is very high Large, the doping concentration of the pattern formed by doping has a gradient irregular distribution; the partial area selective epitaxy of the photodiode 102 finally covers the isolation structure 101, and the depth of the photodiode is: between 1 micron and 5 microns. In this implementation In the example, it is 2.8 microns; the concentration is: 1e14CM 3 to 5e17 CM 3 , in this embodiment, 1e16 CM 3 is used. The photodiode method in the existing practice: high-energy ion implantation of N-type or P-type doping, and high-temperature annealing process for doping ion activation and defect repair treatment. In addition, the selective epitaxy can protect the isolation structure 101 and avoid damage to the surface of the isolation structure 101 in subsequent process steps. In FIG. 21A, the silicon surface after selective epitaxy is ground and cleaned.

图22A中,在外延单晶硅层105中形成图像传感器的部分器件(未示出),以及对应于隔离结构101的若干浅沟槽隔离区域103,并且形成金属互连层。 In FIG. 22A , some devices (not shown) of the image sensor and several shallow trench isolation regions 103 corresponding to the isolation structure 101 are formed in the epitaxial single crystal silicon layer 105 , and a metal interconnection layer is formed.

请同时参考图23A、24A、25A、26A、27A,由衬底100的第一面A的方向上与支承晶圆400进行键合,对键合好的衬底100与支承晶圆400进行翻转,由衬底100的第二面B(即远离外延单晶硅层105的一侧)进行减薄,减薄的方式,可以通过化学机械研磨、物理机械研磨的方式进行,并结合刻蚀方式,最终减薄至暴露出隔离结构101的表面。采用刻蚀的方式(例如湿法刻蚀的方式)去除隔离结构101的介质层200的材质,进一步去除刻蚀阻挡层300,于是在外延单晶硅层105中形成若干开口结构,该开口结构即为深沟槽101B,深沟槽的深度为:1微米~5微米(本实施例为:2.5微米);关键尺寸为0.01微米~1微米(本实施例为0.1微米),由于该介质层200的材质与周边选择性外延的硅的材质不相同,仍然保持开口界面的良好性。在本实施例中,可选择的浅沟槽隔离区域103可以与深沟槽101B连接导通。 Please refer to FIGS. 23A, 24A, 25A, 26A, and 27A at the same time. Bond the substrate 100 with the support wafer 400 in the direction of the first surface A of the substrate 100, and flip the bonded substrate 100 and support wafer 400 over. , from the second side B of the substrate 100 (that is, the side away from the epitaxial single crystal silicon layer 105), the thinning method can be performed by chemical mechanical polishing, physical mechanical polishing, and combined with etching , and finally thinned to expose the surface of the isolation structure 101 . The material of the dielectric layer 200 of the isolation structure 101 is removed by etching (such as wet etching), and the etching stopper layer 300 is further removed, so that several opening structures are formed in the epitaxial single crystal silicon layer 105. The opening structures It is the deep trench 101B, the depth of the deep trench is: 1 micron to 5 microns (in this embodiment: 2.5 microns); the critical dimension is 0.01 micron to 1 micron (0.1 micron in this embodiment), because the dielectric layer The material of the 200 is different from that of the peripheral selective epitaxial silicon, and still maintains the goodness of the opening interface. In this embodiment, the optional shallow trench isolation region 103 can be connected and conducted with the deep trench 101B.

请继续参考图28至图30依次沉积第一介质层500、带电介质层600、防反射层700覆盖于所述衬底100表面,并填充所述深沟槽101B;第一介质层500可采用二氧化硅层起到隔离衬底100表面与上层的作用,带电介质层600采用二氧化铪层和氧化钽层,由于该带电介质层600带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。进一步形成金属栅格层800;形成彩色滤光层900、微透镜层1000,完成背照式图像传感器的制作。 Please continue to refer to FIG. 28 to FIG. 30 to sequentially deposit the first dielectric layer 500, the charged dielectric layer 600, and the anti-reflection layer 700 to cover the surface of the substrate 100 and fill the deep trench 101B; the first dielectric layer 500 can be The silicon dioxide layer plays the role of isolating the surface of the substrate 100 from the upper layer. The charged dielectric layer 600 adopts a hafnium dioxide layer and a tantalum oxide layer. The pinning layer can be formed to effectively prevent defects on the interface surface; the anti-reflection layer prevents crosstalk of light. A metal grid layer 800 is further formed; a color filter layer 900 and a microlens layer 1000 are formed to complete the fabrication of the back-illuminated image sensor.

图14至图18、图19B、20B、21B、22B、23B、24B、25B、26B、图28至图30为本实用新型第四实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图。 Figures 14 to 18, Figures 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, and Figures 28 to 30 are the manufacturing method of the image sensor using deep trench isolation provided by the fourth embodiment of the present invention Schematic diagram of the structure corresponding to some steps.

本实施例中,图14至图18所示的步骤与第三实施例完全相同。图19B中,去除光阻层301之后,进一步去除刻蚀阻挡层300;后续的工艺步骤与第三实施例相同,在整个过程中仅未包含有刻蚀阻挡层300。 In this embodiment, the steps shown in Fig. 14 to Fig. 18 are exactly the same as those in the third embodiment. In FIG. 19B , after removing the photoresist layer 301 , the etch stop layer 300 is further removed; subsequent process steps are the same as those of the third embodiment, only the etch stop layer 300 is not included in the whole process.

参见图20B,对衬底100进行选择性外延工艺以形成覆盖隔离结构101的外延单晶硅层105。从衬底100的第一面A向上延伸,对硅进行选择性外延,于最初时采用N型掺杂的外延,在结束时采用无掺杂的外延;选择性外延步骤中,选择同一晶向方向进行外延,形成的外延单晶硅层105的晶格较好,在后续工艺步骤中掺杂的导电材质能较好的分布,并可以根据需求掺杂阱区域,选择性外延衬底100之前,对衬底100和介质层200进行预掺杂,以便通过自掺杂使得选择性外延衬底100后,隔离墙101包围区域的硅具有由界面向硅中心方向的浓度梯度分布的掺杂层,例如:形成光电二极管102的部分区域,该光电二极管102的部分区域掺杂更加平均,并且于器件形成之前形成该区域,能将光电二极管102的部分区域掺杂的更深,工艺控制自由度非常大,掺杂形成的图形的掺杂浓度具有梯度的不规则分布;光电二极管102的部分区域选择性外延最终覆盖隔离结构101,光电二极管的深度为:1微米至5微米之间,在本实施例中为2.8微米;浓度为:1e14CM3至5e17 CM在本实施例中为采用1e16 CM3。现有的做法中光电二极管的做法:高能离子注入N型或P型掺杂,并利用高温退火工艺做掺杂离子激活,缺陷修复处理。此外,选择性外延能保护该隔离结构101,避免在后续的工艺步骤中对隔离结构101表面的损害。图21B中,对选择性外延后的硅表面进行研磨及表面清洁。 Referring to FIG. 20B , a selective epitaxial process is performed on the substrate 100 to form an epitaxial single crystal silicon layer 105 covering the isolation structure 101 . Extending upward from the first surface A of the substrate 100, silicon is selectively epitaxy, N-type doped epitaxy is used at the beginning, and non-doped epitaxy is used at the end; in the selective epitaxy step, the same crystal orientation is selected direction, the formed epitaxial single crystal silicon layer 105 has a better crystal lattice, and the conductive material doped in the subsequent process steps can be better distributed, and the well region can be doped according to requirements, before the selective epitaxial substrate 100 , the substrate 100 and the dielectric layer 200 are pre-doped, so that after the selective epitaxial substrate 100 is self-doped, the silicon in the area surrounded by the isolation wall 101 has a doped layer with a concentration gradient distribution from the interface to the center of the silicon. , for example: forming a partial region of the photodiode 102, the doping of the partial region of the photodiode 102 is more uniform, and forming this region before the device is formed, the partial region of the photodiode 102 can be doped deeper, and the process control degree of freedom is very high Large, the doping concentration of the pattern formed by doping has a gradient irregular distribution; the partial area selective epitaxy of the photodiode 102 finally covers the isolation structure 101, and the depth of the photodiode is: between 1 micron and 5 microns. In this implementation In the example, it is 2.8 microns; the concentration is: 1e14CM 3 to 5e17 CM 3 , in this embodiment, 1e16 CM 3 is used. The photodiode method in the existing practice: high-energy ion implantation of N-type or P-type doping, and high-temperature annealing process for doping ion activation and defect repair treatment. In addition, the selective epitaxy can protect the isolation structure 101 and avoid damage to the surface of the isolation structure 101 in subsequent process steps. In FIG. 21B, the silicon surface after selective epitaxy is ground and cleaned.

图22B中,在外延单晶硅层105中形成图像传感器的部分器件(未示出),以及对应于隔离结构101的若干浅沟槽隔离区域103,并且形成金属互连层。 In FIG. 22B , some devices (not shown) of the image sensor and several shallow trench isolation regions 103 corresponding to the isolation structure 101 are formed in the epitaxial single crystal silicon layer 105 , and a metal interconnection layer is formed.

请同时参考图23B、24B、25B、26B,由衬底100的第一面A的方向上与支承晶圆400进行键合,对键合好的衬底100与支承晶圆400进行翻转,由衬底100的第二面B(即远离外延单晶硅层105的一侧)进行减薄,减薄的方式,可以通过化学机械研磨、物理机械研磨的方式进行,并结合刻蚀方式,最终减薄至暴露出隔离结构101的表面。采用刻蚀的方式(例如湿法刻蚀的方式)去除隔离结构101的介质层200的材质,于是在外延单晶硅层105中形成若干开口结构,该开口结构即为深沟槽101B,深沟槽的深度为:1微米~5微米(本实施例为:2.5微米);关键尺寸为0.01微米~1微米(本实施例为0.1微米),由于该介质层200的材质与周边选择性外延的硅的材质不相同,仍然保持开口界面的良好性。本实施例中的浅沟槽隔离区域103未与深沟槽101B连接导通。 Please refer to FIGS. 23B, 24B, 25B, and 26B at the same time. The substrate 100 is bonded to the support wafer 400 in the direction of the first surface A of the substrate 100, and the bonded substrate 100 and the support wafer 400 are turned over. The second side B of the substrate 100 (that is, the side away from the epitaxial single crystal silicon layer 105) is thinned, and the method of thinning can be performed by chemical mechanical polishing, physical mechanical polishing, combined with etching, and finally thinned until the surface of the isolation structure 101 is exposed. The material of the dielectric layer 200 of the isolation structure 101 is removed by etching (such as wet etching), so that several opening structures are formed in the epitaxial single crystal silicon layer 105, and the opening structures are deep trenches 101B. The depth of the trench is: 1 micron to 5 microns (in this embodiment: 2.5 microns); the critical dimension is 0.01 micron to 1 micron (0.1 micron in this embodiment), because the material of the dielectric layer 200 and the surrounding selective epitaxy The material of the silicon is not the same, and the goodness of the opening interface is still maintained. The shallow trench isolation region 103 in this embodiment is not connected to the deep trench 101B.

请继续参考图28至图30依次沉积第一介质层500、带电介质层600、防反射层700覆盖于所述衬底100表面,并填充所述深沟槽101B;第一介质层500可采用二氧化硅层起到隔离衬底100表面与上层的作用,带电介质层600采用二氧化铪层和氧化钽层,由于该带电介质层600带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。进一步形成金属栅格层800;形成彩色滤光层900、微透镜层1000,完成背照式图像传感器的制作。 Please continue to refer to FIG. 28 to FIG. 30 to sequentially deposit the first dielectric layer 500, the charged dielectric layer 600, and the anti-reflection layer 700 to cover the surface of the substrate 100 and fill the deep trench 101B; the first dielectric layer 500 can be The silicon dioxide layer plays the role of isolating the surface of the substrate 100 from the upper layer. The charged dielectric layer 600 adopts a hafnium dioxide layer and a tantalum oxide layer. The pinning layer can be formed to effectively prevent defects on the interface surface; the anti-reflection layer prevents crosstalk of light. A metal grid layer 800 is further formed; a color filter layer 900 and a microlens layer 1000 are formed to complete the fabrication of the back-illuminated image sensor.

图14至图18、图19A、20A、21A、22A、23A、24A、25A、26A、27A、图31至图35为本实用新型第五实施例所提供的采用深沟槽隔离的图像传感器的制作方法各步骤对应的结构示意图。 Figures 14 to 18, Figures 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, and Figures 31 to 35 are images of the image sensor using deep trench isolation provided by the fifth embodiment of the present invention. Schematic diagram of the structure corresponding to each step of the manufacturing method.

本实施例中,图14至图18、图19A、20A、21A、22A、23A、24A、25A、26A、27A所示的步骤与第三实施例完全相同。 In this embodiment, the steps shown in FIGS. 14 to 18 , and FIGS. 19A , 20A, 21A, 22A, 23A, 24A, 25A, 26A, and 27A are exactly the same as those in the third embodiment.

请继续参考图31中沉积第二介质层(未标明)覆盖于衬底100表面,第二介质层也覆盖深沟槽101B,沉积导电材质层1100于第二介质层上,导电材质层1100的材质为:多晶硅、金属或多晶硅和金属的组合,在本实施例中采用N型掺杂多晶硅材质;导电材质层1100填充深沟槽101B,研磨导电材质层1100暴露出衬底100的表面。 Please continue to refer to FIG. 31 to deposit a second dielectric layer (not marked) to cover the surface of the substrate 100. The second dielectric layer also covers the deep trench 101B. A conductive material layer 1100 is deposited on the second dielectric layer. The conductive material layer 1100 The material is: polysilicon, metal or a combination of polysilicon and metal. In this embodiment, N-type doped polysilicon is used; the conductive material layer 1100 fills the deep trench 101B, and the conductive material layer 1100 is ground to expose the surface of the substrate 100 .

请参考图32、图33,依次沉积第三介质层(未标明)、带电介质层600、防反射层700覆盖于所述衬底100表面,并填充所述深沟槽101B;在一实施例中在沉积第三介质层、带电介质层600、防反射层700覆盖于所述衬底100表面之后,蚀刻若干深沟槽101B对应的上层区域并暴露出导电材质层1100。 Please refer to FIG. 32 and FIG. 33 , sequentially depositing a third dielectric layer (not marked), a charged dielectric layer 600 , and an anti-reflection layer 700 covering the surface of the substrate 100 and filling the deep trench 101B; in one embodiment After depositing the third dielectric layer, the charged dielectric layer 600 , and the anti-reflection layer 700 covering the surface of the substrate 100 , etch the upper layer regions corresponding to the deep trenches 101B and expose the conductive material layer 1100 .

请参考图34、35,进一步铺设形成金属栅格层800;形成彩色滤光层900、微透镜层1000,完成背照式图像传感器的制作。导电材质层1100可提供特定电压,在像素区域的部分导电材质层1100接负压可耗尽深沟槽101B内表面形成钉扎层,有效的减少缺陷,外围区域的部分导电材质层1100可接地GND,起到隔离的作用;带电介质层600采用二氧化铪层和氧化钽层,由于该带电介质层600带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。在本实施例中,可选择的浅沟槽隔离区域103可以与深沟槽101B连接导通。 Please refer to FIGS. 34 and 35 , further paving and forming a metal grid layer 800 ; forming a color filter layer 900 and a microlens layer 1000 , and completing the fabrication of a back-illuminated image sensor. The conductive material layer 1100 can provide a specific voltage, and a part of the conductive material layer 1100 in the pixel area can be connected to negative pressure to deplete the inner surface of the deep trench 101B to form a pinning layer, effectively reducing defects, and part of the conductive material layer 1100 in the peripheral area can be grounded GND plays the role of isolation; the charged dielectric layer 600 adopts a hafnium dioxide layer and a tantalum oxide layer. Since the charged dielectric layer 600 has a negative charge, the inner surface of the substrate 100 can be depleted to form a pinning layer, which can effectively Prevents defects on the interface surface; the anti-reflection layer prevents crosstalk of light. In this embodiment, the optional shallow trench isolation region 103 can be connected and conducted with the deep trench 101B.

图14至图18、图19B、20B、21B、22B、23B、24B、25B、26B、图31至图35为本实用新型第六实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图。 Fig. 14 to Fig. 18, Fig. 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, Fig. 31 to Fig. 35 are the manufacturing method of the image sensor using deep trench isolation provided by the sixth embodiment of the present invention Schematic diagram of the structure corresponding to some steps.

本实施例中,图14至图18、图19B、20B、21B、22B、23B、24B、25B、26B所示的步骤与第四实施例完全相同。 In this embodiment, the steps shown in FIGS. 14 to 18 , and FIGS. 19B , 20B, 21B, 22B, 23B, 24B, 25B, and 26B are exactly the same as those in the fourth embodiment.

请继续参考图31中沉积第二介质层(未标明)覆盖于衬底100表面,第二介质层也覆盖深沟槽101B,沉积导电材质层1100于第二介质层上,导电材质层1100的材质为:多晶硅、金属或多晶硅和金属的组合,在本实施例中采用N型掺杂多晶硅材质;导电材质层1100填充深沟槽101B,研磨导电材质层1100暴露出衬底100的表面。 Please continue to refer to FIG. 31 to deposit a second dielectric layer (not marked) to cover the surface of the substrate 100. The second dielectric layer also covers the deep trench 101B. A conductive material layer 1100 is deposited on the second dielectric layer. The conductive material layer 1100 The material is: polysilicon, metal or a combination of polysilicon and metal. In this embodiment, N-type doped polysilicon is used; the conductive material layer 1100 fills the deep trench 101B, and the conductive material layer 1100 is ground to expose the surface of the substrate 100 .

请参考图32、图33,依次沉积第三介质层(未标明)、带电介质层600、防反射层700覆盖于所述衬底100表面,并填充所述深沟槽101B;在一实施例中在沉积第三介质层、带电介质层600、防反射层700覆盖于所述衬底100表面之后,蚀刻若干深沟槽101B对应的上层区域并暴露出导电材质层1100。 Please refer to FIG. 32 and FIG. 33 , sequentially depositing a third dielectric layer (not marked), a charged dielectric layer 600 , and an anti-reflection layer 700 covering the surface of the substrate 100 and filling the deep trench 101B; in one embodiment After depositing the third dielectric layer, the charged dielectric layer 600 , and the anti-reflection layer 700 covering the surface of the substrate 100 , etch the upper layer regions corresponding to the deep trenches 101B and expose the conductive material layer 1100 .

请参考图34、35,进一步铺设形成金属栅格层800;形成彩色滤光层900、微透镜层1000,完成背照式图像传感器的制作。导电材质层1100可提供特定电压,在像素区域的部分导电材质层500B接负压可耗尽深沟槽101B内表面形成钉扎层,有效的减少缺陷,外围区域的部分导电材质层1100可接地GND,起到隔离的作用;带电介质层600采用二氧化铪层或氧化钽层,由于该带电介质层600带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。 Please refer to FIGS. 34 and 35 , further paving and forming a metal grid layer 800 ; forming a color filter layer 900 and a microlens layer 1000 , and completing the fabrication of a back-illuminated image sensor. The conductive material layer 1100 can provide a specific voltage. Connecting the negative pressure to the part of the conductive material layer 500B in the pixel area can deplete the inner surface of the deep trench 101B to form a pinning layer, which can effectively reduce defects. Part of the conductive material layer 1100 in the peripheral area can be grounded GND plays the role of isolation; the charged dielectric layer 600 adopts a hafnium dioxide layer or a tantalum oxide layer. Since the charged dielectric layer 600 has a negative charge, the inner surface of the substrate 100 can be depleted to form a pinning layer, which can effectively Prevents defects on the interface surface; the anti-reflection layer prevents crosstalk of light.

图36至图39为本实用新型第七、第八实施例所提供的采用深沟槽隔离的图像传感器的制作方法部分步骤对应的结构示意图。 36 to 39 are structural schematic diagrams corresponding to some steps of the manufacturing method of the image sensor using deep trench isolation provided by the seventh and eighth embodiments of the present invention.

前道的工艺步骤中可采用第三实施例或第四实施例的方式先形成深沟槽101B;请继续参考图36至图39依次于深沟槽101B及周边区域的表面沉积第一介质层500、带电介质层600、防反射层700,此时沉积了第一介质层500、带电介质层600、防反射层700之后,深沟槽101B仍然凹陷于周围表面,未填充满所述深沟槽101B;第一介质层500可采用二氧化硅层起到隔离衬底100表面与上层的作用,带电介质层600采用二氧化铪层和氧化钽层,由于该带电介质层600带有负电荷,能使得衬底100的内表面耗尽形成钉扎层,能有效防止界面表面的缺陷;防反射层防止光线的串扰。进一步形成金属栅格层800,金属栅格层800填充于深沟槽101B内并凸出于周围的表面,金属栅格层800可接控制电压;进一步形成彩色滤光层900、微透镜层1000,完成背照式图像传感器的制作。 In the previous process steps, the method of the third embodiment or the fourth embodiment can be used to form the deep trench 101B first; please continue to refer to FIG. 36 to FIG. 39 to deposit the first dielectric layer on the surface of the deep trench 101B and the surrounding area in sequence 500, the charged dielectric layer 600, and the antireflection layer 700. At this time, after the first dielectric layer 500, the charged dielectric layer 600, and the antireflection layer 700 are deposited, the deep trench 101B is still depressed on the surrounding surface, and the deep trench is not filled. Groove 101B; the first dielectric layer 500 can use a silicon dioxide layer to isolate the surface of the substrate 100 from the upper layer, and the charged dielectric layer 600 uses a hafnium dioxide layer and a tantalum oxide layer, because the charged dielectric layer 600 has a negative charge , the inner surface of the substrate 100 can be depleted to form a pinning layer, which can effectively prevent defects on the interface surface; the anti-reflection layer prevents crosstalk of light. Further form a metal grid layer 800, the metal grid layer 800 is filled in the deep groove 101B and protrudes from the surrounding surface, the metal grid layer 800 can be connected to a control voltage; further form a color filter layer 900, a microlens layer 1000 , to complete the fabrication of the back-illuminated image sensor.

图40A、图40B分别为本实用新型第九、第十实施例所提供的采用深沟槽隔离的图像传感器的制作方法中一步骤的结构示意图。在图40A所示的第九实施例中,于图21A的步骤或图21B的步骤之后形成浅沟槽隔离区域103,于浅沟槽隔离区域103的外围掺杂形成包裹其的掺杂隔离区域104,在本实施例中采用P型掺杂。在图40B所示的第十实施例中,可选择的不形成浅沟槽隔离区域103,直接于应该形成浅沟槽隔离区域103的对应区域掺杂形成掺杂隔离区域104,在本实施例中采用P型掺杂。 40A and 40B are structural schematic diagrams of a step in the manufacturing method of the image sensor using deep trench isolation provided by the ninth and tenth embodiments of the present invention, respectively. In the ninth embodiment shown in FIG. 40A , the shallow trench isolation region 103 is formed after the step in FIG. 21A or the step in FIG. 21B , and the periphery of the shallow trench isolation region 103 is doped to form a doped isolation region surrounding it. 104. In this embodiment, P-type doping is adopted. In the tenth embodiment shown in FIG. 40B , the shallow trench isolation region 103 can be optionally not formed, and the doped isolation region 104 is directly doped to the corresponding region where the shallow trench isolation region 103 should be formed. In this embodiment In the use of P-type doping.

本实用新型中,于形成图像传感器器件之前形成深沟槽隔离结构,该隔离结构的表面形状较好、缺陷较少,并且可以通过外延高温过程进行修复,进一步消除缺陷的影响,使得隔离结构的界面更加优良,由于深沟槽隔离结构在器件之前形成,工艺手段、环境的可选择性较广,无需考虑对器件的损害,用于形成器件的外延单晶硅层在隔离结构形成后生长,高温制程保证了不会有应力传导进硅器件区域,保证了图像传感器器件性能。 In the utility model, the deep trench isolation structure is formed before the image sensor device is formed, the surface shape of the isolation structure is better, and the defect is less, and it can be repaired through the epitaxial high-temperature process, and the influence of the defect is further eliminated, so that the isolation structure The interface is more excellent. Since the deep trench isolation structure is formed before the device, the selectivity of process means and environment is wide, and there is no need to consider the damage to the device. The epitaxial single crystal silicon layer used to form the device grows after the isolation structure is formed. The high-temperature process ensures that there will be no stress conduction into the silicon device area, ensuring the performance of the image sensor device.

虽然本实用新型披露如上,但本实用新型并非限定于此。任何本领域技术人员,在不脱离本实用新型的精神和范围内,均可作各种更动与修改,因此本实用新型的保护范围应当以权利要求所限定的范围为准。 Although the utility model is disclosed as above, the utility model is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present utility model, so the protection scope of the present utility model should be based on the scope defined in the claims.

Claims (7)

1.一种采用深沟槽隔离的图像传感器,其特征在于,包括: 1. An image sensor adopting deep trench isolation, characterized in that, comprising: 衬底; Substrate; 位于所述衬底上的若干隔离结构,所述隔离结构隔离像素单元; a plurality of isolation structures located on the substrate, the isolation structures isolate pixel units; 覆盖隔离结构的外延单晶硅层; an epitaxial monocrystalline silicon layer covering the isolation structure; 位于所述外延单晶硅层中的部分图像传感器器件。 Part of the image sensor device located in the epitaxial single crystal silicon layer. 2.如权利要求1所述的采用深沟槽隔离的图像传感器,其特征在于,所述隔离结构包括位于所述衬底中的若干深沟槽,以及填充至所述深沟槽中的介质和导电材质。 2. The image sensor employing deep trench isolation according to claim 1, wherein the isolation structure comprises several deep trenches in the substrate, and a medium filled into the deep trenches and conductive materials. 3.如权利要求1所述的采用深沟槽隔离的图像传感器,其特征在于,所述隔离结构包括位于所述外延单晶硅层中的若干深沟槽,以及填充至所述深沟槽中的介质和导电材质。 3. The image sensor employing deep trench isolation as claimed in claim 1, wherein the isolation structure comprises several deep trenches located in the epitaxial monocrystalline silicon layer, and the deep trenches are filled into the deep trenches. Medium and conductive materials. 4.如权利要求2或3所述的采用深沟槽隔离的图像传感器,其特征在于,所述隔离结构中的导电材质与预设电压相连。 4. The image sensor using deep trench isolation according to claim 2 or 3, wherein the conductive material in the isolation structure is connected to a preset voltage. 5.如权利要求2或3所述的采用深沟槽隔离的图像传感器,其特征在于,所述深沟槽的深度为1微米~5微米。 5 . The image sensor using deep trench isolation according to claim 2 or 3 , wherein the depth of the deep trench is 1 micron to 5 microns. 6.如权利要求2或3所述的采用深沟槽隔离的图像传感器,其特征在于,所述深沟槽的关键尺寸为0.01微米~1微米。 6. The image sensor using deep trench isolation according to claim 2 or 3, wherein the critical dimension of the deep trench is 0.01 micron to 1 micron. 7.如权利要求1所述的采用深沟槽隔离的图像传感器,其特征在于,所述隔离结构包围区域的硅具有由界面向硅中心方向的浓度梯度分布的掺杂层。 7 . The image sensor using deep trench isolation according to claim 1 , wherein the silicon in the region surrounded by the isolation structure has a doped layer with a concentration gradient distribution from the interface to the center of the silicon.
CN201520108715.9U 2015-02-15 2015-02-15 Adopt the imageing sensor of deep trench isolation Expired - Lifetime CN204558466U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520108715.9U CN204558466U (en) 2015-02-15 2015-02-15 Adopt the imageing sensor of deep trench isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520108715.9U CN204558466U (en) 2015-02-15 2015-02-15 Adopt the imageing sensor of deep trench isolation

Publications (1)

Publication Number Publication Date
CN204558466U true CN204558466U (en) 2015-08-12

Family

ID=53833547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520108715.9U Expired - Lifetime CN204558466U (en) 2015-02-15 2015-02-15 Adopt the imageing sensor of deep trench isolation

Country Status (1)

Country Link
CN (1) CN204558466U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637968A (en) * 2015-02-15 2015-05-20 格科微电子(上海)有限公司 Image sensor adopting deep groove isolation and manufacturing method thereof
CN116435325A (en) * 2023-06-13 2023-07-14 合肥晶合集成电路股份有限公司 Backside illuminated image sensor and method of forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637968A (en) * 2015-02-15 2015-05-20 格科微电子(上海)有限公司 Image sensor adopting deep groove isolation and manufacturing method thereof
CN104637968B (en) * 2015-02-15 2019-06-11 格科微电子(上海)有限公司 Using the imaging sensor and preparation method thereof of deep trench isolation
CN116435325A (en) * 2023-06-13 2023-07-14 合肥晶合集成电路股份有限公司 Backside illuminated image sensor and method of forming the same
CN116435325B (en) * 2023-06-13 2023-09-08 合肥晶合集成电路股份有限公司 Back-illuminated image sensor and method of forming the same

Similar Documents

Publication Publication Date Title
CN104637968A (en) Image sensor adopting deep groove isolation and manufacturing method thereof
CN103378114B (en) Reduce equipment and the method for the crosstalk in imageing sensor
US20230089511A1 (en) Deep trench isolation structure for image sensor
TWI864354B (en) Image sensor with passivated full deep-trench isolation and associated methods of manufacture and method of reducing noise in the image sensor
CN109192741B (en) Method of forming a backside illuminated image sensor
US10269864B2 (en) Pixel isolation device and fabrication method
CN109037255A (en) Back side illumination image sensor and forming method thereof
CN104701334A (en) Deep-groove isolated stacked image sensor manufacturing method
KR20150112735A (en) Cmos image sensor with epitaxial passivation layer
CN105810696A (en) Backside deep trench-isolated backside-illuminated image sensor manufacturing method
CN104952896A (en) Manufacturing method of image sensor using deep trench isolation
US20120319230A1 (en) Etching narrow, tall dielectric isolation structures from a dielectric layer
US8729655B2 (en) Etching narrow, tall dielectric isolation structures from a dielectric layer
JP5481419B2 (en) Manufacturing method of semiconductor device
CN105826331A (en) Method of manufacturing back-illuminated image sensor adopting back-illuminated deep trench isolation
CN204558466U (en) Adopt the imageing sensor of deep trench isolation
CN109585481B (en) Image sensor structure and preparation method thereof
CN110400818A (en) Method of manufacturing back-illuminated CMOS image sensor
CN108417595A (en) Image sensor and method of forming the same
CN108231809A (en) A kind of back side illumination image sensor and preparation method thereof
TW201332064A (en) Semiconductor device, back-illuminated image sensor device and method of forming same
CN204632760U (en) Image sensor with deep trench isolation
TWI815124B (en) Image sensor and method of forming the same
CN113270431B (en) Semiconductor structure and image sensor and method for forming the same
CN114975490A (en) Image sensor forming method and image sensor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170921

Address after: Jiaxing City, Zhejiang province 314000 Jiashan Huimin street 1 Building 2 Taisheng Road No. 111 building 201 room

Patentee after: GEKE MICROELECTRONICS (ZHEJIANG) CO.,LTD.

Address before: 201203 Shanghai, Pudong New Area, No. 560 Summer Road, building 11, floor 2

Patentee before: GALAXYCORE SHANGHAI Ltd.,Corp.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20150812